05.04.2013 Views

detailed table of contents (pdf) - Thieme Chemistry

detailed table of contents (pdf) - Thieme Chemistry

detailed table of contents (pdf) - Thieme Chemistry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Volume 8:<br />

Compounds <strong>of</strong> Group 1 (Li…Cs)<br />

Volume 8a<br />

8.1 Lithium Compounds<br />

Keyword Index<br />

Author Index<br />

Abbreviations<br />

Volume 8b<br />

8.2 Sodium Compounds<br />

8.3 Potassium Compounds<br />

8.4 Rubidium and Cesium Compounds<br />

Keyword Index<br />

Author Index<br />

Abbreviations<br />

IX


Volume 8a:<br />

Compounds <strong>of</strong> Group 1 (Li…Cs)<br />

Preface .................................................................. V<br />

Table <strong>of</strong> Contents ........................................................ XV<br />

Introduction<br />

M. Majewski and V. Snieckus .............................................. 1<br />

8.1 Product Class 1: Lithium Compounds<br />

M. Majewski and V. Snieckus .............................................. 5<br />

8.1.1 Product Subclass 1: Lithium Metal<br />

R. K. Dieter ............................................................... 43<br />

8.1.2 Product Subclass 2: Lithium Hydride<br />

U. Wietelmann ........................................................... 133<br />

8.1.3 Product Subclass 3: Lithium Halides, Lithium Cyanide,<br />

and Related Salts<br />

U. Wietelmann ........................................................... 139<br />

8.1.4 Product Subclass 4: Lithium–Oxygen Compounds<br />

U. Wietelmann ........................................................... 165<br />

8.1.5 Product Subclass 5: Lithium–Sulfur, –Selenium,<br />

and –Tellurium Compounds<br />

U. Wietelmann ........................................................... 171<br />

8.1.6 Product Subclass 6: Lithium Amides<br />

J. Eames .................................................................. 173<br />

8.1.7 Product Subclass 7: Alkyllithium and Cycloalkyllithium Compounds<br />

L. Brandsma and J. W. Zwikker ............................................. 243<br />

8.1.8 Product Subclass 8: Alkenyllithium Compounds<br />

L. Brandsma and J. W. Zwikker ............................................. 253<br />

8.1.9 Product Subclass 9: Allenyllithium Compounds<br />

L. Brandsma and J. W. Zwikker ............................................. 271<br />

8.1.10 Product Subclass 10: Lithium Acetylides<br />

L. Brandsma and J. W. Zwikker ............................................. 285<br />

XI


XII Overview<br />

8.1.11 Product Subclass 11: Lithium Alkynolates, Alkynethiolates,<br />

and Alkyneselenolates<br />

L. Brandsma and J. W. Zwikker ............................................. 305<br />

8.1.12 Product Subclass 12: Allyllithium Compounds<br />

L. Brandsma and J. W. Zwikker ............................................. 313<br />

8.1.13 Product Subclass 13: Benzyllithium Compounds and<br />

(Lithiomethyl)hetarenes<br />

J. N. Reed ................................................................ 329<br />

8.1.14 Product Subclass 14: Aryllithium and Hetaryllithium Compounds<br />

G. W. Gribble ............................................................. 357<br />

8.1.15 Product Subclass 15: Æ-Lithiocarboxylic Acids and<br />

Related Lithium Compounds (Including Enolates)<br />

J. R. Green ................................................................ 427<br />

8.1.16 Product Subclass 16: â-Lithiocarboxylic Acids and<br />

Related Lithium Compounds<br />

D. Caine ................................................................. 487<br />

8.1.17 Product Subclass 17: Æ-Lithio Aldehydes, Æ-Lithio Ketones,<br />

and Related Compounds<br />

D. Caine ................................................................. 499<br />

8.1.18 Product Subclass 18: â-Lithio Aldehydes, â-Lithio Ketones,<br />

and Related Compounds<br />

D. Caine ................................................................. 619<br />

8.1.19 Product Subclass 19: sp 3 -Hybridized Æ-Lithio Ethers and O-Carbamates<br />

S. MacNeil ............................................................... 637<br />

8.1.20 Product Subclass 20: Æ-Lithio Sulfoxides<br />

T. Durst and M. Khodaei ................................................... 661<br />

8.1.21 Product Subclass 21: Æ-Lithioamines<br />

R. E. Gawley, S. O Connor, and R. Klein ..................................... 677<br />

8.1.22 Product Subclass 22: Lithium Nitronates<br />

N. Ono ................................................................... 759<br />

8.1.23 Product Subclass 23: ª-Lithio Ethers and Related Compounds<br />

D. Caine ................................................................. 775<br />

8.1.24 Product Subclass 24: Carbamoyllithium and Trihalomethyllithium<br />

Compounds<br />

C. Metallinos ............................................................. 795


Overview XIII<br />

8.1.25 Product Subclass 25: Tris(organosulfanyl)- and<br />

Tris(organoselanyl)methyllithium Compounds<br />

C. Nµjera and M. Yus .................................................... 805<br />

8.1.26 Product Subclass 26: Bis(organosulfanyl)- and<br />

Bis(organoselanyl)methyllithium Compounds<br />

C. Nµjera and M. Yus .................................................... 813<br />

8.1.27 Product Subclass 27: Æ-Lithio Vinyl Ethers<br />

R. W. Friesen and C. F. Sturino ........................................... 841<br />

Keyword Index ...................................................... i<br />

Author Index .......................................................... xxxiii<br />

Abbreviations ......................................................... lxxxv


Table <strong>of</strong> Contents<br />

Introduction<br />

M. Majewski and V. Snieckus<br />

Introduction ............................................................. 1<br />

8.1 Product Class 1: Lithium Compounds<br />

M. Majewski and V. Snieckus<br />

8.1 Product Class 1: Lithium Compounds .................................... 5<br />

8.1.1 Product Subclass 1: Lithium Metal<br />

R. K. Dieter<br />

8.1.1 Product Subclass 1: Lithium Metal ....................................... 43<br />

Applications <strong>of</strong> Product Subclass 1 in Organic Synthesis .................... 44<br />

8.1.1.1 Method 1: Synthesis <strong>of</strong> C-Li or Si-Li Groups and Their Reactions with<br />

Carbon Electrophiles ...................................... 44<br />

8.1.1.1.1 Variation 1: Reductive Halogen–Metal Exchange ....................... 44<br />

8.1.1.1.2 Variation 2: Reductive Metalation <strong>of</strong> Carbon-Chalcogen and C-N Bonds 55<br />

8.1.1.1.3 Variation 3: Reductive Metalation <strong>of</strong> Aryl C-H, Diarylmethylene C-H,<br />

Terminal Alkyne C-H, Vinyl C-H, C=C, and Strained C-C<br />

Bonds .................................................... 65<br />

8.1.1.2 Method 2: Synthesis <strong>of</strong> the C-Li Bond Followed by Protonation,<br />

Coupling, or Elimination ................................... 67<br />

8.1.1.2.1 Variation 1: From Carbon-Heteroatom and Selected C-C Bonds ........ 67<br />

8.1.1.2.2 Variation 2: Birch Reductions .......................................... 83<br />

8.1.1.2.3 Variation 3: Heteroaromatic Birch Reductions .......................... 96<br />

8.1.1.2.4 Variation 4: Styrenes, 1,3-Dienes, and Alkynes .......................... 101<br />

8.1.1.3 Method 3: Synthesis <strong>of</strong> X-Li Bonds (X = O, N, S, P) .................... 107<br />

8.1.1.3.1 Variation 1: Reductive Metalation <strong>of</strong> Alcohols, Amines, Thiols, Phosphines,<br />

and X-X Bonds ........................................... 107<br />

8.1.1.3.2 Variation 2: Reduction <strong>of</strong> C=O and C=N Bonds ......................... 109<br />

8.1.1.3.3 Variation 3: Reduction <strong>of</strong> ð-, Strained C-C, or C-X Bonds Æ<br />

to a Carbonyl Group ....................................... 113<br />

XV


XVI Table <strong>of</strong> Contents<br />

8.1.2 Product Subclass 2: Lithium Hydride<br />

U. Wietelmann<br />

8.1.2 Product Subclass 2: Lithium Hydride ..................................... 133<br />

Applications <strong>of</strong> Product Subclass 2 in Organic Synthesis .................... 133<br />

8.1.2.1 Method 1: Reactions as a Base ....................................... 133<br />

8.1.2.2 Method 2: Superactive Lithium Hydride ............................... 134<br />

8.1.2.3 Method 3: Other Lithium Hydride Activation Methods ................. 135<br />

8.1.3 Product Subclass 3: Lithium Halides, Lithium Cyanide, and Related Salts<br />

U. Wietelmann<br />

8.1.3 Product Subclass 3: Lithium Halides, Lithium Cyanide, and Related Salts 139<br />

Applications <strong>of</strong> Product Subclass 3 in Organic Synthesis .................... 139<br />

8.1.3.1 Method 1: Organic Salt Solutions as Reaction Media ................... 139<br />

8.1.3.2 Method 2: Effects on Main Group Organometallic <strong>Chemistry</strong> ........... 140<br />

8.1.3.2.1 Variation 1: Salt Effects in Enolate and Similar <strong>Chemistry</strong> ................ 141<br />

8.1.3.2.2 Variation 2: Protonation <strong>of</strong> Enolates ................................... 144<br />

8.1.3.2.3 Variation 3: Lithium Salt Effects in Grignard <strong>Chemistry</strong> .................. 145<br />

8.1.3.3 Method 3: Effects on Transition-Metal <strong>Chemistry</strong> ...................... 146<br />

8.1.3.3.1 Variation 1: Palladium-Catalyzed Reactions ............................. 147<br />

8.1.3.3.2 Variation 2: Organocopper Reactions .................................. 148<br />

8.1.3.3.3 Variation 3: Reactions <strong>of</strong> Other Transition Metals ....................... 149<br />

8.1.3.4 Method 4: Addition Reactions ........................................ 149<br />

8.1.3.4.1 Variation 1: Cycloaddition Reactions ................................... 149<br />

8.1.3.4.2 Variation 2: Addition to Carbonyl Compounds .......................... 151<br />

8.1.3.4.3 Variation 3: Miscellaneous Additions ................................... 153<br />

8.1.3.5 Method 5: Single-Bond Cleavage Reactions ........................... 153<br />

8.1.3.6 Method 6: Condensation Reactions ................................... 156<br />

8.1.3.7 Method 7: Elimination Reactions ..................................... 158<br />

8.1.3.8 Method 8: Hydride Reductions ....................................... 158<br />

8.1.3.9 Method 9: Lithium Salts as Sources for Halogens or Cyanide ........... 159<br />

8.1.4 Product Subclass 4: Lithium–Oxygen Compounds<br />

U. Wietelmann<br />

8.1.4 Product Subclass 4: Lithium–Oxygen Compounds ....................... 165<br />

Applications <strong>of</strong> Product Subclass 4 in Organic Synthesis .................... 165<br />

