05.04.2013 Views

Performance Analysis of a JTIDS/Link-16-type Waveform ...

Performance Analysis of a JTIDS/Link-16-type Waveform ...

Performance Analysis of a JTIDS/Link-16-type Waveform ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

⎛ 0.3125ra<br />

T ⎞<br />

pc ( a )<br />

.<br />

1 c = Q<br />

⎜ ⎟<br />

2<br />

c b'<br />

⎜ ⎟<br />

⎝<br />

N0 + NIρ1 ⎠<br />

2<br />

If γ = aT N , (<strong>16</strong>) can be rewritten as<br />

b c b'<br />

0<br />

( γ ) ( γ )<br />

c0b b<br />

(17)<br />

p = Q 0.3125 r ,<br />

(18)<br />

and the pdf in terms <strong>of</strong> γ b is given by<br />

m<br />

m−1<br />

γ ⎛ b m ⎞ ⎛−mγ ⎞ b<br />

fΓ<br />

( γ )<br />

exp , 0<br />

b b = ⎜ ⎟ ⎜ ⎟ γb<br />

≥ (19)<br />

Γ( m)<br />

⎜γ ⎟ ⎜<br />

b γ ⎟<br />

⎝ ⎠ ⎝ b ⎠<br />

2<br />

where γ b = aT c b'<br />

N0<br />

is defined as the ratio <strong>of</strong> the average<br />

energy per bit per pulse-to-noise power spectral density. If<br />

( )<br />

γT 2<br />

= aT c b' ⎡⎣N0 + NI<br />

ρ1<br />

⎤⎦<br />

, we can rewrite (17) as<br />

p γ = Q 0.3125 rγ<br />

,<br />

(20)<br />

( ) ( )<br />

c1T T<br />

and the pdf in terms <strong>of</strong> γ T is given by<br />

m<br />

m−1<br />

γ ⎛ T m ⎞ ⎛−mγ ⎞ T<br />

fΓ<br />

( γ )<br />

exp , 0<br />

T T = ⎜ ⎟ ⎜ ⎟ γT<br />

≥<br />

Γ( m)<br />

⎜γ ⎟ ⎜<br />

T γ ⎟<br />

⎝ ⎠ ⎝ T ⎠<br />

2<br />

where γ = aT N + ( N ρ )<br />

(21)<br />

T c b' ⎡⎣ 0 I 1 ⎤⎦<br />

. The average probability <strong>of</strong><br />

channel chip error when the PNI is <strong>of</strong>f is obtained from<br />

pc0 ∞<br />

= ∫ pc ( γ ) ( ) .<br />

0 b fΓγ b b dγ<br />

−∞<br />

b<br />

(22)<br />

Substituting (18) and (19) into (22), we obtain the average<br />

probability <strong>of</strong> channel chip error when the PNI is <strong>of</strong>f as<br />

m<br />

m−1<br />

∞ γ ⎛ b m ⎞ ⎛−mγ ⎞ b<br />

c = ( γ ) 0 0<br />

b ⎜ γb<br />

( m)<br />

⎜ ⎟<br />

γ ⎟ ⎜ ⎟<br />

b γ ⎟<br />

b<br />

p ∫ Q 0.3125r Γ ⎝ ⎠<br />

exp<br />

⎝<br />

d<br />

⎠<br />

. (23)<br />

When m is an integer, (23) can be evaluated to obtain [12]<br />

m m−1<br />

k<br />

⎛1− μ ⎞ ⎛m− 1+<br />

k⎞⎛1+<br />

μ ⎞<br />

pc<br />

=<br />

0 ⎜ ⎟ ∑ ⎜ ⎟<br />

2 k = 0 k<br />

⎜ ⎟<br />

⎝ ⎠ ⎝ ⎠⎝<br />

2 ⎠<br />

(24)<br />

μ = γ m + γ and γ0= 0.3125rγ 2 . Similarly,<br />

where 0 ( 0)<br />

the average probability <strong>of</strong> channel chip error when the PNI is<br />

on is given by<br />

m m−1<br />

k<br />

⎛1− ν ⎞ ⎛m− 1+<br />

k⎞⎛1+<br />

ν ⎞<br />

pc<br />

=<br />

1 ⎜ ⎟ ∑ ⎜ ⎟<br />

2 k = 0 k<br />

⎜ ⎟<br />

⎝ ⎠ ⎝ ⎠⎝<br />

2 ⎠<br />

(25)<br />

ν = γ m + γ and γ1= 0.3125rγ 2 . Using (24)<br />

where 1 ( 1)<br />

and (25) in (13) along with ζ UB from [9], we obtain<br />

j<br />

T<br />

b<br />

p s and<br />

0<br />

p s , respectively. Using p<br />

1<br />

s and p<br />

0<br />

s in (12), we obtain p<br />

1<br />

s .<br />

Using p s in (11), we obtain the probability <strong>of</strong> symbol error <strong>of</strong><br />

a <strong>JTIDS</strong>/<strong>Link</strong>-<strong>16</strong>-<strong>type</strong> waveform for the single-pulse structure<br />

in both AWGN and PNI when the signal is transmitted over a<br />

slow, flat Nakagami fading channel.<br />

For the double-pulse structure, it is difficult to investigate<br />

the performance for a <strong>JTIDS</strong>/<strong>Link</strong>-<strong>16</strong>-<strong>type</strong> waveform in both<br />

