05.04.2013 Views

Energy Harvesting for Mobile Computing Joe Paradiso Responsive ...

Energy Harvesting for Mobile Computing Joe Paradiso Responsive ...

Energy Harvesting for Mobile Computing Joe Paradiso Responsive ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Energy</strong> <strong>Harvesting</strong> <strong>for</strong> <strong>Mobile</strong> <strong>Computing</strong><br />

<strong>Joe</strong> <strong>Paradiso</strong><br />

<strong>Responsive</strong> Environments Group, MIT Media Lab<br />

http://www.media.mit.edu/resenv DCU 6/05


Source Material…<br />

IEEE Pervasive <strong>Computing</strong> Magazine, February 2005<br />

Chapter 45 in “Low Power Electronics Design,”<br />

Christian Piguet, editor – CRC Press, Fall 2004<br />

Systems <strong>for</strong> Human-Powered <strong>Mobile</strong> <strong>Computing</strong> J.A. <strong>Paradiso</strong><br />

To appear in Proc. IEEE Design Automation Conference (DAC), July 2006


Smart Sensors and HCI<br />

• Electronics are cheaper, smaller, more capable, lower power...<br />

– Intelligence, sensing, communication, processing…<br />

• Move off desktop into "things” & environments<br />

• Entirely different “input devices” & modalities enabled<br />

Shift toward fine-grained, distributed interfaces<br />

• Ubiquitous <strong>Computing</strong> (PARC/Weiser)<br />

• Things That Think (ML)<br />

• Disappearing Computer (EU)<br />

• Invisible <strong>Computing</strong> (Microsoft)<br />

• Pervasive <strong>Computing</strong> (IBM)<br />

Sensing, communications, power management, context (AI) are key


Batteries<br />

Batteries improve relatively slowly<br />

• Can exploit other chemical reactions<br />

–Fuel Cells<br />

–Microengines<br />

• Clever power management and<br />

circuit design can reduce power<br />

requirements<br />

– Low voltage, clock scaling, large<br />

feature size, adiabatic computing,<br />

analog processing, keep everything off<br />

<strong>Energy</strong> harvesting may become practical…


4/04<br />

©<br />

MIT-ML<br />

iSun – 2 Watts<br />

Solar Cells<br />

Media Lab’s Locust Position Beacon<br />

• 10-20% efficiency <strong>for</strong> commercial modules<br />

• Common polycrystalline Si modules are ~16-17% (mass produced,<br />

cheap process, a few 1$'s a Watt total)<br />

• Monocrystalline Si are a little closer to 20%.<br />

• IC grade Si and fab processes, ~24% is possible but expensive.<br />

• Stacked multi-junction cells, and cells using other materials and<br />

structures get over 30% but are very expensive or still in the lab<br />

– 10-100 mW/cm 2 in bright sun<br />

– 10-100 μW/cm 2 in an office<br />

An option if the light and area are there<br />

JAP<br />

Franhofer ISE Freiberg<br />

1 Watt under halogen<br />

20% eff.<br />

5


The Hat is an apt location…<br />

Mainly Chillers


Ambient RF<br />

• Power density ~ E2 /Z0 – (Field strength) 2 over 377 Ohms<br />

– Would like to see fields of 10 V/m at antenna<br />

• 26 μW/cm2 Flashing Antenna Top<br />

– Not seen in typical urban environments<br />

• Except close to cell phone transmitters<br />

• AM Crystal radios yield under 1 mW (typically 20 μW) w. large<br />

antenna and good ground.<br />

Need large collection area and/or need to be very close to transmitter<br />

Mickle et al (US Patent 6,856,291) - U. Pittsburgh - highly resonant regenerative<br />

antenna with an effective cross section that is much larger than its geometric area<br />

(perhaps by a factor of 1000 or more)