8.1.4.1 Method 1: Reactions Using Lithium Hydroxide ........................ 165<br />

8.1.4.2 Method 2: Reactions Using Lithium Carbonate ........................ 166<br />

8.1.4.3 Method 3: Use <strong>of</strong> Lithium Hydroperoxide and Related Reagents ........ 166<br />

8.1.4.4 Method 4: Reactions Using Lithium Acetate ........................... 167<br />

8.1.4.5 Method 5: Reactions Using Lithium Alkoxides ......................... 168<br />

8.1.4.5.1 Variation 1: Elimination and Condensation Reactions ................... 168<br />

8.1.4.5.2 Variation 2: Oxidation Reactions with Copper(II) Bromide–Lithium<br />

tert-Butoxide .............................................. 169


Table <strong>of</strong> Contents XVII<br />

8.1.5 Product Subclass 5: Lithium–Sulfur, –Selenium,<br />

and –Tellurium Compounds<br />

U. Wietelmann<br />

8.1.5 Product Subclass 5: Lithium–Sulfur, –Selenium,<br />

and –Tellurium Compounds ............................................. 171<br />

Applications <strong>of</strong> Product Subclass 5 in Organic Synthesis .................... 171<br />

8.1.6 Product Subclass 6: Lithium Amides<br />

J. Eames<br />

8.1.6 Product Subclass 6: Lithium Amides ..................................... 173<br />

Synthesis <strong>of</strong> Product Subclass 6 ........................................... 174<br />

8.1.6.1 Method 1: Lithium Amide ............................................ 174<br />

8.1.6.2 Method 2: Lithium Ethylamide ....................................... 175<br />

8.1.6.3 Method 3: Lithium Pyrrolidide ........................................ 175<br />

8.1.6.4 Method 4: Lithium Diethylamide ..................................... 177<br />

8.1.6.5 Method 5: Lithium Dicyclohexylamide ................................ 178<br />

8.1.6.6 Method 6: Lithium Diisopropylamide ................................. 179<br />

8.1.6.6.1 Variation 1: By Deprotonation <strong>of</strong> Diisopropylamine by Butyllithium ...... 180<br />

8.1.6.6.2 Variation 2: By Reaction <strong>of</strong> Diisopropylamine with Lithium .............. 180<br />

8.1.6.7 Method 7: Lithium 2,2,6,6-Tetramethylpiperidide ..................... 181<br />

8.1.6.8 Method 8: Lithium Isopropylcyclohexylamide ......................... 182<br />

8.1.6.9 Method 9: Lithium 3-Aminopropylamide .............................. 183<br />

8.1.6.10 Method 10: Lithium Hexamethyldisilazanide ........................... 184<br />

8.1.6.11 Method 11: Lithium Benzyl(trimethylsilyl)amide ........................ 184<br />

8.1.6.12 Method 12: Tetradentate Chiral Lithium Amides ........................ 185<br />

8.1.6.13 Method 13: Lithium (R)-(1-Phenylethyl)(2,2,2-trifluoroethyl)amide ...... 187<br />

8.1.6.14 Method 14: Lithium (3S)-3-(1-Piperidylmethyl)-1,2,3,4-tetrahydroisoquinolin-2-ide<br />

.......................................... 188<br />

8.1.6.15 Method 15: Lithium (S)-Benzyl(1-phenylethyl)amide .................... 190<br />

8.1.6.16 Method 16: The Dilithium Salt <strong>of</strong> 1-(Methylamino)-1-phenylpropan-2-ol 190<br />

8.1.6.17 Method 17: Lithium Methyl[(1R,2S)-1-phenyl-2-pyrrolidin-<br />

1-ylpropyl]amide .......................................... 191<br />

8.1.6.18 Method 18: Lithium (1S,2S)-1,2-Diphenyl-N,N¢-bis[(1R)-1-phenylethyl]ethane-1,2-diamide<br />

....................................... 193<br />

8.1.6.19 Method 19: Lithium Bis[(S)-1-phenylethyl]amide ....................... 194<br />

8.1.6.20 Method 20: Lithium (S)-2-(Pyrrolidin-1-ylmethyl)pyrrolidide ............. 194<br />

8.1.6.21 Method 21: Lithium (2S,3aS,7aS)-2-(Pyrrolidin-1-ylmethyl)octahydro-<br />

1H-indol-1-ide ............................................ 194<br />

8.1.6.22 Method 22: Lithium (1R,2R)-N,N¢-Bis(2-methoxyethyl)cyclohexane-<br />

1,2-diamide ............................................... 197<br />

8.1.6.23 Method 23: The Lithium Salt <strong>of</strong> (1S,3R,4R)-3-(Pyrrolidin-1-ylmethyl)-<br />

2-azabicyclo[2.2.1]heptane ................................ 198<br />

8.1.6.24 Method 24: Lithium (S)-Benzyl[2-(4-methylpiperazin-1-yl)-<br />

1-phenylethyl]amide ...................................... 201


XVIII Table <strong>of</strong> Contents<br />

8.1.6.25 Method 25: Lithium (S)-(Diphenylmethyl)(1-benzylpyrrolidin-3-yl)amide 203<br />

Applications <strong>of</strong> Product Subclass 6 in Organic Synthesis .................... 204<br />

8.1.6.26 Method 26: Deprotonation <strong>of</strong> Carbonyl Compounds To Give<br />

Lithium Enolates .......................................... 204<br />

8.1.6.27 Method 27: Enantioselective Deprotonation <strong>of</strong> Ketones by<br />

Chiral Lithium Amides ..................................... 208<br />

8.1.6.28 Method 28: Deprotonation <strong>of</strong> Ketones by Lithium Hexamethyldisilazanide<br />

in the Synthesis <strong>of</strong> Diazo Ketones .......................... 214<br />

8.1.6.29 Method 29: Deprotonation <strong>of</strong> Terminal Alkynes by Lithium Amide ....... 215<br />

8.1.6.30 Method 30: Deprotonation <strong>of</strong> an Epoxide by Lithium Diethylamide ...... 216<br />

8.1.6.31 Method 31: Desymmetrization <strong>of</strong> meso-Epoxides by Deprotonation by<br />

Lithium Amides ........................................... 217<br />

8.1.6.32 Method 32: Kinetic Resolution <strong>of</strong> Racemic Epoxides by Deprotonation by<br />

Lithium Amides ........................................... 221<br />

8.1.6.33 Method 33: Isomerization <strong>of</strong> an Epoxide to an Allylic Alcohol by<br />

Deprotonation by Lithium Diethylamide .................... 221<br />

8.1.6.34 Method 34: Deprotonation <strong>of</strong> a Nitrile by Lithium Diisopropylamide ..... 222<br />

8.1.6.35 Method 35: Carbene Formation by Deprotonation Reactions <strong>of</strong><br />

Lithium Amides ........................................... 223<br />

8.1.6.36 Method 36: Desymmetrization <strong>of</strong> an Amide by Deprotonation Using<br />

Lithium Amides ........................................... 224<br />

8.1.6.37 Method 37: Desymmetrization <strong>of</strong> a meso-Phospholane Oxide by<br />

Deprotonation by a Lithium Amide ......................... 225<br />

8.1.6.38 Method 38: Nucleophilic Addition Involving Lithium Amides ............ 227<br />

8.1.6.38.1 Variation 1: Nucleophilic Addition Involving Lithium Diisopropylamide ... 227<br />

8.1.6.38.2 Variation 2: Diastereoselective Conjugate Addition with<br />

Lithium Benzyl(1-phenylethyl)amide ....................... 228<br />

8.1.6.39 Method 39: Hydride Transfer Involving Lithium Amides ................. 230<br />

8.1.6.39.1 Variation 1: Hydride Transfer by Lithium Diisopropylamide .............. 230<br />

8.1.6.39.2 Variation 2: Hydride Transfer by Lithium (S)-Benzyl[2-(4-methylpiperazin-1-yl)-1-phenylethyl]amide<br />

....................... 231<br />

8.1.6.40 Method 40: Additional Applications <strong>of</strong> Chiral Lithium Amides ........... 231<br />

8.1.6.40.1 Variation 1: Enantioselective Addition <strong>of</strong> Butyllithium Mediated by<br />

a Chiral Lithium Amide .................................... 231<br />

8.1.6.40.2 Variation 2: Enantioselective Protonation <strong>of</strong> a Prostereogenic Enolate ... 232<br />

8.1.7 Product Subclass 7: Alkyllithium and Cycloalkyllithium Compounds<br />

L. Brandsma and J. W. Zwikker<br />

8.1.7 Product Subclass 7: Alkyllithium and Cycloalkyllithium Compounds ..... 243<br />

Synthesis <strong>of</strong> Product Subclass 7 ........................................... 244<br />

8.1.7.1 Method 1: Reaction <strong>of</strong> Halogenides with Lithium ...................... 244<br />

8.1.7.2 Method 2: Halogen–Lithium Exchange ................................ 246<br />

8.1.7.3 Method 3: Deprotonation ............................................ 246<br />

8.1.7.4 Methods 4: Additional Methods ....................................... 247


Table <strong>of</strong> Contents XIX<br />

Applications <strong>of</strong> Product Subclass 7 in Organic Synthesis .................... 247<br />

8.1.7.5 Method 5: Replacement <strong>of</strong> Lithium by Other Metals ................... 247<br />

8.1.7.6 Method 6: Addition <strong>of</strong> Alkyllithium to Unsaturated Carbon Compounds<br />

(Carbolithiation) .......................................... 248<br />

8.1.7.6.1 Variation 1: Cyclization <strong>of</strong> Unsaturated Lithium Compounds<br />

(Cyclocarbolithiation) ..................................... 249<br />

8.1.8 Product Subclass 8: Alkenyllithium Compounds<br />

L. Brandsma and J. W. Zwikker<br />

8.1.8 Product Subclass 8: Alkenyllithium Compounds .......................... 253<br />

Synthesis <strong>of</strong> Product Subclass 8 ........................................... 253<br />

8.1.8.1 Method 1: Deprotonation ............................................ 253<br />

8.1.8.1.1 Variation 1: Deprotonation with Alkyllithium Reagents .................. 254<br />

8.1.8.1.2 Variation 2: Deprotonation with Superbasic Reagents ................... 256<br />

8.1.8.1.3 Variation 3: Deprotonation with Lithium Dialkylamides ................. 257<br />

8.1.8.2 Method 2: Halogen–Metal Exchange Using Alkyllithium Reagents ...... 259<br />

8.1.8.3 Method 3: Reaction <strong>of</strong> Alkenyl Halides with Lithium ................... 261<br />

8.1.8.4 Method 4: Tin–Lithium Exchange ..................................... 262<br />

8.1.8.5 Method 5: Reaction <strong>of</strong> (Arylsulfonyl)hydrazones with<br />

Alkyllithium Reagents (Shapiro Reaction) ................... 263<br />

8.1.8.6 Methods 6: Additional Methods ....................................... 264<br />

Applications <strong>of</strong> Product Subclass 8 in Organic Synthesis .................... 265<br />

