04.04.2013 Views

Comparative pollen morphology and taxonomic ... - CNCFlora

Comparative pollen morphology and taxonomic ... - CNCFlora

Comparative pollen morphology and taxonomic ... - CNCFlora

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Comparative</strong> <strong>pollen</strong> <strong>morphology</strong> <strong>and</strong> <strong>taxonomic</strong> considerations in Eriocaulaceae<br />

Ricardo L<strong>and</strong>im Bormann de Borges ⁎, Francisco de Assis Ribeiro dos Santos, Ana Maria Giulietti<br />

Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana (UEFS), Av. Transnordestina s.n. Novo Horizonte 44036-900 Feira de Santana-BA, Brazil<br />

article info<br />

Article history:<br />

Received 27 June 2008<br />

Received in revised form 2 December 2008<br />

Accepted 14 December 2008<br />

Available online 24 December 2008<br />

Keywords:<br />

Palynology<br />

Poales<br />

Spiraperturate<br />

1. Introduction<br />

abstract<br />

Eriocaulaceae is a monocot group that has very small, unisexual<br />

flowers grouped into a dense “capitulum”, a 3–2 locular superior<br />

ovary, one ovule per locule, <strong>and</strong> spiraperturate <strong>pollen</strong> (Giulietti et al.,<br />

2000). The family is included in the Poales (APG II, 2003), <strong>and</strong> is<br />

considered a monophyletic group (Giulietti et al., 2000; Linder <strong>and</strong><br />

Rudall, 2005).<br />

Eriocaulaceae includes about 1200 species in 11 genera <strong>and</strong> shows<br />

a pantropical distribution, where this is especially true for Eriocaulon.<br />

Mesanthemum is an endemic African genus <strong>and</strong> all others are<br />

American genera. Paepalanthus <strong>and</strong> Syngonanthus also have a small<br />

number of species in the African continent. A great number of species<br />

occurs specially in mountainous neotropical regions as part of the<br />

savanna <strong>and</strong> “campos rupestres” types of vegetation.<br />

Economically, the species of Eriocaulaceae are responsible for being<br />

a source of income for the municipal districts of the mountain range of<br />

Espinhaço (Minas Gerais <strong>and</strong> Bahia), Serra Geral (Goiás) <strong>and</strong> the<br />

cerrados of Planalto Central (Giulietti et al., 1988). Nowadays, in the<br />

Tocantins State, Syngonanthus nitens (Bong.) Ruhl<strong>and</strong> (golden grass)<br />

has been the most important economic species. Residents of this area<br />

have received a large boost to their income because of the h<strong>and</strong>icrafts,<br />

which they produce, made with the yellowish floral scape of that<br />

⁎ Corresponding author.<br />

E-mail addresses: rlbborges@gmail.com (R.L.B. de Borges), fasantos@uefs.br<br />

(F. de Assis Ribeiro dos Santos), anagiulietti@hotmail.com (A.M. Giulietti).<br />

0034-6667/$ – see front matter © 2009 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.revpalbo.2008.12.008<br />

Review of Palaeobotany <strong>and</strong> Palynology 154 (2009) 91–105<br />

Contents lists available at ScienceDirect<br />

Review of Palaeobotany <strong>and</strong> Palynology<br />

journal homepage: www.elsevier.com/locate/revpalbo<br />

Pollen <strong>morphology</strong> of 55 species from 10 of the 11 currently recognized genera of Eriocaulaceae<br />

(Actinocephlaus, Blastocaulon, Eriocaulon, Lachnocaulon, Leiothrix, Paepalanthus, Philodice, Rondonanthus,<br />

Syngonanthus <strong>and</strong> Tonina) has been studied using light <strong>and</strong> scanning electron microscopy. Species presented<br />

<strong>pollen</strong> grains in monads, which were small (Blastocaulon, Lachnocaulon, Philodice <strong>and</strong> Tonina) to medium<br />

sized (Eriocaulon, Leiothrix <strong>and</strong> Rondonathus), while the other genera presented <strong>pollen</strong> grains in both size<br />

classes. Apertures were sulci, mainly forming spirals, in one, two or three units in different features. The<br />

exine is thin, less than 3 µm in thickness; there are two types of supratectal processes, granulose <strong>and</strong><br />

spinulose. The spinulose processes can be acute or obtuse, with side walls being straight, concave or convex.<br />

The <strong>pollen</strong> characteristics do not support the segregation of the genera Actinocephalus <strong>and</strong> Paepalanthus. The<br />

Syngonanthus species are the only ones to present two apertural patterns: spiraperturate <strong>and</strong> 2-zonasulcate.<br />

The spiraperturate species of Syngonanthus also possess similar characteristics to the genera Actinocephalus<br />

<strong>and</strong> Paepalanthus, so much so that it is not possible to distinguish them. The <strong>pollen</strong> <strong>morphology</strong> data support<br />

<strong>taxonomic</strong> arrangements at different levels: the separation of the family into two subfamilies, Eriocauloideae<br />

<strong>and</strong> Paepalanthoideae, the separation from Syngonanthus of sect. Eulepis by its 2-zonasulcate <strong>pollen</strong> grains<br />

<strong>and</strong> the segregation of Tonina fluviatilis, due to its grooved spines, into its own genus.<br />

© 2009 Elsevier B.V. All rights reserved.<br />

species, which is known for its gracefulness <strong>and</strong> color <strong>and</strong> is used to<br />

make earrings, bags, <strong>and</strong> others adornments (Schimidt et al., 2007).<br />

Although a significant number of studies on the Eriocaulaceae have<br />

been published in the last 100 years – the majority within the realm of<br />

taxonomy – the most complete <strong>taxonomic</strong> study of the family was<br />

undertaken by Ruhl<strong>and</strong> (1903). Among the most important publications<br />

are those of Melchior (1964), Stützel (1985), Hensold (1991),<br />

Hensold <strong>and</strong> Giulietti (1991), Phillips (1997), Giulietti et al. (2000),<br />

<strong>and</strong> Sano (2004).<br />

Very few of the <strong>taxonomic</strong> studies outlined above have focused on<br />

the <strong>pollen</strong> <strong>morphology</strong> of the Eriocaulaceae. The <strong>pollen</strong> <strong>morphology</strong> of<br />

representatives of the family has been little studied, <strong>and</strong> most of the<br />

published papers have been restricted to Old World taxa (Table 1).<br />

Nevertheless, some important <strong>pollen</strong> studies have been published.<br />

The most complete <strong>and</strong> systematic study, however, was undertaken by<br />

Thanikaimoni (1965); who described, by light microscopy, the <strong>pollen</strong><br />

grains of 54 species distributed among several genera of Eriocaulaceae<br />

(Table 1). His study did not include species of the genera Actinocephalus<br />

(Wikstr.) Sano, Blastocaulon Ruhl<strong>and</strong>, Mesanthemum Körn nor<br />

Rondonanthus Herzog.<br />

Another important work on <strong>pollen</strong> grains of the Eriocaulaceae was<br />

published by Santos et al. (2000), who studied species of the genus<br />

Paepalanthus from the Brazilian flora (eight of which are currently<br />

assigned to the genus Actinocephalus). These authors indicated the<br />

necessity of still more detailed studies using scanning electron<br />

microscopy to examine more closely the <strong>pollen</strong> characteristics of the<br />

species.


92 R.L.B. de Borges et al. / Review of Palaeobotany <strong>and</strong> Palynology 154 (2009) 91–105<br />

Table 1<br />

Previous morphological <strong>pollen</strong> data of representatives of the Eriocaulaceae family<br />

Authors Taxa Method Subject<br />

Erdtman (1943) Eriocaulon septangulare Withering LM Pollen <strong>morphology</strong> <strong>and</strong> plant taxonomy - Angiosperms<br />

Kuprianova (1948) Eriocaulon benthamii Kunth <strong>and</strong> Paepalanthus blepharocnemis Mart. LM Pollen <strong>morphology</strong> of monocotyledons<br />

Erdtman (1952) Syngonanthus wahlbergii (Wikstr.) Ruhl <strong>and</strong> Tonina fluviatilis Aubl. LM Pollen <strong>morphology</strong> <strong>and</strong> plant taxonomy - Angiosperms<br />

Ikuse (1956) Eriocaulon miquelianum Körn., E. nipponicum Maxim., E. parvum Körn,<br />

E. senile Honda, <strong>and</strong> E. sielboldianum Sieb. et Zucc. (= E. cinereum R. Br.)<br />

LM Pollen flora of Japan<br />

Thanikaimoni (1965) Eriocaulon L. (46 spp.), Lachnocaulon Kunth (2 spp.),<br />

Leiothrix Ruhl<strong>and</strong> (1 sp.), Paepalanthus Mart. (1 sp.),<br />

Philodice Mart. (1 sp.), Syngonanthus Ruhl<strong>and</strong> (2 spp.),<br />

<strong>and</strong> Tonina Aubl. (1 sp.)<br />

LM Pollen <strong>morphology</strong> of the Eriocaulaceae family<br />

Huang (1972) Eriocaulon cinerum R. Br. Var. sieboldianum (Sieb. & Zucc.) T. Kayama,<br />