Bill Brown<br />

Microwave-powered helicopter, 1964<br />

Beaming Power<br />

Wireless humidity sensor<br />

Martinez, 2002<br />

• Beaming power has a long history (Tesla, etc)<br />

• Rectannas can approach 80-90+% efficiency<br />

• Low power apps common in everyday environments<br />

– RFID (chips use 1 to 100 μW)<br />

• RF-powered sensors coming off the horizon<br />

– Passive LC and SAW devices, sensor chips<br />

– Wireless tire pressure and tire friction sensors<br />

– Implantable sensors <strong>for</strong> monitoring in vivo blood pressure<br />

RFID Tags


4/04<br />

©<br />

MIT-ML<br />

Human <strong>Energy</strong> Expenditure<br />

People dissipate<br />

between 100-<br />

1000 Watts<br />

Perhaps one can<br />

steal Watt or<br />

two?<br />

JAP<br />

9


Where to Tap the Power<br />

Caution: Thad’s<br />

numbers tend to be<br />

optimistic!<br />

Watt-level available<br />

Thad Starner, Human-Powered Wearable <strong>Computing</strong>, IBM Systems Journal 35, pp. 618-629 (1996).


In Vivo Fuel Cells Adam Heller, UT Austin<br />

• Extrapolating from electrochemical<br />

detection of glucose (TheraSense)<br />

– Adapt techniques <strong>for</strong> more power<br />

– Make a sugar-burning bio fuel cell<br />

• Composite electrodes and conductive gels<br />

– Biologically transparent system<br />

– Build into a vascular stent<br />

– Generate electricity from glucose and O2 in<br />

blood<br />

• 1 cm long x 4 mm wide<br />

• Can (theoretically) produce up to 1 mW<br />

– 1-3 weeks of power from equal-size battery<br />

• 1-2 μW <strong>for</strong> 1 week at a 0.5 V demonstrated in<br />

2002 (in a grape)<br />

• US Patent 6,531,239<br />

• In-vitro low power or low duty-cycle<br />

medical systems<br />

– Low-bandwidth biosensors<br />

– Valve <strong>for</strong> the incontinent


4/04<br />

©<br />

MIT-ML<br />

Thermal Powered Systems<br />

• Carnot Efficiency <strong>for</strong> human body at 20° C<br />

– 5.5% (drops to 3.2% at 27° C)<br />

• Today’s thermopiles have


Seiko SII Thermic ® Heat-Powered Watch<br />

Booster IC<br />

Thermal energy watch<br />

Watch movement<br />

Battery<br />

arm<br />

2.14mm<br />

Heat flow<br />

1.7mm 2.14mm<br />

2.36mm<br />

Thermoelectric module<br />

Adiabatic<br />

case<br />

1.27mm<br />

Thermoelectric unit<br />

Thermoelectric (Photo)<br />

• Uses 10 Thermoelectric modules and a booster IC<br />

• Runs off body heat<br />

Low T, limited surface area, low efficiency -> Microwatts...


Thermo Life Generator<br />

• Thermo Life <strong>Energy</strong> Corporation<br />

– Applied Digital Solutions (Dr.Ingo Stark)<br />

– Dense array of Bi 2 Te 3 thermopiles deposited onto thin film<br />

• Most efficient at temperatures of 0 to 100 degrees Celsius<br />

• 10 μA or more @ 3 volts (6 V OC) when in contact with<br />

the body (5°C T)<br />

• 60 μW/cm 2<br />

• Thin film battery charging<br />

– Front Edge’s Nano<strong>Energy</strong><br />

• Medical monitor powering, biosensors


The ETA Autoquartz Self-Winding Electric Watch<br />

The Swatch Group (SMH)


