04.04.2013 Views

California Precast Bridge Design In the Past - Precast / Prestressed ...

California Precast Bridge Design In the Past - Precast / Prestressed ...

California Precast Bridge Design In the Past - Precast / Prestressed ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>California</strong> Department of Transportation<br />

Caltrans <strong>Precast</strong> <strong>Bridge</strong> <strong>Design</strong><br />

Overview<br />

Jim Ma, P.E.<br />

October 15, 2008<br />

15 th Annual CALTRANS/PCMAC <strong>Bridge</strong> Seminar<br />

Sacramento, <strong>California</strong>


<strong>California</strong> Department of Transportation<br />

Presentation Outlines<br />

1. <strong>California</strong> <strong>Precast</strong> <strong>Bridge</strong> <strong>Design</strong><br />

<strong>Past</strong><br />

Present<br />

Future<br />

2. <strong>Precast</strong> <strong>Bridge</strong> <strong>Design</strong> Issues<br />

<strong>Precast</strong> Girder Connection <strong>Design</strong> and Details<br />

<strong>Precast</strong> Girder End Stress Control and Girder Camber<br />

<strong>Design</strong><br />

New LRFD I-Girder XS Sheet<br />

<strong>Precast</strong> Girder <strong>Design</strong> Software


<strong>California</strong> <strong>Precast</strong> <strong>Bridge</strong> <strong>Design</strong> <strong>In</strong> <strong>the</strong> <strong>Past</strong><br />

<strong>Precast</strong> <strong>Bridge</strong> Types and Shapes<br />

Most Common <strong>Precast</strong> <strong>Bridge</strong>s<br />

Before Year of 1998<br />

– Short Span <strong>Bridge</strong>s<br />

– Widening <strong>Bridge</strong>s<br />

– <strong>Bridge</strong>s in Remote Area<br />

Most Common Used Shapes<br />

– <strong>California</strong> I-Girders<br />

– <strong>California</strong> Voided Slabs<br />

– <strong>Precast</strong> Box Beams<br />

– Delta Girders<br />

– Rectangular Girders<br />

– Double T Girders


<strong>California</strong> <strong>Precast</strong>-Pretensioned Girders<br />

Normal Shapes and Span Length Summary<br />

(Before Year of 1998)<br />

Girder Type Possible Span Length Preferred Span Length<br />

<strong>California</strong> I-Girder 50’ to 125’ 50’ to 95’<br />

<strong>California</strong> Voided Slab 20’ to 70’ 20’ to 50’<br />

<strong>Precast</strong> Box Beam 40’ to 120’ 40’ to 100’<br />

Delta Girder 90’ to 120’ 90’ to 100’<br />

Double T Girder 30’ to 90’ 30’ to 60’<br />

Rectangular Girder 30’ to 100’ 30’ to 100’


<strong>California</strong> <strong>Precast</strong> <strong>Bridge</strong> <strong>Design</strong> <strong>In</strong> <strong>the</strong> <strong>Past</strong><br />

<strong>Precast</strong> Advantages:<br />

Rapid construction<br />

Minimize falsework<br />

Reduce traffic disruptions<br />

on-site<br />

Improve safety for traffic and<br />

construction workers<br />

Minimize environmental<br />

impact<br />

<strong>In</strong>crease product quality<br />

<strong>Precast</strong> Challenges:<br />

Longer Span<br />

Seismic <strong>Design</strong><br />

Construction Cost


<strong>California</strong> <strong>Precast</strong> <strong>Bridge</strong> <strong>Design</strong> <strong>In</strong> <strong>the</strong> <strong>Past</strong>


