04.04.2013 Views

Chapter 8: NTSC, PAL, and SECAM Overview - deetc

Chapter 8: NTSC, PAL, and SECAM Overview - deetc

Chapter 8: NTSC, PAL, and SECAM Overview - deetc

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Chapter</strong> 8<br />

<strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong><br />

<strong>SECAM</strong> <strong>Overview</strong><br />

To fully underst<strong>and</strong> the <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong><br />

<strong>SECAM</strong> encoding <strong>and</strong> decoding processes, it<br />

is helpful to review the background of these<br />

st<strong>and</strong>ards <strong>and</strong> how they came about.<br />

<strong>NTSC</strong> <strong>Overview</strong><br />

The first color television system was developed<br />

in the United States, <strong>and</strong> on December 17,<br />

1953, the Federal Communications Commission<br />

(FCC) approved the transmission st<strong>and</strong>ard,<br />

with broadcasting approved to begin<br />

January 23, 1954. Most of the work for developing<br />

a color transmission st<strong>and</strong>ard that was<br />

compatible with the (then current) 525-line, 60field-per-second,<br />

2:1 interlaced monochrome<br />

st<strong>and</strong>ard was done by the National Television<br />

System Committee (<strong>NTSC</strong>).<br />

Luminance Information<br />

The monochrome luminance (Y) signal is<br />

derived from gamma-corrected red, green, <strong>and</strong><br />

blue (R´G´B´) signals:<br />

Y = 0.299R´ + 0.587G´ + 0.114B´<br />

<strong>NTSC</strong> <strong>Overview</strong> 247<br />

Due to the sound subcarrier at 4.5 MHz, a<br />

requirement was made that the color signal fit<br />

within the same b<strong>and</strong>width as the monochrome<br />

video signal (0–4.2 MHz).<br />

For economic reasons, another requirement<br />

was made that monochrome receivers<br />

must be able to display the black <strong>and</strong> white<br />

portion of a color broadcast <strong>and</strong> that color<br />

receivers must be able to display a monochrome<br />

broadcast.<br />

Color Information<br />

The eye is most sensitive to spatial <strong>and</strong> temporal<br />

variations in luminance; therefore, luminance<br />

information was still allowed the entire<br />

b<strong>and</strong>width available (0–4.2 MHz). Color information,<br />

to which the eye is less sensitive <strong>and</strong><br />

therefore requires less b<strong>and</strong>width, is represented<br />

as hue <strong>and</strong> saturation information.<br />

The hue <strong>and</strong> saturation information is<br />

transmitted using a 3.58-MHz subcarrier,<br />

encoded so that the receiver can separate the<br />

hue, saturation, <strong>and</strong> luminance information<br />

<strong>and</strong> convert them back to RGB signals for display.<br />

Although this allows the transmission of<br />

color signals within the same b<strong>and</strong>width as<br />

247


248 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

monochrome signals, the problem still<br />

remains as to how to cost-effectively separate<br />

the color <strong>and</strong> luminance information, since<br />

they occupy the same portion of the frequency<br />

spectrum.<br />

To transmit color information, U <strong>and</strong> V or I<br />

<strong>and</strong> Q “color difference” signals are used:<br />

R´ –Y = 0.701R´ –0.587G´–0.114B´<br />

B´–Y=–0.299R´–0.587G´ + 0.886B´<br />

U = 0.492(B´ –Y)<br />

V = 0.877(R´ –Y)<br />

I = 0.596R´–0.275G´ –0.321B´<br />

=Vcos33° – Usin 33°<br />

= 0.736(R´–Y) – 0.268(B´ –Y)<br />

Q = 0.212R´–0.523G´ + 0.311B´<br />

=Vsin33° +Ucos33°<br />

= 0.478(R´–Y) + 0.413(B´ –Y)<br />

The scaling factors to generate U <strong>and</strong> V<br />

from (B´ –Y) <strong>and</strong> (R´ –Y) were derived due to<br />

overmodulation considerations during transmission.<br />

If the full range of (B´ –Y) <strong>and</strong> (R´ –<br />

Y) were used, the modulated chrominance levels<br />

would exceed what the monochrome transmitters<br />

were capable of supporting.<br />

Experimentation determined that modulated<br />

subcarrier amplitudes of 20% of the Y signal<br />

amplitude could be permitted above white <strong>and</strong><br />

below black. The scaling factors were then<br />

selected so that the maximum level of 75%<br />

color would be at the white level.<br />

I <strong>and</strong> Q were initially selected since they<br />

more closely related to the variation of color<br />

acuity than U <strong>and</strong> V. The color response of the<br />

eye decreases as the size of viewed objects<br />

decreases. Small objects, occupying frequencies<br />

of 1.3–2.0 MHz, provide little color sensation.<br />

Medium objects, occupying the 0.6–1.3<br />

MHz frequency range, are acceptable if reproduced<br />

along the orange-cyan axis. Larger<br />

objects, occupying the 0–0.6 MHz frequency<br />

range, require full three-color reproduction.<br />

The I <strong>and</strong> Q b<strong>and</strong>widths were chosen<br />

accordingly, <strong>and</strong> the preferred color reproduction<br />

axis was obtained by rotating the U <strong>and</strong> V<br />

axes by 33°. The Q component, representing<br />

the green-purple color axis, was b<strong>and</strong>-limited<br />

to about 0.6 MHz. The I component, representingtheorange-cyancoloraxis,wasb<strong>and</strong>-limited<br />

to about 1.3 MHz.<br />

Another advantage of limiting the I <strong>and</strong> Q<br />

b<strong>and</strong>widths to 1.3 MHz <strong>and</strong> 0.6 MHz, respectively,<br />

is to minimize crosstalk due to asymmetrical<br />

sideb<strong>and</strong>s as a result of lowpass filtering<br />

the composite video signal to about 4.2 MHz.<br />

Q is a double sideb<strong>and</strong> signal; however, I is<br />

asymmetrical, bringing up the possibility of<br />

crosstalk between I <strong>and</strong> Q. The symmetry of Q<br />

avoids crosstalk into I; since Q is b<strong>and</strong>width<br />

limited to 0.6 MHz, I crosstalk falls outside the<br />

Qb<strong>and</strong>width.<br />

Advances in electronics have prompted<br />

changes. U <strong>and</strong> V, both b<strong>and</strong>width-limited to<br />

1.3 MHz, are now commonly used instead of I<br />

<strong>and</strong> Q. A greater amount of processing is<br />

required in the decoder due to both U <strong>and</strong> V<br />

being asymmetrical about the color subcarrier.<br />

The UV <strong>and</strong> IQ vector diagram is shown in<br />

Figure 8.1.<br />

Color Modulation<br />

I <strong>and</strong> Q (or U <strong>and</strong> V) are used to modulate a<br />

3.58-MHz color subcarrier using two balanced<br />

modulators operating in phase quadrature: one<br />

modulator is driven by the subcarrier at sine<br />

phase, the other modulator is driven by the<br />

subcarrier at cosine phase. The outputs of the<br />

modulators are added together to form the<br />

modulated chrominance signal:


C=Qsin(ωt +33°) +Icos(ωt +33°)<br />

ω =2πF SC<br />

F SC = 3.579545 MHz (± 10 Hz)<br />

or, if U <strong>and</strong> V are used instead of I <strong>and</strong> Q:<br />

C=Usinωt+Vcosωt<br />

Hue information is conveyed by the<br />

chrominance phase relative to the subcarrier.<br />

Saturation information is conveyed by chrominance<br />

amplitude. In addition, if an object has<br />

no color (such as a white, gray, or black<br />

object), the subcarrier is suppressed.<br />

YELLOW<br />

167˚<br />

BURST<br />

180˚<br />

62<br />

GREEN<br />

241˚<br />

RED<br />

103˚<br />

88<br />

+ V<br />

90˚<br />

100<br />

80<br />

60<br />

40<br />

20<br />

82 88<br />

Composite Video Generation<br />

CYAN<br />

283˚<br />

IRE SCALE UNITS<br />

82<br />

MAGENTA<br />

61˚<br />

62<br />

– I<br />

303˚<br />

+ Q<br />

33˚<br />

BLUE<br />

347˚<br />

<strong>NTSC</strong> <strong>Overview</strong> 249<br />

The modulated chrominance is added to the<br />

luminance information along with appropriate<br />

horizontal <strong>and</strong> vertical sync signals, blanking<br />

information, <strong>and</strong> color burst information, to<br />

generate the composite color video waveform<br />

shown in Figure 8.2.<br />

composite <strong>NTSC</strong> = Y + Q sin (ωt +33°)<br />

+Icos(ωt+33°) +timing<br />

or, if U <strong>and</strong> V are used instead of I <strong>and</strong> Q:<br />

composite <strong>NTSC</strong> = Y + U sin ωt<br />

+Vcosωt +timing<br />

Figure 8.1. UV <strong>and</strong> IQ Vector Diagram for 75% Color Bars.<br />

+ U<br />


250 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

100 IRE<br />

40 IRE<br />

20 IRE<br />

20 IRE<br />

7.5 IRE<br />

3.58 MHZ<br />

COLOR BURST<br />

(9 ± 1 CYCLES)<br />

WHITE<br />

BLANK LEVEL<br />

YELLOW<br />

LUMINANCE LEVEL<br />

CYAN<br />

GREEN<br />

MAGENTA<br />

RED<br />

BLUE<br />

PHASE = HUE<br />

BLACK<br />

WHITE LEVEL<br />

BLACK LEVEL<br />

BLANK LEVEL<br />

SYNC LEVEL<br />

Figure 8.2. (M) <strong>NTSC</strong> Composite Video Signal for 75% Color Bars.<br />

COLOR<br />

SATURATION


The b<strong>and</strong>width of the resulting composite<br />

video signal is shown in Figure 8.3.<br />

The I <strong>and</strong> Q (or U <strong>and</strong> V) information can<br />

be transmitted without loss of identity as long<br />

as the proper color subcarrier phase relationship<br />

is maintained at the encoding <strong>and</strong> decoding<br />

process. A color burst signal, consisting of<br />

nine cycles of the subcarrier frequency at a<br />

specific phase, follows most horizontal sync<br />

pulses, <strong>and</strong> provides the decoder a reference<br />

signalsoastobeabletoproperlyrecovertheI<br />

<strong>and</strong>Q(orU<strong>and</strong>V)signals.Thecolorburst<br />

phase is defined to be along the –U axisas<br />

shown in Figure 8.1.<br />

Color Subcarrier Frequency<br />

The specific choice for the color subcarrier frequency<br />

was dictated by several factors. The<br />

first was the need to provide horizontal interlace<br />

to reduce the visibility of the subcarrier,<br />

requiring that the subcarrier frequency, F SC ,<br />

be an odd multiple of one-half the horizontal<br />

line rate. The second factor was selection of a<br />

frequency high enough that it generated a fine<br />

interference pattern having low visibility.<br />

Third, double sideb<strong>and</strong>s for I <strong>and</strong> Q (or U <strong>and</strong><br />

V) b<strong>and</strong>widths below 0.6 MHz had to be<br />

allowed.<br />

Thechoiceofthefrequenciesis:<br />

FH =(4.5x10 6 /286) Hz = 15,734.27 Hz<br />

FV =FH /(525/2) = 59.94 Hz<br />

FSC =((13x7x5)/2)xFH = (455/2) x FH = 3.579545 MHz<br />

The resulting F V (field) <strong>and</strong> F H (line) rates<br />

were slightly different from the monochrome<br />

st<strong>and</strong>ards, but fell well within the tolerance<br />

ranges <strong>and</strong> were therefore acceptable. Figure<br />

8.4 illustrates the resulting spectral interleaving.<br />

<strong>NTSC</strong> <strong>Overview</strong> 251<br />

The luminance (Y) components are modulated<br />

due to the horizontal blanking process,<br />

resulting in bunches of luminance information<br />

spaced at intervals of F H . These signals are further<br />

modulated by the vertical blanking process,<br />

resulting in luminance frequency<br />

components occurring at NF H ± MF V .Nhasa<br />

maximum value of about 277 with a 4.2-MHz<br />

b<strong>and</strong>width-limited luminance. Thus, luminance<br />

information is limited to areas about integral<br />

harmonics of the line frequency (F H ), with<br />

additional spectral lines offset from NF H by the<br />

29.97-Hz vertical frame rate.<br />

The area in the spectrum between luminance<br />

groups, occurring at odd multiples of<br />

one-half the line frequency, contains minimal<br />

spectral energy <strong>and</strong> is therefore used for the<br />

transmission of chrominance information. The<br />

harmonics of the color subcarrier are separated<br />

from each other by F H sincetheyareodd<br />

multiples of one-half F H , providing a half-line<br />

offset <strong>and</strong> resulting in an interlace pattern that<br />

moves upward. Four complete fields are<br />

required to repeat a specific sample position,<br />

as shown in Figure 8.5.<br />

<strong>NTSC</strong> Variations<br />

There are three common variations of <strong>NTSC</strong>,<br />

as shown in Figures 8.6 <strong>and</strong> 8.7.<br />

The first, called “<strong>NTSC</strong> 4.43”, iscommonly<br />

used for multist<strong>and</strong>ard analog VCRs. The horizontal<br />

<strong>and</strong> vertical timing is the same as (M)<br />

<strong>NTSC</strong>; color encoding uses the <strong>PAL</strong> modulation<br />

format <strong>and</strong> a 4.43361875 MHz color subcarrier<br />

frequency.<br />

The second, “<strong>NTSC</strong>–J”, isusedinJapan.It<br />

isthesameas(M)<strong>NTSC</strong>,exceptthereisno<br />

blanking pedestal during active video. Thus,<br />

active video has a nominal amplitude of 714<br />

mV.