4/04<br />

©<br />

MIT-ML<br />

The ETA Autoquartz Mechanism<br />

Proof Mass winds spring, which pulses generator<br />

JAP<br />

16


The Autoquartz Generator Per<strong>for</strong>mance<br />

Generator always run at<br />

optimum rate (10-15K RPM)<br />

Power stored on spring until<br />

threshold is exceeded<br />

Generator pulsed <strong>for</strong> 50 msec<br />

Yields 6 mA at >16 Volts<br />

~100 mW peak power!<br />

Current integrated onto<br />

capacitor


KINETIC outline<br />

diagram<br />

Gear train<br />

Rotor<br />

Stator<br />

Seiko AGS System<br />

Oscillating weight<br />

Coil<br />

Charge control<br />

circuit<br />

Secondary<br />

power supply<br />

Drive circuit<br />

• Proof mass oscillation directly cranks generator<br />

– Little intervening mechanics<br />

– Charge accumulated on capacitor<br />

• Power Output:<br />

–5 μW average when the watch is worn<br />

– 1 mW or more when the watch is <strong>for</strong>cibly shaken<br />

Stator<br />

Oblique view<br />

Rotor<br />

Coil<br />

Oscillating<br />

weight<br />

Oscillating<br />

weight gear<br />

Transmission gear


4/04<br />

©<br />

MIT-ML<br />

Seiko Experimental AGS <strong>for</strong> Marine Mammals<br />

• Uses watch AGS components<br />

– Power Output is 5 to 10 mW<br />

JAP<br />

19


Magnetic and Electrostatic Microgenerators<br />

• Many, many devices in current literature<br />

– Chandrakasan, Roundy/Wright, Mitcheson, El-Hamadi, James,Yates, Li,<br />

Taishiro, Ching, Miyazaki, Goerge…<br />

• Powers range 10’s-100’s of μW<br />

• Most employ spring return<br />

– Mechanically resonant, 10’s of Hz – several kHz<br />

• Others use bistable action return w/o spring<br />

– Mitcheson 2004 – broadband<br />

• Magnetic generators can approach 1 mW<br />

– 100-500 Hz, 25-200 μm motion, ~1 cm3 (court. Mitchenson)<br />

• Electrostatic generators tend to produce 100 μW<br />

– Simple to integrate onto MEMS<br />

– Need bootstrap supply<br />

– Constant charge (sliding) and constant voltage (pressing) modes<br />

36 mW @ 12.6 kHz<br />

Beeby et al<br />

Southampton<br />

6 μW @ 6 Hz<br />

Miao et al<br />

Imperial College


MEMs Driven Condensor Power Supply<br />

84<br />

mg<br />

• MEMs motor in reverse…<br />

– Special power-control electronics designed & fabbed<br />

–8 μW indicated @ 2.5 kHz, 500 μm motion<br />

– Could tile <strong>for</strong> more power<br />

– Provides power <strong>for</strong> their sub μW “picoJoule DSP”<br />

– Vision of power, sensing, and processing on one chip<br />

Anantha Chandrakasan, Jeff Lang - MIT MTL


Inertial Microgenerators (piezo)<br />

• Ho, 1961<br />

– Claimed 150 μW when<br />

coupled to 80 Hz heartbeats<br />

• Roundy & Wright, 2003<br />

– PZT bimorph<br />

– 100 μW when shaken at<br />

resonance<br />

– Building MEMs structure w.<br />

80 μW per cm 3 (@ 800 Hz)<br />

– Berkeley group also making<br />

tunable cantilevers


4/04<br />

©<br />

MIT-ML<br />

Microgenerator Per<strong>for</strong>mance<br />

1 cm 3 devices<br />

•For human body motion (Hz-level excitation)<br />

–Few μW/cm 3<br />

•For machine excitation (kHz-level excitation)<br />

–Hundreds of μW/cm 3<br />

Tends to go as w 3 and y 0 2<br />

Personal comm, Paul Mitcheson, Imperial College UK<br />

JAP<br />

23


4/04<br />

©<br />

MIT-ML<br />

Shake-Driven Flashlights<br />

Weighs150 grams and produces 200 mW with a steady shake at its<br />

mechanical resonance (roughly 3.3 Hz) - 2 mW/cm 3<br />

Dual microgenerator in AAA <strong>for</strong>m factor - 28 μW @ 70 Hz<br />

Yuen et al, CU Hong Kong, 2005 (note that AAA battery would last 15 years)<br />

JAP<br />

24


4/04<br />

©<br />

MIT-ML<br />

Commercial Microgenerators<br />

The PMG7 is designed to resonate at mains<br />

frequency (50 or 60Hz) with a bandwidth of<br />

0.2Hz giving excellent per<strong>for</strong>mance on any<br />

AC synchronous motor powered equipment.<br />

Output is from 0.1mW to several mW power<br />

depending on the level of vibration (eg up to<br />

5mW at 100mg or 400μW at 25mg).<br />

FerroSolutions, Cambridge MA Perpetuum, Southampton UK<br />

Both Magnetic<br />

JAP<br />

25


4/04<br />

©<br />

MIT-ML<br />

Power Backpacks<br />

Larry Rome, University of Pennsylvania, 2005<br />

5 cm up-down hip movement from walking reacting<br />

with 20-38 kg inertial load generated up to 7 Watts<br />

JAP<br />

26


4/04<br />

©<br />

MIT-ML<br />

Reaction Force (% of body weight)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Heel Strike<br />