8.1.8.7 Method 7: Replacement <strong>of</strong> Lithium by Other Metals ................... 265<br />

8.1.8.8 Method 8: Formation <strong>of</strong> C-C Bonds .................................. 266<br />

8.1.8.8.1 Variation 1: Reaction with Heterocumulenes ........................... 266<br />

8.1.8.8.2 Variation 2: Acylation Reactions ....................................... 266<br />

8.1.8.8.3 Variation 3: Alkylation and Related Reactions ........................... 267<br />

8.1.8.8.4 Variations 4: Additional Reactions ...................................... 268<br />

8.1.9 Product Subclass 9: Allenyllithium Compounds<br />

L. Brandsma and J. W. Zwikker<br />

8.1.9 Product Subclass 9: Allenyllithium Compounds .......................... 271<br />

Synthesis <strong>of</strong> Product Subclass 9 ........................................... 272<br />

8.1.9.1 Method 1: Deprotonation <strong>of</strong> Allenes with Butyllithium ................. 272<br />

8.1.9.1.1 Variation 1: Deprotonation <strong>of</strong> Allenes with Lithium Amides ............. 273<br />

8.1.9.2 Method 2: Metalation <strong>of</strong> Alkynes with Butyllithium .................... 274<br />

8.1.9.3 Method 3: Metalation <strong>of</strong> Alkynes with Butyllithium–N,N,N¢,N¢-Tetramethylethylenediamine<br />

................................... 276<br />

8.1.9.4 Method 4: Metalation <strong>of</strong> Alkynes with Butyllithium–Potassium<br />

tert-Butoxide Followed by Addition <strong>of</strong> Lithium Bromide ...... 277<br />

8.1.9.5 Method 5: 1,4-Addition <strong>of</strong> Lithium Compounds to Enynes ............. 278<br />

Applications <strong>of</strong> Product Subclass 9 in Organic Synthesis .................... 278


XX Table <strong>of</strong> Contents<br />

8.1.9.6 Method 6: Replacement <strong>of</strong> Lithium by Other Metals ................... 278<br />

8.1.9.7 Method 7: Formation <strong>of</strong> C-C Bonds .................................. 279<br />

8.1.9.7.1 Variation 1: Reactions with Heterocumulenes .......................... 279<br />

8.1.9.7.2 Variation 2: Reactions with Acylating Agents ........................... 279<br />

8.1.9.7.3 Variation 3: Reactions with Aldehydes and Ketones ..................... 280<br />

8.1.9.7.4 Variation 4: Reaction with Alkylating Agents ........................... 280<br />

8.1.9.8 Methods 8: Additional Methods ....................................... 281<br />

8.1.10 Product Subclass 10: Lithium Acetylides<br />

L. Brandsma and J. W. Zwikker<br />

8.1.10 Product Subclass 10: Lithium Acetylides ................................. 285<br />

Synthesis <strong>of</strong> Product Subclass 10 .......................................... 287<br />

8.1.10.1 Method 1: Metalation with Lithium in Liquid Ammonia ................ 287<br />

8.1.10.2 Method 2: Metalation with Lithium Amide in Liquid Ammonia ......... 287<br />

8.1.10.2.1 Variation 1: Dehydrohalogenation with Lithium Amide .................. 288<br />

8.1.10.3 Method 3: Metalation with Lithium Dialkylamides ..................... 288<br />

8.1.10.3.1 Variation 1: Elimination Reactions with Lithium Dialkylamides ........... 289<br />

8.1.10.4 Method 4: Metalation with Alkyllithium Reagents ..................... 289<br />

8.1.10.5 Method 5: Dehalogenation with Alkyllithium Reagents ................ 290<br />

8.1.10.6 Method 6: Rearrangement <strong>of</strong> Terminally Lithiated Allenes .............. 291<br />

8.1.10.7 Methods 7: Additional Methods ....................................... 291<br />

Applications <strong>of</strong> Product Subclass 10 in Organic Synthesis ................... 292<br />

8.1.10.8 Method 8: Replacement <strong>of</strong> Lithium by Other Metals ................... 292<br />

8.1.10.9 Method 9: Formation <strong>of</strong> C-C Bonds .................................. 292<br />

8.1.10.9.1 Variation 1: Reactions with Heterocumulenes .......................... 292<br />

8.1.10.9.2 Variation 2: Acylation Reactions ....................................... 294<br />

8.1.10.9.3 Variation 3: Reactions with Aldehydes and Ketones ..................... 296<br />

8.1.10.9.4 Variation 4: Reaction with Cyanogen Chloride .......................... 297<br />

8.1.10.9.5 Variation 5: Reactions with Alkylating Agents .......................... 297<br />

8.1.10.10 Method 10: Formation <strong>of</strong> Carbon-Heteroatom Bonds .................. 299<br />

8.1.10.10.1 Variation 1: Reaction with Halogenating Agents ........................ 299<br />

8.1.10.10.2 Variation 2: Sulfanylation, Sulfinylation, and Related Reactions .......... 301<br />

8.1.10.10.3 Variation 3: Silylation and Stannylation ................................. 302<br />

8.1.11 Product Subclass 11: Lithium Alkynolates, Alkynethiolates,<br />

and Alkyneselenolates<br />

L. Brandsma and J. W. Zwikker<br />

8.1.11 Product Subclass 11: Lithium Alkynolates, Alkynethiolates,<br />

and Alkyneselenolates ................................................... 305<br />

Synthesis <strong>of</strong> Product Subclass 11 .......................................... 305<br />

8.1.11.1 Method 1: Insertion <strong>of</strong> Elements ...................................... 305<br />

8.1.11.2 Method 2: Lithium Alkynolates by Cycl<strong>of</strong>ragmentation <strong>of</strong> Heterocycles 306<br />

8.1.11.3 Method 3: Lithium Alkynethiolates from 1,2,3-Thiadiazoles ............ 307


Table <strong>of</strong> Contents XXI<br />

8.1.11.4 Method 4: Lithium Alkynolates from Æ,Æ-Dibromo or Æ-Halo Ketones .. 307<br />

8.1.11.5 Methods 5: Additional Methods ....................................... 307<br />

Applications <strong>of</strong> Product Subclass 11 in Organic Synthesis ................... 308<br />

8.1.11.6 Method 6: Functionalization <strong>of</strong> Lithium Alkynolates ................... 308<br />

8.1.11.7 Method 7: Functionalization <strong>of</strong> Lithium Alkynethiolates and<br />

Alkyneselenolates ......................................... 309<br />

8.1.11.8 Method 8: Protonation–Addition Reactions with Lithium Alkynolates ... 310<br />

8.1.11.9 Method 9: Protonation–Addition Reactions with Lithium Alkynethiolates 310<br />

8.1.12 Product Subclass 12: Allyllithium Compounds<br />

L. Brandsma and J. W. Zwikker<br />

8.1.12 Product Subclass 12: Allyllithium Compounds ........................... 313<br />

Synthesis <strong>of</strong> Product Subclass 12 .......................................... 314<br />

8.1.12.1 Method 1: Deprotonation ............................................ 314<br />

8.1.12.1.1 Variation 1: Deprotonation with Alkyllithium Reagents .................. 315<br />

8.1.12.1.2 Variation 2: Deprotonation Using the Superbase<br />

Butyllithium–Potassium tert-Butoxide ...................... 317<br />

8.1.12.1.3 Variation 3: Lithiation with Lithium Dialkylamides ...................... 320<br />

8.1.12.2 Methods 2: Additional Methods ....................................... 321<br />

Applications <strong>of</strong> Product Subclass 12 in Organic Synthesis ................... 321<br />

8.1.12.3 Method 3: Replacement <strong>of</strong> Lithium by Other Metals ................... 321<br />

8.1.12.4 Method 4: Formation <strong>of</strong> C-C Bonds .................................. 322<br />

8.1.12.4.1 Variation 1: Reactions with Heterocumulenes .......................... 322<br />

8.1.12.4.2 Variation 2: Reactions with Alkylating Agents .......................... 323<br />

8.1.12.4.3 Variation 3: Reactions with Carbonyl Compounds ....................... 324<br />

8.1.12.5 Method 5: Formation <strong>of</strong> Carbon-Heteroatom Bonds .................. 325<br />

8.1.13 Product Subclass 13: Benzyllithium Compounds and<br />

(Lithiomethyl)hetarenes<br />

J. N. Reed<br />

8.1.13 Product Subclass 13: Benzyllithium Compounds and<br />

(Lithiomethyl)hetarenes ................................................. 329<br />

Synthesis <strong>of</strong> Product Subclass 13 .......................................... 329<br />

8.1.13.1 Method 1: Deprotonation <strong>of</strong> Benzylic Carbons ........................ 329<br />

8.1.13.1.1 Variation 1: Of Unactivated Benzylic Carbons ........................... 330<br />

8.1.13.1.2 Variation 2: Of Benzylic Carbons Activated by an Æ-Substituent ......... 331<br />

8.1.13.1.3 Variation 3: Heteroatom-Facilitated Lateral Lithiation ................... 336<br />

8.1.13.2 Method 2: Heteroatom–Lithium Exchange ............................ 342<br />

8.1.13.2.1 Variation 1: Tin–Lithium Exchange ..................................... 342<br />

8.1.13.2.2 Variation 2: Selenium–Lithium Exchange ............................... 345<br />

8.1.13.3 Method 3: Reductive Lithiation ....................................... 347<br />

8.1.13.3.1 Variation 1: Using Lithium Metal and Naphthalene ...................... 347<br />

8.1.13.3.2 Variation 2: Using Lithium Metal and 4,4¢-Di-tert-butylbiphenyl .......... 348


XXII Table <strong>of</strong> Contents<br />

8.1.13.4 Method 4: Carbolithiation ............................................ 350<br />

8.1.13.4.1 Variation 1: Of Alkenes ................................................ 350<br />

8.1.13.4.2 Variation 2: Of Alkynes ................................................ 353<br />

8.1.14 Product Subclass 14: Aryllithium and Hetaryllithium Compounds<br />

G. W. Gribble<br />

8.1.14 Product Subclass 14: Aryllithium and Hetaryllithium Compounds ........ 357<br />

Synthesis <strong>of</strong> Product Subclass 14 .......................................... 357<br />

