05.04.2013 Views

Differential Calculus-II - New Age International

Differential Calculus-II - New Age International

Differential Calculus-II - New Age International

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2.1 JACOBIAN<br />

UNIT <strong>II</strong><br />

<strong>Differential</strong> <strong>Calculus</strong>-<strong>II</strong><br />

The Jacobians* themselves are of great importance in solving for the reverse (inverse functions)<br />

derivatives, transformation of variables from one coordinate system to another coordinate system<br />

(cartesian to polar etc.). They are also useful in area and volume elements for surface and volume<br />

integrals.<br />

2.1.1 Definition<br />

If u = u (x, y) and v = v (x, y) where x and y are independent, then the determinant<br />

∂u<br />

∂u<br />

∂x<br />

∂y<br />

∂v<br />

∂v<br />

∂x<br />

∂y<br />

is known as the Jacobian of u, v with respect to x, y and is denoted by<br />

∂auv<br />

, f or J (u, v)<br />

∂bxy<br />

, g<br />

Similarly, the Jacobian of three functions u = u (x, y, z), v = v (x, y, z), w = w (x, y, z) is defined<br />

as<br />

J (u, v, w) =<br />

a f<br />

b g =<br />

∂ uvw , ,<br />

∂ xyz , ,<br />

∂u<br />

∂x<br />

∂v<br />

∂x<br />

∂w<br />

∂x<br />

* Carl Gustav Jacob Jacobi (1804–1851), German mathematician.<br />

95<br />

∂u<br />

∂y<br />

∂v<br />

∂y<br />

∂w<br />

∂y<br />

∂u<br />

∂z<br />

∂v<br />

∂z<br />

∂w<br />

∂z


96 A TEXTBOOK OF ENGINEERING MATHEMATICS—I<br />

2.1.2 Properties of Jacobians<br />

1. If u =u (x, y) and v = v (x, y), then<br />

a f<br />

b g<br />

∂ uv ,<br />

∂ xy ,<br />

b g<br />

a f<br />

× ∂ xy ,<br />

∂ uv ,<br />

= 1 or JJ′ = 1 (U.P.T.U., 2005)<br />

a f<br />

b g<br />

b g<br />

a f<br />

where, J =<br />

∂ uv ,<br />

∂<br />

and J′ =<br />

∂ xy ,<br />

∂<br />

xy ,<br />

uv ,<br />

Proof: Since u = u (x, y) ...(i)<br />

v = v (x, y) ...(ii)<br />

Differentiating partially equations (i) and (ii) w.r.t. u and v, we get<br />

∂u<br />

= 1<br />

∂u<br />

=<br />

∂u<br />

∂x<br />

∂u<br />

∂y<br />

· + ×<br />

∂x<br />

∂u<br />

∂y<br />

∂u<br />

...(iii)<br />

∂u<br />

= 0<br />

∂v<br />

=<br />

∂u<br />

∂x<br />

∂u<br />

∂y<br />

· + ×<br />

∂x<br />

∂v<br />

∂y<br />

∂v<br />

...(iv)<br />

∂v<br />

= 0<br />

∂u<br />

=<br />

∂v<br />

∂x<br />

·<br />

∂x<br />

∂u<br />

+<br />

∂v<br />

∂y<br />

∂y<br />

×<br />

∂u<br />

...(v)<br />

∂v<br />

= 1<br />

∂v<br />

=<br />

∂v<br />

∂x<br />

∂v<br />

∂y<br />

· + ×<br />

∂x<br />

∂v<br />

∂y<br />

∂v<br />

...(vi)<br />

Now,<br />

∂auv<br />

, f ∂bxy<br />

, g ×<br />

∂bxy<br />

, g ∂auv<br />

, f =<br />

∂u<br />

∂x<br />

∂v<br />

∂x<br />

∂u<br />

∂y<br />

∂v<br />

∂y<br />

×<br />

∂x<br />

∂u<br />

∂y<br />

∂u<br />

∂x<br />

∂v<br />

∂y<br />

∂v<br />

=<br />

∂u<br />

∂x<br />

∂v<br />

∂u<br />

∂y<br />

∂v<br />

×<br />

∂x<br />

∂u<br />

∂x<br />

∂y<br />

∂u<br />

∂y<br />

∂x<br />

∂y<br />

∂v<br />

∂v<br />

(By interchanging rows and columns in <strong>II</strong> determinant)<br />

=<br />

∂u<br />

∂x<br />

∂u<br />

∂y<br />

+<br />

∂x<br />

∂ u ∂y<br />

∂u<br />

∂u<br />

∂x<br />

∂u<br />

∂y<br />

+<br />

∂x<br />

∂ v ∂y<br />

∂v<br />

∂v<br />

∂x<br />

∂v<br />

∂y<br />

+ .<br />

∂x<br />

∂ u ∂y<br />

∂u<br />

∂v<br />

∂x<br />

∂v<br />

∂y<br />

. +<br />

∂x<br />

∂ v ∂y<br />

∂v<br />

Putting equations (iii), (iv), (v) and (vi) in above, we get<br />

a f<br />

b g<br />

∂ uv ,<br />

∂ xy ,<br />

b g<br />

a f =<br />

∂ xy ,<br />

×<br />

∂ uv ,<br />

1 0<br />

0 1<br />

= 1<br />

or J J ′ = 1. Hence proved.<br />

(multiplying row-wise)<br />

2. Chain rule: If u, v, are function of r, s and r, s are themselves functions of x, y i.e.,<br />

u = u (r, s), v = v (r, s) and r = r (x, y), s = s (x, y)<br />

a f<br />

b g =<br />

a f<br />

a f<br />

then<br />

∂<br />

∂<br />

uv ,<br />

x, y<br />

∂<br />

∂<br />

⋅ ∂ uv ,<br />

ars , f<br />

r, s<br />

∂ bx, yg<br />

Proof: Here u = u (r, s), v = v (r, s)<br />

and r = r (x, y), s = s (x, y)