252 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

AMPLITUDE<br />

Y I I Q<br />

I<br />

Q<br />

0.0 1.0<br />

2.0 3.0 3.58 4.2<br />

AMPLITUDE<br />

0.0<br />

Y U<br />

V<br />

CHROMINANCE<br />

SUBCARRIER<br />

(A)<br />

CHROMINANCE<br />

SUBCARRIER<br />

U<br />

V<br />

1.0 2.0 3.0 3.58 4.2<br />

(B)<br />

FREQUENCY (MHZ)<br />

FREQUENCY (MHZ)<br />

Figure 8.3. Video B<strong>and</strong>widths of Baseb<strong>and</strong> (M) <strong>NTSC</strong> Video. (a)<br />

Using 1.3-MHz I <strong>and</strong> 0.6-MHz Q signals. (b) Using 1.3-MHz U <strong>and</strong><br />

V signals.


Y<br />

I, Q<br />

FH / 2 FH / 2<br />

FH<br />

Y<br />

I, Q<br />

Y I, Q Y I, Q Y<br />

227FH 228FH 229FH<br />

227.5FH 228.5FH<br />

15.734<br />

KHZ<br />

Y<br />

F<br />

29.97 HZ<br />

SPACING<br />

Figure 8.4. Luma <strong>and</strong> Chroma Frequency Interleave Principle.<br />

Note that 227.5F H =F SC.<br />

F<br />

<strong>NTSC</strong> <strong>Overview</strong> 253


254 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

ANALOG<br />

FIELD 1<br />

523 524 525 1 2 3 4 5 6 7 8 9 10 22<br />

EQUALIZING<br />

PULSES<br />

ANALOG<br />

FIELD 2<br />

261 262 263 264 265 266 267 268 269 270 271 272 285 286<br />

ANALOG<br />

FIELD 3<br />

523 524 525 1 2 3 4 5 6 7 8 9 10 22<br />

ANALOG<br />

FIELD 4<br />

BURST BEGINS WITH POSITIVE HALF-CYCLE<br />

BURST PHASE = 180˚ RELATIVE TO U<br />

BURST BEGINS WITH NEGATIVE HALF-CYCLE<br />

BURST PHASE = 180˚ RELATIVE TO U<br />

START<br />

OF<br />

VSYNC<br />

SERRATION<br />

PULSES<br />

BURST PHASE<br />

BURST PHASE<br />

EQUALIZING<br />

PULSES<br />

261 262 263 264 265 266 267 268 269 270 271 272 285 286<br />

H / 2 H / 2<br />

HSYNC HSYNC / 2<br />

H / 2 H / 2<br />

Figure 8.5. Four-field (M) <strong>NTSC</strong> Sequence <strong>and</strong> Burst Blanking.


"M"<br />

LINE / FIELD = 525 / 59.94<br />

FH = 15.734 KHZ<br />

FV = 59.94 HZ<br />

FSC = 3.579545 MHZ<br />

BLANKING SETUP = 7.5 IRE<br />

VIDEO BANDWIDTH = 4.2 MHZ<br />

AUDIO CARRIER = 4.5 MHZ<br />

CHANNEL BANDWIDTH = 6 MHZ<br />

QUADRATURE MODULATED SUBCARRIER<br />

PHASE = HUE<br />

AMPLITUDE = SATURATION<br />

LINE / FIELD = 525 / 59.94<br />

FH = 15.734 KHZ<br />

FV = 59.94 HZ<br />

FSC = 3.579545 MHZ<br />

The third, called “noninterlaced <strong>NTSC</strong>,” is<br />

a 262-line, 60 frames-per-second version of<br />

<strong>NTSC</strong>, as shown in Figure 8.7. This format is<br />

identical to st<strong>and</strong>ard (M) <strong>NTSC</strong>, except that<br />

there are 262 lines per frame.<br />

RF Modulation<br />

Figures 8.8, 8.9, <strong>and</strong> 8.10 illustrate the basic<br />

process of converting baseb<strong>and</strong> (M) <strong>NTSC</strong><br />

composite video to a RF (radio frequency) signal.<br />

Figure 8.8a shows the frequency spectrum<br />

of a baseb<strong>and</strong> composite video signal. It is similar<br />

to Figure 8.3, however, Figure 8.3 only<br />

shows the upper sideb<strong>and</strong> for simplicity. The<br />

“video carrier” notation at 0 MHz serves only<br />

as a reference point for comparison with Figure<br />

8.8b.<br />

Figure 8.8b shows the audio/video signal<br />

as it resides within a 6-MHz channel (such as<br />

channel 3). The video signal has been lowpass<br />

"<strong>NTSC</strong>–J"<br />

BLANKING SETUP = 0 IRE<br />

VIDEO BANDWIDTH = 4.2 MHZ<br />

AUDIO CARRIER = 4.5 MHZ<br />

CHANNEL BANDWIDTH = 6 MHZ<br />

Figure 8.6. Common <strong>NTSC</strong> Systems.<br />

"<strong>NTSC</strong> 4.43"<br />

LINE / FIELD = 525 / 59.94<br />

FH = 15.734 KHZ<br />

FV = 59.94 HZ<br />

FSC = 4.43361875 MHZ<br />

BLANKING SETUP = 7.5 IRE<br />

VIDEO BANDWIDTH = 4.2 MHZ<br />

AUDIO CARRIER = 4.5 MHZ<br />

CHANNEL BANDWIDTH = 6 MHZ<br />

<strong>NTSC</strong> <strong>Overview</strong> 255<br />

filtered, most of the lower sideb<strong>and</strong> has been<br />

removed, <strong>and</strong> audio information has been<br />

added.<br />

Figure 8.8c details the information present<br />

on the audio subcarrier for stereo (BTSC)<br />

operation.<br />

As shown in Figures 8.9 <strong>and</strong> 8.10, back<br />

porch clamping of the analog video signal<br />

ensures that the back porch level is constant,<br />

regardless of changes in the average picture<br />

level. White clipping of the video signal prevents<br />

the modulated signal from going below<br />

10%; below 10% may result in overmodulation<br />

<strong>and</strong> “buzzing” in television receivers. The<br />

video signal is then lowpass filtered to 4.2 MHz<br />

<strong>and</strong> drives the AM (amplitude modulation)<br />

video modulator. The sync level corresponds<br />

to 100% modulation, the blanking corresponds<br />

to 75%, <strong>and</strong> the white level corresponds to 10%.<br />

(M) <strong>NTSC</strong> systems use an IF (intermediate<br />

frequency) for the video of 45.75 MHz.


256 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

START<br />

OF<br />

VSYNC<br />

261 262 1 2 3 4 5 6 7 8 9 10 22<br />

At this point, audio information is added on<br />

a subcarrier at 41.25 MHz. A monaural audio<br />

signal is processed as shown in Figure 8.9 <strong>and</strong><br />

drives the FM (frequency modulation) modulator.<br />

The output of the FM modulator is added<br />

to the IF video signal.<br />

The SAW filter, used as a vestigial sideb<strong>and</strong><br />

filter, provides filtering of the IF signal.<br />

The mixer, or up converter, mixes the IF signal<br />

with the desired broadcast frequency. Both<br />

sum <strong>and</strong> difference frequencies are generated<br />

by the mixing process, so the difference signal<br />

is extracted by using a b<strong>and</strong>pass filter.<br />

Stereo Audio (Analog)<br />

BTSC<br />

The implementation of stereo audio, known as<br />

the BTSC system (Broadcast Television Systems<br />

Committee), is shown in Figure 8.10.<br />

Countries that use this system include the<br />

United States, Canada, Mexico, Brazil, <strong>and</strong> Taiwan.<br />

BURST BEGINS WITH POSITIVE HALF-CYCLE<br />

BURST PHASE = REFERENCE PHASE = 180˚ RELATIVE TO U<br />

BURST BEGINS WITH NEGATIVE HALF-CYCLE<br />

BURST PHASE = REFERENCE PHASE = 180˚ RELATIVE TO U<br />

Figure 8.7. Noninterlaced <strong>NTSC</strong> Frame Sequence.<br />

To enable stereo, L–R information is transmitted<br />

using a suppressed AM subcarrier. A<br />

SAP (secondary audio program) channel may<br />

also be present, commonly used to transmit a<br />

second language or commentary. A professional<br />

channel may be present, allowing communication<br />

with remote equipment <strong>and</strong><br />

people.<br />

Zweiton M<br />

This implementation for analog stereo audio<br />

(ITU-R BS.707) is similar to that used for <strong>PAL</strong>.<br />

The L+R information is transmitted on a FM<br />

subcarrier at 4.5 MHz. The R information is<br />

transmitted on a second FM subcarrier at (4.5<br />

MHz + 15.5F H )or4.72MHz.Thissystemis<br />

used in South Korea.<br />

EIA-J<br />

This implementation for analog stereo audio is<br />

similartoBTSC,<strong>and</strong>isusedinJapan.TheL–R<br />

signal, or a second L+R signal, is transmitted<br />

on a second FM subcarrier.


–4.5<br />

CHROMINANCE<br />

SUBCARRIER<br />

–4.2<br />

–3.58<br />

VIDEO<br />

CARRIER<br />

CHROMINANCE<br />

SUBCARRIER<br />

–3.0 –1.0 0.0 1.0<br />

3.0 3.58 4.2 4.5<br />

VIDEO<br />

CARRIER<br />

–4.0 –3.0 –0.75 0.0 1.0<br />

3.0 3.58 4.2 4.5 5.0<br />

AUDIO<br />

CARRIER<br />

0.0<br />

L + R<br />

(FM)<br />

0.75 MHZ<br />

VESTIGIAL<br />

SIDEBAND<br />

STEREO<br />

PILOT<br />

–1.25<br />

L – R<br />

(AM)<br />

FH = 15,734 HZ<br />

(A)<br />

6 MHZ CHANNEL<br />

(B)<br />

(C)<br />

CHROMINANCE<br />

SUBCARRIER<br />

SAP<br />

(FM)<br />

AUDIO<br />

CARRIER<br />

FH 2 FH 3 FH 4 FH 5 FH 6.5 FH<br />

4.75<br />

PROFESSIONAL<br />

CHANNEL (FM)<br />

<strong>NTSC</strong> <strong>Overview</strong> 257<br />

FREQUENCY (MHZ)<br />

FREQUENCY (MHZ)<br />

FREQUENCY<br />

Figure 8.8. Transmission Channel for (M) <strong>NTSC</strong>. (a) Frequency spectrum of baseb<strong>and</strong> composite<br />

video. (b) Frequency spectrum of typical channel including audio information. (c) Detailed<br />

frequency spectrum of BTSC stereo audio information.


258 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Analog Channel Assignments<br />

Tables 8.1 through 8.4 list the typical channel<br />

assignments for VHF, UHF, <strong>and</strong> cable for various<br />

<strong>NTSC</strong> systems.<br />

Note that cable systems routinely reassign<br />

channel numbers to alternate frequencies to<br />

minimize interference <strong>and</strong> provide multiple<br />

levels of programming (such as two versions of<br />

a premium movie channel: one for subscribers,<br />

<strong>and</strong> one for nonsubscribers during pre-view<br />

times).<br />

AUDIO LEFT<br />

AUDIO RIGHT<br />

(M) <strong>NTSC</strong><br />

COMPOSITE<br />

VIDEO<br />

5 KHZ<br />

CLOCK<br />

BACK<br />

PORCH<br />

CLAMP<br />

AND<br />

WHITE<br />

LEVEL<br />

CLIP<br />

L + R<br />

---------------<br />

75 µS<br />

PRE-EMPHASIS<br />

---------------<br />

50–15000 HZ BPF<br />

PLL<br />

PLL<br />

PLL<br />

4.2 MHZ<br />

LPF<br />

45.75 MHZ<br />

IF VIDEO CARRIER<br />

41.25 MHZ<br />

IF AUDIO CARRIER<br />

AM<br />

MODULATOR<br />

VIDEO CARRIER<br />

OF DESIRED CHANNEL<br />

FM<br />

MODULATOR<br />

+<br />

Use by Country<br />

Figure 8.6 shows the common designations for<br />

<strong>NTSC</strong> systems. The letter “M” refers to the<br />

monochrome st<strong>and</strong>ard for line <strong>and</strong> field rates<br />

(525/59.94), a video b<strong>and</strong>width of 4.2 MHz, an<br />

audio carrier frequency 4.5 MHz above the<br />

video carrier frequency, <strong>and</strong> a RF channel<br />

b<strong>and</strong>width of 6 MHz. The “<strong>NTSC</strong>” refers to the<br />

technique to add color information to the<br />

monochrome signal. Detailed timing parameters<br />

can be found in Table 8.9.<br />

SAW<br />

FILTER<br />

41–47 MHZ<br />

BANDWIDTH<br />

MIXER<br />

(UP CONVERTER)<br />

BANDPASS<br />

FILTER<br />

Figure 8.9. Typical RF Modulation Implementation for (M) <strong>NTSC</strong>: Mono Audio.<br />

MODULATED RF<br />

AUDIO / VIDEO<br />

(6 MHZ BANDWIDTH)


AUDIO LEFT<br />

AUDIO RIGHT<br />

(M) <strong>NTSC</strong><br />

COMPOSITE<br />

VIDEO<br />

PROFESSIONAL<br />

CHANNEL<br />

AUDIO<br />

SECONDARY<br />

AUDIO<br />

BACK<br />

PORCH<br />

CLAMP<br />

AND<br />

WHITE<br />

LEVEL<br />

CLIP<br />

150 µS<br />

PRE-EMPHASIS<br />

---------------<br />

300–3,400 HZ BPF<br />

PROFESSIONAL CHANNEL<br />

50–10,000 HZ BPF<br />

---------------<br />

BTSC<br />

COMPRESSION<br />

SECONDARY AUDIO PROGRAM (SAP)<br />

FM STEREO<br />

PILOT SIGNAL<br />

L – R<br />

---------------<br />

50–15,000 HZ BPF<br />

---------------<br />

BTSC<br />

COMPRESSION<br />

L + R<br />

---------------<br />

75 µS<br />

PRE-EMPHASIS<br />

---------------<br />

50–15,000 HZ BPF<br />

4.2 MHZ<br />

LPF<br />

41.25 MHZ – FH<br />

AM<br />

MODULATOR<br />

45.75 MHZ<br />

IF VIDEO CARRIER<br />

FM<br />

MODULATOR<br />

41.25 MHZ – 6.5FH<br />

IF AUDIO CARRIER<br />

FM<br />

MODULATOR<br />

41.25 MHZ – 5FH<br />

IF AUDIO CARRIER<br />

STEREO<br />

MODULATOR<br />

+<br />

SAW<br />

FILTER<br />

41–47 MHZ<br />

BANDWIDTH<br />

+<br />

+<br />

+<br />

MIXER<br />

(UP CONVERTER)<br />

CHANNEL<br />

SELECT<br />

<strong>NTSC</strong> <strong>Overview</strong> 259<br />

BANDPASS<br />

FILTER<br />

MODULATED RF<br />

AUDIO / VIDEO<br />

Figure 8.10. Typical RF Modulation Implementation for (M) <strong>NTSC</strong>: BTSC Stereo Audio.