8.1.14.1 Method 1: Aryllithium Compounds by Halogen–Lithium Exchange ..... 357<br />

8.1.14.1.1 Variation 1: From Aryl Fluorides ....................................... 358<br />

8.1.14.1.2 Variation 2: From Aryl Chlorides ....................................... 358<br />

8.1.14.1.3 Variation 3: From Aryl Bromides ....................................... 359<br />

8.1.14.1.4 Variation 4: From Aryl Iodides ......................................... 361<br />

8.1.14.2 Method 2: Aryllithium Compounds by Directed ortho-Lithiation ........ 361<br />

8.1.14.2.1 Variation 1: Amine Directed ortho-Lithiation Groups .................... 362<br />

8.1.14.2.2 Variation 2: Amide Directed ortho-Lithiation Groups .................... 364<br />

8.1.14.2.3 Variation 3: Alkoxy Directed ortho-Lithiation Groups .................... 365<br />

8.1.14.2.4 Variation 4: Halogen Directed ortho-Lithiation Groups .................. 367<br />

8.1.14.2.5 Variation 5: Sulfur-Based Directed ortho-Lithiation Groups .............. 369<br />

8.1.14.2.6 Variation 6: Other Carbonyl Directed ortho-Lithiation Groups ............ 370<br />

8.1.14.2.7 Variation 7: Phosphorus Directed ortho-Lithiation Groups ............... 371<br />

8.1.14.2.8 Variation 8: Other Nitrogen Directed ortho-Lithiation Groups ............ 372<br />

8.1.14.2.9 Variation 9: Other Directed ortho-Lithiation Groups ..................... 373<br />

8.1.14.3 Method 3: Furyllithium Compounds .................................. 374<br />

8.1.14.3.1 Variation 1: By Direct Deprotonation ................................... 374<br />

8.1.14.3.2 Variation 2: By Halogen–Lithium Exchange ............................. 375<br />

8.1.14.3.3 Variation 3: By Directed ortho-Lithiation ............................... 375<br />

8.1.14.4 Method 4: Thienyllithium Compounds ................................ 376<br />

8.1.14.4.1 Variation 1: By Direct Deprotonation ................................... 376<br />

8.1.14.4.2 Variation 2: By Halogen–Lithium Exchange ............................. 377<br />

8.1.14.4.3 Variation 3: By Directed ortho-Lithiation ............................... 378<br />

8.1.14.5 Method 5: Pyrrolyllithium Compounds ................................ 379<br />

8.1.14.5.1 Variation 1: By Direct Deprotonation ................................... 379<br />

8.1.14.5.2 Variation 2: By Halogen–Lithium Exchange ............................. 380<br />

8.1.14.5.3 Variation 3: By Directed ortho-Lithiation ............................... 381<br />

8.1.14.6 Method 6: Imidazolyllithium Compounds ............................. 381<br />

8.1.14.6.1 Variation 1: By Direct Deprotonation ................................... 381<br />

8.1.14.6.2 Variation 2: By Halogen–Lithium Exchange ............................. 382<br />

8.1.14.7 Method 7: Oxazolyllithium and Isoxazolyllithium Compounds .......... 383<br />

8.1.14.7.1 Variation 1: Lithiation <strong>of</strong> Oxazoles ..................................... 383<br />

8.1.14.7.2 Variation 2: Lithiation <strong>of</strong> Isoxazoles .................................... 384<br />

8.1.14.8 Method 8: Pyrazolyllithium Compounds .............................. 384<br />

8.1.14.9 Method 9: Thiazolyllithium Compounds ............................... 385<br />

8.1.14.10 Method 10: Benz<strong>of</strong>uryllithium Compounds ............................. 386<br />

8.1.14.11 Method 11: Benzothienyllithium Compounds .......................... 386<br />

8.1.14.12 Method 12: Indolyllithium Compounds ................................ 387


Table <strong>of</strong> Contents XXIII<br />

8.1.14.12.1 Variation 1: By Direct Deprotonation ................................... 387<br />

8.1.14.12.2 Variation 2: By Halogen–Lithium Exchange ............................. 389<br />

8.1.14.12.3 Variation 3: By Directed ortho-Lithiation ............................... 391<br />

8.1.14.13 Method 13: Pyridyllithium Compounds ................................ 392<br />

8.1.14.13.1 Variation 1: By Halogen–Lithium Exchange ............................. 393<br />

8.1.14.13.2 Variation 2: By Directed ortho-Lithiation ............................... 395<br />

8.1.14.14 Method 14: Quinolyllithium Compounds ............................... 398<br />

8.1.14.15 Method 15: Diazinyllithium, Benzodiazinyllithium,<br />

and Other Azinyllithium Compounds ....................... 399<br />

8.1.14.15.1 Variation 1: Pyrazinyllithium Compounds .............................. 399<br />

8.1.14.15.2 Variation 2: Pyrimidyllithium Compounds .............................. 400<br />

8.1.14.15.3 Variation 3: Pyridazinyllithium Compounds ............................. 401<br />

8.1.14.15.4 Variation 4: Benzodiazinyllithium Compounds .......................... 402<br />

8.1.14.15.5 Variation 5: Other Azinyllithium Compounds ........................... 402<br />

8.1.14.16 Method 16: Other Azolyllithium Compounds ........................... 403<br />

8.1.14.17 Method 17: Dibenzo-Fused Hetaryllithium Compounds ................. 404<br />

8.1.14.17.1 Variation 1: Dibenz<strong>of</strong>uryllithium Compounds ........................... 404<br />

8.1.14.17.2 Variation 2: Dibenzothienyllithium Compounds ........................ 405<br />

8.1.14.17.3 Variation 3: Carbazolyllithium Compounds ............................. 405<br />

8.1.14.17.4 Variation 4: Dibenzo[1,4]dioxinyllithium Compounds ................... 406<br />

8.1.14.17.5 Variation 5: Thianthrenyllithium Compounds ........................... 407<br />

8.1.14.17.6 Variation 6: Phenothiazinyllithium Compounds ......................... 407<br />

8.1.14.17.7 Variation 7: Dibenzo[b,f]azepinyllithium Compounds ................... 407<br />

8.1.14.17.8 Variation 8: Pyrido[3,4-b]indolyllithium Compounds .................... 408<br />

Applications <strong>of</strong> Product Subclass 14 in Organic Synthesis ................... 408<br />

8.1.14.18 Method 18: Aryne Formation .......................................... 409<br />

8.1.14.19 Method 19: Functional Group Interchange ............................. 409<br />

8.1.14.20 Method 20: Transmetalation and Coupling Reactions ................... 410<br />

8.1.14.21 Method 21: Aryllithium Compounds in Ring Formation and<br />

Heterocycle Construction ................................. 412<br />

8.1.14.22 Method 22: Natural Product Synthesis ................................. 413<br />

8.1.15 Product Subclass 15: Æ-Lithiocarboxylic Acids and Related Lithium<br />

Compounds (Including Enolates)<br />

J. R. Green<br />

8.1.15 Product Subclass 15: Æ-Lithiocarboxylic Acids and Related Lithium<br />

Compounds (Including Enolates) ........................................ 427<br />

Synthesis <strong>of</strong> Product Subclass 15 .......................................... 427<br />

8.1.15.1 Method 1: Enolate Generation by Direct Deprotonation <strong>of</strong><br />

Alkanoic Acid Derivatives .................................. 427<br />

8.1.15.2 Method 2: Enolate Generation by Nucleophilic Attack on Ketene Acetals 430<br />

8.1.15.3 Method 3: Enolate Generation by Conjugate Addition or Reduction .... 430<br />

8.1.15.4 Method 4: Enolate Generation by Reduction or Metal–Halogen Exchange<br />

<strong>of</strong> Æ-Substituted Derivatives ............................... 432<br />

Applications <strong>of</strong> Product Subclass 15 in Organic Synthesis ................... 434


XXIV Table <strong>of</strong> Contents<br />

8.1.15.5 Method 5: Electrophile Incorporation: Protonation (C-Li fi C-H) ...... 434<br />

8.1.15.6 Method 6: Electrophile Incorporation: Alkylation (C-Li fi C-C) ........ 436<br />

8.1.15.6.1 Variation 1: Arylation and Vinylation ................................... 441<br />

8.1.15.7 Method 7: Electrophile Incorporation: Heteroatom Incorporation<br />

(C-Li fi C-X) ............................................. 444<br />

8.1.15.7.1 Variation 1: Silylation ................................................. 444<br />

8.1.15.7.2 Variation 2: Hydroxylation ............................................. 446<br />

8.1.15.7.3 Variation 3: Amination ................................................ 448<br />

8.1.15.7.4 Variation 4: Halogenation ............................................. 450<br />

8.1.15.8 Method 8: Electrophile Incorporation: Reaction with Carbonyl<br />

Compounds and Imines (C-Li fi C-C-X) .................. 452<br />

8.1.15.9 Method 9: Electrophile Incorporation: Epoxides and Aziridines<br />

(C-Li fi C-C-C-X) ...................................... 458<br />

8.1.15.10 Method 10: Electrophile Incorporation: Coupling Reactions;<br />

Enolate Dimerization (C-Li fi C-C-C=X) .................. 461<br />

8.1.15.11 Method 11: Electrophile Incorporation: Reaction with Carboxy<br />

Compounds (C-Li fi C-C=X) ............................. 463<br />

8.1.15.12 Method 12: Electrophile Incorporation: Michael Addition<br />

(C-Li fi C-C-C-C=X) ................................... 468<br />

8.1.15.13 Method 13: Enolate Rearrangements: Claisen and<br />

Related Rearrangements .................................. 473<br />

8.1.15.14 Method 14: Enolate Rearrangements: [2,3]-Wittig Rearrangements <strong>of</strong><br />

Dienolates ................................................ 477<br />

8.1.15.15 Method 15: Enolate Rearrangements: Reactions with Nucleophiles:<br />

Formation <strong>of</strong> Ketones ..................................... 477<br />

8.1.16 Product Subclass 16: â-Lithiocarboxylic Acids and Related Lithium<br />

Compounds<br />

D. Caine<br />

8.1.16 Product Subclass 16: â-Lithiocarboxylic Acids and Related Lithium<br />

Compounds ............................................................. 487<br />

Synthesis <strong>of</strong> Product Subclass 16 .......................................... 487<br />