DIFFERENTIAL CALCULUS-<strong>II</strong> 97<br />

Differentiating u, v partially w.r.t. x and y<br />

∂u<br />

∂x<br />

=<br />

∂u<br />

∂r<br />

∂u<br />

∂s<br />

· + ·<br />

∂r<br />

∂x<br />

∂s<br />

∂x<br />

∂u<br />

∂y<br />

=<br />

∂u<br />

∂r<br />

∂u<br />

∂s<br />

· + ·<br />

∂r<br />

∂y<br />

∂s<br />

∂y<br />

∂v<br />

∂x<br />

=<br />

∂v<br />

∂r<br />

∂v<br />

∂s<br />

· + ·<br />

∂r<br />

∂x<br />

∂s<br />

∂x<br />

∂v<br />

∂y<br />

=<br />

∂v<br />

∂r<br />

∂v<br />

∂s<br />

· + ·<br />

∂r<br />

∂y<br />

∂s<br />

∂y<br />

Now,<br />

a f<br />

a f<br />

∂ uv ,<br />

∂ rs ,<br />

a f<br />

b g =<br />

∂ rs ,<br />

·<br />

∂ xy ,<br />

=<br />

=<br />

∂u<br />

∂r<br />

∂v<br />

∂r<br />

∂u<br />

∂r<br />

∂v<br />

∂r<br />

∂u<br />

∂s<br />

∂v<br />

∂s<br />

∂u<br />

∂s<br />

∂v<br />

∂s<br />

.<br />

.<br />

∂r<br />

∂x<br />

∂s<br />

∂x<br />

∂r<br />

∂x<br />

∂r<br />

∂y<br />

∂r<br />

∂y<br />

∂s<br />

∂y<br />

∂s<br />

∂x<br />

∂s<br />

∂y<br />

...(i)<br />

...(ii)<br />

...(iii)<br />

...(iv)<br />

By interchanging the rows and columns in second determinant<br />

∂u<br />

∂r<br />

∂u<br />

∂s<br />

+<br />

∂r<br />

∂ x ∂s<br />

∂x<br />

∂v<br />

∂r<br />

∂v<br />

∂s<br />

+<br />

∂r<br />

∂ x ∂s<br />

∂x<br />

Using equations (i), (ii), (iii) and (iv) in above, we get<br />

a f<br />

a f<br />

∂ uv ,<br />

∂ rs ,<br />

a f<br />

b g =<br />

∂ rs ,<br />

.<br />

∂ xy ,<br />

a f<br />

b g =<br />

auv , f<br />

bxy , g<br />

∂ uv ,<br />

∂ xy ,<br />

∂u<br />

∂x<br />

∂v<br />

∂x<br />

a f<br />

a f<br />

∂u<br />

∂y<br />

∂v<br />

∂y<br />

Or<br />

= ∂ uv ,<br />

∂ xy ,<br />

a f<br />

b g<br />

∂<br />

⋅<br />

∂<br />

∂ uv , rs ,<br />

.<br />

rs , ∂ xy ,<br />

∂u<br />

∂r<br />

∂u<br />

∂s<br />

+<br />

∂r<br />

∂ y ∂s<br />

∂y<br />

∂v<br />

∂r<br />

∂v<br />

∂s<br />

+<br />

∂r<br />

∂ y ∂s<br />

∂y<br />

a f<br />

b g .<br />

Hence proved.<br />

Example 1. Find ∂<br />

, when u = 3x + 5y, v = 4x – 3y.<br />

∂<br />

Sol. We have u = 3x + 5y<br />

v = 4x – 3y<br />

∴<br />

∂u<br />

∂x<br />

= 3, ∂u<br />

∂v<br />

∂v<br />

= 5, = 4 and<br />

∂y<br />

∂x<br />

∂y<br />

Thus,<br />

a f<br />

b g =<br />

∂ uv ,<br />

∂ xy ,<br />

∂u<br />

∂x<br />

∂v<br />

∂x<br />

∂u<br />

∂y<br />

∂v<br />

∂y<br />

= 3 5<br />

4 −3<br />

= – 3<br />

= – 9 – 20 = – 29.<br />

|multiplying row-wise


98 A TEXTBOOK OF ENGINEERING MATHEMATICS—I<br />

a f<br />

Example 2. Calculate the Jacobian ∂ uvw , ,<br />

of the following:<br />

∂bxyz<br />

, , g<br />

u = x + 2y + z, v = x + 2y + 3z, w = 2x + 3y + 5z. (U.P.T.U., 2007)<br />

Sol. We have u = x + 2y + z<br />

v = x + 2y + 3z<br />

w =2x + 3y + 5z<br />

∴<br />

∂u<br />

∂u<br />

∂u<br />

∂v<br />

∂v<br />

∂v<br />

= 1, = 2, = 1, = 1, = 2, = 3,<br />

∂x<br />

∂y<br />

∂z<br />

∂x<br />

∂y<br />

∂z<br />

∂w<br />

∂x<br />

∂w<br />

∂w<br />

= 2,<br />

∂y<br />

= 3 and = 5.<br />

∂z<br />

Now,<br />

∂auvw<br />

, , f<br />

∂bxyz<br />

, , g =<br />

∂u<br />

∂u<br />

∂u<br />

∂x<br />

∂v<br />

∂x<br />

∂w<br />

∂y<br />

∂v<br />

∂y<br />

∂w<br />

∂z<br />

∂v<br />

∂z<br />

∂w<br />

=<br />

1<br />

1<br />

2<br />

2<br />

2<br />

3<br />

1<br />

3<br />

5<br />

∂x<br />

∂y<br />

∂z<br />

= 1 (10 – 9) – 2 (5 – 6) + 1 (3 – 4) = 2.<br />

Example 3. Calculate ∂bxyz<br />

, , g 2yz 3zx 4xy<br />

if u = , v = , w =<br />

∂auvw<br />

, , f x y z .<br />

Sol. Given u = 2yz 3zx 4xy<br />

, v = , w =<br />

x y z<br />

∴<br />

∂u<br />

−2yz<br />

= 2 ,<br />

∂x<br />

x<br />

∂u<br />

2z ∂u<br />

2y ∂v<br />

3z ∂v<br />

3zx<br />

= , = , = , = − 2 ,<br />

∂y<br />

x ∂z<br />

x ∂x<br />

y ∂y<br />

y<br />

∂<br />

∂ =<br />

v 3 x<br />

,<br />

z y<br />

∂w<br />

∂x<br />

=<br />

4y ∂w<br />

4x ∂w<br />

4xy<br />

, = and = – 2<br />

z ∂y<br />

z ∂z<br />

z<br />

Now,<br />

∂auvw<br />

, , f<br />

∂bxyz<br />

, , g =<br />

∂u<br />

∂x<br />

∂v<br />

∂x<br />

∂w<br />

∂u<br />

∂y<br />

∂v<br />

∂y<br />

∂w<br />

∂u<br />

∂z<br />

∂v<br />

∂z<br />

∂w<br />

=<br />

2yz – 2<br />

x<br />

3z y<br />

4y 2z x<br />

−3zx<br />

2<br />

y<br />

4x<br />

2y<br />

x<br />

3x<br />

y<br />

–4xy<br />

∂x<br />

∂y<br />

∂z<br />

z z 2<br />

z<br />

⇒<br />

∂ uvw , ,<br />

∂ xyz , ,<br />

But, we have<br />

∴<br />

∂<br />

∂<br />

=– 2yz<br />

2<br />

x<br />

a f<br />

b g<br />

∂bxyz<br />

, , g<br />

∂auvw<br />

, , f<br />

bxyz , , g<br />

auvw , , f<br />

L<br />

M<br />

NM<br />

2<br />

2<br />

12x yz 12x<br />

−<br />

2 2<br />

yz yz<br />

= 0 + 48 + 48 = 96.<br />

= 1<br />

96 .<br />

a f<br />

b g<br />

∂ uvw , ,<br />

×<br />

∂ xyz , ,<br />

O<br />

P<br />

QP<br />

– 2z<br />

x<br />

L<br />

M<br />

NM<br />

= 1 (Property 1)<br />

−12xyz<br />

12xy<br />

−<br />

2<br />

yz yz<br />

O<br />

P<br />

QP<br />

+ 2y<br />

x<br />

L<br />

M<br />

NM<br />

12xz 12xyz<br />

+<br />

2 yz zy<br />

O<br />

P<br />

QP


DIFFERENTIAL CALCULUS-<strong>II</strong> 99<br />

Example 4. If u = xyz, v = x2 + y2 + z2 , w = x + y + z find J (x, y, z).<br />

Sol. Here we calculate J(u, v, w) as follows:<br />

(U.P.T.U., 2002)<br />

∂u<br />

∂u<br />

∂u<br />

J(u, v, w) =<br />

∂x<br />

∂v<br />

∂x<br />

∂w<br />

∂y<br />

∂v<br />

∂y<br />

∂w<br />

∂z<br />

∂v<br />

∂z<br />

∂w<br />

=<br />

yz<br />

2x 1<br />

zx<br />

2y 1<br />

xy<br />

2z<br />

1<br />

∂x<br />

∂y<br />

∂z<br />

= yz (2y – 2z) – zx (2x – 2z) + xy (2x – 2y)<br />

= 2 [y2z – yz2 – zx2 + z2x + xy (x – y)]<br />

= 2 [– z (x2 – y2 ) + z2 (x – y) + xy (x – y)]<br />

= 2 (x – y)[– zx – zy + z2 + xy]<br />

= 2 (x – y)[z (z – x) – y (z – x)]<br />

= 2 (x – y) (z – y) (z – x)<br />

= – 2 (x – y) (y – z) (z – x)<br />

2 2<br />

As x – y = ( x– y)( x+ y)<br />

But J(x, y, z)· J(u, v, w) = 1<br />

∴ J (x, y, z) =<br />

1<br />

−<br />

2 x−y y− z z−x b gb ga f .<br />

Example 5. If x =<br />

v =<br />

vw , y = wu , z = uv and u = r sin θ cos φ,<br />

r sin θ sin φ, w = r cos θ, calculate ∂bxyz<br />

, , g<br />

∂br,<br />

θφ , g<br />

.<br />

Sol. Here x, y, z are functions of u, v, w and u, v, w are functions of r, θ, φ so we apply <strong>II</strong>nd<br />