<strong>California</strong> Long Span Girder Section<br />

• <strong>California</strong> Bulb-Tee Girder:<br />

Used to Achieve Longer Span Lengths<br />

and Spliced Girders with 8” Web Width<br />

Simple Pre-tensioned D/S = 0.050<br />

Multi-Span Cont. for LL D/S = 0.045<br />

Spliced Multi-Span w/P-T<br />

Debonded Strands preferred<br />

D/S = 0.040<br />

145’ Girder was transported<br />

Span Lengths up to 200+ feet<br />

When Segments are spliced<br />

Toge<strong>the</strong>r with Post-Tensioning


<strong>California</strong> Long Span Girder Section<br />

• <strong>California</strong> Bath-Tub Girder:<br />

<strong>Precast</strong> Alternative to Typical<br />

<strong>California</strong> CIP Box-Girder Shape<br />

Same D/S Ratio as Bulb-Tee<br />

Limitations <strong>In</strong>clude Fabrication<br />

Complexity, High Cost, Hauling<br />

Weight.


<strong>California</strong> <strong>Precast</strong>-Pretensioned Girders<br />

Normal Shapes and Span Length Summary<br />

Girder Type Possible Span Length Preferred Span Length<br />

<strong>California</strong> I-Girder 50’ to 125’ 50’ to 95’<br />

<strong>California</strong> Bulb-Tee Girder 80’ to 150’ 95’ to 150’<br />

<strong>California</strong> Bath-Tub Girder 80’ to 150’ 80’ to 100’<br />

<strong>California</strong> Voided Slab 20’ to 70’ 20’ to 50’<br />

<strong>Precast</strong> Box Beam 40’ to 120’ 40’ to 100’<br />

Delta Girder 90’ to 120’ 90’ to 100’<br />

Double T Girder 30’ to 90’ 30’ to 60’<br />

Rectangular Girder 30’ to 100’ 30’ to 100’


<strong>California</strong> <strong>Precast</strong> <strong>Bridge</strong> <strong>Design</strong> <strong>In</strong> Last Ten Years<br />

To Compete CIP PS Box Girder <strong>Bridge</strong>s, Post-Tensioned Spliced<br />

<strong>Precast</strong> Girder <strong>Bridge</strong>s have been introduced to achieve<br />

competitive longer spans in <strong>California</strong>.<br />

PC Girder: 30’-150’<br />

PT PC Spliced: 100’-350’<br />

PC Segmental: 250’-450’


Two Methods for Post-Tensioning Spliced Girders<br />

Method 1: Splicing Girders Supported on Limited Falsework


Two Methods for Post-Tensioning Spliced Girders<br />

Method 2: Splicing Girders on <strong>the</strong> Ground (Without Falsework)