8.1.16.1 Method 1: Arene-Catalyzed Reductive Lithiations <strong>of</strong><br />

â-Halogenated Carboxylates and 3-Arylpropenoates ........ 487<br />

8.1.16.2 Method 2: Tin–Lithium Exchange <strong>of</strong> â-Stannyl Carboxamides .......... 490<br />

8.1.16.3 Method 3: Hydrogen–Lithium Exchange <strong>of</strong> Carboxylates and<br />

Carboxamides Containing Carbanion-Stabilizing Groups at<br />

the â-Position ............................................ 491<br />

8.1.16.3.1 Variation 1: Hydrogen–Lithium Exchange <strong>of</strong> â-Phenylsulfonylated<br />

Ortho Esters .............................................. 495<br />

8.1.16.4 Method 4: Addition <strong>of</strong> Alkyllithium Reagents to Lithiated<br />

Cinnamic Acids and Cinnamyl Amides ...................... 496


Table <strong>of</strong> Contents XXV<br />

8.1.17 Product Subclass 17: Æ-Lithio Aldehydes, Æ-Lithio Ketones,<br />

and Related Compounds<br />

D. Caine<br />

8.1.17 Product Subclass 17: Æ-Lithio Aldehydes, Æ-Lithio Ketones,<br />

and Related Compounds ................................................. 499<br />

Synthesis <strong>of</strong> Product Subclass 17 .......................................... 502<br />

8.1.17.1 Preformed Lithium Enolates <strong>of</strong> Carbonyl Compounds ....................... 502<br />

8.1.17.1.1 Method 1: Deprotonation <strong>of</strong> Carbonyl Compounds with<br />

Lithium Dialkylamides and Other Strong Bases .............. 502<br />

8.1.17.1.1.1 Variation 1: Regioselective Synthesis <strong>of</strong> Kinetic (Less Substituted) Enolates<br />

<strong>of</strong> Æ-Substituted Unsymmetrical Saturated Ketones ......... 504<br />

8.1.17.1.1.2 Variation 2: Regioselective Synthesis <strong>of</strong> Thermodynamic Enolates <strong>of</strong><br />

Æ-Substituted Unsymmetrical Saturated Ketones ........... 509<br />

8.1.17.1.1.3 Variation 3: Kinetic and Thermodynamic Lithium Enolates <strong>of</strong><br />

Unsymmetrical Æ- and Æ¢-Dimethylene Ketones ............ 510<br />

8.1.17.1.1.4 Variation 4: Stereoselective Synthesis <strong>of</strong> E- orZ-Isomers <strong>of</strong><br />

Acyclic Ketone Lithium Enolates ........................... 512<br />

8.1.17.1.1.5 Variation 5: Enantioselective Synthesis <strong>of</strong> Lithium Enolates by<br />

Deprotonation <strong>of</strong> Prochiral Ketones with Chiral,<br />

Nonracemic Lithium Amide Bases .......................... 516<br />

8.1.17.1.1.6 Variation 6: Kinetic Deprotonation <strong>of</strong> Æ,â-Unsaturated Ketones ......... 519<br />

8.1.17.1.2 Method 2: Regio- and Stereoselective Formation <strong>of</strong> Lithium Enolates<br />

by Indirect Methods ....................................... 522<br />

8.1.17.1.2.1 Variation 1: Lithium/Liquid Ammonia Reduction <strong>of</strong><br />

Æ,â-Unsaturated Ketones .................................. 522<br />

8.1.17.1.2.2 Variation 2: Lithium/Liquid Ammonia Reduction <strong>of</strong> Ketones with<br />

Leaving Groups at the Æ-Position .......................... 524<br />

8.1.17.1.2.3 Variation 3: Conjugate Addition <strong>of</strong> Lithium Dialkylcuprate Reagents to<br />

Æ,â-Unsaturated Ketones .................................. 525<br />

8.1.17.1.2.4 Variation 4: Generation <strong>of</strong> Lithium Enolates from Enol Derivatives <strong>of</strong><br />

Carbonyl Compounds ..................................... 526<br />

8.1.17.1.2.5 Variation 5: Generation <strong>of</strong> Lithium Enolates by Miscellaneous Methods .. 527<br />

8.1.17.1.3 Method 3: Alkylations <strong>of</strong> Preformed Lithium Enolates .................. 527<br />

8.1.17.1.3.1 Variation 1: Intermolecular Alkylations ................................. 529<br />

8.1.17.1.3.2 Variation 2: Stereochemistry <strong>of</strong> Intermolecular Alkylation <strong>of</strong><br />

Lithium Enolates .......................................... 532<br />

8.1.17.1.3.3 Variation 3: Intramolecular Alkylations ................................. 537<br />

8.1.17.1.4 Method 4: Directed Aldol Reactions <strong>of</strong> Preformed Lithium Enolates ..... 538<br />

8.1.17.1.4.1 Variation 1: Aldol Reactions <strong>of</strong> Lithium Z-Enolates ...................... 540<br />

8.1.17.1.4.2 Variation 2: Diastere<strong>of</strong>acial Selectivity <strong>of</strong> Aldol Reactions <strong>of</strong> Chiral,<br />

Nonracemic Lithium Z-Enolates ............................ 541<br />

8.1.17.1.4.3 Variation 3: Aldol Reactions <strong>of</strong> Lithium E-Enolates ...................... 542<br />

8.1.17.1.4.4 Variation 4: Aldol Reactions <strong>of</strong> Lithium Enolates with Chiral Aldehydes ... 543<br />

8.1.17.1.4.5 Variation 5: Asymmetric Aldol Reactions Using Chiral Lithium Amide Bases 546<br />

8.1.17.1.4.6 Variation 6: Reactions <strong>of</strong> Preformed Lithium Enolates with<br />

Preformed Iminium Salts .................................. 548


XXVI Table <strong>of</strong> Contents<br />

8.1.17.1.5 Method 5: Michael Reactions <strong>of</strong> Preformed Lithium Enolates ........... 548<br />

8.1.17.1.5.1 Variation 1: Michael Reactions <strong>of</strong> Preformed Lithium E- and Z-Enolates<br />

with Æ,â-Unsaturated Ketones and Esters .................. 549<br />

8.1.17.1.5.2 Variation 2: Intermolecular Reactions <strong>of</strong> Preformed Lithium Enolates with<br />

Various Michael Acceptors ................................. 551<br />

8.1.17.1.5.3 Variation 3: Sequential Michael Reactions <strong>of</strong> Preformed Lithium<br />

Cross-Conjugated Dienolates .............................. 553<br />

8.1.17.1.6 Method 6: C-Acylation Reactions <strong>of</strong> Preformed Lithium Enolates ....... 555<br />

8.1.17.1.7 Method 7: Reactions <strong>of</strong> Lithium Enolates at Carbon with<br />

Heteroatom Electrophiles ................................. 559<br />

8.1.17.1.7.1 Variation 1: C-Hydroxylation Reactions ................................. 559<br />

8.1.17.1.7.2 Variation 2: Sulfenylation, Selenenylation, and Halogenation Reactions .. 562<br />

8.1.17.1.8 Method 8: Diastereo- and Enantioselective Kinetic Protonation <strong>of</strong><br />

Lithium Enolates .......................................... 567<br />

8.1.17.1.8.1 Variation 1: Diastereoselective Protonation <strong>of</strong> Chiral Enolates ........... 567<br />

8.1.17.1.8.2 Variation 2: Enantioselective Protonation <strong>of</strong> Achiral Lithium Enolates .... 569<br />

8.1.17.1.8.3 Variation 3: Catalytic Enantioselective Protonation <strong>of</strong><br />

Achiral Lithium Enolates ................................... 571<br />

8.1.17.1.9 Method 9: Transmetalation <strong>of</strong> Lithium Enolates ....................... 572<br />

8.1.17.1.9.1 Variation 1: Lithium–Main Group Metal Exchange ...................... 573<br />

8.1.17.1.9.2 Variation 2: Lithium–Transition Metal Exchange ........................ 574<br />

8.1.17.2 Dilithium and Mixed Lithium/Sodium Dienolates <strong>of</strong> â-Dicarbonyl Compounds 574<br />

8.1.17.2.1 Method 1: Preparation <strong>of</strong> Dilithium and Lithium/Sodium Dienolates <strong>of</strong><br />

â-Dicarbonyl Compounds ................................. 575<br />

8.1.17.2.2 Method 2: ª-Alkylation <strong>of</strong> Dilithium or Lithium/Sodium Dienolates <strong>of</strong><br />

â-Dicarbonyl Compounds ................................. 577<br />

8.1.17.2.3 Method 3: Aldol, Acylation, and Michael Reactions <strong>of</strong> Dilithium and<br />

Lithium/Sodium Dienolates <strong>of</strong> â-Dicarbonyl Compounds .... 580<br />

8.1.17.3 Lithium Azaenolates ...................................................... 582<br />

8.1.17.3.1 Method 1: Deprotonations <strong>of</strong> Aldimines and Ketimines with<br />

Lithium Bases ............................................. 583<br />

8.1.17.3.2 Method 2: Deprotonation <strong>of</strong> Hydrazones with Lithium Bases ........... 586<br />

8.1.17.3.3 Method 3: Deprotonation <strong>of</strong> Oximes and Oxime Ethers with<br />

Alkyllithium Reagents ..................................... 588<br />

8.1.17.3.4 Method 4: Special Methods for Synthesis <strong>of</strong> Lithium Azaenolates ....... 589<br />

8.1.17.3.5 Method 5: C-Alkylation <strong>of</strong> Lithium Azaenolates ........................ 590<br />

8.1.17.3.5.1 Variation 1: Alkylation <strong>of</strong> Azaenolates <strong>of</strong> Imines ........................ 590<br />

8.1.17.3.5.2 Variation 2: Stereoselective Alkylation <strong>of</strong> Azaenolates <strong>of</strong> Imines ......... 591<br />

8.1.17.3.5.3 Variation 3: Alkylation <strong>of</strong> Azaenolates <strong>of</strong> Hydrazones ................... 594<br />

8.1.17.3.6 Method 6: Aldol Reactions <strong>of</strong> Lithium Azaenolates ..................... 597<br />

8.1.17.3.6.1 Variation 1: Aldol Reactions <strong>of</strong> Lithium Azaenolates <strong>of</strong> Imines ........... 597<br />

8.1.17.3.6.2 Variation 2: Aldol Reactions <strong>of</strong> Lithium Azaenolates <strong>of</strong> Hydrazones ...... 598<br />

8.1.17.3.7 Method 7: Acylation <strong>of</strong> Lithium Azaenolates .......................... 600<br />

8.1.17.3.8 Method 8: Michael Additions <strong>of</strong> Lithium Azaenolates .................. 601<br />

8.1.17.3.9 Method 9: Reactions <strong>of</strong> Lithium Azaenolates with Selected<br />

Heteroatom Electrophiles ................................. 604


Table <strong>of</strong> Contents XXVII<br />

8.1.18 Product Subclass 18: â-Lithio Aldehydes, â-Lithio Ketones,<br />

and Related Compounds<br />

D. Caine<br />

8.1.18 Product Subclass 18: â-Lithio Aldehydes, â-Lithio Ketones,<br />

and Related Compounds ................................................. 619<br />