Heel Strike Toe Off<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

Time (seconds)<br />

• Force at heel strike and toe off exceeds 100%<br />

– Heel can compress by 1 cm – Watts possible?<br />

100%<br />

Body Weight<br />

JAP<br />

27


Power <strong>Harvesting</strong> Insoles - 1998<br />

PVDF Stave<br />

Molded into sole<br />

<strong>Energy</strong> from bend<br />

P peak 10 mW<br />

1 mW<br />

“Thunder” PZT<br />

Clamshell Unimorph<br />

Under insole<br />

Pressed by heel<br />

P peak 50 mW<br />

10 mW<br />

Raw Power<br />

circa 1% efficient<br />

Unnoticable<br />

<strong>Responsive</strong> Environments Group<br />

MIT Media Lab<br />

1998 IEEE Wearable <strong>Computing</strong> Conference


Application: Batteryless RF Tag<br />

• Use Piezo-shoes to charge up capacitor after several steps<br />

• When voltage surpasses 14 volts, activate 5 V regulator<br />

– Send 12-bit ID 6-7 times with 310 MHz ASK transmitter<br />

• After 3-6 steps, we provide 3 mA <strong>for</strong> 0.5 sec<br />

– Capacitor back in charge mode after dropping below output<br />

<strong>Responsive</strong> Environments Group - MIT Media Lab


4/04<br />

©<br />

MIT-ML<br />

Rotary Magnetic Generator Retrofit<br />

<strong>Responsive</strong> Environments Group - MIT Media Lab - 1998<br />

• Attaches lever-driven flywheel/generator to shoe<br />

- 3 cm deflection, bulky<br />

- Suboptimal (e.g., better integration, hydraulics...)<br />

• Produces a quarter watt average ( 1 W peak), but very obtrusive!<br />

JAP<br />

30


Better Generator Integration<br />

Jeff Hayashida’s BS thesis - 1999<br />

• Mechanical generators entirely in insole<br />

• Produces about 60 mW average power<br />

• Use of a spring to store energy between footfalls can bring a Watt<br />

• Mechanically complex and fragile…


Mechanical Boot Generators…<br />

Lakic, 1989<br />

Lakic, 1986<br />

Barbieri, 1925<br />

Mainly foot warming<br />

applications<br />

Landry, 2001<br />

Chin, 1996


Trevor Baylis’<br />

Electric Shoe<br />

Company<br />

• Piezoelectric “crystal” struck with each footfall<br />

• Claims to generate 100-150 mW<br />

• Used in walk across Namibian Desert, summer 2000<br />

– Cellphone battery partially (e.g.,


4/04<br />

©<br />

MIT-ML<br />

Passive Hydraulic Chopping to Excite PZT at Resonance<br />

• Antaki, et al., 1995<br />

– Passive hydraulic resonant excitation of<br />