Spliced <strong>Precast</strong> Girder Fabrication


Spliced <strong>Precast</strong> Girder Construction Sequence<br />

Two Span Spliced Girder Construction Sequence


Spliced <strong>Precast</strong> Girder Construction Sequence<br />

Two Span Spliced Girder Construction Sequence


Spliced <strong>Precast</strong> Girder Construction Sequence<br />

Three Span Spliced Girder Construction Sequence


Spliced <strong>Precast</strong> Girder Construction Sequence


Spliced <strong>Precast</strong> Girder Construction Sequence


Spliced <strong>Precast</strong> Girder Construction Sequence<br />

Multi-Span Spliced Girder Construction Sequence


Strong-Back Construction


Spliced <strong>Precast</strong> Girder Construction Sequence<br />

(Bread and Butter Type)<br />

1a. Construct abutments, bent footings, and columns<br />

1b. Fabricate PC/PS girders off-site at same time<br />

2. Erect temporary supports<br />

3. Place PC/PS girders on temporary supports


Spliced <strong>Precast</strong> Girder Construction Sequence<br />

4. Construct CIP end diaphragms, bent cap, and intermediate diaphragms.<br />

5. Allow CIP portions to reach min concrete strength<br />

6. Place deck concrete<br />

7. Post-tension superstructure<br />

8. Remove temp supports, and complete construction


Spliced <strong>Precast</strong> Girder Construction Sequence


Spliced <strong>Precast</strong> Girder Construction Sequence


Spliced <strong>Precast</strong> Girder Construction Sequence


Spliced <strong>Precast</strong> Girder Construction Sequence


Spliced <strong>Precast</strong> Girder Construction Sequence


Spliced <strong>Precast</strong> Girder Construction Sequence


Spliced <strong>Precast</strong> Girder Construction Sequence


Spliced <strong>Precast</strong> Girder Construction Sequence


Spliced <strong>Precast</strong> Girder Construction Summary<br />

Advantages of this type:<br />

Very limited falsework<br />

Maximize vertical clearance<br />

Continuous superstructure with no joints<br />

<strong>In</strong>tegral system between superstructure, bent<br />

cap and columns<br />

Seismic resistance connection<br />

Could be pinned at column bottom<br />

Smaller footing size, reduce cost<br />

Aes<strong>the</strong>tically pleasant


Curved <strong>Precast</strong> Spliced Girder <strong>Bridge</strong> Possible


Curved <strong>Precast</strong> Spliced Girder <strong>Bridge</strong> Possible


Curved <strong>Precast</strong> Spliced Girder <strong>Bridge</strong> Possible


<strong>Precast</strong> Spliced Girder <strong>Bridge</strong> Construction


<strong>Precast</strong> Spliced Girder <strong>Bridge</strong> Construction


<strong>Precast</strong> Spliced Girder <strong>Design</strong> Software Available<br />

CONSPLICE


<strong>Precast</strong> Spliced Girder <strong>Bridge</strong> Summary<br />

<strong>Precast</strong> Spliced Girder <strong>Bridge</strong> Summary<br />

Benefits of Using Spliced <strong>Precast</strong> Girder<br />

Longer span lengths to reduce <strong>the</strong> number of piers, Avoid<br />

obstacles on <strong>the</strong> ground, Improve safety, Reduce<br />

environmental impact.<br />

Rapid construction, Reduce congestion, traffic delays, and<br />

<strong>the</strong> total project cost.<br />

Eliminating superstructure joints to improve structural<br />

performance (including seismic performance), Reduce<br />

long-term maintenance cost, <strong>In</strong>crease service life.<br />

Minimizing bridge superstructure depth to obtain required<br />

vertical clearance for traffic or railway.<br />

Minimizing falsework to improve <strong>the</strong> flow of traffic and<br />

Improve safety for traffic and construction workers.<br />

<strong>In</strong>crease girder spacing, reduce girder lines and bridge cost


Benefits of Spliced <strong>Precast</strong> Girders<br />

Typical Cast-in-Place Falsework


<strong>California</strong> <strong>Precast</strong> <strong>Bridge</strong> <strong>Design</strong> <strong>In</strong> <strong>the</strong> Future<br />

Accelerated <strong>Bridge</strong> Construction using <strong>Precast</strong> Products<br />

Reduce on-site construction time and reduce traffic impact<br />

Off-site bridge elements fabrication<br />

Fast track process<br />

Improve work zone safety


<strong>California</strong> <strong>Precast</strong> <strong>Bridge</strong> <strong>Design</strong> <strong>In</strong> <strong>the</strong> Future<br />

High Performance Concrete<br />

Longer bridge spans<br />

Shallower girder section<br />

<strong>In</strong>crease girder spacing and reduce numbers<br />

of girders<br />

<strong>In</strong>crease structure durability and has longer<br />

bridge life


<strong>California</strong> <strong>Precast</strong> <strong>Bridge</strong> <strong>Design</strong> <strong>In</strong> <strong>the</strong> Future<br />

Self-Consolidated Concrete (SCC)<br />

Better workability in narrow area<br />

No vibration needed<br />

Faster construction<br />

Less noise and better working environment


<strong>California</strong> <strong>Precast</strong> <strong>Bridge</strong> <strong>Design</strong> <strong>In</strong> <strong>the</strong> Future<br />

New Efficient <strong>Precast</strong> Girder Shape (CA Super Girder)<br />

Longer span length over 180’ possible<br />

More competitive to CIP PS box girder<br />

Reduce construction cost<br />

Give engineers more options


<strong>California</strong> <strong>Precast</strong> <strong>Bridge</strong> <strong>Design</strong> <strong>In</strong> <strong>the</strong> Future<br />