Synthesis <strong>of</strong> Product Subclass 18 .......................................... 619<br />

8.1.18.1 Method 1: Halogen–Lithium Exchange ................................ 619<br />

8.1.18.2 Method 2: Reductive Lithiation <strong>of</strong> Halides and Phenyl Sulfides with<br />

Lithium Arene Radical Anions .............................. 622<br />

8.1.18.3 Method 3: Lithium Homoenolate Equivalents by<br />

Tellurium–Lithium Exchange ............................... 625<br />

8.1.18.4 Method 4: Æ¢-orÆ-Enolate-Protected Lithium Homoenolates:<br />

Dianionic Reagents ........................................ 626<br />

8.1.18.4.1 Variation 1: Preparation <strong>of</strong> â-Lithio Lithium Æ¢-Enolates ................. 626<br />

8.1.18.4.2 Variation 2: Preparation <strong>of</strong> â-Lithio Lithium Æ-Enolates .................. 628<br />

8.1.18.5 Method 5: Carbolithiation <strong>of</strong> Protected Æ,â-Unsaturated Aldehydes .... 630<br />

8.1.18.6 Method 6: Hydrogen–Lithium Exchange <strong>of</strong> Acetals and Ketals Containing<br />

Carbanion-Stabilizing Groups at the â-Position ............. 631<br />

8.1.19 Product Subclass 19: sp3-Hybridized Æ-Lithio Ethers and O-Carbamates<br />

S. MacNeil<br />

8.1.19 Product Subclass 19: sp 3 -Hybridized Æ-Lithio Ethers and O-Carbamates .. 637<br />

Synthesis <strong>of</strong> Product Subclass 19 .......................................... 637<br />

8.1.19.1 Method 1: Substitution <strong>of</strong> Hydrogen .................................. 637<br />

8.1.19.1.1 Variation 1: Stereospecific Deprotonation at Chiral, Nonracemic Centers 637<br />

8.1.19.1.2 Variation 2: Diastereoselective Deprotonation by Substrate Control ..... 638<br />

8.1.19.1.3 Variation 3: Enantioselective Deprotonation/Kinetic Resolution Induced<br />

by Chiral Ligands .......................................... 639<br />

8.1.19.1.4 Variation 4: Chiral Base Induced Deprotonation ........................ 642<br />

8.1.19.2 Method 2: Substitution <strong>of</strong> Tin ........................................ 642<br />

8.1.19.3 Method 3: Reductive Lithiation ....................................... 643<br />

8.1.19.3.1 Variation 1: Reductive Lithiation <strong>of</strong> Cl-C Bonds ........................ 643<br />

8.1.19.3.2 Variation 2: Reductive Lithiation <strong>of</strong> S-C Bonds ......................... 644<br />

8.1.19.3.3 Variation 3: Reductive Lithiation <strong>of</strong> C-C Bonds ......................... 645<br />

8.1.19.4 Method 4: Carbolithiation ............................................ 646<br />

Applications <strong>of</strong> Product Subclass 19 in Organic Synthesis ................... 647<br />

8.1.19.5 Method 5: Electrophilic Quench <strong>of</strong> Æ-Lithio Oxygen Compounds ....... 647<br />

8.1.19.5.1 Variation 1: Æ-Lithio Oxygen Compounds as Homoenolate Equivalents .. 647<br />

8.1.19.6 Method 6: Rearrangements <strong>of</strong> Æ-Lithio Oxygen Compounds ........... 649<br />

8.1.19.6.1 Variation 1: [1,2]-Wittig Rearrangements .............................. 649<br />

8.1.19.6.2 Variation 2: [2,3]-Wittig Rearrangements .............................. 650<br />

8.1.19.6.3 Variation 3: Rearrangements <strong>of</strong> Æ-Lithio Epoxides ...................... 653


XXVIII Table <strong>of</strong> Contents<br />

8.1.20 Product Subclass 20: Æ-Lithio Sulfoxides<br />

T. Durst and M. Khodaei<br />

8.1.20 Product Subclass 20: Æ-Lithio Sulfoxides ................................. 661<br />

Synthesis <strong>of</strong> Product Subclass 20 .......................................... 661<br />

8.1.20.1 Method 1: Lithiation <strong>of</strong> Sulfoxides .................................... 661<br />

Applications <strong>of</strong> Product Subclass 20 in Organic Synthesis ................... 663<br />

8.1.20.2 Method 2: Alkylation <strong>of</strong> Æ-Lithio Sulfoxides ............................ 666<br />

8.1.20.3 Method 3: Reaction with Aldehydes and Ketones ...................... 667<br />

8.1.20.4 Method 4: Reaction with Imines ...................................... 671<br />

8.1.20.5 Method 5: Acylation <strong>of</strong> Æ-Lithio Sulfoxides ............................ 672<br />

8.1.20.6 Method 6: Michael Addition .......................................... 673<br />

8.1.21 Product Subclass 21: Æ-Lithioamines<br />

R. E. Gawley, S. O Connor, and R. Klein<br />

8.1.21 Product Subclass 21: Æ-Lithioamines ..................................... 677<br />

Synthesis and Applications <strong>of</strong> Product Subclass 21 .......................... 682<br />

8.1.21.1 Synthesis and Applications <strong>of</strong> Unstabilized Æ-Lithioamines .................. 682<br />

8.1.21.1.1 Method 1: Deprotonation and Electrophilic Substitution ............... 683<br />

8.1.21.1.2 Method 2: Transmetalation and Electrophilic Substitution .............. 684<br />

8.1.21.1.2.1 Variation 1: Synthesis <strong>of</strong> a Horner–Wittig Reagent ...................... 684<br />

8.1.21.1.2.2 Variation 2: Addition <strong>of</strong> 2-Lithio-3-methyl-1-tritylaziridine to<br />

Benzaldehyde ............................................. 685<br />

8.1.21.1.2.3 Variation 3: Electrophilic Substitutions <strong>of</strong> 2-Lithio-1-methylpyrrolidine<br />

and 2-Lithio-1-methylpiperidine (Racemic) ................. 685<br />

8.1.21.1.2.4 Variation 4: Electrophilic Substitution <strong>of</strong> 2-Lithiopyrrolidine and<br />

2-Lithiopiperidine (Scalemic) .............................. 687<br />

8.1.21.1.2.5 Variation 5: Transmetalation and Electrophilic Substitution <strong>of</strong><br />

a 1-Allyl-2-lithiopyrrolidine ................................ 688<br />

8.1.21.1.2.6 Variation 6: Transmetalation and Enantioselective Electrophilic<br />

Substitution by Dynamic Thermodynamic Resolution ....... 689<br />

8.1.21.1.3 Method 3: Transmetalation and Sigmatropic Rearrangement ........... 690<br />

8.1.21.1.4 Method 4: Transmetalation and Anionic Cyclization .................... 692<br />

8.1.21.1.4.1 Variation 1: Synthesis <strong>of</strong> Pyrrolidines and Bicyclic Amines ............... 692<br />

8.1.21.1.4.2 Variation 2: Synthesis <strong>of</strong> (+)-Pseudoheliotridane via<br />

a Scalemic Organolithium ................................. 693<br />

8.1.21.1.4.3 Variation 3: Tandem Cyclization/Ring Opening ......................... 694<br />

8.1.21.1.4.4 Variation 4: Cyclizations onto Naphthyl Dihydrooxazoles ................ 694<br />

8.1.21.1.4.5 Variation 5: Intramolecular Michael Addition onto an Indole Ester ....... 695<br />

8.1.21.1.5 Method 5: Reductive Lithiation ....................................... 696<br />

8.1.21.1.5.1 Variation 1: Reduction and Electrophilic Substitution <strong>of</strong><br />

Æ-Sulfinyl Aziridines ....................................... 696<br />

8.1.21.1.5.2 Variation 2: Sulfide Reduction and Anionic Cyclization .................. 697<br />

8.1.21.2 Synthesis and Applications <strong>of</strong> Dipole-Stabilized Æ-Lithioamines ............. 697


Table <strong>of</strong> Contents XXIX<br />

8.1.21.2.1 Method 1: Deprotonation and Electrophilic Substitution ............... 699<br />

8.1.21.2.1.1 Variation 1: Deprotonation <strong>of</strong> a Piperidine tert-Butylformamidine,<br />

Transmetalation to Copper, and Electrophilic Substitution ... 699<br />

8.1.21.2.1.2 Variation 2: Deprotonation <strong>of</strong> N-tert-Butoxycarbonylpyrrolidine and<br />

Electrophilic Substitution with Tributyltin Chloride .......... 700<br />

8.1.21.2.1.3 Variation 3: Deprotonation <strong>of</strong> N-tert-Butoxycarbonyl-N-methylisobutylamine<br />

and Addition to Benzaldehyde ............... 701<br />

8.1.21.2.1.4 Variation 4: Preferential Deprotonation <strong>of</strong> N-tert-Butoxycarbonyl-<br />

N-ethylcyclopropanamine at the Cyclopropyl Methine<br />

over the Ethyl Group ...................................... 701<br />

8.1.21.2.1.5 Variation 5: Ring Contraction <strong>of</strong> 1-tert-Butoxycarbonyl-4-chloro-<br />

2-lithiopiperidine to a Cyclopropyl Intermediate,<br />

Followed by Deprotonation and Electrophilic Substitution ... 702<br />

8.1.21.2.1.6 Variation 6: Deprotonation and Palladium-Catalyzed Arylation .......... 703<br />

8.1.21.2.1.7 Variation 7: Asymmetric Deprotonation Using a Chiral Base,<br />

and Addition to Benzophenone ............................ 704<br />

8.1.21.2.1.8 Variation 8: Asymmetric Deprotonation Using a Chiral Base:<br />

Transmetalation with Copper, and Vinylation ............... 705<br />

8.1.21.2.1.9 Variation 9: Regio- and Stereoselective Deprotonation and<br />

Electrophilic Substitution <strong>of</strong> Imidazolidines ................. 706<br />

8.1.21.2.2 Method 2: Transmetalation and Electrophilic Substitution .............. 706<br />

8.1.21.2.2.1 Variation 1: Transmetalation from Tin to Lithium and then Copper,<br />

with 1,4-Addition ......................................... 706<br />

8.1.21.2.2.2 Variation 2: Transmetalation from Tin to Lithium: Lithiation<br />

at Sites Not Available by Deprotonation .................... 707<br />

8.1.21.2.2.3 Variation 3: Transmetalation <strong>of</strong> Organostannanes and Asymmetric<br />

Transformation <strong>of</strong> the First Kind: Synthesis <strong>of</strong> 11C-Enriched L-Amino Acids ............................................. 708<br />