piezoceramic stack during heel compression<br />

– Big, kludgy shoe<br />

• Developed to power artifical organs<br />

• Developed order of 0.2 – 0.7 Watt average power<br />

• 2 Watts from simulated “jogging”<br />

JAP<br />

34


4/04<br />

©<br />

MIT-ML<br />

Active Hydraulic Chopping at Heel Strike<br />

• Heel compresses Hydraulic bladder by 8 mm<br />

– μ-hydraulic transducers hammer PZT stack<br />

– Many charge-pump cycles per footstep<br />

– Piezo driven at resonance frequency (20 kHz)<br />

• PZT generators occupy 1-cm cube<br />

– Each produces a watt<br />

• 40% efficiency<br />

– 3 per shoe gives 3 watts total<br />

• Components Tested<br />

– Fully integrated?<br />

8 mm<br />

JAP<br />

35


4/04<br />

©<br />

MIT-ML<br />

Dielectric Elastomers under the heel<br />

2-4 mm<br />

• Electrostatic generator with silicone rubber or flex<br />

acrylic elastomer between the plates<br />

– Placed under heel<br />

– 2-4 mm of squeeze gives 50-100% area strain<br />

– 4 kV across them!<br />

– Saw 0.8 Watt per shoe (2 Hz pace, 3 mm deflection)<br />

– Estimate that 1 Watt is possible with more deflection<br />

Ron Pelrine, Roy Kornbluh - SRI International<br />

JAP<br />

36


150 g, 200 mW, 2 Hz<br />

Commercial Active Power Generation<br />

Cranking and Shaking<br />

• 60 turns (1 min) stores 0.6 Watt-hr<br />

• 40% efficient<br />

• Today’s laptop supply roughly 30-50 W-hr<br />

• 1 hour of more of winding (w. heavy spring!)<br />

Freeplay (Baygen)<br />

• Innovative Technologies Sidewinder<br />

• 80 g, 2 mins cranking gives >6 mins cellphone talk


4/04<br />

©<br />

MIT-ML<br />

Windup Flashlights in History<br />

VanDeventer, 1916<br />

Mining applications…<br />

Luzy, 1922<br />

JAP<br />

38


4/04<br />

©<br />

MIT-ML<br />

Nissho Engineering (AladdinPower)<br />

Tug Power<br />

Pull ring to spin flywheel & generator<br />

80 g, 2.5 W<br />

AladdinPower<br />

Squeeze<br />

1.6 W, 1.5 Hz<br />

Step Charger<br />

6 Watts<br />

JAP<br />

39


$100 Laptop (OLPC Foundation)<br />

<strong>Computing</strong> <strong>for</strong> every child on the planet<br />

Power & networking are main technical challenges<br />

New display, efficient electronics and software aim at ~1 Watt<br />

Cheap environmental power needed as infrastructure is unreliable<br />

Originally crank, now pedal doubling as power x<strong>for</strong>mer or dual pulchain, etc.