property.<br />

∂bxyz<br />

, , g<br />

∂ r,<br />

θφ ,<br />

= ∂bxyz<br />

, , g ∂auvw<br />

, , f ·<br />

∂ uvw , , ∂ r,<br />

θφ ,<br />

...(i)<br />

Consider<br />

b g<br />

b g<br />

a f =<br />

∂ xyz , ,<br />

∂ uvw , ,<br />

=<br />

= 1<br />

8<br />

a f<br />

∂x<br />

∂u<br />

∂y<br />

∂u<br />

∂z<br />

∂u<br />

1<br />

2<br />

1<br />

2<br />

0<br />

L<br />

NM<br />

w<br />

u<br />

v<br />

u<br />

∂x<br />

∂v<br />

∂y<br />

∂v<br />

∂z<br />

∂v<br />

w<br />

v<br />

1<br />

2<br />

1<br />

2<br />

∂x<br />

∂w<br />

∂y<br />

∂w<br />

∂z<br />

∂w<br />

0<br />

v u<br />

u w<br />

w<br />

v<br />

u<br />

v<br />

+<br />

b g<br />

1<br />

2<br />

1<br />

2<br />

0<br />

v w<br />

w u<br />

v<br />

w<br />

u<br />

w<br />

u<br />

v<br />

O<br />

QP<br />

= 1<br />

8<br />

1+ 1 = 2<br />

8<br />

= 1<br />

4


100 A TEXTBOOK OF ENGINEERING MATHEMATICS—I<br />

b g<br />

a f<br />

⇒<br />

∂ xyz , ,<br />

=<br />

∂ uvw , ,<br />

1<br />

4<br />

...(ii)<br />

∂u<br />

∂u<br />

∂u<br />

Next<br />

∂auvw<br />

, , f<br />

∂br,<br />

θφ , g =<br />

∂r<br />

∂v<br />

∂r<br />

∂θ<br />

∂v<br />

∂θ<br />

∂φ<br />

∂v<br />

∂φ<br />

=<br />

sinθcosφ sinθsin φ<br />

rcosθcosφ rcosθsin φ<br />

−rsinθsinφ<br />

rsinθcosφ<br />

∂w<br />

∂w<br />

∂w<br />

cosθ −r<br />

sin θ 0<br />

∂r<br />

∂θ ∂φ<br />

= sinθ cos φ (r2 sin2 θ cos φ) – r cos θ cos φ (–r2 sin θ cos θ cos φ)<br />

+ r2 sin θ sin φ (sin2 θ sin φ + cos2 θ sin φ)<br />

= r2 sin θ cos2 φ (sin2 θ + cos2 θ) + r2 sin θ sin2 ⇒<br />

φ<br />

∂auvw<br />

, , f<br />

= r<br />

∂br,<br />

θφ , g<br />

2 sin θ cos2 φ + r2 sin θ sin2 φ = r2 sin θ ...(iii)<br />

Using (ii) and (iii) in equation (i), we get<br />

b g<br />

b g<br />

∂ xyz , ,<br />

∂ r,<br />

θφ ,<br />

= 1<br />

4 × r2 sin θ = r2 sin θ<br />

.<br />

4<br />

Example 6. If u = x (1 – r 2 ) −1/2 , v = y (1 – r 2 ) −1/2 , w = z (1 – r 2 ) −1/2<br />

a f<br />

b g<br />

where r = 2 2 2<br />

x + y + z , then find ∂ uvw , ,<br />

.<br />

∂ xyz , ,<br />

and<br />

Sol. Since r 2 = x 2 + y 2 + z 2<br />

∴<br />

∂r<br />

∂x<br />

= x ∂r<br />

y ∂r<br />

z<br />

, = , =<br />

r ∂y<br />

r ∂z<br />

r<br />

Differentiating partially u = x (1 – r2 ) –1/2 w.r.t. x, we get<br />

∂u<br />

∂x<br />

= 1 − r<br />

= 1<br />

⇒<br />

∂u<br />

∂x<br />

=<br />

1 − r + x<br />

3<br />

2<br />

1 − r 2 e j<br />

Differentiating partially u w.r.t. y, we get<br />

∂u<br />

F −<br />

= x<br />

∂y<br />

1<br />

−3<br />

2<br />

1 − r 2<br />

2<br />

⇒<br />

∂u<br />

∂y<br />

=<br />

∂u<br />

∂z<br />

=<br />

e<br />

−1<br />

2 2 j + x − F I<br />

HG KJ 1<br />

−3<br />

2<br />

(– 2r) 1 − 2 e r j .<br />

2<br />

∂<br />

∂<br />

e<br />

−1<br />

−3<br />

2<br />

− r 2 j + rx 2<br />

1 − r 2 e j . x 1<br />

2<br />

HG I K J<br />

2 2<br />

xy<br />

2 e1−rj xz<br />

2 e1−rj 3<br />

2<br />

3<br />

2<br />

e j · (– 2r) ∂<br />

r =<br />

r<br />

∂y<br />

=<br />

1 − r<br />

r<br />

x<br />

xr<br />

2 e1−rj 3<br />

2<br />

+<br />

2<br />

x<br />

2 e1−rj · y<br />

r<br />

3<br />

2


DIFFERENTIAL CALCULUS-<strong>II</strong> 101<br />

Similarly,<br />

Thus,<br />

∂v<br />

∂x<br />

∂w<br />

∂x<br />

∂ uvw , ,<br />

∂ xyz , ,<br />

=<br />

=<br />

a f<br />

= b g<br />

=<br />

yx<br />

, 3<br />

2<br />

1 − r 2 e j<br />

∂<br />

2 2<br />

v 1 − r + y<br />

= 3 ,<br />

∂y<br />

2<br />

1 − r 2 e j<br />

∂v<br />

∂z<br />

=<br />

yz<br />

3<br />

2<br />

1 − r 2 e j<br />

zx<br />

3 ,<br />

2<br />

1 − r 2 e j<br />

∂w<br />

∂y<br />

=<br />

zy<br />

2<br />

1 − r<br />

, 3<br />

2<br />

∂<br />

2 2<br />

w 1 − r + z<br />

= 3 .<br />

∂z<br />

2<br />

1 − r 2 e j<br />

= 1<br />

2 2<br />

1 − r + x<br />

e j<br />

xy<br />

3<br />

3<br />

3<br />

2<br />

2<br />

2<br />

e j e j e j<br />

1−r21−r21−r2 yx<br />

2 2<br />

1 − r + y yz<br />

3<br />

2<br />

1 2 e − r j<br />

3<br />

2<br />

1 2 e −rj 3<br />

2<br />

1 2 e −rj<br />

zx zy<br />

2 2<br />

1 − r + z<br />

3<br />

2<br />

1− 2 e r j<br />

3<br />

2<br />

1−r2<br />

e j<br />

3<br />

2<br />

1 − r 2 e j<br />

1<br />

9<br />

2 2<br />

1 − r + x<br />

yx<br />

xy<br />

2 2<br />

1 − r + y<br />

xz<br />

yz<br />

2<br />

1 − r 2 zx zy 1 − r + z<br />

e j<br />

2 2<br />

e<br />

−9<br />

2<br />

− r 2 [(1 – r j 2 + x2 ) {(1 – r2 + y2 )(1 – r2 + z2 )– y2z2 }<br />

= 1 − r<br />

xz<br />

– xy {xy (1 – r 2 + z 2 ) – xyz 2 } + xz{xy 2 z – zx(1 – r 2 + y 2 )}]<br />

−9<br />

2 2 [(1 – r e j 2 + x2 ) (1 – r2 + y2 ) (1 – r2 + z2 )<br />

−9<br />

2 2 e j [(1 – r2 ) 3 + (1 – r2 ) 2 (x2 + y2 + z2 )]<br />

−9<br />

2 2<br />

= 1 − r<br />

e j [(1 – r2 ) 3 + (1 – r2 ) 2 r2 ]<br />

−9<br />

2<br />

− r 2 e j . (1 – r2 ) 2 [1 – r2 + r2 −5<br />

] = 2<br />

1 − r 2 e j .<br />

= 1 − r<br />

= 1<br />

– (1 – r 2 ) (y 2 z 2 + x 2 y 2 + x 2 z 2 ) – x 2 y 2 z 2 ]<br />

Example 7. Verify the chain rule for Jacobians if x = u, y = u tan v, z = w. (U.P.T.U., 2008)<br />

Sol. We have x = u ⇒ ∂x<br />

∂x<br />

∂x<br />

= 1, =<br />

∂u<br />

∂v<br />

∂w<br />

= 0<br />

y = u tan v ⇒ ∂y<br />

∂y<br />

= tan v,<br />

∂u<br />

∂v<br />

= u sec2 v, ∂y<br />

= 0<br />

∂w<br />

z = w ⇒ ∂z<br />

∂z<br />

=<br />

∂u<br />

∂v<br />

= 0 , ∂z<br />

= 1<br />

∂w<br />

b g<br />

b g<br />

J = ∂ x, y, z<br />

∂ u, v, w<br />

=<br />

1 0 0<br />

tan v<br />

2<br />

usecv 0<br />

0 0 1<br />

= u sec 2 v ...(i)