260 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Table 8.1. Analog Broadcast Nominal Frequencies for North <strong>and</strong> South America.<br />

Broadcast<br />

Channel<br />

Video<br />

Carrier<br />

(MHz)<br />

Audio<br />

Carrier<br />

(MHz)<br />

Channel<br />

Range<br />

(MHz)<br />

Broadcast<br />

Channel<br />

Video<br />

Carrier<br />

(MHz)<br />

Audio<br />

Carrier<br />

(MHz)<br />

Channel<br />

Range<br />

(MHz)<br />

–<br />

–<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

–<br />

–<br />

55.25<br />

61.25<br />

67.25<br />

77.25<br />

83.25<br />

175.25<br />

181.25<br />

187.25<br />

–<br />

–<br />

59.75<br />

65.75<br />

71.75<br />

81.75<br />

87.75<br />

179.75<br />

185.75<br />

191.75<br />

–<br />

–<br />

54–60<br />

60–66<br />

66–72<br />

76–82<br />

82–88<br />

174–180<br />

180–186<br />

186–192<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

627.25<br />

633.25<br />

639.25<br />

645.25<br />

651.25<br />

657.25<br />

663.25<br />

669.25<br />

675.25<br />

681.25<br />

631.75<br />

637.75<br />

643.75<br />

649.75<br />

655.75<br />

661.75<br />

667.75<br />

673.75<br />

679.75<br />

685.75<br />

626–632<br />

632–638<br />

638–644<br />

644–650<br />

650–656<br />

656–662<br />

662–668<br />

668–674<br />

674–680<br />

680–686<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

193.25<br />

199.25<br />

205.25<br />

211.25<br />

471.25<br />

477.25<br />

483.25<br />

489.25<br />

495.25<br />

501.25<br />

197.75<br />

203.75<br />

209.75<br />

215.75<br />

475.75<br />

481.75<br />

487.75<br />

493.75<br />

499.75<br />

505.75<br />

192–198<br />

198–204<br />

204–210<br />

210–216<br />

470–476<br />

476–482<br />

482–488<br />

488–494<br />

494–500<br />

500–506<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

687.25<br />

693.25<br />

699.25<br />

705.25<br />

711.25<br />

717.25<br />

723.25<br />

729.25<br />

735.25<br />

741.25<br />

691.75<br />

697.75<br />

703.75<br />

709.75<br />

715.75<br />

721.75<br />

727.75<br />

733.75<br />

739.75<br />

745.75<br />

686–692<br />

692–698<br />

698–704<br />

704–710<br />

710–716<br />

716–722<br />

722–728<br />

728–734<br />

734–740<br />

740–746<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

507.25<br />

513.25<br />

519.25<br />

525.25<br />

531.25<br />

537.25<br />

543.25<br />

549.25<br />

555.25<br />

561.25<br />

511.75<br />

517.75<br />

523.75<br />

529.75<br />

535.75<br />

541.75<br />

547.75<br />

553.75<br />

559.75<br />

565.75<br />

506–512<br />

512–518<br />

518–524<br />

524–530<br />

530–536<br />

536–542<br />

542–548<br />

548–554<br />

554–560<br />

560–566<br />

60<br />

61<br />

62<br />

63<br />

64<br />

65<br />

66<br />

67<br />

68<br />

69<br />

747.25<br />

753.25<br />

759.25<br />

765.25<br />

771.25<br />

777.25<br />

783.25<br />

789.25<br />

795.25<br />

801.25<br />

751.75<br />

757.75<br />

763.75<br />

769.75<br />

775.75<br />

781.75<br />

787.75<br />

793.75<br />

799.75<br />

805.75<br />

746–752<br />

752–758<br />

758–764<br />

764–770<br />

770–776<br />

776–782<br />

782–788<br />

788–794<br />

794–800<br />

800–806<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

567.25<br />

573.25<br />

579.25<br />

585.25<br />

591.25<br />

597.25<br />

603.25<br />

609.25<br />

615.25<br />

621.25<br />

571.75<br />

577.75<br />

583.75<br />

589.75<br />

595.75<br />

601.75<br />

607.75<br />

613.75<br />

619.75<br />

625.75<br />

566–572<br />

572–578<br />

578–584<br />

584–590<br />

590–596<br />

596–602<br />

602–608<br />

608–614<br />

614–620<br />

620–626


<strong>NTSC</strong> <strong>Overview</strong> 261<br />

Table 8.2. Analog Broadcast Nominal Frequencies for Japan.<br />

Broadcast<br />

Channel<br />

Video<br />

Carrier<br />

(MHz)<br />

Audio<br />

Carrier<br />

(MHz)<br />

Channel<br />

Range<br />

(MHz)<br />

Broadcast<br />

Channel<br />

Video<br />

Carrier<br />

(MHz)<br />

Audio<br />

Carrier<br />

(MHz)<br />

Channel<br />

Range<br />

(MHz)<br />

–<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

–<br />

91.25<br />

97.25<br />

103.25<br />

171.25<br />

177.25<br />

183.25<br />

189.25<br />

193.25<br />

199.25<br />

–<br />

95.75<br />

101.75<br />

107.75<br />

175.75<br />

181.75<br />

187.75<br />

193.75<br />

197.75<br />

203.75<br />

–<br />

90–96<br />

96–102<br />

102–108<br />

170–176<br />

176–182<br />

182–188<br />

188–194<br />

192–198<br />

198–204<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

633.25<br />

639.25<br />

645.25<br />

651.25<br />

657.25<br />

663.25<br />

669.25<br />

675.25<br />

681.25<br />

687.25<br />

637.75<br />

643.75<br />

649.75<br />

655.75<br />

661.75<br />

667.75<br />

673.75<br />

679.75<br />

685.75<br />

691.75<br />

632–638<br />

638–644<br />

644–650<br />

650–656<br />

656–662<br />

662–668<br />

668–674<br />

674–680<br />

680–686<br />

686–692<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

205.25<br />

211.25<br />

217.25<br />

471.25<br />

477.25<br />

483.25<br />

489.25<br />

495.25<br />

501.25<br />

507.25<br />

209.75<br />

215.75<br />

221.75<br />

475.75<br />

481.75<br />

487.75<br />

493.75<br />

499.75<br />

505.75<br />

511.75<br />

204–210<br />

210–216<br />

216–222<br />

470–476<br />

476–482<br />

482–488<br />

488–494<br />

494–500<br />

500–506<br />

506–512<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

693.25<br />

699.25<br />

705.25<br />

711.25<br />

717.25<br />

723.25<br />

729.25<br />

735.25<br />

741.25<br />

747.25<br />

697.75<br />

703.75<br />

709.75<br />

715.75<br />

721.75<br />

727.75<br />

733.75<br />

739.75<br />

745.75<br />

751.75<br />

692–698<br />

698–704<br />

704–710<br />

710–716<br />

716–722<br />

722–728<br />

728–734<br />

734–740<br />

740–746<br />

746–752<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

513.25<br />

519.25<br />

525.25<br />

531.25<br />

537.25<br />

543.25<br />

549.25<br />

555.25<br />

561.25<br />

567.25<br />

517.75<br />

523.75<br />

529.75<br />

535.75<br />

541.75<br />

547.75<br />

553.75<br />

559.75<br />

565.75<br />

571.75<br />

512–518<br />

518–524<br />

524–530<br />

530–536<br />

536–542<br />

542–548<br />

548–554<br />

554–560<br />

560–566<br />

566–572<br />

60<br />

61<br />

62<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

753.25<br />

759.25<br />

765.25<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

757.75<br />

763.75<br />

769.75<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

752–758<br />

758–764<br />

764–770<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

573.25<br />

579.25<br />

585.25<br />

591.25<br />

597.25<br />

603.25<br />

609.25<br />

615.25<br />

621.25<br />

627.25<br />

577.75<br />

583.75<br />

589.75<br />

595.75<br />

601.75<br />

607.75<br />

613.75<br />

619.75<br />

625.75<br />

631.75<br />

572–578<br />

578–584<br />

584–590<br />

590–596<br />

596–602<br />

602–608<br />

608–614<br />

614–620<br />

620–626<br />

626–632


262 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Table 8.3a. Analog Cable TV Nominal Frequencies for USA for Incrementally Related<br />

Carrier (IRC) Systems. For Harmonically Related Carrier (HRC) systems, subtract 1.25<br />

MHz.<br />

Cable<br />

Channel<br />

Video<br />

Carrier<br />

(MHz)<br />

Audio<br />

Carrier<br />

(MHz)<br />

Channel<br />

Range<br />

(MHz)<br />

Cable<br />

Channel<br />

Video<br />

Carrier<br />

(MHz)<br />

Audio<br />

Carrier<br />

(MHz)<br />

Channel<br />

Range<br />

(MHz)<br />

–<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

–<br />

73.25<br />

55.25<br />

61.25<br />

67.25<br />

77.25<br />

83.25<br />

175.25<br />

181.25<br />

187.25<br />

–<br />

77.75<br />

59.75<br />

65.75<br />

71.75<br />

81.75<br />

87.75<br />

179.75<br />

185.75<br />

191.75<br />

–<br />

72–78<br />

54–60<br />

60–66<br />

66–72<br />

76–82<br />

82–88<br />

174–180<br />

180–186<br />

186–192<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

319.25<br />

325.25<br />

331.25<br />

337.25<br />

343.25<br />

349.25<br />

355.25<br />

361.25<br />

367.25<br />

373.25<br />

323.75<br />

329.75<br />

335.75<br />

341.75<br />

347.75<br />

353.75<br />

359.75<br />

365.75<br />

371.75<br />

377.75<br />

318–324<br />

324–330<br />

330–336<br />

336–342<br />

342–348<br />

348–354<br />

354–360<br />

360–366<br />

366–372<br />

372–378<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

193.25<br />

199.25<br />

205.25<br />

211.25<br />

121.25<br />

127.25<br />

133.25<br />

139.25<br />

145.25<br />

151.25<br />

197.75<br />

203.75<br />

209.75<br />

215.75<br />

125.75<br />

131.75<br />

137.75<br />

143.75<br />

149.75<br />

155.75<br />

192–198<br />

198–204<br />

204–210<br />

210–216<br />

120–126<br />

126–132<br />

132–138<br />

138–144<br />

144–150<br />

150–156<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

379.25<br />

385.25<br />

391.25<br />

397.25<br />

403.25<br />

409.25<br />

415.25<br />

421.25<br />

427.25<br />

433.25<br />

383.75<br />

389.75<br />

395.75<br />

401.75<br />

407.75<br />

413.75<br />

419.75<br />

425.75<br />

431.75<br />

437.75<br />

378–384<br />

384–390<br />

390–396<br />

396–402<br />

402–408<br />

408–414<br />

414–420<br />

420–426<br />

426–432<br />

432–438<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

157.25<br />

163.25<br />

169.25<br />

217.25<br />

223.25<br />

229.25<br />

235.25<br />

241.25<br />

247.25<br />

253.25<br />

161.75<br />

167.75<br />

173.75<br />

221.75<br />

227.75<br />

233.75<br />

239.75<br />

245.75<br />

251.75<br />

257.75<br />

156–162<br />

162–168<br />

168–174<br />

216–222<br />

222–228<br />

228–234<br />

234–240<br />

240–246<br />

246–252<br />

252–258<br />

60<br />

61<br />

62<br />

63<br />

64<br />

65<br />

66<br />

67<br />

68<br />

69<br />

439.25<br />

445.55<br />

451.25<br />

457.25<br />

463.25<br />

469.25<br />

475.25<br />

481.25<br />

487.25<br />

493.25<br />

443.75<br />

449.75<br />

455.75<br />

461.75<br />

467.75<br />

473.75<br />

479.75<br />

485.75<br />

491.75<br />

497.75<br />

438–444<br />

444–450<br />

450–456<br />

456–462<br />

462–468<br />

468–474<br />

474–480<br />

480–486<br />

486–492<br />

492–498<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

259.25<br />

265.25<br />

271.25<br />

277.25<br />

283.25<br />

289.25<br />

295.25<br />

301.25<br />

307.25<br />

313.25<br />

263.75<br />

269.75<br />

275.75<br />

281.75<br />

287.75<br />

293.75<br />

299.75<br />

305.75<br />

311.75<br />

317.75<br />

258–264<br />

264–270<br />

270–276<br />

276–282<br />

282–288<br />

288–294<br />

294–300<br />

300–306<br />

306–312<br />

312–318<br />

70<br />

71<br />

72<br />

73<br />

74<br />

75<br />

76<br />

77<br />

78<br />

79<br />

499.25<br />

505.25<br />

511.25<br />

517.25<br />

523.25<br />

529.25<br />

535.25<br />

541.25<br />

547.25<br />

553.25<br />

503.75<br />

509.75<br />

515.75<br />

521.75<br />

527.75<br />

533.75<br />

539.75<br />

545.75<br />

551.75<br />

557.75<br />

498–504<br />

504–510<br />

510–516<br />

516–522<br />

522–528<br />

528–534<br />

534–540<br />

540–546<br />

546–552<br />

552–558


<strong>NTSC</strong> <strong>Overview</strong> 263<br />

Table 8.3b. Analog Cable TV Nominal Frequencies for USA for Incrementally Related<br />