E. merrillii Ruhl., E. nantoense Hay., E. trisectum Satake,<br />

E. truncatum Buch.-Ham.<br />

LM Pollen flora of Taiwan<br />

Ybert (1979) Mesanthemum prescottianum (Bong.) Körn. LM Pollen flora of the Ivory Coast<br />

Furness (1988) Eriocaulon aquaticum (Hill) Druce. LM, SEM Eriocaulaceae in the Northwest European <strong>pollen</strong> flora<br />

Santos et al. (2000) Actinocephalus (8 spp.) <strong>and</strong> Paepalanthus (7 spp.) LM Pollen <strong>morphology</strong> of some Brazilian Eriocaulaceae<br />

Rull (2003) Paepalanthus perplexans Mold. LM Illustrated <strong>pollen</strong> key of some Venezuelan species<br />

Coan et al. (2007a) Syngonanthus caulescens (Poir.) Ruhl<strong>and</strong> SEM Embryological study of the species, only SEM pictures<br />

of <strong>pollen</strong> grains were presented<br />

Coan et al. (2007b) Leiothrix fluitans (Mart.) Ruhl<strong>and</strong> SEM Embryological study of the species, only SEM pictures<br />

of <strong>pollen</strong> grains were presented<br />

Method: LM — light microscopy, SEM — scanning electron microscopy.<br />

The first study of the Eriocaulaceae using scanning electron<br />

microscopy was undertaken by Furness (1988), who described the<br />

<strong>pollen</strong> grains of Eriocaulon aquaticum (Hill) Druce. Coan et al. (2007a,b)<br />

published electro-micrographs of the <strong>pollen</strong> grains of Syngonanthus<br />

caulescens (Poir.) Ruhl<strong>and</strong> <strong>and</strong> Leiothrix fluitans (Mart.) Ruhl<strong>and</strong> as a<br />

part of their study of the embryology of these taxa.<br />

Considering all the <strong>pollen</strong> morphological data related to the<br />

Eriocaulaceae to date, only 87 taxa have been described, of which 60 are<br />

species belonging to the genus Eriocaulon. Furthermore, the principal<br />

<strong>pollen</strong> study of the family (Thanikaimoni, 1965) was published 43 years<br />

ago <strong>and</strong> employed only light microscopy. For these reasons, the objective<br />

of the present work was to provide a more complete study of the family<br />

<strong>and</strong> to clarify the patterns of the <strong>pollen</strong> apertures exhibited by the different<br />

<strong>taxonomic</strong> groups, using both light <strong>and</strong> scanning electron microscopy.<br />

2. Materials <strong>and</strong> methods<br />

In accordance with Ruhl<strong>and</strong>'s (1903) classification system for<br />

Eriocaulaceae, we studied the <strong>pollen</strong> grains of 55 species from the<br />

genera Actinocephalus, Blastocaulon, Eriocaulon, Lachnocaulon, Leiothrix,<br />

Paepalanthus, Philodice, Rondonanthus, Syngonanthus, <strong>and</strong>Tonina. The<br />

genus Mesanthemum was not included in this work due to the lack of<br />

study material, but both of the subfamilies cited by Ruhl<strong>and</strong> (1903),<br />

Eriocauloideae <strong>and</strong> Paepalanthoideae, were considered. Taxonomic<br />

arrangement of the group is:<br />

Order Poales<br />

Fam. Eriocaulaceae<br />

Subfam. Eriocauloideae<br />

Eriocaulon 400/4 1<br />

Mesanthemum 12/0<br />

Paepalanthoideae<br />

Actinocephalus 29/6<br />

Blastocaulon 5/2<br />

Lachnocaulon 7/2<br />

Leiothrix 37/9<br />

Paepalanthus 485/15<br />

Philodice 2/1<br />

Rondonanthus 6/1<br />

Syngonanthus 200/14<br />

Tonina 1/1<br />

1 Total number of species/number of species included in present study.<br />

Pollen samples (the capitula) for our analyses were obtained from<br />

herbarium specimens that had been securely identified <strong>and</strong> incorporated<br />

into the Herbário da Universidade Estadual de Feira de Santana —<br />

HUEFS, Herbarium of the Miami University — MU, <strong>and</strong> Herbário do<br />

Departamento de Botânica, Instituto de Biociências (Universidad de São<br />

Paulo) — SPF. All of the specimens examined are listed in the Appendix A.<br />

The acetolysis method (Erdtman, 1960) was used for the light<br />

microscope (LM) analysis of the <strong>pollen</strong> grains of 36 species. For each<br />

species, at least 20 <strong>pollen</strong> grains were used (except when not possible)<br />

in the morphometric analyses of the principal <strong>pollen</strong> parameters:<br />

diameter, width of the interapertural exine strip, thickness of the<br />

exine layers, <strong>and</strong> length of the spines.<br />

For the scanning electron microscopy (SEM) studies, 41 species of the<br />

above-mentioned genera were examined. Due to the fragile nature of<br />

the <strong>pollen</strong> grains <strong>and</strong> their low production, the anthers were removed<br />

from the flowers <strong>and</strong> opened directly over a stub covered by doublefaced<br />

self-adhesive carbon tape. The material was subsequently coated<br />

with gold <strong>and</strong> analyzed (LEO 1430 VP — Carl Zeiss).<br />

Photographs of the <strong>pollen</strong> characteristics were obtained under<br />

both LM <strong>and</strong> SEM techniques. The palynological nomenclature used<br />

follows Punt et al. (2007), <strong>and</strong> that of the type of aperture follows<br />

Pozhidaev (2000).<br />

All of the prepared material is deposited in the palynotheca of the<br />

Laboratory of Plant Micro<strong>morphology</strong> (LAMIV) at the Universidade<br />

Estadual de Feira de Santana, Bahia State, Brazil.<br />

3. Results<br />

3.1. General <strong>pollen</strong> <strong>morphology</strong><br />

All species of Eriocaulaceae studied here had <strong>pollen</strong> grains that<br />

were monads, generally spherical, <strong>and</strong> varied in size from small (up to<br />

25 µm) to medium (N25 µm) (Table 2). The smallest <strong>pollen</strong> grains are<br />

observed in Blastocaulon albidum, Lachnocaulon minus, Paepalanthus<br />

tortilis, <strong>and</strong> P. subtilis, while the largest grains are seen in Paepalanthus<br />

comans, P. planifolius (both P. subg. Platycaulon) <strong>and</strong> Rondonanthus<br />

duidae. Variations among the sizes of the <strong>pollen</strong> grains of the same<br />

specimen are relatively large: up to 14 µm as recorded for Syngonanthus<br />

schwackei (T. B. Cavalcanti et al. 2906) <strong>and</strong> 15 µm for Paepalanthus<br />

pulvinatus (M. J. G. Andrade 106). This fact may be due to<br />

rupturing of the aperture during chemical treatment (acetolysis),<br />

which increases the size of the <strong>pollen</strong> grains.<br />

Constant features among the <strong>pollen</strong> grains of the species of<br />

Eriocaulaceae that were analyzed are the spiral apertures <strong>and</strong> that the


Table 2<br />

Morphometric data <strong>and</strong> apertural type of <strong>pollen</strong> grains of studied Eriocaulaceae species through light microscopy<br />

Species Diameter⁎ Interapertural<br />

strips⁎<br />

surface of the exine is composed of (micro)spinose <strong>and</strong> granulose<br />

supratectal processes (Tables 2–3, Plates I–VII).<br />

3.2. Apertures<br />

The <strong>pollen</strong> grains of Eriocaulaceae are spirapeturate. They have<br />

one or more spiral apertures. Apertures isolate strips of exine<br />

between the spirals (Plate I, 3;Plate IV, 9;Plate VI, 1;Plate VII, 5).<br />

Here, these strips are considered to be “interapertural exine”. The<br />

R.L.B. de Borges et al. / Review of Palaeobotany <strong>and</strong> Palynology 154 (2009) 91–105<br />

Exine<br />

thickness⁎<br />

Apertural type<br />

Actinocephalus<br />

Actinocephalus bongardii (A. St.-Hill.) Sano (21) 24 (26) (7) 9 (12) (1) 1 (1) Spiraperturate (helicoidal)<br />

Actinocephalus denudatus (Körn.) Sano (25) 28 (31) (9) 11 (14) (1) 1 (2) Spiraperturate (helicoidal)<br />

Actinocephalus divaricatus (Bong.) Sano (24) 27 (33) (8) 10 (15) (1) 1 (1) Spiraperturate (helicoidal, other arrangements)<br />

Actinocephalus ramosus (Wikstr.) Sano (24) 27 (33) (9) 10 (13) (1) 1 (1) Spiraperturate (helicoidal, other arrangements)<br />

Blastocaulon<br />

Blastocaulon albidum Ruhl<strong>and</strong> (19) 22 (25) (6) 7 (9) (1) 1 (1) Spiraperturate (helicoidal)<br />

Eriocaulon<br />

Eriocaulon elichrysoides Bong. (30) 33 (38) (6) 8 (11) (2) 2 (2) Spiraperturate (interapertural exine in a crosshatch pattern, other arrangements)<br />

Eriocaulon humboldtii Kunth (28) 32 (38) (6) 8 (10) (2) 2 (2) Spiraperturate (interapertural exine in a crosshatch pattern, other arrangements)<br />