102 A TEXTBOOK OF ENGINEERING MATHEMATICS—I<br />

∂w<br />

∂z<br />

Solving for u, v, w in terms of x, y, z, we have<br />

u = x<br />

y –1 v = tan<br />

u<br />

=<br />

− y<br />

tan<br />

x<br />

1<br />

w = z<br />

∴ ∂<br />

∂<br />

=<br />

∂<br />

∂<br />

= ∂<br />

∂<br />

=<br />

∂<br />

∂<br />

= −<br />

+<br />

∂<br />

∂<br />

=<br />

+<br />

∂<br />

∂<br />

=<br />

∂<br />

∂<br />

= ∂<br />

u<br />

x<br />

u<br />

1, y<br />

u<br />

z<br />

0, v<br />

x<br />

y<br />

, 2 2<br />

x y<br />

v<br />

y<br />

x<br />

, 2 2<br />

x y<br />

v<br />

z<br />

w<br />

0, x<br />

w<br />

∂y<br />

= 0 and<br />

=<br />

1<br />

b g<br />

J′ = ∂<br />

=<br />

∂<br />

−<br />

+ +<br />

=<br />

+<br />

=<br />

F I +<br />

HG KJ =<br />

u, v, w<br />

bx, y, zg<br />

1<br />

y<br />

2 2<br />

x y<br />

0<br />

0<br />

x<br />

2 2<br />

x y<br />

0<br />

0<br />

0<br />

1<br />

x<br />

2 2<br />

x y<br />

1<br />

2<br />

y<br />

x 1 2<br />

x<br />

1<br />

2<br />

usec v<br />

Hence from (i) and (ii), we get<br />

2.1.3 Jacobian of Implicit Functions<br />

J.J′ = u sec2 1<br />

v. = 1 2 .<br />

usec v<br />

If the variables u, v and x, y be connected by the equations<br />

f (u, v, x, y) 1 = 0 ...(i)<br />

f (u, v, x, y) 2 = 0 ...(ii)<br />

i.e., u, v are implicit functions of x, y.<br />

Differentiating partially (i) and (ii) w.r.t. x and y, we get<br />

∂f1<br />

∂f1<br />

∂u<br />

∂f1<br />

∂v<br />

+ · + ·<br />

∂x<br />

∂u<br />

∂x<br />

∂v<br />

∂x<br />

= 0 ...(iii)<br />

∂f1<br />

∂y<br />

+ ∂f1<br />

∂u<br />

∂f1<br />

∂u<br />

· + ·<br />

∂u<br />

∂y<br />

∂v<br />

∂y<br />

= 0 ...(iv)<br />

∂f2<br />

∂f2<br />

∂u<br />

∂f<br />

2 ∂v<br />

+ · + · = 0<br />

∂x<br />

∂u<br />

∂x<br />

∂v<br />

∂x<br />

...(v)<br />

∂f<br />

2 ∂f<br />

2 ∂u<br />

∂f<br />

2 ∂v<br />

+ · + · = 0<br />

∂y<br />

∂u<br />

∂y<br />

∂v<br />

∂y<br />

...(vi)<br />

Now,<br />

b g<br />

a f<br />

∂ f1, f2<br />

∂ uv ,<br />

a f<br />

b g =<br />

∂ uv ,<br />

×<br />

∂ xy ,<br />

=<br />

∂f<br />

∂u<br />

∂f<br />

∂u<br />

∂f<br />

∂v<br />

1 1<br />

∂f<br />

∂v<br />

2 2<br />

∂u<br />

∂x<br />

∂v<br />

∂x<br />

∂f<br />

∂u<br />

∂f<br />

+<br />

∂u<br />

∂ x ∂v<br />

∂v<br />

∂x<br />

∂f<br />

∂u<br />

∂f<br />

+<br />

∂u<br />

∂ x ∂v<br />

∂v<br />

∂x<br />

∂u<br />

∂y<br />

∂v<br />

∂y<br />

∂f<br />

∂u<br />

∂f<br />

∂v<br />

+<br />

∂u<br />

∂ y ∂v<br />

∂y<br />

1 1 1 1<br />

∂f<br />

∂u<br />

∂f<br />

∂v<br />

+<br />

∂u<br />

∂ y ∂v<br />

∂y<br />

2 2 2 2<br />

...(ii)


DIFFERENTIAL CALCULUS-<strong>II</strong> 103<br />

Using (iii), (iv), (v) and (vi) in above, we get<br />

Thus,<br />

⇒<br />

b g<br />

a f<br />

∂ f1, f2<br />

∂ uv ,<br />

a f<br />

b g<br />

∂ uv ,<br />

×<br />

∂ xy ,<br />

a f<br />

b g<br />

∂ uv ,<br />

∂ xy ,<br />

=<br />

− ∂<br />

∂<br />

− ∂<br />

f<br />

x<br />

f<br />

∂x<br />

− ∂f<br />

∂y<br />

1 1<br />

− ∂f<br />

∂y<br />

2 2<br />

b g<br />

b g<br />

bf1, f2g<br />

∂bxy<br />

, g<br />

bf1, f2g<br />

∂auv<br />

, f<br />

∂ f1, f2<br />

= (– 1)2<br />

∂ xy ,<br />

= (– 1)2<br />

Similarly for three variables u, v, w<br />

a f<br />

b g<br />

∂ uvw , ,<br />

∂ xyz , ,<br />

= (– 1)3<br />

∂<br />

∂<br />

b 1 2 3g<br />

∂ f , f , f<br />

∂bxyz<br />

, , g<br />

∂ f , f , f<br />

∂ uvw , ,<br />

b 1 2 3g<br />

a f<br />

= (– 1) 2<br />

and so on.<br />

Example 8. If u3 + v3 = x + y, u2 + v2 = x3 + y3 , show that<br />

and<br />

a f<br />

2 2<br />

∂ f<br />

∂ x<br />

∂ f<br />

∂ x<br />

∂ f<br />

∂ y<br />

1 1<br />

∂ f<br />

∂ y<br />

2 2<br />

∂ uv ,<br />

∂bxy<br />

, g =<br />

y − x<br />

.<br />

2uvau−vf<br />

(U.P.T.U., 2006)<br />

Sol. Let f1 ≡ u3 + v3 f2 − x − y = 0<br />

≡ u2 + v2 − x3 − y3 = 0<br />

Now,<br />

b g<br />

b g =<br />

∂ f1, f2<br />

∂ xy ,<br />

b 1 2g<br />

∂ f , f<br />

∂ uv ,<br />

a f =<br />

∂f<br />

∂x<br />

∂f<br />

∂x<br />

∂f<br />

∂y<br />

1 1<br />

∂f<br />

∂y<br />

2 2<br />

∂f1<br />

∂f1<br />

∂u<br />

∂v<br />

∂f<br />

2 ∂f<br />

2<br />

∂u<br />

∂v<br />

b 1 2g<br />

=<br />

= 3 3<br />

–1 –1<br />

2 2<br />

–3 x –3y<br />

2 2<br />

u v<br />

2u 2v<br />

= 3 (y 2 – x 2 )<br />

= 6 uv (u – v)<br />

Thus,<br />

∂auv<br />

, f<br />

∂bxy<br />

, g =<br />

∂ f , f<br />

∂bxy<br />

, g =<br />

∂bf1,<br />

f2g<br />

∂auv<br />

, f<br />

3<br />

2 2 ey − x j 2 2<br />

( y − x )<br />

=<br />

. Hence Proved.<br />

6uvau– vf<br />

2uv<br />

( u − v)<br />

Example 9. If u, v, w are the roots of the equation in k,<br />

x<br />

a+ k<br />

+<br />

y<br />

b+ k<br />

+<br />

z<br />

c+ k<br />

= 1, prove<br />

that ∂bxyz<br />

, , g au−vfav−wfaw−uf = –<br />

∂ uvw , , a−b b−c c−a a f<br />

a fa fa f .


104 A TEXTBOOK OF ENGINEERING MATHEMATICS—I<br />

x<br />

Sol. We have<br />

a+ k<br />

+<br />

y<br />

b+ k<br />

+<br />

z<br />

c+ k<br />

= 1<br />

or x (b + k) (c + k) + y (a + k) (c + k) + z (a + k) (c + k) = (a + k) (b + k) (c +k)<br />

or k3 + k2 (a + b + c – x – y – z) + k{bc + ca + ab – (b + c) x – (c + a)<br />

y – (a + b)z} + (abc – bcx – cay – abz) = 0<br />

Since its roots are given to be u, v, w, so we have<br />

u + v + w = – (a + b + c – x – y – z)<br />

uv + vw + wu = bc + ca + ab – (b + c) x – (c + a)y – (a + b)z<br />

uvw =– (abc – bcx – cay – abz)<br />

Let f ≡ u + v + w + a + b + c – x – y – z = 0<br />

1<br />

f ≡ uv + vw + wu – bc – ca – ab + (b + c) x + (c + a) y + (a + b)z = 0<br />

2<br />

f ≡ uvw + abc – bcx – cay – abz = 0<br />

3<br />

and<br />

Now,<br />

Thus,<br />

∴<br />

b 1 2 3g<br />

∂ f , f , f<br />

∂ xyz , ,<br />

b g =<br />

b 1 2 3g<br />

∂ f , f , f<br />

∂ uvw , ,<br />

=<br />

a f =<br />

a f<br />

b g<br />

∂ uvw , ,<br />

∂ xyz , ,<br />

b g<br />

a f<br />

∂ xyz , ,<br />

∂ uvw , ,<br />

∂f1<br />

∂f1<br />

∂f1<br />

∂x<br />

∂y<br />

∂z<br />

∂f2<br />

∂f2<br />

∂f2<br />

∂x<br />

∂y<br />

∂z<br />

∂f3<br />

∂f3<br />

∂f3<br />

∂x<br />

∂y<br />

∂z<br />

=<br />

1 0 0<br />

b+ c a−b a−c bc c a −bba−c ∂f<br />

∂u<br />

∂f<br />

∂u<br />

∂f<br />

∂u<br />

a f a f<br />

∂f<br />

∂v<br />

∂f<br />

∂v<br />

∂f<br />

∂v<br />

∂f<br />

∂w<br />

∂f<br />

∂w<br />

∂f<br />

∂w<br />

1 1 1<br />

2 2 2<br />

3 3 3<br />

1 0 0<br />

= v+ w u−v u−w vw w u −vvu−w =(u – v)(u – w)(v – w)<br />

= (–1)3<br />

∂ f , f , f<br />

∂ xyz , ,<br />

∂ f , f , f<br />

∂ uvw , ,<br />

=<br />

a f a f<br />

b 1 2 3g<br />

–1 –1 –1<br />

b+ c c+ a a+ b<br />

– bc – ca – ab<br />

a f a f a f<br />

= (a – b)(a – c)(b – c)<br />

1 1 1<br />

v + w w + u u+ v<br />

vw wu uv<br />

a f a f a f<br />

b g aa−bfaa−cfab−cf = – b 1 2 3g<br />

au−vfau−wfav−wf a f<br />

a − fa − fa − f<br />

aa−bfab−cfaa−cf =– u v v w u w<br />

(C 2 → C 2 – C 1 , C 3 → C 3 – C 1 )<br />

. Hence proved. As JJ′ = 1.<br />

Example 10. If u = 2axy, v = a (x 2 – y 2 ) where x = r cosθ, y = r sin θ, then prove that<br />

a f<br />

a f<br />

∂ uv ,<br />

∂ r,<br />

θ =– 4a2 r 3 .