Carrier (IRC) Systems. For Harmonically Related Carrier (HRC) systems, subtract<br />

1.25 MHz. T channels are reverse (return) channels for two-way applications.<br />

Cable<br />

Channel<br />

Video<br />

Carrier<br />

(MHz)<br />

Audio<br />

Carrier<br />

(MHz)<br />

Channel<br />

Range<br />

(MHz)<br />

Cable<br />

Channel<br />

Video<br />

Carrier<br />

(MHz)<br />

Audio<br />

Carrier<br />

(MHz)<br />

Channel<br />

Range<br />

(MHz)<br />

80<br />

81<br />

82<br />

83<br />

84<br />

85<br />

86<br />

87<br />

88<br />

89<br />

559.25<br />

565.25<br />

571.25<br />

577.25<br />

583.25<br />

589.25<br />

595.25<br />

601.25<br />

607.25<br />

613.25<br />

563.75<br />

569.75<br />

575.75<br />

581.75<br />

587.75<br />

593.75<br />

599.75<br />

605.75<br />

611.75<br />

617.75<br />

558–564<br />

564–570<br />

570–576<br />

576–582<br />

582–588<br />

588–594<br />

594–600<br />

600–606<br />

606–612<br />

612–618<br />

120<br />

121<br />

122<br />

123<br />

124<br />

125<br />

126<br />

127<br />

128<br />

129<br />

769.25<br />

775.25<br />

781.25<br />

787.25<br />

793.25<br />

799.25<br />

805.25<br />

811.25<br />

817.25<br />

823.25<br />

773.75<br />

779.75<br />

785.75<br />

791.75<br />

797.75<br />

803.75<br />

809.75<br />

815.75<br />

821.75<br />

827.75<br />

768–774<br />

774–780<br />

780–786<br />

786–792<br />

792–798<br />

798–804<br />

804–810<br />

810–816<br />

816–822<br />

822–828<br />

90<br />

91<br />

92<br />

93<br />

94<br />

95<br />

96<br />

97<br />

98<br />

99<br />

619.25<br />

625.25<br />

631.25<br />

637.25<br />

643.25<br />

91.25<br />

97.25<br />

103.25<br />

109.25<br />

115.25<br />

623.75<br />

629.75<br />

635.75<br />

641.75<br />

647.75<br />

95.75<br />

101.75<br />

107.75<br />

113.75<br />

119.75<br />

618–624<br />

624–630<br />

630–636<br />

636–642<br />

642–648<br />

90–96<br />

96–102<br />

102–108<br />

108–114<br />

114–120<br />

130<br />

131<br />

132<br />

133<br />

134<br />

135<br />

136<br />

137<br />

138<br />

139<br />

829.25<br />

835.25<br />

841.25<br />

847.25<br />

853.25<br />

859.25<br />

865.25<br />

871.25<br />

877.25<br />

883.25<br />

833.75<br />

839.75<br />

845.75<br />

851.75<br />

857.75<br />

863.75<br />

869.75<br />

875.75<br />

881.75<br />

887.75<br />

828–834<br />

834–840<br />

840–846<br />

846–852<br />

852–858<br />

858–864<br />

864–870<br />

870–876<br />

876–882<br />

882–888<br />

100<br />

101<br />

102<br />

103<br />

104<br />

105<br />

106<br />

107<br />

108<br />

109<br />

649.25<br />

655.25<br />

661.25<br />

667.25<br />

673.25<br />

679.25<br />

685.25<br />

691.25<br />

697.25<br />

703.25<br />

653.75<br />

659.75<br />

665.75<br />

671.75<br />

677.75<br />

683.75<br />

689.75<br />

695.75<br />

701.75<br />

707.75<br />

648–654<br />

654–660<br />

660–666<br />

666–672<br />

672–678<br />

678–684<br />

684–690<br />

690–696<br />

696–702<br />

702–708<br />

140<br />

141<br />

142<br />

143<br />

144<br />

145<br />

146<br />

147<br />

148<br />

149<br />

889.25<br />

895.25<br />

901.25<br />

907.25<br />

913.25<br />

919.25<br />

925.25<br />

931.25<br />

937.25<br />

943.25<br />

893.75<br />

899.75<br />

905.75<br />

911.75<br />

917.75<br />

923.75<br />

929.75<br />

935.75<br />

941.75<br />

947.75<br />

888–894<br />

894–900<br />

900–906<br />

906–912<br />

912–918<br />

918–924<br />

924–930<br />

930–936<br />

936–942<br />

942–948<br />

110<br />

111<br />

112<br />

113<br />

114<br />

115<br />

116<br />

117<br />

118<br />

119<br />

709.25<br />

715.25<br />

721.25<br />

727.25<br />

733.25<br />

739.25<br />

745.25<br />

751.25<br />

757.25<br />

763.25<br />

713.75<br />

719.75<br />

725.75<br />

731.75<br />

737.75<br />

743.75<br />

749.75<br />

755.75<br />

761.75<br />

767.75<br />

708–714<br />

714–720<br />

720–726<br />

726–732<br />

732–738<br />

738–744<br />

744–750<br />

750–756<br />

756–762<br />

762–768<br />

150<br />

151<br />

152<br />

153<br />

154<br />

155<br />

156<br />

157<br />

158<br />

–<br />

949.25<br />

955.25<br />

961.25<br />

967.25<br />

973.25<br />

979.25<br />

985.25<br />

991.25<br />

997.25<br />

–<br />

953.75<br />

959.75<br />

965.75<br />

971.75<br />

977.75<br />

983.75<br />

989.75<br />

995.75<br />

1001.75<br />

–<br />

948–954<br />

954–960<br />

960–966<br />

966–972<br />

972–978<br />

978–984<br />

984–990<br />

990–996<br />

996–1002<br />

–<br />

T7<br />

T8<br />

T9<br />

T10<br />

8.25<br />

14.25<br />

20.25<br />

26.25<br />

7–13<br />

13–19<br />

19–25<br />

25–31<br />

T11<br />

T13<br />

T13<br />

–<br />

32.25<br />

38.25<br />

44.25<br />

–<br />

31–37<br />

37–43<br />

43–49<br />


264 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Table 8.4. Analog Cable TV Nominal Frequencies for Japan.<br />

Cable<br />

Channel<br />

Video<br />

Carrier<br />

(MHz)<br />

Audio<br />

Carrier<br />

(MHz)<br />

Channel<br />

Range<br />

(MHz)<br />

Cable<br />

Channel<br />

Video<br />

Carrier<br />

(MHz)<br />

Audio<br />

Carrier<br />

(MHz)<br />

Channel<br />

Range<br />

(MHz)<br />

–<br />

–<br />

–<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

–<br />

–<br />

–<br />

109.25<br />

115.25<br />

121.25<br />

127.25<br />

133.25<br />

139.25<br />

145.25<br />

–<br />

–<br />

–<br />

113.75<br />

119.75<br />

125.75<br />

131.75<br />

137.75<br />

143.75<br />

149.75<br />

–<br />

–<br />

–<br />

108–114<br />

114–120<br />

120–126<br />

126–132<br />

132–138<br />

138–144<br />

144–150<br />

40<br />

41<br />

42<br />

46<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

325.25<br />

331.25<br />

337.25<br />

343.25<br />

349.25<br />

355.25<br />

361.25<br />

367.25<br />

373.25<br />

379.25<br />

329.75<br />

335.75<br />

341.75<br />

347.75<br />

353.75<br />

359.75<br />

365.75<br />

371.75<br />

377.75<br />

383.75<br />

324–330<br />

330–336<br />

336–342<br />

342–348<br />

348–354<br />

354–360<br />

360–366<br />

366–372<br />

372–378<br />

378–384<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

151.25<br />

157.25<br />

165.25<br />

223.25<br />

231.25<br />

237.25<br />

243.25<br />

249.25<br />

253.25<br />

259.25<br />

155.75<br />

161.75<br />

169.75<br />

227.75<br />

235.75<br />

241.75<br />

247.75<br />

253.75<br />

257.75<br />

263.75<br />

150–156<br />

156–162<br />

164–170<br />

222–228<br />

230–236<br />

236–242<br />

242–248<br />

248–254<br />

252–258<br />

258–264<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

385.25<br />

391.25<br />

397.25<br />

403.25<br />

409.25<br />

415.25<br />

421.25<br />

427.25<br />

433.25<br />

439.25<br />

389.75<br />

395.75<br />

401.75<br />

407.75<br />

413.75<br />

419.75<br />

425.75<br />

431.75<br />

437.75<br />

443.75<br />

384–390<br />

390–396<br />

396–402<br />

402–408<br />

408–414<br />

414–420<br />

420–426<br />

426–432<br />

432–438<br />

438–444<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

265.25<br />

271.25<br />

277.25<br />

283.25<br />

289.25<br />

295.25<br />

301.25<br />

307.25<br />

313.25<br />

319.25<br />

269.75<br />

275.75<br />

281.75<br />

287.75<br />

293.75<br />

299.75<br />

305.75<br />

311.75<br />

317.75<br />

323.75<br />

264–270<br />

270–276<br />

276–282<br />

282–288<br />

288–294<br />

294–300<br />

300–306<br />

306–312<br />

312–318<br />

318–324<br />

60<br />

61<br />

62<br />

63<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

445.25<br />

451.25<br />

457.25<br />

463.25<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

449.75<br />

455.75<br />

461.75<br />

467.75<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

444–450<br />

450–456<br />

456–462<br />

462–468<br />

–<br />

–<br />

–<br />

–<br />

–<br />


The following countries use the (M) <strong>NTSC</strong><br />

st<strong>and</strong>ard.<br />

Antigua Japan (<strong>NTSC</strong>–J)<br />

Aruba Korea, South<br />

Bahamas Mexico<br />

Barbados Montserrat<br />

Belize Myanmar<br />

Bermuda Nicaragua<br />

Bolivia Panama<br />

Canada Peru<br />

Chile Philippines<br />

Colombia Puerto Rico<br />

Costa Rica St. Kitts <strong>and</strong> Nevis<br />

Cuba Samoa<br />

Curacao Suriname<br />

Dominican Republic Taiwan<br />

Ecuador Trinidad/Tobago<br />

El Salvador United States of<br />

Guam America<br />

Guatemala Venezuela<br />

Honduras Virgin Isl<strong>and</strong>s<br />

Jamaica<br />

Luminance Equation Derivation<br />

The equation for generating luminance from<br />

RGB is determined by the chromaticities of the<br />

three primary colors used by the receiver <strong>and</strong><br />

what color white actually is.<br />

The chromaticities of the RGB primaries<br />

<strong>and</strong> reference white (CIE illuminate C) were<br />

specified in the 1953 <strong>NTSC</strong> st<strong>and</strong>ard to be:<br />

R: xr =0.67 yr = 0.33 zr = 0.00<br />

G: xg = 0.21 yg =0.71zg =0.08<br />

B: xb = 0.14 yb =0.08zb =0.78<br />

white: xw = 0.3101<br />

zw = 0.3737<br />

yw = 0.3162<br />

<strong>NTSC</strong> <strong>Overview</strong> 265<br />

where x <strong>and</strong> y are the specified CIE 1931 chromaticity<br />

coordinates; z is calculated by knowing<br />

that x + y + z = 1.<br />

Luminance is calculated as a weighted sum<br />

of RGB, with the weights representing the<br />

actual contributions of each of the RGB primaries<br />

in generating the luminance of reference<br />

white. We find the linear combination of RGB<br />

that gives reference white by solving the equation:<br />

xr xg xb yr yg yb zr zg zb Kr Kg Kb xw ⁄ yw 1<br />

zw ⁄ yw Rearranging to solve for K r ,K g ,<strong>and</strong>K b yields:<br />

K r<br />

K g<br />

K b<br />

xw ⁄ yw 1<br />

zw ⁄ yw Substituting the known values gives us the<br />

solution for K r ,K g ,<strong>and</strong>K b :<br />

K r<br />

K g<br />

K b<br />

=<br />

=<br />

=<br />

=<br />

=<br />

0.3101 ⁄ 0.3162<br />

1<br />

0.3737 ⁄ 0.3162<br />

0.9807<br />

1<br />

1.1818<br />

0.906<br />

0.827<br />

1.430<br />

=<br />

x r x g x b<br />

y r y g y b<br />

z r z g z b<br />

– 1<br />

0.67 0.21 0.14<br />

0.33 0.71 0.08<br />

0.00 0.08 0.78<br />

1.730 – 0.482 – 0.261<br />

– 0.814 1.652 – 0.023<br />

0.083 – 0.169 1.284<br />

– 1


266 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Y is defined to be<br />

or<br />

Y=(K r y r )R´ +(K g y g )G´ +(K b y b )B´<br />

= (0.906)(0.33)R´ + (0.827)(0.71)G´<br />

+ (1.430)(0.08)B´<br />

Y = 0.299R´ + 0.587G´ + 0.114B´<br />

Modern receivers use a different set of<br />

RGB phosphors, resulting in slightly different<br />

chromaticities of the RGB primaries <strong>and</strong> reference<br />

white (CIE illuminate D 65 ):<br />

R: xr = 0.630 yr = 0.340 zr = 0.030<br />

G: xg = 0.310 yg = 0.595 zg = 0.095<br />

B: xb = 0.155 yb = 0.070 zb = 0.775<br />

white: xw = 0.3127<br />

zw = 0.3583<br />

yw = 0.3290<br />

where x <strong>and</strong> y are the specified CIE 1931 chromaticity<br />

coordinates; z is calculated by knowing<br />

that x + y + z = 1. Once again, substituting<br />

the known values gives us the solution for K r ,<br />

K g ,<strong>and</strong>K b :<br />

Kr Kg Kb =<br />

=<br />

=<br />

0.3127 ⁄ 0.3290<br />

1<br />

0.3583 ⁄ 0.3290<br />

0.6243<br />

1.1770<br />

1.2362<br />

0.630 0.310 0.155<br />

0.340 0.595 0.070<br />

0.030 0.095 0.775<br />

– 1<br />

Since Y is defined to be<br />

Y=(K r y r )R´ +(K g y g )G´ +(K b y b )B´<br />

= (0.6243)(0.340)R´ + (1.1770)(0.595)G´<br />

+ (1.2362)(0.070)B´<br />

this results in:<br />

Y = 0.212R´ + 0.700G´ +0.086B´<br />

However, the st<strong>and</strong>ard Y = 0.299R´ +<br />

0.587G´ + 0.114B´ equation is still used. Adjustments<br />

are in the receiver to minimize color<br />

errors.<br />

<strong>PAL</strong> <strong>Overview</strong><br />

Europe delayed adopting a color television<br />

st<strong>and</strong>ard, evaluating various systems between<br />

1953 <strong>and</strong> 1967 that were compatible with their<br />

625-line, 50-field-per-second, 2:1 interlaced<br />

monochrome st<strong>and</strong>ard. The <strong>NTSC</strong> specification<br />

was modified to overcome the high order<br />

of phase <strong>and</strong> amplitude integrity required during<br />

broadcast to avoid color distortion. The<br />

Phase Alternation Line (<strong>PAL</strong>) system implements<br />

a line-by-line reversal of the phase of<br />

one of the color components, originally relying<br />

on the eye to average any color distortions to<br />

the correct color. Broadcasting began in 1967<br />

in Germany <strong>and</strong> the United Kingdom, with<br />

each using a slightly different variant of the<br />

<strong>PAL</strong> system.