Eriocaulon ligulatum (Vell.) L. B. Sm. (25) 29 (34) (5) 8 (9) (2) 2 (3) Spiraperturate (interapertural exine in a crosshatch pattern, other arrangements)<br />

Lachnocaulon<br />

Lachnocaulon minus Small (19) 22 (29) (6) 9 (13) (1) 1 (2) Spiraperturate (as the seams of a tennis ball)<br />

Leiothrix<br />

Leiothrix subgen. Leiothrix<br />

Leiothrix angustifolia (Körn.) Ruhl<strong>and</strong> (25) 26 (31) (9) 11 (13) (1) 1 (1) Spiraperturate (helicoidal, other arrangements)<br />

Leiothrix distichoclada Herzog (25) 26 (30) (8) 11 (13) (1) 1 (2) Spiraperturate (helicoidal)<br />

Leiothrix flavescens (Bong.) Ruhl<strong>and</strong> (25) 30 (34) (8) 12 (15) (1) 1 (2) Spiraperturate (as the seams of a tennis ball)<br />

Leiothrix hirsuta (Wikstr.) Ruhl<strong>and</strong> (24) 26 (29) (8) 9 (11) (1) 1 (1) Spiraperturate (as the seams of a tennis ball)<br />

Leiothrix plantago (Mart.) Giul. (29) 32 (35) (9) 11 (13) (1) 1 (2) Spiraperturate (many arrangements)<br />

Leiothrix subgen. Rheocaulon<br />

Leiothrix fluitans (Mart.) Ruhl<strong>and</strong> (28) 33 (39) (13) 15 (16) (1) 1 (2) Spiraperturate (as the seams of a tennis ball)<br />

Paepalanthus<br />

Paepalanthus subgen. Paepalanthus<br />

Paepalanthus applanatus Ruhl<strong>and</strong> (29) 34 (40) (12) 13 (16) (1) 1 (2) Spiraperturate (helicoidal, other arrangements)<br />

Paepalanthus giganteus Sano (26) 29 (34) (10) 11 (13) (1) 1 (2) Spiraperturate (many arrangements)<br />

Paepalanthus pulvinathus N. E. Br. (20) 26 (35) (8) 11 (14) (1) 1 (1) Spiraperturate (helicoidal)<br />

Paepalanthus subtilis Miq. (19) 21 (24) (6) 7 (9) (1) 1 (1) Spiraperturate (helicoidal)<br />

Paepalanthus tortilis (Bong.) Mart. (19) 22 (25) (6) 9 (13) (1) 1 (1) Spiraperturate (helicoidal)<br />

Paepalanthus subgen. Platycaulon<br />

Paepalanthus bromelioides Silveira (26) 32 (39) (8) 12 (15) (1) 1 (1) Spiraperturate (helicoidal)<br />

Paepalanthus planifolius (Bong.) Körn. (30) 35 (40) (11) 13 (16) (1) 1 (2) Spiraperturate (many arrangements)<br />

Paepalanthus subgen. Xeractis<br />

Paepalanthus comans Silveira (31) 37 (43) (10) 13 (18) (1) 1 (2) Spiraperturate (many arrangements)<br />

Philodice<br />

Philodice hoffmannseggii Mart. (20) 25 (29) (6) 8 (13) (1) 1 (2) Spiraperturate (different arrangements)<br />

Rondonanthus<br />

Rondonanthus duidae (Gleason) Hensold & Giul. (31) 36 (41) (11) 13 (15) (2) 2 (2) Spiraperturate (helicoidal)<br />

Syngonanthus<br />

Syngonanthus sect. Syngonanthus<br />

Syngonanthus fuscescens Ruhl<strong>and</strong> (25) 28 (31) (10) 13 (18) (1) 1 (2) Spiraperturate (many arrangements)<br />

Syngonanthus schwackei Ruhl<strong>and</strong><br />

Syngonanthus sect. Carphocephalus<br />

(26) 32 (40) (9) 11 (15) (1) 1 (2) Spiraperturate (many arrangements)<br />

Syngonanthus caulescens (Poir.) Ruhl<strong>and</strong><br />

Syngonanthus sect. Eulepis<br />

(23) 25 (28) (6) 7 (9) (1) 1 (2) Spiraperturate (many arrangements)<br />

Syngonanthus bisulcatus (Körn.) Ruhl<strong>and</strong> (19) 24 (31) (9) 12 (15) (1) 1 (2) 2-zonasulcate<br />

Syngonanthus elegans var. elegans (Körn.) Ruhl<strong>and</strong> (25) 27 (33) (10) 12 (14) (1) 1 (1) 2-zonasulcate<br />

Syngonanthus euschemus Ruhl<strong>and</strong> (25) 28 (30) (11) 13 (15) (1) 1 (2) 2-zonasulcate<br />

Syngonanthus giuliettiae L. R. Parra (23) 25 (29) (11) 13 (18) (1) 1 (2) 2-zonasulcate<br />

Syngonanthus mucugensis Giul.<br />

Syngonanthus sect. Thysanocephalus<br />

(25) 32 (39) (13) 15 (18) (1) 1 (2) 2-zonasulcate<br />

Syngonanthus cipoensis Ruhl<strong>and</strong> (29) 32 (38) (9) 12 (14) (1) 1 (2) Spiraperturate (many arrangements)<br />

Syngonanthus imbricatus (Körn.) Ruhl<strong>and</strong> (26) 30 (35) (13) 17 (23) (1) 1 (2) 2-zonasulcate<br />

Syngonanthus vernonioides (Kunth) Ruhl<strong>and</strong><br />

⁎Average (range), in µm.<br />

(28) 34 (39) (9) 11 (13) (1) 1 (2) Spiraperturate (many arrangements)<br />

spiral pattern of the apertures varies according to the group of<br />

species being examined (Plate I,1;Plate II, 9;Plate IV, 7).<br />

There are <strong>pollen</strong> grains with only one spiraperture, as seen<br />

in Actinocephalus (Plate I, 7–9), Blastocaulon (Plate II, 7–9),<br />

Lachnocaulon (Plate III, 1–3), Leiothrix (Plate IV, 4–6), <strong>and</strong> Rondonanthus<br />

(Plate VI, 1–3). On occasion, the apertures have an<br />

arrangement reminiscent of the pattern on a tennis ball, such as<br />

that observed in Lachnocaulon (Plate III, 1–3) <strong>and</strong> Leiothrix<br />

(Plate III, 7–9, 12).<br />

93


94 R.L.B. de Borges et al. / Review of Palaeobotany <strong>and</strong> Palynology 154 (2009) 91–105<br />

Table 3<br />

Characterization of the supratectal processes on the surface of <strong>pollen</strong> grains of the studied Eriocaulaceae species<br />

Species (Micro)Spines Granules diam. (µm)<br />

Shape Wall Size (µm)<br />

Actinocaphalus<br />

Actinocephalus bongardii (A. St.-Hil.) Sano Acute <strong>and</strong> obtuse Straight <strong>and</strong> concave 0.38–0.96 0.33–0.36<br />

Actinocephalus cabralensis (Silveira) Sano Acute <strong>and</strong> obtuse Straight <strong>and</strong> concave 0.62–0.91 0.40–0.41<br />

Actinocephalus polyanthus (Bong.) Sano Acute <strong>and</strong> obtuse Straight <strong>and</strong> concave 0.37–1.05 0.39–0.44<br />

Actinocephalus ramosus (Wikstr.) Sano Acute Straight <strong>and</strong> concave 0.52–1.09 0.29–0.40<br />

Blastocaulon<br />

Blastocaulon albidum Ruhl<strong>and</strong> Acute <strong>and</strong> obtuse Straight <strong>and</strong> concave 0.32–0.99 0.21–0.32<br />

Blastocaulon scirpeum (Mart.) Giul. Acute Straight 0.76–0.81 –<br />

Eriocaulon<br />

Eriocaulon elichrysoides Bong. Obtuse Straight 0.3–0.87 –<br />

Eriocaulon humboldtii Kunth Obtuse Straight 0.2–0.7 –<br />

Eriocaulon sellowianum Kunth Obtuse Straight 0.2–0.9 –<br />

Lachnocaulon<br />

Lachnocaulon engleri Ruhl<strong>and</strong> Acute <strong>and</strong> obtuse Straight 0.53–0.82 0.31–0.39<br />

Lachnocaulon minus Small Acute <strong>and</strong> obtuse Straight 0.27–0.91 0.27–0.35<br />

Leiothrix<br />

Leiothrix subgen. Leiothrix<br />

Leiothrix angustifolia (Körn.) Ruhl<strong>and</strong> Acute Straight 0.38–1.35 –<br />

Leiothrix hirsuta (Wikstr.) Ruhl<strong>and</strong> Acute Straight 0.78–1.61 –<br />

Leiothrix plantago (Mart.) Giul. Acute Straight 0.41–1.07 –<br />

Leiothrix rufula (A. St. Hil.) Ruhl<strong>and</strong> Base width <strong>and</strong> height equal Straight 0.47–1.23 –<br />

Leiothrix subgen. Stephanophyllum<br />

Leiothrix spiralis (Körn.) Ruhl<strong>and</strong> Acute <strong>and</strong> obtuse Straight 0.35–0.82 0.22–0.32<br />