DIFFERENTIAL CALCULUS-<strong>II</strong> 105<br />

or<br />

and<br />

Sol. We have u =2axy, v = a (x 2 – y 2 )<br />

Now,<br />

Hence<br />

a f<br />

b g =<br />

∂x<br />

∂v<br />

∂y<br />

∂v<br />

=<br />

∂x<br />

∂y<br />

2 2 ay<br />

2ax ax<br />

−2ay<br />

= – 4a2 (x2 + y2 )<br />

auv , f<br />

bxy , g = − 4a2r2 As +<br />

2<br />

=<br />

bxy , g<br />

ar, θ f =<br />

∂x<br />

∂r<br />

∂y<br />

∂x<br />

∂θ<br />

∂y<br />

=<br />

cos θ<br />

sin θ<br />

– r sin θ<br />

r cos θ<br />

= r<br />

∂r<br />

∂θ<br />

auv , f ∂auv<br />

, f ∂bxy<br />

, g<br />

= · ar, θ f ∂bxy<br />

, g ∂ar,<br />

θ f<br />

= (− 4a2r2 ).r = − 4a2r3 . Hence proved.<br />

∂ uv ,<br />

∂ xy ,<br />

∂<br />

∂<br />

∂<br />

∂<br />

∂<br />

∂<br />

∂u<br />

∂u<br />

2 2<br />

x y r<br />

Example 11. If u3 + v3 + w3 = x + y + z, u2 + v2 + w2 = x3 + y3 + z3 , u + v + w = x2 + y2 + z2 ,<br />

then show that<br />

∂auvw<br />

, , f =<br />

∂ xyz , ,<br />

bx−ygby−zgaz−xf ⋅<br />

u−v v−w w−u and<br />

b g<br />

a fa fa f<br />

Sol. Let f 1 ≡ u 3 + v 3 + w 3 – x – y – z = 0<br />

f 2 ≡ u 2 + v 2 + w 2 – x 3 – y 3 – z 3 = 0<br />

f 3 ≡ u + v + w – x 2 – y 2 – z 2 = 0<br />

Now,<br />

⇒<br />

b 1 2 3g<br />

∂ f , f , f<br />

∂ xyz , ,<br />

b g<br />

b 1 2 3g<br />

∂ f , f , f<br />

∂ xyz , ,<br />

b g<br />

∂ f1, f2, f3<br />

∂ uvw , ,<br />

=<br />

=<br />

b g = a f<br />

∂f<br />

∂x<br />

∂f<br />

∂x<br />

∂f<br />

∂x<br />

∂f<br />

∂y<br />

∂f<br />

∂y<br />

∂f<br />

∂y<br />

∂f<br />

∂z<br />

∂f<br />

∂z<br />

∂f<br />

∂z<br />

1 1 1<br />

2 2 2<br />

3 3 3<br />

–1 0 0<br />

2<br />

–3x<br />

3<br />

2 2<br />

x −y 3<br />

2 2<br />

x −z<br />

–2x<br />

2 x−y 2 x−z =<br />

e j e j<br />

b g a f<br />

–1 –1 –1<br />

2<br />

–3 x<br />

2<br />

–3 y<br />

2<br />

–3z<br />

–2 x –2 y –2z<br />

= – 6[(x 2 – y 2 ) (x – z) – (x 2 – z 2 ) (x – y)]<br />

= – 6 (x – y) (x – z) [(x + y) – (x + z)]<br />

= 6 (x – y) (y – z) (z – x)<br />

∂f<br />

∂u<br />

∂f<br />

∂u<br />

∂f<br />

∂u<br />

∂f<br />

∂v<br />

∂f<br />

∂v<br />

∂f<br />

∂v<br />

∂f<br />

∂w<br />

∂f<br />

∂w<br />

∂f<br />

∂w<br />

1 1 1<br />

2 2 2<br />

3 3 3<br />

=<br />

3u 3v 3w<br />

2u 2v 2w<br />

1 1 1<br />

C →C −C , C →C −C<br />

2 2 2<br />

2 2 1 3 3 1


106 A TEXTBOOK OF ENGINEERING MATHEMATICS—I<br />

=<br />

b g b g<br />

a f a f C →C −C , C →C −C<br />

2 2 2 2 2<br />

3u 3 v − u 3 w − u<br />

2u 2 v− u 2 w − u<br />

1 0 0<br />

Expand it with respect to third row, we get<br />

= 6[(v2 – u2 ) (w – u) – (w2 – u2 ) (v – u)]<br />

⇒<br />

∂bf1,<br />

f2, f3g<br />

∂ uvw , ,<br />

= 6 (v – u) (w – u) [(v + u) – (w + u)]<br />

Hence<br />

= – 6 (u – v) (v – w) (w – u)<br />

a f<br />

∂auvw<br />

, , f = (–1)<br />

∂bxyz<br />

, , g<br />

3<br />

∂bf1,<br />

f2, f3g<br />

∂bxyz<br />

, , g = +<br />

∂bf1,<br />

f2, f3g<br />

∂auvw<br />

, , f<br />

6bx−ygby−zgaz−xf<br />

6au−vfav−wfaw−uf<br />

bx−ygby−zgaz−xf =<br />

· Hence proved.<br />

au−vfav−wfaw−uf Example 12. u, v, w are the roots of the equation<br />

(x – a) 3 + (x – b) 3 + (x – c) 3 = 0, find ∂<br />

b g<br />

b g<br />

uvw , ,<br />

.<br />

∂ abc , ,<br />

2 2 1 3 3 1<br />

Sol. We have (x – a) 3 + (x – b) 3 + (x – c) 3 = 0<br />

x3 – a3 – 3xa (x – a) + x3 – b3 – 3xb (x – b) + x3 – c3 – 3xc (x – c) = 0<br />

or 3x3 – 3x2 (a + b + c) + 3x (a2 + b2 + c2 ) – (a3 + b3 + c3 ) = 0<br />

Since u, v, w are the roots of this equation, we have<br />

u + v + w = a + b + c<br />

uv + vw + wu = a2 + b2 + c2 3 3 3<br />

a + b + c<br />

uvw =<br />

3<br />

Let f1 ≡ u + v + w – a – b – c = 0<br />

f2 ≡ uv + vw + wu – a2 – b2 – c2 As α+ β+ γ<br />

αβ + βγ + γα<br />

αβγ<br />

= −ba<br />

= ca<br />

= − da<br />

= 0<br />

and<br />

Now<br />

b 1 2 3g<br />

∂ f , f , f<br />

∂ abc , ,<br />

b g<br />

b 1 2 3g<br />

∂ f , f , f<br />

∂ u, v, w<br />

b g<br />

=<br />

f 3 = uvw –<br />

−1 −1 −1<br />

−2a −2b −2c<br />

−a −b −c<br />

3 3 3<br />

a + b + c<br />

3<br />

=<br />

a f a f F<br />

e j e j<br />

HG ,<br />

−1<br />

0 0<br />

−2a 2 a−b 2 a−c −a a −b a −c<br />

2 2 2 2 2 2 2 2<br />

c → c −c<br />

c → c −c<br />

2 2 1<br />

3 3 1<br />

= – 2{(a – b) (a 2 – c 2 ) – (a – c) (a 2 – b 2 )} = – 2(a – b) (b – c) (c – a)<br />

=<br />

F<br />

a f a f HG ,<br />

1 1 1 1 0 0<br />

v+ w u+ w v+ u = v+ w u−v u−w vw wu uv vw w u −vvu−w I<br />

KJ<br />

c → c −c<br />

c → c −c<br />

2 2 1<br />

3 3 1<br />

I<br />

KJ


DIFFERENTIAL CALCULUS-<strong>II</strong> 107<br />

Thus<br />

a f<br />

a f<br />

∂ uvw , ,<br />

∂ abc , ,<br />

= (u – v) v(u – w) – (u – w) w(u – v)<br />

= – (u – v) (v – w) (w – u)<br />

a f<br />

= −<br />

2.1.4 Functional Dependence<br />

1 3<br />

b 1 2 3g<br />

∂ f , f , f<br />

∂aabc<br />

, , f<br />

∂ f , f , f<br />

∂ uvw , ,<br />

b 1 2 3g<br />

a f<br />

a fa fa f<br />

a fa fa f<br />

−2a−b b−c c−a = −<br />

− u−v v−w w−u a fa fa f<br />

a fa fa f .<br />

a−b b−c c−a = −2<br />

u−v v−w w−u Let u = f (x, y), v = f (x, y) be two functions. Suppose u and v are connected by the relation<br />