Luminance Information<br />

The monochrome luminance (Y) signal is<br />

derived from R´G´B´:<br />

Y = 0.299R´ + 0.587G´ + 0.114B´<br />

As with <strong>NTSC</strong>, the luminance signal occupies<br />

the entire video b<strong>and</strong>width. <strong>PAL</strong> has several<br />

variations, depending on the video<br />

b<strong>and</strong>width <strong>and</strong> placement of the audio subcarrier.<br />

The composite video signal has a b<strong>and</strong>width<br />

of 4.2, 5.0, 5.5, or 6.0 MHz, depending on<br />

the specific <strong>PAL</strong> st<strong>and</strong>ard.<br />

Color Information<br />

To transmit color information, U <strong>and</strong> V are<br />

used:<br />

U = 0.492(B´ –Y)<br />

V = 0.877(R´ –Y)<br />

U <strong>and</strong> V have a typical b<strong>and</strong>width of 1.3 MHz.<br />

Color Modulation<br />

As in the <strong>NTSC</strong> system, U <strong>and</strong> V are used to<br />

modulate the color subcarrier using two balanced<br />

modulators operating in phase quadrature:<br />

one modulator is driven by the subcarrier<br />

at sine phase, the other modulator is driven by<br />

the subcarrier at cosine phase. The outputs of<br />

the modulators are added together to form the<br />

modulated chrominance signal:<br />

C=Usinωt ± Vcosωt<br />

ω =2πFSC F SC = 4.43361875 MHz (± 5Hz)<br />

for (B, D, G, H, I, N) <strong>PAL</strong><br />

F SC = 3.58205625 MHz (± 5Hz)for<br />

(N C )<strong>PAL</strong><br />

<strong>PAL</strong> <strong>Overview</strong> 267<br />

F SC = 3.57561149 MHz (± 10 Hz) for<br />

(M) <strong>PAL</strong><br />

In <strong>PAL</strong>, the phase of V is reversed every<br />

other line. V was chosen for the reversal process<br />

since it has a lower gain factor than U <strong>and</strong><br />

therefore is less susceptible to a one-half F H<br />

switching rate imbalance. The result of alternating<br />

the V phase at the line rate is that any<br />

color subcarrier phase errors produce complementary<br />

errors, allowing line-to-line averaging<br />

at the receiver to cancel the errors <strong>and</strong> generate<br />

the correct hue with slightly reduced saturation.<br />

This technique requires the <strong>PAL</strong><br />

receiver to be able to determine the correct V<br />

phase. This is done using a technique known<br />

as AB sync, <strong>PAL</strong> sync, <strong>PAL</strong> Switch, or “swinging<br />

burst,” consisting of alternating the phase<br />

of the color burst by ±45° atthelinerate.The<br />

UV vector diagrams are shown in Figures 8.11<br />

<strong>and</strong> 8.12.<br />

“Simple” <strong>PAL</strong> decoders rely on the eye to<br />

average the line-by-line hue errors. “St<strong>and</strong>ard”<br />

<strong>PAL</strong> decoders use a 1-H delay line to separate<br />

U from V in an averaging process. Both implementations<br />

have the problem of Hanover bars,<br />

in which pairs of adjacent lines have a real <strong>and</strong><br />

complementary hue error. Chrominance vertical<br />

resolution is reduced as a result of the line<br />

averaging process.<br />

Composite Video Generation<br />

The modulated chrominance is added to the<br />

luminance information along with appropriate<br />

horizontal <strong>and</strong> vertical sync signals, blanking<br />

signals, <strong>and</strong> color burst signals, to generate the<br />

composite color video waveform shown in Figure<br />

8.13.<br />

composite<strong>PAL</strong>=Y+Usinωt<br />

± Vcosωt+timing


268 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

YELLOW<br />

167˚<br />

YELLOW<br />

193˚<br />

BURST<br />

135˚<br />

67<br />

GREEN<br />

241˚<br />

GREEN<br />

120˚<br />

RED<br />

103˚<br />

95<br />

+ V<br />

90˚<br />

100<br />

80<br />

60<br />

40<br />

20<br />

89 95<br />

RED<br />

257˚<br />

+ V<br />

90˚<br />

CYAN<br />

283˚<br />

IRE SCALE UNITS<br />

CYAN<br />

77˚<br />

89<br />

MAGENTA<br />

61˚<br />

67<br />

MAGENTA<br />

300˚<br />

+ U<br />

0˚<br />

BLUE<br />

347˚<br />

Figure 8.11. UV Vector Diagram for 75% Color Bars. Line [n],<br />

<strong>PAL</strong> Switch = zero.<br />

BURST<br />

225˚<br />

67<br />

89<br />

95<br />

40<br />

20<br />

100<br />

80<br />

60<br />

IRE SCALE UNITS<br />

Figure 8.12. UV Vector Diagram for 75% Color Bars. Line [n<br />

+ 1], <strong>PAL</strong> Switch = one.<br />

95<br />

89<br />

67<br />

BLUE<br />

13˚<br />

+ U<br />


100 IRE<br />

43 IRE<br />

21.43 IRE<br />

21.43 IRE<br />

COLOR BURST<br />

(10 ± 1 CYCLES)<br />

BLANK LEVEL<br />

LUMINANCE LEVEL<br />

Figure 8.13. (B, D, G, H, I, N C)<strong>PAL</strong>Composite<br />

Video Signal for 75% Color Bars.<br />

WHITE<br />

YELLOW<br />

CYAN<br />

GREEN<br />

MAGENTA<br />

RED<br />

BLUE<br />

PHASE = HUE<br />

<strong>PAL</strong> <strong>Overview</strong> 269<br />

BLACK<br />

WHITE LEVEL<br />

BLACK / BLANK LEVEL<br />

SYNC LEVEL<br />

COLOR<br />

SATURATION


270 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

The b<strong>and</strong>width of the resulting composite<br />

video signal is shown in Figure 8.14.<br />

Like <strong>NTSC</strong>, the luminance components are<br />

spaced at F H intervals due to horizontal blanking.<br />

Since the V component is switched symmetrically<br />

at one-half the line rate, only odd<br />

harmonics are generated, resulting in V components<br />

that are spaced at intervals of F H .The<br />

V components are spaced at half-line intervals<br />

from the U components, which also have F H<br />

spacing. If the subcarrier had a half-line offset<br />

like <strong>NTSC</strong> uses, the U components would be<br />

perfectly interleaved, but the V components<br />

would coincide with the Y components <strong>and</strong><br />

thus not be interleaved, creating vertical stationary<br />

dot patterns. For this reason, <strong>PAL</strong> uses<br />

a 1/4 line offset for the subcarrier frequency:<br />

FSC = ((1135/4) + (1/625)) FH for (B, D, G, H, I, N) <strong>PAL</strong><br />

FSC = (909/4) FH for (M) <strong>PAL</strong><br />

F SC = ((917/4) + (1/625)) F H<br />

for (N C )<strong>PAL</strong><br />

The additional (1/625) F H factor (equal to<br />

25 Hz) provides motion to the color dot pattern,<br />

reducing its visibility. Figure 8.15 illustrates<br />

the resulting frequency interleaving.<br />

Eight complete fields are required to repeat a<br />

specific sample position, as shown in Figures<br />

8.16 <strong>and</strong> 8.17.<br />

<strong>PAL</strong> Variations<br />

There is a variation of <strong>PAL</strong>, “noninterlaced<br />

<strong>PAL</strong>”, shown in Figure 8.18. It is a 312-line, 50<br />

frames-per-second version of <strong>PAL</strong> common<br />

among video games <strong>and</strong> on-screen displays.<br />

This format is identical to st<strong>and</strong>ard <strong>PAL</strong>,<br />

except that there are 312 lines per frame.<br />

The most common <strong>PAL</strong> st<strong>and</strong>ards are<br />

showninFigure8.19.<br />

RF Modulation<br />

Figures 8.20 <strong>and</strong> 8.21 illustrate the process of<br />

converting baseb<strong>and</strong> (G) <strong>PAL</strong> composite video<br />

to a RF (radio frequency) signal. The process<br />

for the other <strong>PAL</strong> st<strong>and</strong>ards is similar, except<br />

primarily the different video b<strong>and</strong>widths <strong>and</strong><br />

subcarrier frequencies.<br />

Figure 8.20a shows the frequency spectrum<br />

of a (G) <strong>PAL</strong> baseb<strong>and</strong> composite video<br />

signal. It is similar to Figure 8.14, however, Figure<br />

8.14 only shows the upper sideb<strong>and</strong> for<br />

simplicity. The “video carrier” notation at 0<br />

MHz serves only as a reference point for comparison<br />

with Figure 8.20b.<br />

Figure 8.20b shows the audio/video signal<br />

as it resides within an 8-MHz channel. The<br />

video signal has been lowpass filtered, most of<br />

the lower sideb<strong>and</strong> has been removed, <strong>and</strong><br />

audio information has been added. Note that<br />

(H) <strong>and</strong> (I) <strong>PAL</strong> have a vestigial sideb<strong>and</strong> of<br />

1.25 MHz, rather than 0.75 MHz.<br />

Figure 8.20c details the information<br />

present on the audio subcarrier for analog stereo<br />

operation.<br />

As shown in Figure 8.21, back porch clamping<br />

of the analog video signal ensures that the<br />

back porch level is constant, regardless of<br />

changes in the average picture level. The video<br />

signal is then lowpass filtered to 5.0 MHz <strong>and</strong><br />

drives the AM (amplitude modulation) video<br />

modulator. The sync level corresponds to 100%<br />

modulation; the blanking <strong>and</strong> white modulation<br />

levels are dependent on the specific version of<br />

<strong>PAL</strong>:


AMPLITUDE<br />

Y U<br />

± V<br />

CHROMINANCE<br />

SUBCARRIER<br />

U<br />

± V<br />

0.0 1.0<br />

2.0 3.0 4.0 4.43 5.0 5.5<br />

AMPLITUDE<br />

0.0<br />

(I) <strong>PAL</strong><br />

Y U<br />

± V<br />

CHROMINANCE<br />

SUBCARRIER<br />

U<br />

± V<br />

1.0 2.0 3.0 4.0 4.43 5.0<br />

(B, G, H) <strong>PAL</strong><br />

Figure 8.14. Video B<strong>and</strong>widths of Some <strong>PAL</strong> Systems.<br />

FH / 4<br />

U<br />

Y<br />

V<br />

FH / 2<br />

FH<br />

U<br />

Y<br />

V<br />

F<br />

<strong>PAL</strong> <strong>Overview</strong> 271<br />

FREQUENCY<br />

(MHZ)<br />

FREQUENCY<br />

(MHZ)<br />

Figure 8.15. Luma <strong>and</strong> Chroma Frequency Interleave Principle.


272 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

BURST<br />

BLANKING<br />

INTERVALS<br />

START<br />

OF<br />

VSYNC<br />

ANALOG<br />

FIELD 1<br />

620 621 622 623 624 625 1 2 3 4 5 6 7 23 24<br />

–U COMPONENT OF BURST PHASE<br />

ANALOG<br />

FIELD 2<br />

308 309 310 311 312 313 314 315 316 317 318 319 320 336 337<br />

ANALOG<br />

FIELD 3<br />

620 621 622 623 624 625 1 2 3 4 5 6 7 23 24<br />

ANALOG<br />

FIELD 4<br />

308 309 310 311 312 313 314 315 316 317 318 319 320 336 337<br />

FIELD ONE<br />

FIELD TWO<br />

FIELD THREE<br />

FIELD FOUR<br />

BURST PHASE = REFERENCE PHASE = 135˚ RELATIVE TO U<br />

<strong>PAL</strong> SWITCH = 0, + V COMPONENT<br />

BURST PHASE = REFERENCE PHASE + 90˚ = 225˚ RELATIVE TO U<br />

<strong>PAL</strong> SWITCH = 1, – V COMPONENT<br />

Figure8.16a.Eight-field(B,D,G,H,I,N C ) <strong>PAL</strong> Sequence <strong>and</strong> Burst Blanking.<br />

See Figure 8.5 for equalization <strong>and</strong> serration pulse details.