8.1.21.2.2.4 Variation 4: Transmetalation <strong>of</strong> Æ-Stannylcarbamates and Addition<br />

to Aldehydes; Synthon <strong>of</strong> a Primary Æ-Lithioamine .......... 710<br />

8.1.21.2.3 Method 3: Transmetalation <strong>of</strong> Stannyl Ureas with 1,2-Acyl Migration ... 711<br />

8.1.21.2.4 Method 4: Reductive Lithiation <strong>of</strong> Aminonitriles to Tertiary<br />

Æ-Lithioamines and Electrophilic Substitution ............... 711<br />

8.1.21.3 Synthesis and Applications <strong>of</strong> Mesomerically Stabilized Æ-Lithioamines ...... 712<br />

8.1.21.3.1 Method 1: Deprotonation <strong>of</strong> a Chiral Allylic Amine Followed by<br />

Stereoselective Alkylation and Hydrolysis<br />

(Aldehyde Homoenolate Synthon) ......................... 713<br />

8.1.21.3.2 Method 2: Transmetalation <strong>of</strong> a Chiral Allylic Amine Followed by<br />

Stereoselective Alkylation and Hydrolysis<br />

(Ketone Homoenolate Synthon) ........................... 714<br />

8.1.21.3.3 Method 3: Transmetalation <strong>of</strong> N-(Tributylstannyl)methanimines<br />

Followed by Cycloaddition ................................. 715<br />

8.1.21.4 Synthesis and Applications <strong>of</strong> Dipole- and Mesomerically Stabilized<br />

Æ-Lithioamines ........................................................... 716<br />

8.1.21.4.1 Method 1: Deprotonation <strong>of</strong> Achiral Substrates with an Achiral Base .... 717<br />

8.1.21.4.1.1 Variation 1: Preferential Deprotonation <strong>of</strong> Benzylic Protons with<br />

Spontaneous Intramolecular Cyclization .................... 717


XXX Table <strong>of</strong> Contents<br />

8.1.21.4.1.2 Variation 2: Dilithiation <strong>of</strong> N-tert-Butoxycarbonylbenzylamine and<br />

1,2-Addition to Acrolein ................................... 717<br />

8.1.21.4.1.3 Variation 3: Dilithiation <strong>of</strong> tert-Butyl Allylcarbamate, Transmetalation to<br />

Zinc, and Addition to Aldehydes and Ketones ............... 718<br />

8.1.21.4.1.4 Variation 4: Deprotonation <strong>of</strong> Tetrahydroisoquinoline Pivalamides,<br />

Transmetalation to Magnesium, and Addition to Aldehyde .. 719<br />

8.1.21.4.1.5 Variation 5: Deprotonation <strong>of</strong> N-Benzyl-N-(tert-butoxycarbonyl)-<br />

4-methoxyaniline, Addition to Imines and Spontaneous<br />

Cyclization to Imidazolidinones ............................ 720<br />

8.1.21.4.1.6 Variation 6: Regioselective Deprotonation and<br />

Aza-[2,3]-Wittig Rearrangement ........................... 721<br />

8.1.21.4.2 Method 2: Deprotonation <strong>of</strong> Chiral Substrates ......................... 721<br />

8.1.21.4.2.1 Variation 1: Deprotonation and Alkylation <strong>of</strong> N-Benzyloxazolidinones .... 721<br />

8.1.21.4.2.2 Variation 2: Deprotonation <strong>of</strong> Chiral Tetrahydroisoquinolinyl<br />

Formamidine: Asymmetric Synthesis <strong>of</strong> Isoquinoline Alkaloids 722<br />

8.1.21.4.2.3 Variation 3: Deprotonation <strong>of</strong> Hexahydropyrido[3,4-b]indole<br />

Formamidines: Asymmetric Synthesis <strong>of</strong> Indole Alkaloids .... 724<br />

8.1.21.4.2.4 Variation 4: Deprotonation <strong>of</strong> Dihydrooxazole-Substituted Tetrahydroisoquinolines:<br />

Asymmetric Synthesis <strong>of</strong> Isoquinolines and<br />

Morphinan ................................................ 725<br />

8.1.21.4.2.5 Variation 5: Deprotonation <strong>of</strong> Chiral Tetrahydroisoquinolines,<br />

Transmetalation to Magnesium, and Addition to Aldehydes:<br />

Asymmetric Synthesis <strong>of</strong> Phthalideisoquinoline Alkaloids .... 727<br />

8.1.21.4.2.6 Variation 6: Æ,Æ¢-Dialkylation <strong>of</strong> Dihydroisoindole ...................... 728<br />

8.1.21.4.2.7 Variation 7: C 2-Symmetric Dialkylation <strong>of</strong> Chiral Formamidinyl<br />

Binaphthoazepines ........................................ 729<br />

8.1.21.4.3 Method 3: Deprotonation <strong>of</strong> Achiral Substrates with Chiral Base ........ 729<br />

8.1.21.4.3.1 Variation 1: Asymmetric Regioselective Deprotonation <strong>of</strong> Allylic and<br />

Benzylic Positions over Alkyl Positions in tert-Butyl Carbamates<br />

.................................................... 730<br />

8.1.21.4.3.2 Variation 2: Asymmetric Deprotonation <strong>of</strong> N-Benzyl-N-tert-butoxycarbonyl-4-methoxyaniline<br />

................................ 731<br />

8.1.21.4.3.3 Variation 3: Asymmetric Deprotonation <strong>of</strong> N-Benzyl-N-tert-butoxycarbonyl-4-methoxyaniline<br />

and 1,4-Addition to Enones ..... 732<br />

8.1.21.4.3.4 Variation 4: Deprotonation <strong>of</strong> N-tert-Butoxycarbonyl-4-methoxy-N-[(2E)-<br />

3-phenylprop-2-enyl]aniline and Electrophilic Substitution:<br />

Synthesis <strong>of</strong> Either R-orS-Homoenolate Synthons .......... 733<br />

8.1.21.4.3.5 Variation 5: Electrophilic Substitution <strong>of</strong> Aldehyde Homoenolate<br />

Synthons ................................................. 734<br />

8.1.21.4.3.6 Variation 6: Asymmetric Deprotonation, Transmetalation to Aluminum or<br />

Titanium, and Addition to Aldehydes ....................... 735<br />

8.1.21.4.3.7 Variation 7: Asymmetric Deprotonation and Reverse<br />

Aza-Brook Rearrangement ................................. 737<br />

8.1.21.4.3.8 Variation 8: Asymmetric Deprotonation and Dearomatizing Cyclization <strong>of</strong><br />

Æ-Lithio Amides ........................................... 737<br />

8.1.21.4.3.9 Variation 9: Asymmetric Deprotonation and Alkylation <strong>of</strong><br />

a Tricarbonylchromium–Benzyl Imine Complex ............. 738


Table <strong>of</strong> Contents XXXI<br />

8.1.21.5 Synthesis and Applications <strong>of</strong> Dipole- and Heteroatom-Stabilized<br />

Æ-Lithioamines ........................................................... 739<br />

8.1.21.5.1 Method 1: Oxygen- and tert-Butoxycarbonyl-Stabilized Æ-Lithioamines 739<br />

8.1.21.5.2 Method 2: Sulfur- and Dipole-Stabilized Æ-Lithioamines ................ 740<br />

8.1.21.5.2.1 Variation 1: Asymmetric Corey–Seebach Synthesis <strong>of</strong> Æ-Hydroxyaldehydes<br />

Using a Diphenylvalinol-Derived Oxazolidinone ............. 740<br />

8.1.21.5.2.2 Variation 2: Asymmetric Corey–Seebach Synthesis <strong>of</strong> Æ-Hydroxyaldehydes<br />

Using a Camphor-Derived Oxazolidinone ................... 741<br />

8.1.21.5.3 Method 3: Nitrogen- and tert-Butoxycarbonyl-Stabilized Æ-Lithioamines 742<br />

8.1.21.6 Synthesis and Applications <strong>of</strong> Non-Enolate Nitrogen Ylides .................. 743<br />

8.1.21.6.1 Method 1: Lewis Acid Activation <strong>of</strong> an Amine ......................... 743<br />

8.1.21.6.1.1 Variation 1: Activation <strong>of</strong> an Æ-Aminoorganostannane with<br />

Boron Trifluoride .......................................... 743<br />

8.1.21.6.1.2 Variation 2: Activation <strong>of</strong> a Cyclic Amine with Boron Trifluoride,<br />

Deprotonation, Double Transmetalation, and Alkylation ..... 744<br />

8.1.21.6.1.3 Variation 3: Activation <strong>of</strong> an Aziridine with Borane, Deprotonation and<br />

Alkylation ................................................ 745<br />

8.1.21.6.1.4 Variation 4: Activation <strong>of</strong> a Benzylic Amine or Tetrahydroisoquinoline with<br />

Borane, Deprotonation and Alkylation ...................... 746<br />

8.1.21.6.1.5 Variation 5: Activation <strong>of</strong> Dihydroisoindole with Borane:<br />

Group-Selective Deprotonation with a Chiral Base,<br />

and Electrophilic Substitution .............................. 748<br />

8.1.21.6.2 Method 2: Sigmatropic Rearrangements .............................. 750<br />

8.1.21.6.2.1 Variation 1: Transmetalation <strong>of</strong> a 2-Tributylstannylammonium Ion and<br />

[2,3]-Rearrangement ...................................... 750<br />

8.1.21.6.2.2 Variation 2: Activation and [2,3]-Rearrangement <strong>of</strong><br />

N-Allyltetrahydroisoquinoline .............................. 751<br />

8.1.22 Product Subclass 22: Lithium Nitronates<br />

N. Ono<br />

8.1.22 Product Subclass 22: Lithium Nitronates ................................. 759<br />

Synthesis <strong>of</strong> Product Subclass 22 .......................................... 759<br />

8.1.22.1 Method 1: Deprotonation <strong>of</strong> Nitroalkanes ............................. 759<br />

8.1.22.2 Method 2: Double Deprotonation <strong>of</strong> Nitroalkanes ..................... 760<br />

8.1.22.3 Method 3: Addition <strong>of</strong> Nucleophiles to Nitroalkenes ................... 760<br />

Applications <strong>of</strong> Product Subclass 22 in Organic Synthesis ................... 762<br />