Leiothrix vivpara (Bong.) Ruhl<strong>and</strong> Acute Straight 0.38–0.85 –<br />

Paepalanthus<br />

Paepalanthus subgen. Paepalanthus<br />

Paepalanthus myocephalus Mart. ex Körn. Acute <strong>and</strong> obtuse Straight 0.51–1.02 –<br />

Paepalanthus pulchelus Herzog Acute <strong>and</strong> obtuse Straight 0.62–1.36 0.34–0.35<br />

Paepalanthus pulvinathus N. E. Br. Acute Straight <strong>and</strong> convex 0.38–1.45 –<br />

Paepalanthus sphaerocephalus Ruhl<strong>and</strong> Acute <strong>and</strong> obtuse Straight <strong>and</strong> convex 0.36–1.12 0.24–0.29<br />

Paepalanthus subtilis Miq. Acute <strong>and</strong> obtuse Straight 0.35–0.73 0.31–0.34<br />

Paepalanthus subgen. Platycaulon<br />

Paepalanthus planifolius (Bong.) Körn. Acute <strong>and</strong> obtuse Straight 0.35–2.09 –<br />

Paepalanthus subgen. Thelxinöe<br />

Paepalanthus leucocephalus Ruhl<strong>and</strong> Acute Straight 0.88–0.96 –<br />

Paepalanthus scleranthus Ruhl<strong>and</strong> Acute Straight 0.78–0.89 0.22–0.29<br />

Paepalanthus subgen. Xeractis<br />

Paepalanthus comans Silveira Acute <strong>and</strong> obtuse Straight <strong>and</strong> convex 0.40–1.32 0.39–0.5<br />

Paepalanthus chrysolepis Silveira Acute <strong>and</strong> obtuse Straight 0.56–1.97 0.38–0.42<br />

Paepalanthus superbus Ruhl<strong>and</strong> Acute <strong>and</strong> obtuse Straight <strong>and</strong> convex 0.45–1.56 0.38–0.49<br />

Philodice<br />

Philodice hoffmannseggii Mart. Acute Straight 0.65–0.9 –<br />

Rondonanthus<br />

Rondonanthus duidae (Gleason) Hensold & Giulietti Acute <strong>and</strong> obtuse Straight 0.56–1.15 –<br />

Syngonanthus<br />

Syngonanthus sect. Syngonanthus<br />

Syngonanthus arenarius (Gardn.) Ruhl<strong>and</strong> Acute <strong>and</strong> obtuse Straight 0.36–1.2 –<br />

Syngonanthus schwackei Ruhl<strong>and</strong> Acute <strong>and</strong> obtuse Straight <strong>and</strong> convex 0.43–0.89 –<br />

Syngonanthus verticillatus (Bong.) Ruhl<strong>and</strong> Acute <strong>and</strong> obtuse Straight <strong>and</strong> convex 0.56–1.22 –<br />

Syngonanthus sect. Carphocephalus<br />

Syngonanthus caulescens (Poir.) Ruhl<strong>and</strong> Acute <strong>and</strong> obtuse Straight 0.55–0.71 –<br />

Syngonanthus sect. Eulepis<br />

Syngonanthus bisulcatus (Körn.) Ruhl<strong>and</strong> Acute Straight 0.63–1.47 0.38–0.44<br />

Syngonanthus brasiliana Giul. Acute <strong>and</strong> obtuse Straight <strong>and</strong> convex 0.32–1.05 –<br />

Syngonanthus giuliettiae L. R. Parra Acute <strong>and</strong> obtuse Straight 0.41–1.42 –<br />

Syngonanthus mucugensis Giul. Acute <strong>and</strong> obtuse Straight <strong>and</strong> convex 0.45–1.79 0.41–0.47<br />

Syngonanthus sect. Syngonanthus<br />

Syngonanthus cipoensis Ruhl<strong>and</strong> Acute <strong>and</strong> obtuse Straight 0.48–1.26 –<br />

Syngonanthus vernonioides (Kunth.) Ruhl<strong>and</strong> Acute <strong>and</strong> obtuse Straight <strong>and</strong> convex 0.53–1.74 0.61–0.64<br />

Tonina<br />

Tonina fluviatilis Aubl. Acute <strong>and</strong> obtuse Straight (longitudinally grooved) 0.57–1.37 –<br />

In some species of Actinocephalus <strong>and</strong> Paepalanthus, <strong>and</strong>inthe<br />

genus Eriocaulon, the <strong>pollen</strong> grains can have more than one furrow<br />

<strong>and</strong> demonstrate different spiral patterns. Species of the genus<br />

Eriocaulon have <strong>pollen</strong> grains with 2–3 apertures (Plate I, 1–2),<br />

arranged in a characteristic pattern. In these <strong>pollen</strong> grains, interapertural<br />

exines are generally visible under LM, arranged in a two-


y-two formation in different plans as in a crosshatch pattern<br />

(Plate I, 1–2).<br />

In the genus Actinocephalus, A. bongardii, <strong>and</strong> A. denudatus, have<br />

<strong>pollen</strong> grains with a furrow in a single spiral pattern, but A. divaricatus<br />

<strong>and</strong> A. ramosus have two spirals in varied patterns (Plate I,10–12).<br />

The <strong>pollen</strong> grains of Paepalanthus have apertures that generally<br />

trace a single spiral (Plate IV,7–9), but do show significant variation in<br />

the number of spirals, while the genus Philodice has grains with<br />

various types of apertures in spiral form but no one predominant type<br />

(Plate V, 2–10). Among the species of Syngonanthus studied, <strong>pollen</strong><br />

grains could be 2-zonasulcate (Plate VI, 7–9) or could have spiral<br />

apertures in various arrangements (Plate VII, 2–4).<br />

The interapertural exines are of varying widths, with the<br />

narrowest seen in Blastocaulon (~7 µm) <strong>and</strong> in Eriocaulon (~8 µm),<br />

while the widest strips were noted in Syngonanthus (up to 17 µm).<br />

The greater number of studied taxa has unornamented apertural<br />

membranes, except for the <strong>pollen</strong> grains of Eriocaulon <strong>and</strong> Syngonanthus<br />

arenarius. Eriocaulon are ornamented with obtuse microspines<br />

on this membrane (Plate I, 5), whereas the <strong>pollen</strong> grains of<br />

Syngonanthus arenarius have spines <strong>and</strong> microspines on the furrow<br />

membrane (Plate VII, 1). At the apertures of the <strong>pollen</strong> grains of<br />

Rondonanthus, the apertural membranes are not ornamented (Plate<br />

VI, 6), as is the case in Actinocephalus (Plate II, 5), Blastocaulon (Plate II,<br />

11), Lachnocaulon (Plate III, 4), Leiothrix (Plate IV, 3), Paepalanthus<br />

(Plate V, 1) <strong>and</strong> Philodice (Plate V, 11).<br />

3.3. Exine — structure <strong>and</strong> ectexine ornamentation<br />

The exine is usually thin, varying in thickness from 1 to 3 µm. The<br />

thickest exine was observed in specimens of the genera Eriocaulon<br />

<strong>and</strong> Rondonanthus, whose average exine thickness is 2 µm; in the<br />

other genera, the average exine thickness is 1 µm (Table 2).<br />

The layer stratification of the exine is discernible, with the nexine<br />

being thicker than the sexine in Eriocaulon <strong>and</strong> some species of Syngonanthus.<br />

The exine is undifferentiated in Leiothrix spp., showing no<br />

individualization of the layers under LM, with the exception of<br />

L. flavescens <strong>and</strong> L. plantago, whose sexine <strong>and</strong> nexine are quite<br />

distinct. The same is observed in Blastocaulon albidum. In Paepalanthus,<br />

the exine stratification can be either undifferentiated or<br />

differentiated into sexine <strong>and</strong> nexine <strong>and</strong>, in the latter case, the<br />

analyses show that the exine can have a thicker sexine, or that the<br />

sexine <strong>and</strong> nexine could be of equal thickness.<br />

Due to the thinness of the exine in the <strong>pollen</strong> grains of the majority<br />

of the species analysed, the exine layers (sexine <strong>and</strong> nexine) were not<br />

measured individually, although this does not prevent a qualitative<br />

analysis of the relative thicknesses of the two layers (Table 4).<br />

The ectexine surface is irregular (Plate III, 10–11), sometimes<br />

presenting areas with microperforations (Plate II, 2;Plate IV, 3)or<br />

being slightly microrugulate (Plate III,5–6,10; Plate V,1;Plate VI,11–12).<br />

The ectexine surface has two morphological types of supratectal<br />

processes: granulose <strong>and</strong> (micro)spinose (the latter have tapered<br />

apices). Due to their small size, both types are more easily visualized<br />

under SEM. In spite of the heterogeneity in their size, the granules<br />

appear to be more uniform than the microspines. The granules vary in<br />

diameter from 0.22 to 0.64 µm <strong>and</strong> are present in the majority of the<br />

genera studied. They are generally distributed among the microspines<br />

<strong>and</strong> along the edge of the interaperture exine strip in Actinocephalus<br />

(Plate II, 6),Lachnocaulon (Plate III, 5),Paepalanthus <strong>and</strong> Syngonanthus<br />