BURST<br />

BLANKING<br />

INTERVALS<br />

START<br />

OF<br />

VSYNC<br />

ANALOG<br />

FIELD 5<br />

–U COMPONENT OF BURST PHASE<br />

BURST PHASE = REFERENCE PHASE = 135˚ RELATIVE TO U<br />

<strong>PAL</strong> SWITCH = 0, + V COMPONENT<br />

BURST PHASE = REFERENCE PHASE + 90˚ = 225˚ RELATIVE TO U<br />

<strong>PAL</strong> SWITCH = 1, – V COMPONENT<br />

<strong>PAL</strong> <strong>Overview</strong> 273<br />

620 621 622 623 624 625 1 2 3 4 5 6 7 23 24<br />

ANALOG<br />

FIELD 6<br />

308 309 310 311 312 313 314 315 316 317 318 319 320 336 337<br />

ANALOG<br />

FIELD 7<br />

620 621 622 623 624 625 1 2 3 4 5 6 7 23 24<br />

ANALOG<br />

FIELD 8<br />

308 309 310 311 312 313 314 315 316 317 318 319 320 336 337<br />

FIELD FIVE<br />

FIELD SIX<br />

FIELD SEVEN<br />

FIELD EIGHT<br />

Figure8.16b.Eight-field(B,D,G,H,I,N C ) <strong>PAL</strong> Sequence <strong>and</strong> Burst Blanking.<br />

See Figure 8.5 for equalization <strong>and</strong> serration pulse details.


274 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

START<br />

OF<br />

VSYNC<br />

ANALOG<br />

FIELD 1 / 5<br />

520 521 522 523 524 525 1 2 3 4 5 6 7 8 9<br />

ANALOG<br />

FIELD 2 / 6<br />

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272<br />

ANALOG<br />

FIELD 3 / 7<br />

520 521 522 523 524 525 1 2 3 4 5 6 7 8 9<br />

ANALOG<br />

FIELD 4 / 8<br />

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272<br />

BURST PHASE = REFERENCE PHASE = 135˚ RELATIVE TO U<br />

<strong>PAL</strong> SWITCH = 0, + V COMPONENT<br />

BURST PHASE = REFERENCE PHASE + 90˚ = 225˚ RELATIVE TO U<br />

<strong>PAL</strong> SWITCH = 1, – V COMPONENT<br />

Figure 8.17. Eight-field (M) <strong>PAL</strong> Sequence <strong>and</strong> Burst Blanking.<br />

See Figure 8.5 for equalization <strong>and</strong> serration pulse details.


START<br />

OF<br />

VSYNC<br />

BURST PHASE = REFERENCE PHASE = 135˚ RELATIVE TO U<br />

<strong>PAL</strong> SWITCH = 0, + V COMPONENT<br />

BURST PHASE = REFERENCE PHASE + 90˚ = 225˚ RELATIVE TO U<br />

<strong>PAL</strong> SWITCH = 1, – V COMPONENT<br />

<strong>PAL</strong> <strong>Overview</strong> 275<br />

308 309 310 311 312 1 2 3 4 5 6 7 23 24<br />

blanking level (% modulation)<br />

B, G 75%<br />

D, H, M, N 75%<br />

I 76%<br />

white level (% modulation)<br />

B, G, H, M, N 10%<br />

D 10%<br />

I 20%<br />

Note that <strong>PAL</strong> systems use a variety of<br />

video <strong>and</strong> audio IF frequencies (values in<br />

MHz):<br />

video audio<br />

B, G 38.900 33.400<br />

B 36.875 31.375 Australia<br />

D 37.000 30.500 China<br />

D 38.900 32.400 OIRT<br />

I 38.900 32.900<br />

I 39.500 33.500 U.K.<br />

M, N 45.750 41.250<br />

Figure 8.18. Noninterlaced <strong>PAL</strong> Frame Sequence.<br />

At this point, audio information is added on<br />

the audio subcarrier. A monaural L+R audio<br />

signal is processed as shown in Figure 8.21<br />

<strong>and</strong> drives the FM (frequency modulation)<br />

modulator. The output of the FM modulator is<br />

added to the IF video signal.<br />

The SAW filter, used as a vestigial sideb<strong>and</strong><br />

filter, provides filtering of the IF signal.<br />

The mixer, or up converter, mixes the IF signal<br />

with the desired broadcast frequency. Both<br />

sum <strong>and</strong> difference frequencies are generated<br />

by the mixing process, so the difference signal<br />

isextractedbyusingab<strong>and</strong>passfilter.<br />

Stereo Audio (Analog)<br />

The implementation of analog stereo audio<br />

(ITU-R BS.707), also know as Zweiton, is<br />

shown in Figure 8.21. The L+R information is<br />

transmitted on a FM subcarrier. The R information,<br />

or a second L+R audio signal, is transmitted<br />

on a second FM subcarrier at +15.5F H .<br />

If stereo or dual mono signals are present,<br />

the FM subcarrier at +15.5F H is amplitude-


276 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

"I"<br />

LINE / FIELD = 625 / 50<br />

FH = 15.625 KHZ<br />

FV = 50 HZ<br />

FSC = 4.43361875 MHZ<br />

BLANKING SETUP = 0 IRE<br />

VIDEO BANDWIDTH = 5.5 MHZ<br />

AUDIO CARRIER = 5.9996 MHZ<br />

CHANNEL BANDWIDTH = 8 MHZ<br />

"D"<br />

LINE / FIELD = 625 / 50<br />

FH = 15.625 KHZ<br />

FV = 50 HZ<br />

FSC = 4.43361875 MHZ<br />

BLANKING SETUP = 0 IRE<br />

VIDEO BANDWIDTH = 6.0 MHZ<br />

AUDIO CARRIER = 6.5 MHZ<br />

CHANNEL BANDWIDTH = 8 MHZ<br />

QUADRATURE MODULATED SUBCARRIER<br />

PHASE = HUE<br />

AMPLITUDE = SATURATION<br />

LINE ALTERNATION OF V COMPONENT<br />

"B, B1, G, H"<br />

LINE / FIELD = 625 / 50<br />

FH = 15.625 KHZ<br />

FV = 50 HZ<br />

FSC = 4.43361875 MHZ<br />

BLANKING SETUP = 0 IRE<br />

VIDEO BANDWIDTH = 5.0 MHZ<br />

AUDIO CARRIER = 5.5 MHZ<br />

CHANNEL BANDWIDTH:<br />

B = 7 MHZ<br />

B1, G, H = 8 MHZ<br />

"N"<br />

LINE / FIELD = 625 / 50<br />

FH = 15.625 KHZ<br />

FV = 50 HZ<br />

FSC = 4.43361875 MHZ<br />

BLANKING SETUP = 7.5 IRE<br />

VIDEO BANDWIDTH = 5.0 MHZ<br />

AUDIO CARRIER = 5.5 MHZ<br />

CHANNEL BANDWIDTH = 6 MHZ<br />

Figure 8.19. Common <strong>PAL</strong> Systems.<br />

"M"<br />

LINE / FIELD = 525 / 59.94<br />

FH = 15.734 KHZ<br />

FV = 59.94 HZ<br />

FSC = 3.57561149 MHZ<br />

BLANKING SETUP = 7.5 IRE<br />

VIDEO BANDWIDTH = 4.2 MHZ<br />

AUDIO CARRIER = 4.5 MHZ<br />

CHANNEL BANDWIDTH = 6 MHZ<br />

"N C "<br />

LINE / FIELD = 625 / 50<br />

FH = 15.625 KHZ<br />

FV = 50 HZ<br />

FSC = 3.58205625 MHZ<br />

BLANKING SETUP = 0 IRE<br />

VIDEO BANDWIDTH = 4.2 MHZ<br />

AUDIO CARRIER = 4.5 MHZ<br />

CHANNEL BANDWIDTH = 6 MHZ


–5.5<br />

CHROMINANCE<br />

SUBCARRIER<br />

–5.0<br />

–4.43<br />

VIDEO<br />

CARRIER<br />

–1.0 0.0<br />

1.0<br />

4.43 5.0 5.5<br />

VIDEO<br />

CARRIER<br />

(A)<br />

8 MHZ CHANNEL<br />

CHROMINANCE<br />

SUBCARRIER<br />

CHROMINANCE<br />

SUBCARRIER<br />

–4.0 –3.0 –0.75 0.0<br />

1.0<br />

4.43 5.0 5.5<br />

AUDIO<br />

CARRIER<br />

L + R<br />

(FM)<br />

0.75 MHZ<br />

VESTIGIAL<br />

SIDEBAND<br />

–1.25<br />

FH = 15,625 HZ<br />

(B)<br />

R<br />

(FM)<br />

–50 KHZ 0.0 50 KHZ<br />

15.5 FH<br />

– 50 KHZ<br />

15.5 FH<br />

(C)<br />

AUDIO<br />

CARRIER<br />

15.5 FH<br />

+ 50 KHZ<br />

6.75<br />

<strong>PAL</strong> <strong>Overview</strong> 277<br />

FREQUENCY (MHZ)<br />

FREQUENCY (MHZ)<br />

FREQUENCY<br />

Figure 8.20. Transmission Channel for (G) <strong>PAL</strong>. (a) Frequency spectrum of baseb<strong>and</strong> composite<br />

video. (b) Frequency spectrum of typical channel including audio information. (c) Detailed<br />

frequency spectrum of Zweiton analog stereo audio information.


278 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

modulated with a 54.6875 kHz (3.5x F H )subcarrier.<br />

This 54.6875 kHz subcarrier is 50%<br />

amplitude-modulated at 117.5 Hz (F H / 133) to<br />

indicate stereo audio or 274.1 Hz (F H / 57) to<br />

indicate dual mono audio.<br />

Countries that use this system include<br />

Australia, Austria, China, Germany, Italy,<br />

Malaysia, Netherl<strong>and</strong>s, Slovenia, <strong>and</strong> Switzerl<strong>and</strong>.<br />

Stereo Audio (Digital)<br />

The implementation of digital stereo audio<br />

uses NICAM 728 (Near Instantaneous Comp<strong>and</strong>ed<br />

Audio Multiplex), discussed within<br />

BS.707 <strong>and</strong> ETSI EN 300163. It was developed<br />

by the BBC <strong>and</strong> IBA to increase sound quality,<br />

provide multiple channels of digital sound or<br />

AUDIO RIGHT<br />

AUDIO LEFT<br />

(G) <strong>PAL</strong><br />

COMPOSITE<br />

VIDEO<br />

BACK<br />

PORCH<br />

CLAMP<br />

STEREO<br />

PILOT SIGNAL<br />

50 µS<br />

PRE-EMPHASIS<br />

---------------<br />

40–15,000 HZ BPF<br />

L + R<br />

---------------<br />

50 µS<br />

PRE-EMPHASIS<br />

---------------<br />

40–15,000 HZ BPF<br />

5.0 MHZ<br />

LPF<br />

3.5FH<br />

AM<br />

MODULATOR<br />

38.9 MHZ<br />

IF VIDEO CARRIER<br />

117.5 HZ<br />

274.1 HZ<br />

AM<br />

MODULATOR<br />

FM<br />

MODULATOR<br />

33.4 MHZ – 15.5FH<br />

IF AUDIO CARRIER<br />

FM<br />

MODULATOR<br />

33.4 MHZ<br />

IF AUDIO CARRIER<br />

data, <strong>and</strong> be more resistant to transmission<br />

interference.<br />

The subcarrier resides either 5.85 MHz<br />

above the video carrier for (B, G, H) <strong>PAL</strong> systems<br />

or 6.552 MHz above the video carrier for<br />

(I) <strong>PAL</strong> systems.<br />

Countries that use NICAM 728 include<br />

Belgium, Denmark, Finl<strong>and</strong>, France, Hong<br />

Kong, New Zeal<strong>and</strong>, Norway, Singapore, South<br />

Africa, Spain, Sweden, <strong>and</strong> the United Kingdom.<br />

NICAM 728 is a digital system that uses a<br />

32-kHz sampling rate <strong>and</strong> 14-bit resolution. A<br />

bit rate of 728 kbps is used, giving it the name<br />

NICAM 728. Data is transmitted in frames,<br />

with each frame containing 1 ms of audio. As<br />

shown in Figure 8.22, each frame consists of:<br />

+<br />

AM<br />

MODULATOR<br />

SAW<br />

FILTER<br />

33.15–40.15 MHZ<br />

BANDWIDTH<br />

+<br />

MIXER<br />

(UP CONVERTER)<br />

CHANNEL<br />

SELECT<br />

BANDPASS<br />

FILTER<br />

Figure 8.21. Typical RF Modulation Implementation for (G) <strong>PAL</strong>: Zweiton Stereo Audio.<br />