1 2<br />

f (u, v) = 0, where f is differentiable. Then u and v are called functionally dependent on one<br />

another (i.e., one function say u is a function of the second function v) if the ∂u<br />

∂u<br />

∂v<br />

, ,<br />

∂x<br />

∂y<br />

∂x<br />

and<br />

∂v<br />

∂y<br />

are not all zero simultaneously.<br />

Necessary and sufficient condition for functional dependence (Jacobian for functional<br />

dependence functions):<br />

Let u and v are functionally dependent then<br />

f (u, v) = 0 ...(i)<br />

or<br />

Differentiate partially equation (i) w.r.t. x and y, we get<br />

∂f<br />

∂u<br />

∂f<br />

· +<br />

∂u<br />

∂x<br />

∂v<br />

∂v<br />

∂x<br />

= 0 ...(ii)<br />

∂f<br />

∂u<br />

∂f<br />

∂v<br />

· + ·<br />

∂u<br />

∂y<br />

∂v<br />

∂y<br />

= 0 ...(iii)<br />

There must be a non-trivial solution for ∂f<br />

∂u<br />

Thus,<br />

∂u<br />

∂x<br />

∂u<br />

∂y<br />

∂u<br />

∂x<br />

∂v<br />

∂x<br />

∂v<br />

∂x<br />

∂v<br />

∂y<br />

∂u<br />

∂y<br />

∂v<br />

∂y<br />

a f<br />

∂f<br />

≠ 0,<br />

∂v<br />

≠ 0 to this system exists.<br />

= 0 For non-trivial solution xAx = 0<br />

= 0 Changing all rows in columns<br />

∂ uv ,<br />

or<br />

= 0<br />

∂bxy<br />

, g<br />

Hence, two functions u and v are “functionally dependent” if their Jacobian is equal to<br />

zero.


108 A TEXTBOOK OF ENGINEERING MATHEMATICS—I<br />

Note: The functions u and v are said to be “functionally independent” if their Jacobian is not equal<br />

to zero i.e., J(u, v) ≠ 0<br />

Similarly for three functionally dependent functions say u, v and w.<br />

J(u, v, w) = ∂auvw<br />

, , f = 0.<br />

∂ xyz , ,<br />

b g<br />

Example 13. Show that the functions u = x + y – z, v = x – y + z, w = x 2 + y 2 + z 2 – 2yz are<br />

not independent of one another. Also find the relation between them.<br />

Sol. Here u = x + y – z, v = x – y + z and w = x 2 + y 2 + z 2 – 2yz<br />

Now,<br />

a f<br />

b g =<br />

∂ uvw , ,<br />

∂ xyz , ,<br />

=<br />

∂u<br />

∂x<br />

∂v<br />

∂x<br />

∂w<br />

∂x<br />

∂u<br />

∂y<br />

∂v<br />

∂y<br />

∂w<br />

∂y<br />

∂u<br />

∂z<br />

∂v<br />

∂z<br />

∂w<br />

∂z<br />

1 1 0<br />

1 –1 0<br />

2x 2y−2z 0<br />

=<br />

1 1 –1<br />

1 –1 1<br />

2x 2y−2z 2z−2y (C 3 → C 3 + C 2 )<br />

= 0. Hence u, v, w are not independent.<br />

Again u + v = x + y – z + x – y + z = 2x<br />

u – v = x + y – z – x + y – z = 2 (y – z)<br />

∴ (u + v) 2 + (u – v) 2 = 4x2 + 4 (y – z) 2<br />

= 4(x2 + y2 + z2 – 2yz) = 4w<br />

⇒ (u + v) 2 + (u – v) 2 = 4w<br />

or 2(u2 + v2 ) = 4w or u2 + v2 = 2w.<br />

Example 14. Find Jacobian of u = sin –1 x + sin –1 y and v = x<br />

relation between u and v.<br />

2<br />

1 − y + y 1 − x . Also find<br />

Sol. We have u = sin –1 x + sin –1 y, v = 2<br />

x 1 y<br />

Now,<br />

= −<br />

xy<br />

a f<br />

b g =<br />

∂ uv ,<br />

∂ xy ,<br />

1−x 1−<br />

y<br />

∂u<br />

∂x<br />

∂v<br />

∂x<br />

+ 1− 1 +<br />

∂u<br />

∂y<br />

∂v<br />

∂y<br />

xy<br />

2 2 2 2<br />

=<br />

1−x 1−<br />

y<br />

1 −y− − + y 1 − x<br />

1<br />

1<br />

1 −x 1 −y<br />

2<br />

2 2<br />

xy<br />

−<br />

xy<br />

1−x1−y 2<br />

2 2<br />

2<br />

+ 1 −x<br />

= 0. Hence u and v are dependent.<br />

{ }<br />

{ − + − }<br />

Next, u = sin –1 x + sin –1 y ⇒ u = sin –1 2 2<br />

x 1− y + y 1−x<br />

⇒ sin u = x<br />

2<br />

1 − y + y<br />

2<br />

1 − x = v<br />

or v = sin u.<br />

−1 −1 −1<br />

2 2<br />

As sin A + sin B = sin A 1 B B 1 A<br />

2


DIFFERENTIAL CALCULUS-<strong>II</strong> 109<br />

or<br />

Example 15. Show that ax2 + 2hxy + by2 and Ax2 + 2Hxy + By2 are independent unless<br />

a<br />

A =<br />

h b<br />

=<br />

H B .<br />

Sol. Let u = ax2 + 2hxy + by2 v = Ax 2 + 2Hxy + By 2<br />

a f<br />

b g<br />

If u and v are not independent, then ∂ uv ,<br />

∂ xy ,<br />

∂u<br />

∂x<br />

∂v<br />

∂x<br />

∂u<br />

∂y<br />

∂v<br />

∂y<br />

=<br />

= 0<br />

2ax+ 2hy 2hx + 2by<br />

2Ax+ 2Hy 2Hx + 2By<br />

⇒ (ax + hy) (Hx + By) – (hx + by) (Ax + Hy) = 0<br />

⇒ (aH – hA) x2 + (aB – bA) xy + (hB – bH) y2 = 0<br />

But variable x and y are independent so the coefficients of x2 and y2 must separately vanish<br />

and therefore, we have<br />

aH – hA = 0 and hB – bH = 0 i.e., a h<br />

=<br />

A H<br />

i.e,<br />

a<br />

A =<br />

h b<br />

= · Hence proved.<br />

H B<br />

Example 16. If u = x2 e –y cos hz, v = x2 e –y sin hz and w = 3x4 e –2y then prove that u, v, w are<br />

functionally dependent. Hence establish the relation between them.<br />

Sol. We have u = x2 e –y cos hz, v = x2 e –y sin hz, w = 3x4 e –2y<br />

a f<br />

b g =<br />

∂ uvw , ,<br />

∂ xyz , ,<br />

∂u ∂x ∂u ∂y ∂u ∂z<br />

∂v ∂x ∂v ∂y ∂v ∂z<br />

∂w ∂x ∂w ∂y ∂w ∂z<br />

=<br />

= 0<br />

and h<br />

H<br />

= b<br />

B<br />

−y 2 −y 2 −y<br />

2xe<br />

cos hz −x<br />

e cos hz x e sin hz<br />

−y 2xe<br />

sin hz<br />

2 −y −x<br />

e sin hz<br />

2 −y<br />

x e coshz<br />

3 −2y 12xe 4 −2y<br />

−6xe<br />

0<br />

= 2x e –y cos hz{0 + 6x6 e –3y cos hz} + x2 e –y cos hz{0 – 12x5 e –3y cos hz}<br />

+ x2 e –y sin hz{–12x5 e –3y sin hz + 12x5 e –3y sin hz}<br />

= 12x7 e –4y cos h2 z – 12x7 e –4y cos h2 z = 0<br />

Thus u, v and w are functionally dependent.<br />

Next, 3u2 – 3v2 = 3(x4 e –2y cos h2 z – x4 e –2y sin h2 z) = 3x4 e –2y (cos h2 z – sin h2 z)<br />