(Plate VII, 6). They were not observed in Eriocaulon, Philodice or Tonina.<br />

The (micro)spines show a wide range of variation in size, being<br />

between 0.2 <strong>and</strong> 2.09 µm in length, with a majority being acute (Plate II,<br />

5; Plate III, 11;Plate V, 12) while others are more obtuse (Plate I, 5;<br />

Plate V,1;Plate VII, 1). The acute or obtuse shape is related to the size of<br />

the supratectal processes, with the larger processes (spines) generally<br />

being acute (Plate II, 5; Plate III, 11), while the smaller processes<br />

(microspines) are generally obtuse (although some are occasionally<br />

R.L.B. de Borges et al. / Review of Palaeobotany <strong>and</strong> Palynology 154 (2009) 91–105<br />

acute) (Plate I,5;Plate VI,12;Plate VII, 1). The largest spinose processes<br />

are observed in Paepalanthus chrysolepis <strong>and</strong> P. planifolius (Table 3).<br />

4. Discussion<br />

4.1. Pollen morphological considerations<br />

The <strong>pollen</strong> grains in Eriocaulaceae present few variations with<br />

regard to size or shape, being small to medium <strong>and</strong> mainly spheroidal.<br />

Large variations in the size of the <strong>pollen</strong> grains at the intra-specific<br />

level were seen among the specimens studied, which could be<br />

attributed to the different degrees of maturation of the <strong>pollen</strong> grains<br />

derived from different flowers on the same inflorescence. Giulietti<br />

(1996), for example, reported that the maturation of the flowers in the<br />

inflorescences of the genus Leiothrix is centripetal, a condition that<br />

has been seen in the entire family. Coan et al. (2007a) pointed out that<br />

flowers of many different ages occur on the same inflorescence in<br />

Syngonanthus caulescens.<br />

The sulcate feature, colpate according to some authors (Furness, 1988;<br />

Rull, 2003), the typical apertural pattern of the family, was observed in all<br />

species included here. Thanikaimoni (1965) described several apertural<br />

arrangements for <strong>pollen</strong> grains of the Eriocaulon species, <strong>and</strong> the patterns<br />

seen here are very similar to those described by that author.<br />

Apertures having a design resembling the pattern on a tennis ball<br />

are quite unique, <strong>and</strong> are described here for the genera Leiothrix <strong>and</strong><br />

Lachnocaulon, although Thanikaimoni (1965) also observed this<br />

apertural type in two different genera, Syngonanthus <strong>and</strong> Tonina, as<br />

well as a very similar pattern in the <strong>pollen</strong> grains of Lachnocaulon. The<br />

genera Actinocephalus, Blastocaulon, <strong>and</strong> Paepalanthus have very<br />

similar aperture patterns, with apertures in a single spiral (helicoidal)<br />

or tracing various designs. However, the <strong>pollen</strong>4 grains of all species of<br />

Syngonanthus sect. Eulepis <strong>and</strong> of S. imbricatus [S. sect. Thysanocephalus<br />

after Ruhl<strong>and</strong> (1903) <strong>and</strong> S. sect Eulepis after Lazzari (2000)]<br />

have a 2-zonasulcate apertural pattern — the first time this pattern has<br />

been reported for this family.<br />

On many occasions, even under SEM, it is difficult to distinguish<br />

between supratectal processes to determine which are microspines<br />

<strong>and</strong> which are, in fact, granules (Plate I,6;Plate II,2;Plate III,6;Plate IV,<br />

12). The following species have <strong>pollen</strong> grains that were entirely<br />

microspinose: Actinocephalus cabralensis, Blastocaulon scirpeum,<br />

Lachnocaulon engleri, Paepalanthus leucocephalus <strong>and</strong> P. subtilis. All of<br />

the other taxa have exines that varied from microspinose to spinose,<br />

with acute spines <strong>and</strong> acute to obtuse microspines, with the exception<br />

of the species of Leiothrix that had both acute spines <strong>and</strong> microspines.<br />

The <strong>morphology</strong> of the grooved spines of Tonina fluviatilis, unique<br />

in the family, was very similar to those described by Halbritter et al.<br />

(2007) for Thymelaea passerina (L.) Coss. & Germ. (Thymelaeaceae).<br />

The representatives of Eriocaulon, the basal group of the family<br />

according to M. J. G. Andrade (unpubl. data.), generally have three<br />

apertures <strong>and</strong> a large apertural area. The number of apertures<br />

diminishes <strong>and</strong> the interapertural exine strips are wider among the<br />

genera of the subfamily Paepalanthoideae, which indicates a decrease in<br />

the apertural area. In the genus Syngonanthus, a significant decrease in<br />

the apertural area has been noted, mainly in the species of S. sect. Eulepis,<br />

<strong>and</strong> in S. imbricatus, which have zonasulcate apertures <strong>and</strong>,<br />

consequently, have smaller apertural areas than the others.<br />

4.2. Taxonomic considerations<br />

The contribution of <strong>pollen</strong> morphological characteristics to <strong>taxonomic</strong><br />

studies of the Eriocaulaceae can be seen at many levels. Although<br />

the family can be considered stenopalynous, as recorded by Erdtman<br />

(1943, 1952), Thanikaimoni (1965), <strong>and</strong>Santos et al. (2000), the <strong>pollen</strong><br />

characteristics presented here suggest that they have <strong>taxonomic</strong> value.<br />

The <strong>pollen</strong> characteristics of the Eriocaulaceae are sufficient to<br />

distinguish them from the other families of the order Poales.<br />

95


96 R.L.B. de Borges et al. / Review of Palaeobotany <strong>and</strong> Palynology 154 (2009) 91–105<br />

Spiraperturate <strong>pollen</strong> grains with a spinulose exine surface are<br />

especially characteristic of the family among those from the same<br />

order (Kuprianova, 1948; Erdtman, 1952; Raj <strong>and</strong> Saxena, 1966;<br />

Sharma, 1967; Maley, 1970; Melhem <strong>and</strong> Abreu, 1981; Zavada, 1983;<br />

Salgado-Labouriau <strong>and</strong> Rinaldi, 1990; W<strong>and</strong>erley <strong>and</strong> Melhem, 1991;<br />

Harley <strong>and</strong> Zavada, 2000; Linder <strong>and</strong> Rudall, 2005).<br />

According to Ruhl<strong>and</strong> (1903), the family includes two subfamilies:<br />

Eriocauloideae (Eriocaulon <strong>and</strong> Mesanthemum) with four or six<br />

stamens <strong>and</strong> gl<strong>and</strong>ular petals <strong>and</strong> Paepalanthoideae (the remaining<br />

genera) with two or three stamens <strong>and</strong> non-gl<strong>and</strong>ular petals. This<br />

proposal, although not corroborated by morphological analyses<br />

(Giulietti et al., 2000), was supported by molecular analysis (M. J. G.<br />

Andrade, unpubl. data) <strong>and</strong> now by our <strong>pollen</strong> data.<br />

Eriocaulon differs from the other genera by having interapertural<br />

exines arranged in a two-by-two pattern <strong>and</strong> in displaying an exine<br />

with obtuse microspines <strong>and</strong> an ornamented apertural membrane.<br />

Mesanthemum, the other genus of the subfamily Eriocauloideae,<br />

Plate I. Pollen grains of Eriocaulaceae.<br />

1–5. Eriocaulon elichrysoides Bong., 1 — high focus, 2 — optical section, 3 <strong>and</strong> 4 — general view (SEM), 5 — surface (SEM).<br />

6. Eriocaulon humboldtii Kunth., surface (SEM).<br />

7–9. Actinocephalus bongardii (A. St.-Hil.) Sano, 7 — high focus, 8 — optical section, 9 — low focus.<br />

10–12. Actinocephalus divaricatus (Bong.) Sano, 10 — high focus, 11 — optical section, 12 — low focus. All bars=2 µm.<br />

Plate II. Pollen grains of Eriocaulaceae. (see on page 98)<br />

shows medium-sized <strong>pollen</strong> grains (ca. 35 µm), echinate exine, <strong>and</strong><br />

apertures in spiral form (see Ybert, 1979).<br />

Tonina <strong>and</strong> Syngonanthus st<strong>and</strong> out from the other genera within the<br />

subfamily Paepalanthoideae. Tonina fluviatilis, however, presented a<br />

unique character (grooved spines) within the Eriocaulaceae, confirming<br />

its position as a monotypic genus, which is now sustained by <strong>pollen</strong> data.<br />

The <strong>pollen</strong> grains of Syngonanthus have two differential aperture<br />

patterns. In S. sect. Syngonanthus (S. fuscescens <strong>and</strong> S. schwackei), S. sect.<br />

Carpocephalus (S. caulescens), <strong>and</strong> S. sect. Thysanocephalus (S. cipoensis<br />

<strong>and</strong> S. vernonioides) these are spiraperturate, while in the species of<br />

Syngonanthus sect. Eulepis <strong>and</strong> in S. imbricatus [S. sect. Thysanocephalus,<br />

which was recently proposed to be included in S. sectEulepis by<br />

Lazzari (2000)] they are 2-zonasulcate. This latter type of aperture, here<br />

discovered in Syngonanthus, is especially interesting because the genus<br />

forms two monophyletic groups based on morphological, molecular<br />

(M. J. G. Andrade, unpubl. data.) <strong>and</strong> flavonoid data (Ricci et al., 1996):<br />