4/04<br />

©<br />

MIT-ML<br />

The Electric Bolo<br />

• Saul Griffith (MIT Media Lab)<br />

• 100-200 g proof mass, .3-.5 meter radius, 1-2 Hz rate<br />

• Claims approx. 3-5 Watts...<br />

JAP<br />

41


Johnson, et al., Transmitter Circuit,<br />

US Patent No. 3,796,958, March 12, 1974.<br />

Zenith ‘Space Command”<br />

Self-Powered Buttons<br />

Crisan, A. (Compaq), Typing Power,<br />

US Patent No. 5,911,529, June 15, 1999<br />

Pipi "Kodomo No Omocha" pager toy


4/04<br />

©<br />

MIT-ML<br />

Voltage (V)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-5.6<br />

Self-powered buttons<br />

16.4<br />

Strike Occurrence<br />

Tank Capacitor Voltage<br />

38.4<br />

60.4<br />

82.4<br />

104<br />

126<br />

3 Volt Regulator Output<br />

148<br />

170<br />

192<br />

214<br />

• ~0.5 mJ at 3 Volts per push<br />

• Sends 12-bit RFID 12 x throughout floor (50 ft.)<br />

• No need <strong>for</strong> battery, wire… Mark Feldmeier<br />

236<br />

Time (msec)<br />

Serial ID Code<br />

258<br />

280<br />

302<br />

324<br />

346<br />

368<br />

Spring 2001<br />

390<br />

412<br />

434<br />

JAP<br />

43


4/04<br />

©<br />

MIT-ML<br />

Cleaner Prototypes<br />

CES Show - 2004 EnOcean device<br />

uses bistable PZT<br />

bimorph cantilever<br />

JAP<br />

44


4/04<br />

©<br />

MIT-ML<br />

Power <strong>Harvesting</strong> – Wireless, Batteryless Window Switch<br />

with ALPS Automotive<br />

• Command window up-stop-down<br />

• No battery, no wire<br />

– Power harvested from single push<br />

– Eliminate need <strong>for</strong> complex wire harness<br />

Mark Feldmeier<br />

JAP<br />

45


AES Roadmap<br />


Mobility in Sensor Networks<br />

• Forefront research where sensor nets meet robotics<br />

and control<br />

• Sensor clusters move to places to optimally:<br />

– Measure dynamic phenomena<br />

– Position relays to repair or patch broken network<br />

– Dump in<strong>for</strong>mation at access points (portals)<br />

– Get recovered or recharged<br />

What does power harvesting<br />

mean in a mobile system?<br />

<strong>Energy</strong> cost of moving atoms is much<br />

higher than moving bits…


Parasitic Mobility in Sensor Networks<br />

Implications<br />

- Sensor clusters hitch rides to places<br />

where they need to be to optimally:<br />

- Measure relevant phenomena<br />

- Relay in<strong>for</strong>mation peer-peer<br />

- Dump in<strong>for</strong>mation into portals<br />

- Get recovered or recharged<br />

- Rapid diffusion of sensors across an environment<br />

- System self-organizes to auto-dispatch nodes to desired regions<br />

Innovations and Architecture<br />

- Interpretation of <strong>Energy</strong> <strong>Harvesting</strong> in mobile networks<br />

- Two flavors:<br />

- The Tick (e.g., jumps onto a car, attaches magnetically, then disengages)<br />

- The Bur (e.g., sticks to passing object, then shakes off)<br />

- Contains GPS, RF, basic sensor suite<br />

Phoresis<br />

<strong>Paradiso</strong> & Laibowitz


4/04<br />

©<br />

MIT-ML<br />

Parasitic Mobility Research (ParaMoR)<br />

• Paramor Hardware – small nodes<br />

with sensor suite (light, microphone,<br />

inertial, proximity, temperature,<br />

heat), GPS, RF communication,<br />

rechargeable power source, and<br />

minimal actuation <strong>for</strong><br />

attachment/detachment<br />

• Active nodes (ticks)<br />

• Passive nodes (burs)<br />

• Value-added nodes (pens)<br />

• ParaSim – Software<br />

simulator to study behavior<br />

and evaluate control<br />

algorithms <strong>for</strong> parasitically<br />

mobile sensor nodes<br />

Active Node<br />

JAP<br />

Passive Node<br />

Mat Laibowitz<br />

49


4/04<br />

©<br />

MIT-ML<br />

Symbiotic Node Tests<br />

Accls<br />

Light<br />

Zone #<br />

Node 7<br />

Only<br />

JAP<br />

50


4/04<br />

©<br />

MIT-ML<br />

Power <strong>Harvesting</strong> Summary<br />

JAP<br />

51


4/04<br />

©<br />

MIT-ML<br />

Summary<br />

• Environmental energy μw-W<br />

• Biofuel cells μw<br />

• Thermal conversion μw<br />

• Inertial energy harvesting<br />

• Heel strike generators mW-W<br />

• Deliberately Powered Systems<br />

μw - mW<br />

W<br />

JAP<br />

Human-Powered Systems<br />

52


4/04<br />

©<br />

MIT-ML<br />

Humanity’s Destiny?<br />

JAP<br />

53


4/04<br />

©<br />

MIT-ML<br />

Resting Humans are dim bulbs (100 W)<br />

They will use us in more creative ways...<br />

JAP<br />

54

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!