8.1.22.4 Method 4: Nitroaldol Reaction ....................................... 762<br />

8.1.22.4.1 Variation 1: Nitro-Mannich Reaction ................................... 765<br />

8.1.22.4.2 Variation 2: Michael Addition .......................................... 765<br />

8.1.22.5 Method 5: Acylation <strong>of</strong> Nitroalkanes .................................. 765<br />

8.1.22.6 Method 6: Alkylation <strong>of</strong> Nitroalkanes ................................. 766<br />

8.1.22.6.1 Variation 1: Alkylation via Radicals ..................................... 767<br />

8.1.22.6.2 Variation 2: Transition-Metal-Catalyzed Alkylation <strong>of</strong> Nitroalkanes ....... 769<br />

8.1.22.6.3 Variation 3: Arylation <strong>of</strong> Nitro Compounds ............................. 770<br />

8.1.22.7 Method 7: Introduction <strong>of</strong> Heteroatoms into Nitroalkanes ............. 771


XXXII Table <strong>of</strong> Contents<br />

8.1.23 Product Subclass 23: ª-Lithio Ethers and Related Compounds<br />

D. Caine<br />

8.1.23 Product Subclass 23: ª-Lithio Ethers and Related Compounds ............ 775<br />

Synthesis <strong>of</strong> Product Subclass 23 .......................................... 776<br />

8.1.23.1 Method 1: Reductive Lithiation <strong>of</strong> Halide and Phenyl Sulfide Derivatives<br />

Containing Neutral (Uncharged) Alkoxy and Other<br />

Substituents at the ª-Position ............................. 776<br />

8.1.23.1.1 Variation 1: Reductive Lithiation with Lithium Metal .................... 776<br />

8.1.23.1.2 Variation 2: Reductive Lithiations with Lithium Arene Radical Anions ..... 777<br />

8.1.23.2 Method 2: Reductive Lithiation <strong>of</strong> ª-Oxido and Related<br />

ª-Amido Halides and Phenyl Sulfides ....................... 779<br />

8.1.23.2.1 Variation 1: Reductive Lithiation with Lithium Metal .................... 780<br />

8.1.23.2.2 Variation 2: Reductive Lithiation with Lithium Arene Radical Anions ..... 781<br />

8.1.23.3 Method 3: Halogen–Lithium Exchange ................................ 783<br />

8.1.23.4 Method 4: Metal–Lithium Exchange .................................. 784<br />

8.1.23.4.1 Variation 1: Selenium–Lithium Exchange ............................... 784<br />

8.1.23.4.2 Variation 2: Tin–Lithium Exchange ..................................... 785<br />

8.1.23.5 Method 5: Hydrogen–Lithium Exchange .............................. 787<br />

8.1.23.6 Method 6: Reductive Cleavage <strong>of</strong> Four-Membered Heterocycles by<br />

Lithium Arene Radical Anions .............................. 788<br />

8.1.23.7 Method 7: Addition <strong>of</strong> Organolithium Reagents to Allylic Systems ...... 790<br />

8.1.24 Product Subclass 24: Carbamoyllithium and<br />

Trihalomethyllithium Compounds<br />

C. Metallinos<br />

8.1.24 Product Subclass 24: Carbamoyllithium and<br />

Trihalomethyllithium Compounds ....................................... 795<br />

Synthesis <strong>of</strong> Product Subclass 24 .......................................... 795<br />

8.1.24.1 Carbamoyllithium Compounds ............................................ 795<br />

8.1.24.1.1 Method 1: Deprotonation <strong>of</strong> Formyl Hydrogen in Formamides ......... 796<br />

8.1.24.1.1.1 Variation 1: Using Lithium Diisopropylamide ........................... 796<br />

8.1.24.1.1.2 Variation 2: Using tert-Butyllithium .................................... 796<br />

8.1.24.1.2 Method 2: Reaction <strong>of</strong> Lithium Amide Bases and Carbon Monoxide ..... 797<br />

8.1.24.1.2.1 Variation 1: Using Lithium Amide Bases and Carbon Monoxide .......... 797<br />

8.1.24.1.2.2 Variation 2: Using Lithium Bis(carbamoyl)cuprates and Carbon Monoxide 798<br />

8.1.24.1.3 Method 3: Transmetalation <strong>of</strong> Carbamoylmercury and<br />

Carbamoyltellurium Reagents ............................. 799<br />

8.1.24.1.3.1 Variation 1: Using Bis(N,N-dialkylcarbamoyl)mercury Reagents .......... 799<br />

8.1.24.1.3.2 Variation 2: Using N,N-Dialkylcarbamoyltellurium Reagents ............. 800<br />

8.1.24.2 Trihalomethyllithium Compounds ......................................... 800<br />

8.1.24.2.1 Method 1: Deprotonation <strong>of</strong> Chlor<strong>of</strong>orm .............................. 801


Table <strong>of</strong> Contents XXXIII<br />

8.1.25 Product Subclass 25: Tris(organosulfanyl)- and Tris(organoselanyl)methyllithium<br />

Compounds<br />

C. Nµjera and M. Yus<br />

8.1.25 Product Subclass 25: Tris(organosulfanyl)- and Tris(organoselanyl)methyllithium<br />

Compounds .............................................. 805<br />

Synthesis and Applications <strong>of</strong> Product Subclass 25 ......................... 805<br />

8.1.25.1 Method 1: Alkylation Reactions <strong>of</strong> Tris(methylsulfanyl)- and<br />

Tris(phenylsulfanyl)methyllithium .......................... 805<br />

8.1.25.1.1 Variation 1: Reaction with Carbonyl Compounds ....................... 807<br />

8.1.25.1.2 Variation 2: Michael-Type Reactions ................................... 808<br />

8.1.25.2 Method 2: Synthesis <strong>of</strong> Other Sulfur-Containing Triheterosubstituted<br />

Methyllithium Compounds ................................ 810<br />

8.1.25.3 Method 3: Synthesis <strong>of</strong> Tris(methylselanyl)- and<br />

Tris(phenylselanyl)methyllithium ........................... 810<br />

8.1.26 Product Subclass 26: Bis(organosulfanyl)- and<br />

Bis(organoselanyl)methyllithium Compounds<br />

C. Nµjera and M. Yus<br />

8.1.26 Product Subclass 26: Bis(organosulfanyl)- and<br />

Bis(organoselanyl)methyllithium Compounds ........................... 813<br />

Synthesis and Applications <strong>of</strong> Product Subclass 26 ......................... 813<br />

8.1.26.1 Method 1: Synthesis <strong>of</strong> Bis(methylsulfanyl)methyllithium .............. 813<br />

8.1.26.2 Method 2: Synthesis <strong>of</strong> 1,3-Dithian-2-yllithium and Reaction with<br />

Alkyl Halides .............................................. 814<br />

8.1.26.2.1 Variation 1: Reaction with Epoxides .................................... 815<br />

8.1.26.2.2 Variation 2: Reaction with Carbonyl Compounds ....................... 817<br />

8.1.26.2.3 Variation 3: Michael-Type Reactions ................................... 818<br />

8.1.26.2.4 Variation 4: Acylation Reactions ....................................... 819<br />

8.1.26.3 Method 3: Synthesis and Alkylation Reactions <strong>of</strong> Bis(phenylsulfanyl)methyllithium<br />

............................................ 819<br />

8.1.26.3.1 Variation 1: Reaction with Carbonyl Compounds and<br />

Their Æ,â-Unsaturated Derivatives ......................... 820<br />

8.1.26.4 Method 4: Synthesis <strong>of</strong> Other Cyclic 2-Lithio Dithioacetals ............. 821<br />

8.1.26.5 Method 5: Synthesis <strong>of</strong> Æ-Lithio Æ-Organosulfanyl Ethers .............. 822<br />

8.1.26.5.1 Variation 1: Methoxy(phenylsulfanyl)methyllithium ..................... 822<br />

8.1.26.5.2 Variation 2: 1,3-Oxathian-2-yllithium ................................... 823<br />

8.1.26.6 Method 6: Synthesis <strong>of</strong> Æ-Lithio Æ-Arylsulfonyl Ethers .................. 825<br />

8.1.26.6.1 Variation 1: 2-(Arylsulfonyl)oxiran-2-yllithiums ......................... 826<br />

8.1.26.6.2 Variation 2: 2-(Arylsulfonyl)tetrahydropyran-2-yllithiums ................ 827<br />

8.1.26.7 Method 7: Synthesis and Alkylation Reactions <strong>of</strong> Æ-Lithio<br />

Æ-Organosulfanyl and Æ-Lithio Æ-Organosulfinyl Sulfoxides .. 828<br />

8.1.26.7.1 Variation 1: Reaction with Carbonyl Compounds and<br />

Their Æ,â-Unsaturated Derivatives ......................... 830<br />

8.1.26.8 Method 8: Synthesis and Reactions <strong>of</strong> Æ-Lithio Æ-Organosulfanyl Sulfones 831<br />

8.1.26.9 Method 9: Synthesis and Reactions <strong>of</strong> Æ-Lithio Selenoacetals ........... 833


XXXIV Table <strong>of</strong> Contents<br />

8.1.27 Product Subclass 27: Æ-Lithio Vinyl Ethers<br />

R. W. Friesen and C. F. Sturino<br />

8.1.27 Product Subclass 27: Æ-Lithio Vinyl Ethers ............................... 841<br />

Synthesis <strong>of</strong> Product Subclass 27 .......................................... 841<br />

8.1.27.1 Method 1: Deprotonation <strong>of</strong> Vinyl Ethers ............................. 842<br />

8.1.27.1.1 Variation 1: Deprotonation <strong>of</strong> Acyclic and Cyclic Vinyl Ethers ............ 842<br />

8.1.27.1.2 Variation 2: Deprotonation <strong>of</strong> Allenyl Ethers ............................ 846<br />

8.1.27.2 Method 2: Transmetalation <strong>of</strong> (Æ-Alkoxyvinyl)stannanes ............... 847<br />

8.1.27.3 Method 3: Lithium–Halogen Exchange ................................ 849<br />

Applications <strong>of</strong> Product Subclass 27 in Organic Synthesis ................... 850<br />

8.1.27.4 Method 4: Synthesis <strong>of</strong> Æ-Alkoxyvinyl Organometallic Compounds ..... 850<br />

8.1.27.4.1 Variation 1: Vinylstannanes ............................................ 850<br />

8.1.27.4.2 Variation 2: Vinylsilanes ............................................... 851<br />

8.1.27.5 Method 5: Synthesis <strong>of</strong> 2-Aryldihydropyrrolohydrazines ................ 853<br />

8.1.27.6 Method 6: Æ-Difluoro Ketones ........................................ 854<br />

8.1.27.7 Method 7: Synthesis <strong>of</strong> ª-Oxo Esters .................................. 855<br />

8.1.27.8 Method 8: Synthesis <strong>of</strong> Æ-Hydroxy Ketones ........................... 856<br />

8.1.27.9 Method 9: Synthesis <strong>of</strong> Substituted 1,4-Dioxins ....................... 858<br />

8.1.27.10 Method 10: Synthesis <strong>of</strong> â- and ª-Hydroxyalkenes ...................... 859<br />

Keyword Index ...................................................... i<br />

Author Index .......................................................... xxxiii<br />

Abbreviations ......................................................... lxxxv

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!