Group 1 — Syngonanthus sect. Syngonanthus together with S. sect.<br />

1–2. Actinocephalus cabralensis (Silveira) Sano, 1 — general view (SEM), 2 — surface (SEM).<br />

3–6. Actinocephalus ramosus (Wikstr.) Sano, 3 — general view (SEM), 4–6 — surface (SEM). 7–11 — Blastocaulon albidum Ruhl<strong>and</strong>,; 7 — high focus, 8 — optical section, 9 —<br />

low focus, 10 — general view (SEM), 11 — surface (SEM).<br />

12. Blastocaulon scirpeum (Mart.) Giul., surface (SEM). All bars =2 µm.<br />

Plate III. Pollen grains of Eriocaulaceae. (see on page 99)<br />

1–6 — Lachnocaulon minus Small, 1 — high focus, 2 — optical section, 3 — low focus.<br />

4 — general view (SEM), 5–6; surface (SEM).<br />

7–11. Leiothrix hirsuta (Wikstr.) Ruhl<strong>and</strong>, 7 — high focus, 8 — optical section, 9 — low focus, 10 — general view (SEM), 11 — surface (SEM).<br />

12. Leiothrix plantago (Mart.) Giul. general view (SEM). All bars=2 µm.<br />

Plate IV. Pollen grains of Eriocaulaceae. (see on page 100)<br />

1–3. Leiothrix plantago (Mart.) Giul., 1 — surface (SEM), 2 — general view (SEM), 3 — surface (SEM).<br />

4–6. Leiothrix curvifolia (Bong.) Ruhl<strong>and</strong>, 4 — high focus, 5 — optical section, 6 — low focus.<br />

7–9. Paepalanthus applanatus Ruhl<strong>and</strong>, 7 — high focus, 8 — optical section, 9 — low focus;<br />

10. Paepalanthus pulvinathus N. E. Br., surface (SEM).<br />

11–12. Paepalanthus scleranthus Ruhl<strong>and</strong>, 11 — general view (SEM), 12 — surface (SEM). All bars =2 µm.<br />

Plate V. Pollen grains of Eriocaulaceae. (see on page 101)<br />

1. Paepalanthus subtilis Miq., surface (SEM).<br />

2–12. Philodice hoffmanseggii Mart., 2 — high focus, 3 — optical section, 4 — low focus; 5 — high focus, 6 — optical section, 7 — low focus; 8 — high focus, 9 — optical section, 10 —<br />

low focus; 11 — general view (SEM), 12 — surface (SEM). All bars=3 µm.<br />

Plate VI. Pollen grains of Eriocaulaceae. (see on page 102)<br />

1–6. Rondonanthus duidae (Gleason) Hensold & Giul., 1 — high focus, 2 — optical section, 3 — low focus, 4 — general view (SEM), 5–6 — surface (SEM).<br />

7–9. Syngonanthus mucugensis Giul., 7 — high focus, 8 — optical section, 9 — low focus.<br />

10–11. Syngonanthus giuliettiae L. R. Parra, 10 — general view (SEM), 11 — surface (SEM).<br />

12. Syngonanthus schwackei Ruhl<strong>and</strong>, surface (SEM). All bars =3 µm.<br />

Plate VII. Pollen grains of Eriocaulaceae. (see on page 103)<br />

1 — Syngonanthus arenarius (Gardn.) Ruhl<strong>and</strong>, surface (SEM).<br />

2–6. Syngonanthus vernonioides (Kunth.) Ruhl<strong>and</strong>, 2 — high focus, 3 — optical section, 4 — low focus, 5 — general view (SEM), 6 — surface (SEM).<br />

7–12. Tonina fluviatilis Aubl., 7 — high focus, 8 — optical section, 9 — low focus, 10 — general view (SEM), 11 — surface (SEM), 12 — spine (SEM). Arrow = microspine on apertural<br />

membrane. All bars=3 µm except Fig. 12=1 µm.


R.L.B. de Borges et al. / Review of Palaeobotany <strong>and</strong> Palynology 154 (2009) 91–105<br />

Plate I.<br />

97


98 R.L.B. de Borges et al. / Review of Palaeobotany <strong>and</strong> Palynology 154 (2009) 91–105<br />

Plate II (caption on page 96).


R.L.B. de Borges et al. / Review of Palaeobotany <strong>and</strong> Palynology 154 (2009) 91–105<br />

Plate III (caption on page 96).<br />

99


100 R.L.B. de Borges et al. / Review of Palaeobotany <strong>and</strong> Palynology 154 (2009) 91–105<br />

Plate IV (caption on page 96).


R.L.B. de Borges et al. / Review of Palaeobotany <strong>and</strong> Palynology 154 (2009) 91–105<br />

Plate V (caption on page 96).<br />

101


102 R.L.B. de Borges et al. / Review of Palaeobotany <strong>and</strong> Palynology 154 (2009) 91–105<br />

Plate VI (caption on page 96).


R.L.B. de Borges et al. / Review of Palaeobotany <strong>and</strong> Palynology 154 (2009) 91–105<br />

Plate VII (caption on page 96 ).<br />

103


104 R.L.B. de Borges et al. / Review of Palaeobotany <strong>and</strong> Palynology 154 (2009) 91–105<br />

Table 4<br />

Summary of <strong>pollen</strong> characteristics of Eriocaulaceae genera<br />

Taxa No. of<br />

studied<br />

spp.<br />

Carpocephalus, <strong>and</strong>Group2— S. sect. Eulepis together with S. sect.<br />

Thysanocephalus.<br />

Thus, <strong>pollen</strong> data allied with others, raise the possibility of<br />

separating Syngonanthus into two distinct genera, as proposed by<br />

M. J. G. Andrade (unpubl. data.). The homogeneity of Syngonanthus<br />

sect Eulepis with 2-zonasulcate <strong>pollen</strong> grains is strong evidence<br />

supporting the new genus, but the position of S. sect. Thysanocephalus<br />

with spiraperturate <strong>pollen</strong> grains needs more study.<br />

According to Hensold <strong>and</strong> Giulietti (1991), the genus Rondonanthus<br />

appears to combine characteristics from both the Eriocauloideae <strong>and</strong><br />

Paepalanthoideae subfamilies. Rondonanthus was the only representative<br />

of Paepalanthoideae having a thick exine, a characteristic found<br />

in the species of Eriocaulon. However, in this latter genus, the nexine is<br />

thicker than the sexine, whereas the sexine <strong>and</strong> nexine are of equal<br />

thickness in Rondonanthus.<br />

The genera Paepalanthus <strong>and</strong> Syngonanthus demonstrated the greatest<br />

variation in <strong>pollen</strong> characteristics, but only the zonasulcate species of<br />

Syngonanthus sect Eulepis can be differentiated from the others. All of<br />

the characteristics of Actinocephalus fit with those of Paepalanthus, as<br />

recorded by Santos et al. (2000) in studying species of both genera. A more<br />

detailed study of these <strong>pollen</strong> grains under transmission electron<br />

microscopy could provide important data for the taxonomy of the<br />

Eriocaulaceae, especially in terms of a better diagnosis of their apertures.<br />

5. Conclusion<br />

Size<br />

class<br />

Subfam. Eriocauloideae<br />

Eriocaulon 4 Medium Spiraperturate, 2–3 apertures;<br />

interapertural exine in a<br />

crosshatch pattern<br />

Subfam. Paepalanthoideae<br />

Actinocephalus 6 Small to<br />

medium<br />

Apertural type Exine layers under LM Spines Granules<br />

Spiraperturate, only one spiral<br />

(helicoidal) or two spirals in<br />

Blastocaulon 2 Small<br />

varied arrangement<br />

Spiraperturate, only one spiral<br />

(helicoidal)<br />

Lachnocaulon 2 Small Spiraperturate, only one spiral in<br />

tennis ball pattern<br />

Leiothrix 9 Medium Spiraperturate, perfect spiral<br />

(helicoidal), or in tennis ball<br />

pattern<br />

Paepalanthus 15 Small to<br />

medium<br />

Spiraperturate, many<br />

arrangements<br />

The stenopalynous condition stated to Eriocaulaceae family is not<br />

well-supported here, because <strong>pollen</strong> characteristics are usefull to the<br />

characterization of some <strong>taxonomic</strong> groups. This study of the diversity of<br />