AWGN and PNI when the signal is transmitted over<br />

Nakagami fading channels since it is extremely complex to<br />

obtain an analytic expression for the average probability <strong>of</strong><br />

channel chip error given that one pulse is jammed. Instead, the<br />

performance for a <strong>JTIDS</strong>/<strong>Link</strong>-<strong>16</strong>-<strong>type</strong> waveform in both<br />

AWGN and BNI transmitted over a slow, flat Nakagami<br />

fading channel is evaluated. In this case, we assume maximalratio<br />

detection with linear combining. For maximal-ratio<br />

detection with linear combining when both AWGN and BNI<br />

are present, the conditional probability <strong>of</strong> channel chip error<br />

given that both pulses are affected by BNI is<br />

⎛ 2 2<br />

0.3125r(<br />

ac + ac ) T ⎞<br />

b'<br />

pc( ac) = Q⎜<br />

⎟.<br />

(26)<br />

⎜ N0+ N ⎟<br />

I<br />

⎝ ⎠<br />

We can rewrite (26) as<br />

p γ = Q 0.3125r<br />

γ + γ<br />

(27)<br />

( )<br />

c( T ) ( T T )<br />

since<br />

2<br />

aT ( N N ) γ γ γ<br />

γ T = c b' 0 + I . If T T T<br />

∗ ∗<br />

( γ ) ( γ )<br />

∗ = + , (27) becomes<br />

p = Q 0.3125 r ,<br />

(28)<br />

c T T<br />

and the pdf in terms <strong>of</strong> γ T<br />

∗ is given by<br />

f<br />

( )<br />

( )<br />

∗<br />

2m−1 2m<br />

γ ∗<br />

T ⎛ m ⎞ ⎛ ∗ −mγ<br />

⎞ T ∗<br />

T ⎜ ⎟ T<br />

γ ⎟ ⎜ ⎟<br />

T γ ⎟<br />

T<br />

γ = exp , γ ≥0<br />

Γ ⎝ ⎠ ⎝ ⎠<br />

∗<br />

ΓT<br />

( 2m)<br />

where<br />

2<br />

aT ( N N )<br />

(29)<br />

γ T = c b' 0 + I .<br />

The average probability <strong>of</strong> channel chip error given that<br />

both pulses are affected by BNI is<br />

∞<br />

∗ ∗ ∗<br />

pc = pc ( γT ) f ∗ ∫ ( γT ) dγT.<br />

−∞<br />

ΓT<br />

Substituting (28) and (29) into (30), we obtain<br />

(30)<br />

( )<br />

∗<br />

2m−1 2m<br />

γ ∗<br />

∞<br />

T ⎛m⎞ ⎛ ∗ −mγ<br />

⎞ T ∗<br />

c = ( γ ) 0<br />

T ⎜ γT<br />

( 2m)<br />

⎜ ⎟<br />

γ ⎟ ⎜ ⎟<br />

T γ ⎟<br />

T<br />

p ∫ Q 0.3125r Γ ⎝ ⎠<br />

exp<br />

⎝<br />

d<br />

⎠<br />

. (31)<br />

When m is an integer, (31) can be evaluated to obtain<br />

2m 2m−1 k<br />

⎛1− β ⎞ ⎛2m− 1+<br />

k⎞⎛1+<br />

β ⎞<br />

pc<br />

= ⎜ ⎟ ∑ ⎜ ⎟<br />

2 k = 0 k<br />

⎜ ⎟<br />

⎝ ⎠ ⎝ ⎠⎝<br />

2 ⎠<br />

(32)<br />

β γ 2m γ γ = rγ<br />

. Using (32) in<br />

= + and 2 0.3125 T<br />

where 2 ( 2)<br />

(9) along with ζ UB from [9], we obtain<br />

j<br />

s p . Next, using p s in<br />

(11), we obtain the probability <strong>of</strong> symbol error <strong>of</strong> a<br />

<strong>JTIDS</strong>/<strong>Link</strong>-<strong>16</strong>-<strong>type</strong> waveform for the double-pulse structure<br />

in both AWGN and BNI when the signal is transmitted over a<br />

slow, flat Nakagami fading channel.<br />

IV. NUMERICAL RESULTS<br />

The probabilities <strong>of</strong> symbol error <strong>of</strong> a <strong>JTIDS</strong>/<strong>Link</strong>-<strong>16</strong>-<strong>type</strong><br />

waveform for both the single- and the double-pulse structure<br />

in AWGN are shown in Figure 4. As expected, the doublepulse<br />

structure outperforms the single-pulse structure in terms<br />

<strong>of</strong> average energy per bit per pulse b '<br />

b ' 0<br />

while the b ' 0<br />

E . At<br />

P<br />

−5<br />

S = 10 , the<br />

E N required for the double-pulse structure is about 4 dB,<br />

E N required for the single-pulse structure is<br />

about 7.1 dB. In other words, the double-pulse structure<br />

−5<br />

outperforms the single-pulse structure by 3.1 dB at PS<br />

= 10<br />

in AWGN.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!