Lightweight Concrete<br />

Lower superstructure weight<br />

Possible smaller substructure<br />

Reduced girder transportation and handling<br />

cost<br />

Less seismic loads


<strong>California</strong> <strong>Precast</strong> <strong>Bridge</strong> <strong>Design</strong> <strong>In</strong> <strong>the</strong> Future<br />

Welded Wire Reinforcement in <strong>Precast</strong> Girder Application<br />

High production rates and could reduce 40-50% labor cost<br />

<strong>In</strong>crease accuracy by using automatic machines<br />

High quality material & easier inspection<br />

Could be large rebars such as #6, #7, #8


<strong>Precast</strong> <strong>Bridge</strong> <strong>Design</strong> Issues<br />

<strong>Precast</strong> Girder Connection <strong>Design</strong> and Details<br />

<strong>Precast</strong> Girder End Stress Control and Girder Camber<br />

<strong>Design</strong><br />

New LRFD I-Girder XS Sheet<br />

<strong>Precast</strong> Girder <strong>Design</strong> Software


<strong>Precast</strong> Girder Connection <strong>Design</strong> and Details


<strong>Precast</strong> Girder Connection <strong>Design</strong> and Details


<strong>Precast</strong> Girder Connection <strong>Design</strong> and Details<br />

Several Typical <strong>Precast</strong> Girder/Bent Cap Connections:<br />

Drop Bent Cap Connection<br />

<strong>In</strong>verted-T Cap Connection<br />

<strong>In</strong>tegral Bent Cap Connection<br />

<strong>In</strong>tegral Drop Bent Cap Connection


<strong>Precast</strong> Girder Connection <strong>Design</strong> and Details<br />

Drop Bent Cap Connection<br />

Continuous superstructure<br />

Pinned between superstructure<br />

and cap<br />

Column/footing connection has<br />

to be fixed<br />

Extend PC girder bottom<br />

strands


<strong>Precast</strong> Girder Connection <strong>Design</strong> and Details<br />

<strong>In</strong>verted-T Bent Cap Connection<br />

Semi-continuous superstructure<br />

Considered as pinned between<br />

superstructure and cap<br />

Column/footing connection has to<br />

be fixed


<strong>Precast</strong> Girder Connection <strong>Design</strong> and Details<br />

<strong>In</strong>tegral Bent Cap Connection<br />

Continuous superstructure<br />

Fixed between<br />

superstructure and cap<br />

Column/footing connection<br />

could be pinned<br />

Good seismic connection


<strong>Precast</strong> Girder Connection <strong>Design</strong> and Details<br />

<strong>In</strong>tegral Drop Bent Cap Connection<br />

Continuous superstructure<br />

Fixed between superstructure and<br />

cap<br />

Column/footing connection could<br />

be pinned<br />

Good seismic connection


<strong>Precast</strong> Girder End Stress Control and Girder Camber <strong>Design</strong><br />

Draping or Harping Strands<br />

• Reduce eccentricity at ends<br />

• Raise center group of<br />

strands until stress limits are<br />

satisfied


<strong>Precast</strong> Girder End Stress Control and Girder Camber <strong>Design</strong><br />

Debonding or Shielding Strands<br />

• Reduce prestress force at ends by<br />

preventing bond of selected<br />

strands with concrete<br />

• <strong>In</strong>crease number of debonded<br />

strands until stress limits are<br />

satisfied


<strong>Precast</strong> Girder End Stress Control and Girder Camber <strong>Design</strong><br />

Debonded Strands Location and <strong>Design</strong> Requirements<br />

LRFD 5.11.4.2 with CA Amendment requires:<br />

• Number of strands debonded ≤ 33% of total strands<br />

• Number of strands debonded in any row ≤ 50% of total<br />

strands in that row<br />

• Exterior strands in each row must be fully bonded<br />

• All limit states must be satisfied


<strong>Precast</strong> Girder End Stress Control and Girder Camber <strong>Design</strong><br />