Eriocaulaceae <strong>pollen</strong> brought to light characteristics previously unrecorded:<br />

the grooved spines of Tonina fluviatilis <strong>and</strong> the 2-zonasulcate<br />

grains of <strong>pollen</strong> of Syngonanthus sect. Eulepis. Furthermore the <strong>pollen</strong><br />

grains of 26 species are described here for the first time <strong>and</strong> 41 species<br />

have been subjected to more detailed examination through SEM.<br />

SbN Obtuse microspines, regularly<br />

distributed<br />

S=N but SNN inA. denudatus Acute spines <strong>and</strong> acute <strong>and</strong> obtuse<br />

microspines with irregular<br />

distribution<br />

Undifferentiated Acute spines with acute <strong>and</strong> obtuse<br />

microspines disperse among they<br />

SNN Acute spines with acute (larger) <strong>and</strong><br />

obtuse (smaller) microspines<br />

disperse among they<br />

Undifferentiated but S=N inL. flavescens<br />

<strong>and</strong> L. plantago<br />

Undifferentiated but SNN inP. applanatus<br />

<strong>and</strong> P. comans <strong>and</strong> S=N inP. bromelioides<br />

<strong>and</strong> P. giganteus<br />

Acknowledgments<br />

Acute (micro)spines with irregular<br />

distribution<br />

Acute spines <strong>and</strong> acute <strong>and</strong> obtuse<br />

microspines with irregular<br />

distribution<br />

The authors wish to express their thanks to: Coordenação de<br />

Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho<br />

Nacional de Desenvolvimento Científico e Tecnológico (CNPq) <strong>and</strong><br />

Ministério de Ciência e Tecnologia (MCT) for financial support <strong>and</strong><br />

grants; IMSEAR for permitting use of the SEM; directive board of the<br />

herbaria HUEFS, MU, SP <strong>and</strong> SPF for providing <strong>pollen</strong> samples;<br />

Dr. Raymond Mervin Harley (RBG, Kew) for critical reading of the text;<br />

Mrs. Gisele Pinto Rocha (UEFS) for technical assistance with SEM;<br />

Mrs. Neuza Magalhães Moraes Santos (SISBI/UEFS) for providing copies<br />

of many of articles cited on this paper; Drs. Maria José Gomes de Andrade<br />

(UNEB), Paulo Takeo Sano (USP) e Vera Lucia Scatena (UNESP) for giving<br />

some specimens. Authors are deeply thankful to three anonymous<br />

referees of RPP for their suggestions <strong>and</strong> corrections.<br />

Appendix A. Specimens investigated<br />

Absent<br />

On the edge of exine<br />

strips <strong>and</strong> irregularly<br />

scattered<br />

Few, distributed close<br />

to the spines<br />

On the edge of exine<br />

strips <strong>and</strong> between<br />

the spines<br />

Absent, except for L.<br />

plantago (Mart.) Giul.<br />

Irregularly distributed<br />

<strong>and</strong> on the edge of<br />

exine strips<br />

Philodice 1 Small Spiraperturate, one aperture in<br />

different arrangements<br />

S=N Acute microspines Absent<br />

Rondonanthus 1 Medium Spiraperturate, one aperture in S=N Acute spines <strong>and</strong> acute <strong>and</strong> obtuse Rare<br />

varied arrangement<br />

microspines with irregular<br />

distribution<br />

Syngonanthus 14 Small to Zonasulcate (2 apertures), S=N but undifferentiated in S. caulescens, S. Acute spines with convex walls <strong>and</strong> Irregular distributed<br />

medium spirapertures in many<br />

cipoensis, S. schwackei <strong>and</strong> SbN inS. acute <strong>and</strong> obtuse microspines <strong>and</strong> on the edge of<br />

arrangements<br />

imbricatus, S. vernonioides<br />

exine strips<br />

Tonina 1 Small⁎ Spiraperturate – Acute <strong>and</strong> obtuse microspines with<br />

straight walls; acute grooved spines<br />

Absent<br />

Sizes: small (≤25 µm), medium (N25 µm); S = sexine; N = nexine. ⁎Based on SEM measurements (av. 20.51 µm).<br />

Actinocephalus bongardii (A. St.-Hill.) Sano, A. M. Giulietti et al. 932-<br />

80, SPF; Actinocephalus cabralensis (Silveira) Sano, CFCR 15363, SPF;<br />

Actinocephalus denudatus (Körn.) Sano, CFCR 2428, SPF; Actinocephalus<br />

divaricatus (Bong.) Sano, CFCR 2258, SPF; Actinocephalus polyanthus<br />

(Bong.) Sano, CFCR 6349, SPF; Actinocephalus ramosus (Wikstr.)<br />

Sano, A. M. Carvalho & J. Saunders 3140, SPF.<br />

Blastocaulon albidum Ruhl<strong>and</strong>, N. Hensold 234, HUEFS; Blastocaulon<br />

scirpeum (Mart.) Giul., CFCR, SPF 3006.<br />

Eriocaulon elichrysoides Bong., W. Monteiro 9, HUEFS; Eriocaulon<br />

humboldtii Kunth, Almeida & Cordeiro552, HUEFS; Eriocaulon ligulatum<br />

(Vell.) L. B. Sm., CFCR 1522, SPF; Eriocaulon sellowianum Kunth,<br />

Farias et al. 97/127, HUEFS.<br />

Lachnocaulon engleri Ruhl<strong>and</strong>, Unwin 237, MU; Lachnocaulon<br />

minus Small, Unwin 230, MU.<br />

Leiothrix angustifolia (Körn.) Ruhl<strong>and</strong>, CFCR 1427, SPF; Leiothrix<br />

distichoclada Herzog, W. Ganev 1964, HUEFS; Leiothrix flavescens (Bong.)


Ruhl<strong>and</strong>, W. Ganev 2735, HUEFS; Leiothrix fluitans (Mart.) Ruhl<strong>and</strong>, CFCR<br />

8317, SPF; Leiothrix hirsuta (Wikstr.) Ruhl<strong>and</strong>, W. Ganev 830, HUEFS;<br />

Leiothrix plantago (Mart.) Giul., J. Semir et al. 2753, HUEFS; Leiothrix rufula<br />

(A. St. Hil.) Ruhl<strong>and</strong>, CFCR 1895, SPF; Leiothrix spiralis (Körn.) Ruhl<strong>and</strong>,<br />

CFSC 3903, SPF; Leiothrix vivipara (Bong.) Ruhl<strong>and</strong>, CFCR 3802, SPF.<br />

Paepalanthus applanatus Ruhl<strong>and</strong>, N. Hensold 600, SPF; Paepalanthus<br />

bromelioides Silveira, CFSC 9068, SPF; Paepalanthus chrysolepis<br />

Silveira, M. J. G. Andrade 531, HUEFS; Paepalanthus comans Silveira, N.<br />

Hensold 510, SPF; Paepalanthus giganteus Sano, CFCR 3592, SPF; Paepalanthus<br />

leucocephalus Ruhl<strong>and</strong>, M. J. G. Andrade et al. 549, HUEFS;<br />

Paepalanthus myocephalus Mart. ex Körn., M. J. G. Andrade 613,<br />

HUEFS; Paepalanthus planifolius (Bong.) Körn., CFSC 12292, SPF; Paepalanthus<br />

pulchelus Herzog, M. J. G. Andrade 350, HUEFS; Paepalanthus<br />

pulvinathus N. E. Br., M. J. G. Andrade 106, HUEFS; Paepalanthus<br />

scleranthus Ruhl<strong>and</strong>, M. J. G. Andrade 537, HUEFS; Paepalanthus<br />

sphaerocephalus Ruhl<strong>and</strong>, W. Ganev 3430, HUEFS; Paepalanthus<br />

subtilis Miq., F. Juchum 16, HUEFS; Paepalanthus superbus Ruhl<strong>and</strong>,<br />

A. M. Giulietti 2504, HUEFS; Paepalanthus tortilis (Bong.) Mart., HUEFS<br />

40087, HUEFS.<br />

Philodice hoffmannseggii Mart., A. M. Giulietti 122, HUEFS.<br />

Rondonanthus duidae (Gleason) Hensold & Giul., R. Liesner 25223, SPF.<br />

Syngonanthus arenarius (Gardn.) Ruhl<strong>and</strong>, M. J. G. Andrade 493,<br />

HUEFS; Syngonanthus bisulcatus (Körn.) Ruhl<strong>and</strong>, M. J. G. Andrade 494,<br />

HUEFS; Syngonanthus brasiliana Giul., CFCR 10199, SPF; Syngonanthus<br />

caulescens (Poir.) Ruhl<strong>and</strong>, W. Ganev 2142, SPF; Syngonanthus<br />

cipoensis Ruhl<strong>and</strong>, CFSC 10467, SPF; Syngonanthus elegans var. elegans<br />

(Körn.) Ruhl<strong>and</strong>, Parra et al. 86, SPF; Syngonanthus euschemus<br />

Ruhl<strong>and</strong>, Hatschback 51849, HUEFS; Syngonanthus fuscescens Ruhl<strong>and</strong>,<br />

Hatschback 49593, SPF; Syngonanthus giuliettiae L. R. Parra, I. S. Santos<br />

03, HUEFS; Syngonanthus imbricatus (Körn.) Ruhl<strong>and</strong>, Andrade Lima s.<br />

n, SPF; Syngonanthus mucugensis Giul., CFCR 1459, SPF; Syngonanthus<br />

schwackei Ruhl<strong>and</strong>, T. B. Cavalcanti et al. 2906, HUEFS; Syngonanthus<br />

vernonioides (Kunth) Ruhl<strong>and</strong>, Arbo & Becker 1640, SPF; Syngonanthus<br />

verticillatus (Bong.) Ruhl<strong>and</strong>, Arbo et al. 4614, SPF.<br />

Tonina fluviatilis Aubl., M. J. G. Andrade 616, HUEFS.<br />

References<br />

APG II, 2003. An update of the Angiosperm Phylogeny Group classification for the orders<br />