MODULATED RF<br />

AUDIO / VIDEO


8-bit frame alignment word (01001110)<br />

5 control bits (C0–C4)<br />

11 undefined bits (AD0–AD10)<br />

704 audio data bits (A000–A703)<br />

C0 is a “1” for eight successive frames <strong>and</strong><br />

a “0” for the next eight frames, defining a 16frame<br />

sequence. C1–C3 specify the format<br />

transmitted: “000” = one stereo signal with the<br />

left channel being odd-numbered samples <strong>and</strong><br />

the right channel being even-numbered samples,<br />

“010” = two independent mono channels<br />

transmitted in alternate frames, “100” = one<br />

mono channel <strong>and</strong> one 352 kbps data channel<br />

transmitted in alternate frames, “110” = one<br />

704 kbps data channel. C4 is a “1” if the analog<br />

sound is the same as the digital sound.<br />

Stereo Audio Encoding<br />

The thirty-two 14-bit samples (1 ms of audio,<br />

2’s complement format) per channel are preemphasized<br />

to the ITU-T J.17 curve.<br />

The largest positive or negative sample of<br />

the32isusedtodeterminewhich10bitsofall<br />

32 samples to transmit. Three range bits per<br />

channel (R0 L ,R1 L ,R2 L ,<strong>and</strong>R0 R ,R1 R ,R2 R )are<br />

used to indicate the scaling factor. D13 is the<br />

sign bit (“0” = positive).<br />

D13–D0 R2–R0 Bits Used<br />

01xxxxxxxxxxxx 111 D13, D12–D4<br />

001xxxxxxxxxxx 110 D13, D11–D3<br />

0001xxxxxxxxxx 101 D13, D10–D2<br />

00001xxxxxxxxx 011 D13, D9–D1<br />

000001xxxxxxxx 101 D13, D8–D0<br />

0000001xxxxxxx 010 D13, D8–D0<br />

0000000xxxxxxx 00x D13, D8–D0<br />

1111111xxxxxxx 00x D13, D8–D0<br />

1111110xxxxxxx 010 D13, D8–D0<br />

111110xxxxxxxx 100 D13, D8–D0<br />

11110xxxxxxxxx 011 D13, D9–D1<br />

1110xxxxxxxxxx 101 D13, D10–D2<br />

110xxxxxxxxxxx 110 D13, D11–D3<br />

10xxxxxxxxxxxx 111 D13, D12–D4<br />

<strong>PAL</strong> <strong>Overview</strong> 279<br />

A parity bit for the six MSBs of each sample<br />

is added, resulting in each sample being 11<br />

bits. The 64 samples are interleaved, generating<br />

L0, R0, L1, R1, L2, R2, ... L31, R31, <strong>and</strong><br />

numbered 0–63.<br />

Theparitybitsareusedtoconveytothe<br />

decoder what scaling factor was used for each<br />

channel (“signalling-in-parity”).<br />

If R2 L = “0”, even parity for samples<br />

0, 6, 12, 18, ... 48 is used. If R2 L = “1”,<br />

odd parity is used.<br />

If R2 R = “0”, even parity for samples<br />

1, 7, 13, 19, ... 49 is used. If R2 R = “1”,<br />

odd parity is used.<br />

If R1 L = “0”, even parity for samples<br />

2, 8, 14, 20, ... 50 is used. If R1 L = “1”,<br />

odd parity is used.<br />

If R1 R = “0”, even parity for samples<br />

3, 9, 15, 21, ... 51 is used. If R1 R = “1”,<br />

odd parity is used.<br />

If R0 L = “0”, even parity for samples<br />

4, 10, 16, 22, ... 52 is used. If R0 L = “1”,<br />

odd parity is used.<br />

If R0 R = “0”, even parity for samples<br />

5, 11, 17, 23, ... 53 is used. If R0 R = “1”,<br />

odd parity is used.<br />

Theparityofsamples54–63 normally have<br />

even parity. However, they may be modified to<br />

transmit two additional bits of information:<br />

If CIB0 = “0”, even parity for samples<br />

54, 55, 56, 57, <strong>and</strong> 58 is used. If CIB0 =<br />

“1”, oddparityisused.<br />

If CIB1 = “0”, even parity for samples<br />

59, 60, 61, 62, <strong>and</strong> 63 is used. If CIB1 =<br />

“1”, oddparityisused.


280 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

The audio data is bit-interleaved as shown<br />

in Figure 8.22 to reduce the influence of dropouts.<br />

If the bits are numbered 0–703, they are<br />

transmitted in the order 0, 44, 88, ... 660, 1, 45,<br />

89, ... 661, 2, 46, 90, ... 703.<br />

The whole frame, except the frame alignment<br />

word, is exclusive-ORed with a 1-bit<br />

pseudo-r<strong>and</strong>om binary sequence (PRBS). The<br />

PRBS generator is reinitialized after the frame<br />

alignment word of each frame so that the first<br />

bit of the sequence processes the C0 bit. The<br />

polynomial of the PRBS is x 9 +x 4 +1withan<br />

initialization word of “111111111”.<br />

Actual transmission consists of taking bits<br />

in pairs from the 728 kbps bitstream, then generating<br />

356k symbols per second using Differential<br />

Quadrature Phase-Shift Keying<br />

(DQPSK). If the symbol is “00”, thesubcarrier<br />

phase is left unchanged. If the symbol is “01”,<br />

the subcarrier phase is delayed 90°. Ifthesymbol<br />

is “11”, the subcarrier phase is inverted. If<br />

the symbol is “10”, the subcarrier phase is<br />

advanced 90°.<br />

Finally, the signal is spectrum-shaped to a<br />

–30 dB b<strong>and</strong>width of ~700 kHz for (I) <strong>PAL</strong> or<br />

~500 kHz for (B, G) <strong>PAL</strong>.<br />

FRAME<br />

ALIGNMENT<br />

WORD<br />

CONTROL<br />

BITS ADDITIONAL DATA BITS<br />

Stereo Audio Decoding<br />

A PLL locks to the NICAM subcarrier frequency<br />

<strong>and</strong> recovers the phase changes that<br />

represent the encoded symbols. The symbols<br />

are decoded to generate the 728 kbps bitstream.<br />

The frame alignment word is found <strong>and</strong><br />

the following bits are exclusive-ORed with a<br />

locally-generated PRBS to recover the packet.<br />

The C0 bit is tested for 8 frames high, 8 frames<br />

low behavior to verify it is a NICAM 728 bitstream.<br />

The bit-interleaving of the audio data is<br />

reversed, <strong>and</strong> the “signalling-in-parity”<br />

decoded:<br />

A majority vote is taken on the parity<br />

ofsamples0,6,12,...48.Ifeven,R2 L =<br />

“0”; ifodd,R2 L = “1”.<br />

A majority vote is taken on the parity<br />

of samples 1, 7, 13, ... 49. If even, R2 R =<br />

“0”; ifodd,R2 R = “1”.<br />

A majority vote is taken on the parity<br />

ofsamples2,8,14,...50.Ifeven,R1 L =<br />

“0”; ifodd,R1 L = “1”.<br />

704 BITS<br />

AUDIO DATA<br />

0, 1, 0, 0, 1, 1, 1, 0, C0, C1, C2, C3, C4, AD0, AD1, AD2, AD3, AD4, AD5, AD6, AD7, AD8, AD9, AD10, A000, A044, A088, ... A660,<br />

A001, A045, A089, ... A661,<br />

A002, A046, A090, ... A662,<br />

A003, A047, A091, ... A663,<br />

:<br />

A043, A087, A131, ... A703<br />

Figure 8.22. NICAM 728 Bitstream for One Frame.


Amajorityvoteistakenontheparity<br />

of samples 3, 9, 15, ... 51. If even, R1 R =<br />

“0”; if odd, R1 R = “1”.<br />

Amajorityvoteistakenontheparity<br />

of samples 4, 10, 16, ... 52. If even, R0 L =<br />

“0”; if odd, R0 L = “1”.<br />

Amajorityvoteistakenontheparity<br />

of samples 5, 11, 17, ... 53. If even, R0 R =<br />

“0”; if odd, R0 R = “1”.<br />

Amajorityvoteistakenontheparity<br />

of samples 54, 55, 56, 57, <strong>and</strong> 58. If even,<br />

CIB0 = “0”; if odd, CIB0 = “1”.<br />

Amajorityvoteistakenontheparity<br />

of samples 59, 60, 61, 62, <strong>and</strong> 63. If even,<br />

CIB1 = “0”; if odd, CIB1 = “1”.<br />

Anysampleswhoseparitydisagreedwith<br />

the vote are ignored <strong>and</strong> replaced with an<br />

interpolated value.<br />

The left channel uses range bits R2 L ,R1 L ,<br />

<strong>and</strong> R0 L to determine which bits below the<br />

sign bit were discarded during encoding. The<br />

sign bit is duplicated into those positions to<br />

generate a 14-bit sample.<br />

The right channel is similarly processed,<br />

using range bits R2 R ,R1 R ,<strong>and</strong>R0 R .Bothchannels<br />

are then de-emphasized using the J.17<br />

curve.<br />

Dual Mono Audio Encoding<br />

Two blocks of thirty-two 14-bit samples (2 ms<br />

of audio, 2’s complement format) are preemphasized<br />

to the ITU-T J.17 specification. As<br />

with the stereo audio, three range bits per<br />

block (R0 A ,R1 A ,R2 A ,<strong>and</strong>R0 B ,R1 B ,R2 B )are<br />

used to indicate the scaling factor. Unlike stereo<br />

audio, the samples are not interleaved.<br />

<strong>PAL</strong> <strong>Overview</strong> 281<br />

If R2 A = “0”, even parity for samples<br />

0, 3, 6, 9, ... 24 is used. If R2 A = “1”, odd<br />

parity is used.<br />

If R2 B = “0”, even parity for samples<br />

27, 30, 33, ... 51 is used. If R2 B = “1”, odd<br />

parity is used.<br />

If R1 A = “0”, even parity for samples<br />

1, 4, 7, 10, ... 25 is used. If R1 A = “1”, odd<br />

parity is used.<br />

If R1 B = “0”, even parity for samples<br />

28, 31, 34, ... 52 is used. If R1 B = “1”, odd<br />

parity is used.<br />

If R0 A = “0”, even parity for samples<br />

2, 5, 8, 11, ... 26 is used. If R0 A = “1”, odd<br />

parity is used.<br />

If R0 B = “0”, even parity for samples<br />

29, 32, 35, ... 53 is used. If R0 B = “1”, odd<br />

parity is used.<br />

The audio data is bit-interleaved, however,<br />

odd packets contain 64 samples of audio channel<br />

1 while even packets contain 64 samples of<br />

audio channel 2. The rest of the processing is<br />

thesameasforstereoaudio.<br />

Analog Channel Assignments<br />

Tables 8.5 through 8.7 list the channel assignments<br />

for VHF, UHF, <strong>and</strong> cable for various <strong>PAL</strong><br />

systems.<br />

Note that cable systems routinely reassign<br />

channel numbers to alternate frequencies to<br />

minimize interference <strong>and</strong> provide multiple<br />

levels of programming (such as two versions of<br />

a premium movie channel: one for subscribers,<br />

<strong>and</strong> one for nonsubscribers during pre-view<br />

times).


282 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Channel<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

5A<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

Video<br />

Carrier<br />

(MHz)<br />

Audio<br />

Carrier<br />

(MHz)<br />

Channel<br />

Range<br />

(MHz)<br />

Channel<br />

Video<br />

Carrier<br />

(MHz)<br />

Audio<br />

Carrier<br />

(MHz)<br />

(B) <strong>PAL</strong>, Australia, 7 MHz Channel (B) <strong>PAL</strong>, Italy, 7 MHz Channel<br />

46.25<br />

57.25<br />

64.25<br />

86.25<br />

95.25<br />

102.25<br />

138.25<br />

175.25<br />

182.25<br />

189.25<br />

196.25<br />

209.25<br />

216.25<br />

223.25<br />

51.75<br />

62.75<br />

69.75<br />

91.75<br />

100.75<br />

107.75<br />

143.75<br />

180.75<br />

187.75<br />

194.75<br />

201.75<br />

214.75<br />

221.75<br />

45–52<br />

56–63<br />

63–70<br />

85–92<br />

94–101<br />

101–108<br />

137–144<br />

174–181<br />

181–188<br />

188–195<br />

195–202<br />

208–215<br />

215–222<br />

Channel<br />

Range<br />

(MHz)<br />

Table 8.5. Analog Broadcast <strong>and</strong> Cable TV Nominal Frequencies for (B, I) <strong>PAL</strong> in Various Countries.<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

H<br />

H–1<br />

H–2<br />

–<br />

–<br />

–<br />

–<br />

53.75<br />

62.25<br />

82.25<br />

175.25<br />

183.75<br />

192.25<br />

201.25<br />

210.25<br />

217.25<br />

224.25<br />

–<br />

–<br />

–<br />

–<br />

59.25<br />

67.75<br />

87.75<br />

180.75<br />

189.25<br />

197.75<br />

206.75<br />

215.75<br />

222.75<br />

229.75<br />

–<br />

–<br />

–<br />

–<br />

(I) <strong>PAL</strong>, Irel<strong>and</strong>, 8 MHz Channel (B) <strong>PAL</strong>, New Zeal<strong>and</strong>, 7 MHz Channel<br />