Debonded Strands Location and <strong>Design</strong> Requirements<br />

Adding Top Strands<br />

• Debond top strands in center portion<br />

of <strong>the</strong> girder and bond strand about<br />

10’-15’ at end of girder<br />

• Reduce moment at ends by adding<br />

strands at <strong>the</strong> top of <strong>the</strong> girder<br />

• Must provide access hole for cutting<br />

strands after diaphragm are cast and<br />

cured, but before <strong>the</strong> deck slab is<br />

placed


<strong>Precast</strong> Girder End Stress Control and Girder Camber <strong>Design</strong><br />

Adding Mild Reinforcement<br />

• If tensile stress > . 0948 f ′ , but not more than 0.<br />

ci<br />

Add mild reinforcement to resist <strong>the</strong> tensile force<br />

0 24 f ′ ci


<strong>Precast</strong> Girder End Stress Control and Girder Camber <strong>Design</strong><br />

<strong>In</strong>creasing Compressive Strength of<br />

Concrete at Release f ′ ci<br />

• <strong>In</strong>crease f ′ ci until stress limits are<br />

satisfied<br />

• Use reasonable value for f ′ ci that can be<br />

achieved economically by local producers<br />

• Maintain reasonable balance between ′ ci<br />

f and f ′<br />

c


<strong>Precast</strong> Girder End Stress Control and Girder Camber <strong>Design</strong><br />

Determination of Build-Up or Haunch<br />

Current MTD 11-8 States:<br />

• At support: min. 2” haunch<br />

• At midspan: min. 0” haunch<br />

Uncertainty to determine camber<br />

• Concrete strength (Ec)<br />

• Concrete weight<br />

• Girder length or support length<br />

• Creep and shrinkage<br />

• Numbers of days for deck<br />

placement<br />

Suggest: min. 2” haunch at midspan


<strong>Precast</strong> Girder Special Provision<br />

<strong>Design</strong> Engineer is responsible to review and verify<br />

manufacture precast shop drawings<br />

The Contractor is responsible for deflection calculations<br />

and adjustments for deck concrete placement such as<br />

meeting <strong>the</strong> min. vertical clearance, maintaining deck<br />

profile grade and cross slope etc.<br />

Temporary lateral bracing shall be designed and<br />

constructed<br />

Temporary falsework shall be designed and constructed<br />

if used and should be approved by <strong>the</strong> Engineer<br />

The Contractor shall submit girder lifting plan including<br />

procedure and sequencing for hauling, unloading, lifting,<br />

and erecting girders


New LRFD <strong>Precast</strong> I-Girder XS Sheet<br />

Revised New LRFD Drawing Details


New LRFD <strong>Precast</strong> I-Girder XS Sheet<br />

Revised New LRFD Drawing Details<br />

Prestressing table provides<br />

calculated P-jacking force. <strong>Precast</strong>er<br />

manufacture can determine <strong>the</strong><br />

numbers of strands for <strong>the</strong> shop<br />

drawing and fabrication.<br />

No more standard shear stirrups<br />

provided.<br />

Added end block is optional.<br />

Added 0.6” strand min. clearance<br />

based on AASHTO LRFD.


LRFD <strong>Precast</strong> Girder Software Update<br />

PSBeam V3<br />

<strong>Precast</strong> <strong>Prestressed</strong> Concrete <strong>Bridge</strong> Girder<br />

<strong>Design</strong> per AASHTO and Caltrans


LRFD <strong>Precast</strong> Girder Software Update<br />

CONSPAN<br />

<strong>Precast</strong> <strong>Prestressed</strong> Concrete <strong>Bridge</strong> Girder<br />

<strong>Design</strong> per AASHTO and Caltrans


LRFD <strong>Precast</strong> Girder Software Update<br />

CONSPLICE<br />

Specifically Developed for Post-Tensioned Post Tensioned Splice<br />

<strong>Precast</strong> Girder <strong>Design</strong> and Analysis


Thank You !

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!