<strong>and</strong> families of flowering plants: APG II. Botanical Journal of the Linnean Society<br />

141, 399–436.<br />

Coan, A.I., Rosa, M.M., Scatena, V.L., 2007a. Embryology <strong>and</strong> seed development of<br />

Syngonanthus caulescens (Poir.) Ruhl<strong>and</strong> (Eriocaulaceae-Poales). Aquatic Botany<br />

86, 148–156.<br />

Coan, A.I., Rosa, M.M., Scatena, V.L., 2007b. Contribution to the embryology of Leiothrix<br />

fluitans (Eriocaulaceae: Poales). Aquatic Botany 87, 155–160.<br />

Erdtman, G., 1943. An Introduction to Pollen Analysis. Chronica Botanica Company,<br />

Waltham.<br />

Erdtman, G., 1952. Pollen Morphology <strong>and</strong> Plant Taxonomy – Angiosperms. Almqvist<br />

<strong>and</strong> Wiksell, Stockholm.<br />

Erdtman, G., 1960. The acetolysis method: a revised description. Svensk Botanisk<br />

Tidskrift 39, 561–564.<br />

Furness, C.A., 1988. The Northwest European Pollen Flora (39): Eriocaulaceae. Review of<br />

Palaeobotany <strong>and</strong> Palynology 57, 27–32.<br />

Giulietti, A.M.,1996. Leiotrix Ruhl<strong>and</strong> (Eriocaulaceae) no Estado da Bahia. Sitientibus 15, 61–81.<br />

Giulietti, N., Giulietti, A.M., Pirani, J.R., Menezes, N.L., 1988. Estudos em sempre-vivas:<br />

importância do extrativismo em Minas Gerais, Brasil. Acta Botanica Brasilica 1,<br />

179–193.<br />

R.L.B. de Borges et al. / Review of Palaeobotany <strong>and</strong> Palynology 154 (2009) 91–105<br />

Giulietti, A.M., Scatena, V.L., Sano, P.T., Parra, L.R., Queiroz, L.P., Harley, R.M., Menezes, N.L.,<br />

Iseppon, A.M.B., Salatino, A., Salatino, M.L., Vilegas, W., Santos, L.C., Ricci, C.W., Bonfim,<br />

M.C.P., Mir<strong>and</strong>a, E.B., 2000. Multidisciplinary studies on neotropical Eriocaulaceae. In:<br />

Wilson, K.L., Morrison, D.A. (Eds.), Monocots: Systematics <strong>and</strong> Evolution. CSIRO,<br />

Melbourne, pp. 580–589.<br />

Halbritter, H., Weber, M., Zetter, R., Frosh-Radivo, A., Buchner, R., Hesse, M., 2007. PalDat –<br />

Illustrated H<strong>and</strong>book on Pollen Terminology. Society for the Promotion of Palynological<br />

Research in Austria, Vienna.<br />

Harley, M.M., Zavada, M.S., 2000. Pollen of the monocotyledons: selecting characters for<br />

cladistic analysis. In: Wilson, K.L., Morrison, D.A. (Eds.), Monocots: Systematics <strong>and</strong><br />

Evolution. CSIRO, Melbourne, pp. 194–211.<br />

Hensold, N., 1991. Revisionary studies in the Eriocaulaceae of Venezuela. Annals of<br />

Missouri Botanical Garden 78, 424–440.<br />

Hensold, N., Giulietti, A.M., 1991. Revision <strong>and</strong> redefinition of the genus Rondonanthus<br />

Herzog (Eriocaulaceae). Annals of Missouri Botanical Garden 78, 441–459.<br />

Huang, T.C., 1972. Pollen flora of Taiwan. Botany Department Press, Taiwan.<br />

Ikuse, M., 1956. Pollen grains of Japan. Hirokawa Publishing Co., Tokyo.<br />

Kuprianova, L.A., 1948. Morphologie des <strong>pollen</strong>s et phylogénie des Monocotilédones.<br />

Communications of Komarov Institute, Academy Sciences (URSS) 1 (7), 163–262.<br />

Lazzari, L.R.P. 2000. Redelimitação e Revisão de Syngonanthus sect. Eulepis (Bong. ex<br />

Koern.) Ruhl<strong>and</strong> – Eriocaulaceae. Ph.D. Thesis, São Paulo Univ., Brazil.<br />

Linder, H.P., Rudall, P.J., 2005. Evolutionary History of Poales. Annual Review Ecological<br />

Evolution Systematics 36, 107–124.<br />

Maley, J., 1970. Contributions à l’étude du Bassin tchadien ?. Atlas de <strong>pollen</strong>s du Tchad.<br />

Bulletin du Jardin Botanique National de Belgique 40, 29–48.<br />

Melchior, H., 1964. Commelinales. In: Melchior, H. (Ed.), A. Engler's Syllabus der<br />

Pflanzenfamilien. Gebrüder Borntraeger, Berlin, pp. 554–556.<br />

Melhem, T.S., Abreu, L.C.,1981. Grãos de Pólen de Angiospermas Aquáticas. Hoehnea 9, 23–40.<br />

Phillips, S., 1997. Flora of Tropical East Africa: Eriocaulaceae. Royal Botanic Garden, Kew.<br />

Pozhidaev, A.E., 2000. Pollen variety <strong>and</strong> aperture patterning. In: Harley, M.M., Morton,<br />

C.M., Blackmore, S. (Eds.), Pollen <strong>and</strong> Spores: Morphology <strong>and</strong> Biology. Royal<br />

Botanic Gardens, Kew, pp. 205–225.<br />

Punt, W., Hoen, P.P., Blackmore, S., Nilsson, S., Le Thomas, A., 2007. Glossary of <strong>pollen</strong><br />

<strong>and</strong> spore terminology. Review of Palaeobotany <strong>and</strong> Palynology 143, 1–81.<br />

Raj, B., Saxena, M.R., 1966. Pollen <strong>morphology</strong> of aquatic angiosperms. Pollen et Spores 3<br />

(1), 49–55.<br />

Ricci, C.V., Patricio, M.C.B., Salatino, M.L.F., Salatino, A., Giulietti, A.M., 1996. Flavonoids<br />

of Syngonanthus Ruhl. (Eriocaulaceae): <strong>taxonomic</strong> implications. Biochemical<br />

Systematic <strong>and</strong> Ecology 24 (6), 577–583.<br />

Ruhl<strong>and</strong>, W., 1903. Eriocaulaceae. In: Engler, A. (Ed.), Das Pflanzenreich. 13. Heft (IV.30).<br />

Engelman, Leipzig.<br />

Rull, V., 2003. An illustrated key for the identification of <strong>pollen</strong> from Pantepuy <strong>and</strong> Gran<br />

Sabana (Eastern Venezuelan Guayana). Palynology 27, 99–133.<br />

Salgado-Labouriau, M.L., Rinaldi, M., 1990. Palynolgy of the Gramineae of the<br />

Venezuelan Mountains. Grana 29, 119–128.<br />

Sano, P.T., 2004. Actinocephalus (Körn.) Sano (Paepalanthus sect. Actinocephalus), a new<br />

genus of Eriocaulaceae, <strong>and</strong> other <strong>taxonomic</strong> <strong>and</strong> nomenclatural changes involving<br />

Paepalanthus Mart. Taxon 53 (1), 99–107.<br />

Santos, F.A.R., Sano, P.T., Giulietti, A.M., 2000. Pollen Morphology of Brazilian species of<br />

Paepalanthus Mart. (Eriocaulaceae). Revista Universidade de Guarulhos-Geociências<br />

V(n° especial), pp. 216–218.<br />

Schmidt, I.B., Figueiredo, I.B., Scariot, A., 2007. Ethnobotany <strong>and</strong> effects of harvesting on<br />

the population ecology of Syngonanthus nitens (Bong.) Ruhl<strong>and</strong> (Eriocaulaceae), a<br />

NTFP from Jalapão Region, Central Brazil. Economic Botany 61 (1), 73–85.<br />

Sharma, M., 1967. Pollen Morphology of Indian Monocotyledons. Journal of Palynology<br />

1–98 (Special Volume).<br />

Stützel, T., 1985. Die systematische Stellung der Gattung Wurdackia (Eriocaulaceae).<br />

Flora 177, 335–344.<br />

Thanikaimoni, G., 1965. Contribution to the <strong>pollen</strong> <strong>morphology</strong> of Eriocaulaceae. Pollen<br />

et Spores 7 (2), 181–191.<br />

W<strong>and</strong>erley, M.G.L., Melhem, T.S., 1991. Flora polínica da Reserva do Parque Estadual das<br />

Fontes do Ipiranga (São Paulo, Brasil). Hoehnea 18 (1), 5–42.<br />

Ybert, J.P., 1979. Atlas de <strong>pollen</strong>s de Côte D'Ivoire. O.R.S.T.O.M., Paris.<br />

Zavada, M.S., 1983. <strong>Comparative</strong> Morphology of Monocot Pollen <strong>and</strong> Evolutionary<br />

Trends of Apertures <strong>and</strong> Wall Structures. Botanical Review 49, 331–379.<br />

105

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!