= 3x4 e –2y<br />

⇒ 3u 2 – 3v 2 = w.<br />

1. If x = r cos θ, y = r sin θ find ∂ xy ,<br />

.<br />

∂ r,<br />

θ<br />

2. If y = 1 xx 2 3<br />

x1<br />

EXERCISE 2.1<br />

b g<br />

a f<br />

L<br />

NM<br />

Ans. 1<br />

r<br />

x3x1 , y = , y = 2 3<br />

x2<br />

xx 1 2<br />

show that the Jacobian of y , y , y with respect to x ,<br />

1 2 3 1<br />

x3<br />

x , x is 4. (U.P.T.U., 2004(CO), 2002)<br />

2 3<br />

O<br />

QP


110 A TEXTBOOK OF ENGINEERING MATHEMATICS—I<br />

3. If x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ, show that<br />

b g<br />

b g<br />

∂ xyz , ,<br />

∂ r,<br />

θφ ,<br />

= r 2 sin θ. (U.P.T.U., 2000)<br />

b g<br />

4. If u = x + y + z, uv = y + z, uvw = z, evaluate ∂ xyz , ,<br />

. (U.P.T.U., 2003) Ans. uv ∂auvw<br />

, , f 2<br />

2 2 e j<br />

, find<br />

b g<br />

5. If u = y<br />

2<br />

, v =<br />

2 x<br />

x + y<br />

2x<br />

∂ u, v<br />

.<br />

∂ bx, yg<br />

y<br />

Ans. −<br />

NM 2x<br />

6. If x = a cos h ξ cos η, y = a sin h ξ sin η, show that<br />

b g<br />

∂ xy , 1<br />

=<br />

∂bξη<br />

, g 2 a2 (cos h 2ξ – cos 2η).<br />

7. If u3 + v + w = x + y2 + z2 , u + v3 + w = x2 + y + z2 , u + v + w3 = x2 + y2 + z, then evaluate<br />

a f<br />

b g<br />

∂ uvw , ,<br />

.<br />

∂ xyz , ,<br />

L<br />

M<br />

NM<br />

Ans.<br />

1− 4xy − 4yz − 4zx + 6xyz<br />

2 2 2 2 2 2<br />

27u v w + 2 − 3 u + v + w<br />

L<br />

O<br />

QP<br />

b g O<br />

P<br />

e jP<br />

QP<br />

auvw , , f .<br />

∂bxyz<br />

, , g<br />

L −2( x−y) ( y−z) ( z−x) Ans.<br />

N<br />

M<br />

O<br />

a − − − Q<br />

P<br />

u vfav wfaw uf<br />

8. If u, v, w are the roots of the equation (λ – x) 3 + (λ – y) 3 + (λ – z) 3 = 0 in λ, find ∂<br />

(U.P.T.U., 2001)<br />

9. If u = x + x + x + x , uv = x + x + x , uvw = x + x and uvwt = x , show that<br />

1 2 3 4 2 3 4 3 4 4<br />

∂bx1,<br />

x2, x3, x4g<br />

∂ uvwt , , ,<br />

a f<br />

b g<br />

a f = u 3 v 2 w.<br />

b g<br />

a f<br />

10. Calculate J = ∂ uv ,<br />

∂ xy ,<br />

and J′ = . Verify that JJ′ = 1 given<br />

∂ xy ,<br />

∂ uv ,<br />

(i) u = x + y<br />

2<br />

x<br />

, v = y<br />

2<br />

.<br />

x<br />

L<br />

N<br />

M<br />

Ans. = 2y<br />

J<br />

x J<br />

x<br />

, ′=<br />

2y<br />

2u −2u<br />

(ii) x = eu cos v, y = eu sin v. Ans. J = e , J′ = e .<br />

a f<br />

a f<br />

11. Show that ∂ uv ,<br />

∂ r,<br />

θ = 6r3 sin 2θ given u = x2 – 2y2 , v = 2x2 – y2 and x = r cos θ, y = r sin θ.<br />

12. If X = u2v, Y = uv2 and u = x2 – y2 , v = xy, find ∂aXY<br />

, f<br />

∂bxy<br />

, g . L<br />

2 2 2 2 2 2<br />

2<br />

Ans. 6x<br />

yex + yjex – y<br />

NM<br />

j O<br />

QP<br />

a f<br />

13. Find ∂ uvw , ,<br />

,<br />

∂ xyz , ,<br />

b g if u = x2 , v = sin y, w = e –3z . Ans. –6 3 − z<br />

a f<br />

b g<br />

O<br />

Q<br />

P<br />

e xcos y<br />

14. Find ∂ uvw , ,<br />

, if u = 3x + 2y – z, v = x – y + z, w = x + 2y – z. Ans. –2<br />

∂ xyz , ,<br />

b gb ga f<br />

15. Find J (u, v, w) if u = xyz, v = xy + yz + zx, w = x + y + z. Ans. x− y y−z z−x


DIFFERENTIAL CALCULUS-<strong>II</strong> 111<br />

16. Prove that u, v, w are dependent and find relation between them if u = xe y sin z, v = xe y<br />

cos z, w = x 2 e 2y . Ans. dependent,<br />

b g<br />

2 2<br />

u + v = w<br />

2<br />

3x<br />

2 y+ z x−y 2<br />

17. u = , v =<br />

2by+<br />

z<br />

2 , w = . Ans. dependent, uvw = 1<br />

g 3bx−yg<br />

x<br />

18. If X = x + y + z + u, Y = x + y – z – u, Z = xy – zu and U = x2 + y2 – z2 – u2 , then show<br />

that J = ∂a<br />

XYZU , , , f<br />

= 0 and hence find a relation between X, Y, Z and U.<br />

∂ xyzu , , ,<br />

19. If u =<br />

b g<br />

x<br />

, v =<br />

y− z<br />

y<br />

, w =<br />

z− x<br />

Ans. XY = U +2 Z<br />

z<br />

, then prove that u, v, w are not independent and also<br />

x−y find the relation between them. Ans. uv + vw + wu + 1= 0<br />

20. If u = x + 2y + z, v = x – 2y + 3z, w = 2xy – xz + 4yz – 2z2 , show that they are not<br />

2 2<br />

independent. Find the relation between u, v and w. Ans. 4w<br />

= u − v<br />

x+ y<br />

21. If u =<br />

1 − xy<br />

uv ,<br />

. Are u and v functionally related? If<br />

∂bxy<br />

, g<br />

yes find the relationship.<br />

22. If u = x + y + z, uv = y + z, uvw = z, show that<br />

[Ans. yes, u = tan v]<br />

∂bxyz<br />

, , g<br />

∂ uvw , ,<br />

=<br />

2<br />

uv.<br />

and v = tan –1 x + tan –1 y, find ∂<br />

a f<br />

23. If x 2 + y 2 + u 2 – v 2 = 0 and uv + xy = 0 prove that ∂<br />

a f<br />

auv , f<br />

∂bxy<br />

, g<br />

=<br />

2 2<br />

2 2 .<br />

x − y<br />

u + v<br />

24. Find Jacobian of u, v, w w.r.t. x, y, z when u = yz<br />

x v<br />

zx<br />

y w<br />

xy<br />

, = , = . [Ans. 4]<br />

z<br />

2.2 APPROXIMATION OF ERRORS<br />

Let u = f (x, y) then the total differential of u, denoted by du, is given by<br />

du =<br />

∂f<br />

∂f<br />

dx +<br />

∂x<br />

∂y<br />

dy ...(i)<br />

If δx and δy are increments in x and y respectively then the total increment δu in u<br />

is given by δu = f (x + δx, y + δy) – f (x, y)<br />

or f (x + δx, y + δy) = f (x, y) + δu ...(ii)<br />

But δu ≈ du, δx ≈ dx and δy ≈ dy<br />

∴ From (i) δu ≈<br />

∂f<br />

∂f<br />

δx + δy ...(iii)<br />

∂x<br />

∂y


112 A TEXTBOOK OF ENGINEERING MATHEMATICS—I<br />

Using (iii) in (ii), we get the approximate formula<br />

f (x + δx, y + δy) ≈ f (x, y) + ∂f<br />

∂x<br />

δx +<br />

∂f<br />

∂y<br />

δy ...(iv)<br />

Thus, the approximate value of the function can be obtained by equation (iv). Hence<br />

δx or dx = Absolute error<br />

δx dx<br />

or<br />

x x<br />

= Proportional or Relative error<br />

and 100 × dx<br />

dx<br />

or 100 ×<br />

x x<br />

= Percentage error in x.<br />

Example 1. If f (x, y) = x y<br />

2<br />

Sol. We have f (x, y) = x y<br />

2<br />

∴<br />

∂f<br />

∂x<br />

1<br />

10 , compute the value of f when x = 1.99 and y = 3.01.<br />

(U.P.T.U., 2007)<br />

1<br />

10<br />

1<br />

10<br />

= 2xy<br />

, ∂f<br />

1 2<br />

= x y<br />

∂y<br />

10<br />

−<br />

x+ δx=2+<br />

–0.01 199 .<br />

Let x = 2, δx = – 0.01 As<br />

y+ δy=<br />

1+ 201 . = 301 .<br />

y = 1, δy = 2.01<br />

Now, f (x + δx, y + δy) = f (x, y) + ∂f<br />

∂x<br />

δx +<br />

9<br />

10<br />

∂f<br />

∂y<br />

δy<br />

1<br />

⇒ f{2 + (– 0.01), 1 + 2.01} = f (2, 1) + 2× 2af 1 10 × (– 0.01) + 1<br />

10 (2)2 . 1<br />

1<br />

9<br />

af 10<br />

−<br />

a f<br />

a f =<br />

× (2.01)<br />

⇒ f (1.99, 3.01) ≈ 22 × 110<br />

+ (– 0.04) + 0.804<br />

≈ 4 – 0.04 + 0.804 = 4.764.<br />

Example 2. The diameter and height of a right circular cylinder are measured to be 5 and<br />

8 cm. respectively. If each of these dimensions may be in error by ± 0.1 cm, find the relative<br />

percentage error in volume of the cylinder.<br />

Sol. Let diameter of cylinder = x cm.<br />

height of cylinder = y cm.<br />

then V =<br />

πx y<br />

2<br />

(radius =<br />

4<br />

x<br />

2 )<br />

∴<br />

∂V<br />

∂x<br />

=<br />

πxy ∂V<br />

πx2<br />

, =<br />

2 ∂y<br />

4<br />

⇒ dV = ∂V<br />

∂x<br />

∂V<br />

dx +<br />

∂y<br />

dy


DIFFERENTIAL CALCULUS-<strong>II</strong> 113<br />

⇒ dV = 1<br />

1<br />

π xy. dx +<br />

2 4 πx2 . dy<br />

or<br />

dV<br />

V =<br />

1<br />

πxy.<br />

dx<br />

2<br />

2<br />

πx<br />

y<br />

+<br />

1 2<br />

πxdy<br />

4<br />

2 = 2.<br />

πx<br />

y<br />

4 4<br />

dx dy<br />

+<br />

x y<br />

or 100 × dV<br />

= 2 F dxI<br />

100 ×<br />

V HG KJ + 100 ×<br />

x<br />

dy<br />

y<br />

Given x = 5 cm., y = 8 cm. and error dx = dy = ± 0.1. So 100 × dV<br />

V = ± 100 2 01 F . 01 .<br />

× + HG 5 8<br />

= ± 5.25.<br />

Thus, the percentage error in volume = ± 5.25.<br />

Example 3. A balloon is in the form of right circular cylinder of radius 1.5 m and length<br />

4 m and is surmounted by hemispherical ends. If the radius is increased by 0.01 m and the length<br />

by 0.05 m, find the percentage change in the volume of the balloon. [U.P.T.U., 2005 (Comp.), 2002]<br />

Sol. Let radius = r = 1.5 m, δr = 0.01 m<br />

height = h = 4 m, δh = 0.05 m<br />

1.5<br />

volume (V) =πr 1.5 m<br />

2 h + 2<br />

3 πr3 + 2<br />

3 πr3 = πr2h + 4<br />

3 πr3<br />

or<br />

∴<br />

∂V<br />

∂r<br />

=2πrh + 4πr2 , ∂V<br />

= πr2<br />

∂h<br />

dV = ∂V<br />

∂V<br />

dr +<br />

∂r<br />

∂h<br />

dh = (2πrh + 4πr2 ) dr + πr2dh dV<br />

2<br />

2πrh a + 2rf<br />

πr<br />

= dr +<br />

V 2F<br />

4rI<br />

2F<br />

4rI<br />

πr<br />

h+<br />

πr<br />

h+<br />

3 H 3 K dh<br />

= 3 2 2<br />

=<br />

= 1<br />

9<br />

H K<br />

ah rf<br />

dr + a3 + 4f<br />

× +<br />

r h r<br />

3<br />

15 . 12+ 6<br />

3<br />

3h+ 4r<br />

a f<br />

dh =<br />

3<br />

r 3h+ 4r<br />

a f<br />

a f [2(4 + 3)(0.01) + 1.5 (0.05)] δ<br />

0215 .<br />

[0.14 + 0.075] =<br />

9<br />

⇒ 100 × dV<br />

V<br />

0215 .<br />

= 100 × = 2.389%<br />

9<br />

Thus, change in the volume = 2.389%.<br />

4 m<br />

1.5<br />

Fig. 2.1<br />

[2(h + 2r) dr +rdh]<br />

r = dr<br />

δh=<br />

dh<br />

I K J


114 A TEXTBOOK OF ENGINEERING MATHEMATICS—I<br />

Example 4. Calculate the percentage increase in the pressure p corresponding to a reduction<br />

of 1<br />

2 % in the volume V, if the p and V are related by pV1.4 = C, where C is a constant.<br />

Sol. We have pV1.4 Taking log of equation (i)<br />

= C ...(i)<br />

log p + 1.4 log V =<br />

Differentiating<br />

log C<br />

1<br />

p<br />

14<br />

· dp + .<br />

V<br />

or 100 × dp<br />

p<br />

· dV = 0 ⇒ dp<br />

p<br />

F<br />

HG<br />

= −1.4 100 ×<br />

= −1.4 × −1<br />

2<br />

= 0.7<br />

Hence increase in the pressure p = 0.7%.<br />

= – 1.4 dV<br />

V<br />

F I<br />

HG KJ dVI<br />

KJ V<br />

dV<br />

V = = 1 1<br />

%<br />

2 2× 100<br />

Example 5. In estimating the cost of a pile of bricks measured as 6′ × 50′ × 4′, the tape is<br />

stretched 1% beyond the standard length. If the count is 12 bricks to one ft3 , and bricks cost Rs.<br />

100 per 1000, find the approximate error in the cost. (U.P.T.U., 2004)<br />

Sol. Let length (l) = x ...(i)<br />

breadth (b) = y<br />

height (h) = z<br />

∴ V = lbh = xyz<br />

or log V = log x + log y + log z<br />

On differentiating<br />

1<br />

V<br />

or 100 × dV<br />

V<br />

⇒ 100 × dV<br />

V<br />

dV = 1<br />

x<br />

dx + 1<br />

y<br />

= 100 × dx<br />

x<br />

= 1 + 1 + 1 = 3<br />

y + 1<br />

z dz<br />

+ 100 × dy<br />

y<br />

+ 100 × dz<br />

z<br />

a f = 36 cube fit<br />

dV =<br />

3V<br />

3 6× 50× 4<br />

=<br />

100 100<br />

∴ Number of bricks in dV = 36 × 12 = 432<br />

Hence, the error in cost = 432 × .100<br />

= Rs. 43.20.<br />

1000<br />

Example 6. The angles of a triangle are calculated from the sides a, b, c of small changes δa,<br />

δb, δc are made in the sides, show that approximately δA = a<br />

[δa – δb cos C – δc. cos B]<br />

2∆<br />

where ∆ is the area of the triangle and A, B, C are the angles opposite to a, b, c respectively. Verify<br />

that δA + δB + δC = 0. (U.P.T.U., 2001)


DIFFERENTIAL CALCULUS-<strong>II</strong> 115<br />

Sol. From trigonometry, we have<br />

2 2 2<br />

cos A =<br />

b + c −a<br />

2bc<br />

⇒ b2 + c2 – a2 = 2bc cos A<br />

⇒ a2 = b2 + c2 – 2bc cos A<br />

On differentiating, we get<br />

a · da = b · db + c · dc – db · c cos A – b · dc cos A + bc sin A · dA<br />

⇒ bc sin A · dA = a · da – b · db – c · dc + db · c cos A + b · dc cos A<br />

⇒ 2∆ · dA = a · da – (b – c cos A) · db – (c – b cos A) dc<br />

⇒ 2 ∆ · dA = a da – (a cos C + c cos A – c cos A) db – (a cos B + b cos A<br />

– b cos A) dc<br />

1<br />

As ∆= bc sin A<br />

2<br />

a = bcos C+ ccos B<br />

or 2 ∆ · dA = a da – db.a cos C – dc.a cos B<br />

⇒ δA =<br />

a<br />

[δa – δb. cos C – δc. cos B]<br />

2∆<br />

Hence proved.<br />

δa As δA<br />

≈ dA<br />

≈ da, δb<br />

≈<br />

δc<br />

≈ dc<br />

db<br />

Similarly, δB =<br />

b<br />

[δb – δc. cos A – δa. cos C]<br />

2∆<br />

and δC =<br />

c<br />

[δc – δa. cos B – δb. cos A]<br />

2∆<br />

Adding δA, δB and δC, we get<br />

δA + δB + δC =<br />

1<br />

[(a – b cos C – c cos B) δa + (b – a cos C – c cos A) δb<br />

2∆<br />

+ (c – a cos B – b cos A) δc]<br />

=<br />

1<br />

[(a – a) δa + (b – b) δb + (c – c) δ c]<br />

2∆<br />

⇒ δA + δB + δC = 0. Verified.<br />

Example 7. Show that the relative error in c due to a given error in θ is minimum when<br />

θ = 45° if c = k tan θ.<br />

Sol. We have<br />

On differentiating, we get<br />

c = k tanθ ...(i)<br />

dc = k sec2 θ dθ ...(ii)<br />

From (i) and (ii), we get<br />

2 dc sec θd θ 2dθ<br />

= =<br />

c tan θ sin 2θ<br />

Thus, dc<br />

will be minimum if sin2θ is maximum<br />

c<br />

Since sin θ lies<br />

i.e., sin 2θ = 1 = sin 90<br />

between – 1 and 1<br />

⇒ 2θ = 90 ⇒ θ = 45°. Hence proved.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!