45.75<br />

53.75<br />

61.75<br />

175.25<br />

183.25<br />

191.25<br />

199.25<br />

207.25<br />

215.25<br />

51.75<br />

59.75<br />

67.75<br />

181.25<br />

189.25<br />

197.25<br />

205.25<br />

213.25<br />

221.25<br />

44.5–52.5<br />

52.5–60.5<br />

60.5–68.5<br />

174–182<br />

182–190<br />

190–198<br />

198–206<br />

206–214<br />

214–222<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

45.25<br />

55.25<br />

62.25<br />

175.25<br />

182.25<br />

189.25<br />

196.25<br />

203.25<br />

210.25<br />

50.75<br />

60.75<br />

67.75<br />

180.75<br />

187.75<br />

194.75<br />

201.75<br />

208.75<br />

215.75<br />

52.5–59.5<br />

61–68<br />

81–88<br />

174–181<br />

182.5–189.5<br />

191–198<br />

200–207<br />

209–216<br />

216–223<br />

223–230<br />

–<br />

–<br />

–<br />

–<br />

44–51<br />

54–61<br />

61–68<br />

174–181<br />

181–188<br />

188–195<br />

195–202<br />

202–209<br />

209–216


Broadcast<br />

Channel<br />

2 1<br />

3 1<br />

4 1<br />

5 1<br />

6 1<br />

7 1<br />

8 1<br />

9 1<br />

10 1<br />

2 2<br />

3 2<br />

4 2<br />

5 2<br />

6 2<br />

7 2<br />

8 2<br />

9 2<br />

10 2<br />

11 2<br />

12 2<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

Video<br />

Carrier<br />

(MHz)<br />

45.75<br />

53.75<br />

61.75<br />

175.25<br />

183.25<br />

191.25<br />

199.25<br />

207.25<br />

215.25<br />

48.25<br />

55.25<br />

62.25<br />

175.25<br />

182.25<br />

189.25<br />

196.25<br />

203.25<br />

210.25<br />

217.25<br />

224.25<br />

471.25<br />

479.25<br />

487.25<br />

495.25<br />

503.25<br />

511.25<br />

519.25<br />

527.25<br />

535.25<br />

543.25<br />

551.25<br />

559.25<br />

567.25<br />

575.25<br />

583.25<br />

591.25<br />

599.25<br />

607.25<br />

615.25<br />

Audio<br />

Carrier<br />

(MHz)<br />

(G,H)<strong>PAL</strong> (I)<strong>PAL</strong><br />

51.25<br />

59.25<br />

67.25<br />

180.75<br />

188.75<br />

196.75<br />

204.75<br />

212.75<br />

220.75<br />

53.75<br />

60.75<br />

67.75<br />

180.75<br />

187.75<br />

194.75<br />

201.75<br />

208.75<br />

215.75<br />

222.75<br />

229.75<br />

476.75<br />

484.75<br />

492.75<br />

500.75<br />

508.75<br />

516.75<br />

524.75<br />

532.75<br />

540.75<br />

548.75<br />

556.75<br />

564.75<br />

572.75<br />

580.75<br />

588.75<br />

596.75<br />

604.75<br />

612.75<br />

620.75<br />

51.75<br />

59.75<br />

67.75<br />

181.25<br />

189.25<br />

197.25<br />

205.25<br />

213.25<br />

221.25<br />

Channel<br />

Range<br />

(MHz)<br />

44.5–52.5<br />

52.5–60.5<br />

60.5–68.5<br />

174–182<br />

182–190<br />

190–198<br />

198–206<br />

206–214<br />

214–222<br />

Table 8.6a. Analog Broadcast Nominal Frequencies for the<br />

1 United Kingdom, 1 Irel<strong>and</strong>, 1 South Africa, 1 Hong Kong, <strong>and</strong><br />

2 Western Europe.<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

477.25<br />

485.25<br />

493.25<br />

501.25<br />

509.25<br />

517.25<br />

525.25<br />

533.25<br />

541.25<br />

549.25<br />

557.25<br />

565.25<br />

573.25<br />

581.25<br />

589.25<br />

597.25<br />

605.25<br />

613.25<br />

621.25<br />

47–54<br />

54–61<br />

61–68<br />

174–181<br />

181–188<br />

188–195<br />

195–202<br />

202–209<br />

209–216<br />

216–223<br />

223–230<br />

470–478<br />

478–486<br />

486–494<br />

494–502<br />

502–510<br />

510–518<br />

518–526<br />

526–534<br />

534–542<br />

542–550<br />

550–558<br />

558–566<br />

566–574<br />

574–582<br />

582–590<br />

590–598<br />

598–606<br />

606–614<br />

614–622<br />

<strong>PAL</strong> <strong>Overview</strong> 283


284 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Broadcast<br />

Channel<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

61<br />

62<br />

63<br />

64<br />

65<br />

66<br />

67<br />

68<br />

69<br />

Video<br />

Carrier<br />

(MHz)<br />

623.25<br />

631.25<br />

639.25<br />

647.25<br />

655.25<br />

663.25<br />

671.25<br />

679.25<br />

687.25<br />

695.25<br />

703.25<br />

711.25<br />

719.25<br />

727.25<br />

735.25<br />

743.25<br />

751.25<br />

759.25<br />

767.25<br />

775.25<br />

783.25<br />

791.25<br />

799.25<br />

807.25<br />

815.25<br />

823.25<br />

831.25<br />

839.25<br />

847.25<br />

855.25<br />

Audio<br />

Carrier<br />

(MHz)<br />

(G,H)<strong>PAL</strong> (I)<strong>PAL</strong><br />

628.75<br />

636.75<br />

644.75<br />

652.75<br />

660.75<br />

668.75<br />

676.75<br />

684.75<br />

692.75<br />

700.75<br />

708.75<br />

716.75<br />

724.75<br />

732.75<br />

740.75<br />

748.75<br />

756.75<br />

764.75<br />

772.75<br />

780.75<br />

788.75<br />

796.75<br />

804.75<br />

812.75<br />

820.75<br />

828.75<br />

836.75<br />

844.75<br />

852.75<br />

860.75<br />

629.25<br />

637.25<br />

645.25<br />

653.25<br />

661.25<br />

669.25<br />

677.25<br />

685.25<br />

693.25<br />

701.25<br />

709.25<br />

717.25<br />

725.25<br />

733.25<br />

741.25<br />

749.25<br />

757.25<br />

765.25<br />

773.25<br />

781.25<br />

789.25<br />

797.25<br />

805.25<br />

813.25<br />

821.25<br />

829.25<br />

837.25<br />

845.25<br />

853.25<br />

861.25<br />

Channel<br />

Range<br />

(MHz)<br />

622–630<br />

630–638<br />

638–646<br />

646–654<br />

654–662<br />

662–670<br />

670–678<br />

678–686<br />

686–694<br />

694–702<br />

702–710<br />

710–718<br />

718–726<br />

726–734<br />

734–742<br />

742–750<br />

750–758<br />

758–766<br />

766–774<br />

774–782<br />

782–790<br />

790–798<br />

798–806<br />

806–814<br />

814–822<br />

822–830<br />

830–838<br />

838–846<br />

846–854<br />

854–862<br />

Table 8.6b. Analog Broadcast Nominal Frequencies for the<br />

United Kingdom, Irel<strong>and</strong>, South Africa, Hong Kong, <strong>and</strong><br />

Western Europe.


<strong>PAL</strong> <strong>Overview</strong> 285<br />

Table 8.7. Analog Cable TV Nominal Frequencies for the United Kingdom, Irel<strong>and</strong>, South Africa,<br />

Hong Kong, <strong>and</strong> Western Europe.<br />

Cable<br />

Channel<br />

Video<br />

Carrier<br />

(MHz)<br />

Audio<br />

Carrier<br />

(MHz)<br />

Channel<br />

Range<br />

(MHz)<br />

Cable<br />

Channel<br />

Video<br />

Carrier<br />

(MHz)<br />

Audio<br />

Carrier<br />

(MHz)<br />

Channel<br />

Range<br />

(MHz)<br />

E2<br />

E3<br />

E4<br />

S01<br />

S02<br />

S03<br />

S1<br />

S2<br />

S3<br />

48.25<br />

55.25<br />

62.25<br />

69.25<br />

76.25<br />

83.25<br />

105.25<br />

112.25<br />

119.25<br />

53.75<br />

60.75<br />

67.75<br />

74.75<br />

81.75<br />

88.75<br />

110.75<br />

117.75<br />

124.75<br />

47–54<br />

54–61<br />

61–68<br />

68–75<br />

75–82<br />

82–89<br />

104–111<br />

111–118<br />

118–125<br />

S11<br />

S12<br />

S13<br />

S14<br />

S15<br />

S16<br />

S17<br />

S18<br />

S19<br />

231.25<br />

238.25<br />

245.25<br />

252.25<br />

259.25<br />

266.25<br />

273.25<br />

280.25<br />

287.25<br />

236.75<br />

243.75<br />

250.75<br />

257.75<br />

264.75<br />

271.75<br />

278.75<br />

285.75<br />

292.75<br />

230–237<br />

237–244<br />

244–251<br />

251–258<br />

258–265<br />

265–272<br />

272–279<br />

279–286<br />

286–293<br />

S4<br />

S5<br />

S6<br />

S7<br />

S8<br />

S9<br />

S10<br />

–<br />

–<br />

–<br />

126.25<br />

133.25<br />

140.75<br />

147.75<br />

154.75<br />

161.25<br />

168.25<br />

–<br />

–<br />

–<br />

131.75<br />

138.75<br />

145.75<br />

152.75<br />

159.75<br />

166.75<br />

173.75<br />

–<br />

–<br />

–<br />

125–132<br />

132–139<br />

139–146<br />

146–153<br />

153–160<br />

160–167<br />

167–174<br />

–<br />

–<br />

–<br />

S20<br />

S21<br />

S22<br />

S23<br />

S24<br />

S25<br />

S26<br />

S27<br />

S28<br />

S29<br />

294.25<br />

303.25<br />

311.25<br />

319.25<br />

327.25<br />

335.25<br />

343.25<br />

351.25<br />

359.25<br />

367.25<br />

299.75<br />

308.75<br />

316.75<br />

324.75<br />

332.75<br />

340.75<br />

348.75<br />

356.75<br />

364.75<br />

372.75<br />

293–300<br />

302–310<br />

310–318<br />

318–326<br />

326–334<br />

334–342<br />

342–350<br />

350–358<br />

358–366<br />

366–374<br />

E5<br />

E6<br />

E7<br />

E8<br />

E9<br />

E10<br />

E11<br />

E12<br />

–<br />

–<br />

–<br />

–<br />

175.25<br />

182.25<br />

189.25<br />

196.25<br />

203.25<br />

210.25<br />

217.25<br />

224.25<br />

–<br />

–<br />

–<br />

–<br />

180.75<br />

187.75<br />

194.75<br />

201.75<br />

208.75<br />

215.75<br />

222.75<br />

229.75<br />

–<br />

–<br />

–<br />

–<br />

174–181<br />

181–188<br />

188–195<br />

195–202<br />

202–209<br />

209–216<br />

216–223<br />

223–230<br />

–<br />

–<br />

–<br />

–<br />

S30<br />

S31<br />

S32<br />

S33<br />

S34<br />

S35<br />

S36<br />

S37<br />

S38<br />

S39<br />

S40<br />

S41<br />

375.25<br />

383.25<br />

391.25<br />

399.25<br />

407.25<br />

415.25<br />

423.25<br />

431.25<br />

439.25<br />

447.25<br />

455.25<br />

463.25<br />

380.75<br />

388.75<br />

396.75<br />

404.75<br />

412.75<br />

420.75<br />

428.75<br />

436.75<br />

444.75<br />

452.75<br />

460.75<br />

468.75<br />

374–382<br />

382–390<br />

390–398<br />

398–406<br />

406–414<br />

414–422<br />

422–430<br />

430–438<br />

438–446<br />

446–454<br />

454–462<br />

462–470


286 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Use by Country<br />

Figure 8.19 shows the common designations<br />

for <strong>PAL</strong> systems. The letters refer to the monochrome<br />

st<strong>and</strong>ard for line <strong>and</strong> field rate, video<br />

b<strong>and</strong>width (4.2, 5.0, 5.5, or 6.0 MHz), audio<br />

carrier relative frequency, <strong>and</strong> RF channel<br />

b<strong>and</strong>width (6.0, 7.0, or 8.0 MHz). The “<strong>PAL</strong>”<br />

refers to the technique to add color information<br />

to the monochrome signal. Detailed timing<br />

parameters may be found in Table 8.9.<br />

The following countries use the (I) <strong>PAL</strong><br />

st<strong>and</strong>ard.<br />

Angola Malawi<br />

Botswana Namibia<br />

Gambia Nigeria<br />

Guinea-Bissau South Africa<br />

Hong Kong Tanzania<br />

Irel<strong>and</strong> United Kingdom<br />

Lesotho Zanzibar<br />

Macau<br />

The following countries use the (B) <strong>and</strong><br />

(G) <strong>PAL</strong> st<strong>and</strong>ards.<br />

Albania Kenya<br />

Algeria Kuwait<br />

Austria Liberia<br />

Bahrain Libya<br />

Cambodia Lithuania<br />

Cameroon Luxembourg<br />

Croatia Malaysia<br />

Cyprus Netherl<strong>and</strong>s<br />

Denmark New Zeal<strong>and</strong><br />

Egypt Norway<br />

Equatorial Guinea Oman<br />

Ethiopia Pakistan<br />

Finl<strong>and</strong> Papua New Guinea<br />

Germany Portugal<br />

Icel<strong>and</strong> Qatar<br />

Israel Sierra Leone<br />

Italy Singapore<br />

Jordan Slovenia<br />

Somalia Syria<br />

Spain Thail<strong>and</strong><br />

Sri Lanka Turkey<br />

Sudan Yemen<br />

Sweden Yugoslavia<br />

Switzerl<strong>and</strong><br />

The following countries use the (N) <strong>PAL</strong><br />

st<strong>and</strong>ard. Note that Argentina uses a modified<br />

<strong>PAL</strong> st<strong>and</strong>ard, called “N C .”<br />

Argentina Paraguay<br />

Aryenuna Uruguay<br />

The following countries use the (M) <strong>PAL</strong><br />

st<strong>and</strong>ard.<br />

Brazil<br />

The following countries use the (B) <strong>PAL</strong><br />

st<strong>and</strong>ard.<br />

Australia Maldives<br />

Bangladesh Malta<br />

Belgium Nigeria<br />

Brunei Darussalam Rw<strong>and</strong>ese Republic<br />

Ghana Sao Tome & Principe<br />

India Seychelles<br />

Indonesia Vanuatu<br />

The following countries use the (G) <strong>PAL</strong><br />

st<strong>and</strong>ard.<br />

Hungary Zambia<br />

Mozambique Zimbabwe<br />

Romania<br />

The following countries use the (D) <strong>PAL</strong><br />

st<strong>and</strong>ard.<br />

China Latvia<br />

Czech Republic Pol<strong>and</strong><br />

Hungary Romania<br />

Korea, North


The following countries use the (H) <strong>PAL</strong><br />

st<strong>and</strong>ard.<br />

Belgium<br />

Luma Equation Derivation<br />

The equation for generating luminance from<br />

RGB information is determined by the chromaticities<br />

of the three primary colors used by the<br />

receiver <strong>and</strong> what color white actually is.<br />

The chromaticities of the RGB primaries<br />

<strong>and</strong> reference white (CIE illuminate D65 )are:<br />

R: xr = 0.64 yr = 0.33 zr = 0.03<br />

G: xg =0.29yg = 0.60 zg =0.11<br />

B: xb =0.15yb = 0.06 zb =0.79<br />

white: xw = 0.3127<br />

zw = 0.3583<br />

yw = 0.3290<br />

where x <strong>and</strong> y are the specified CIE 1931 chromaticity<br />

coordinates; z is calculated by knowingthatx+y+z=1.<br />

As with <strong>NTSC</strong>, substituting the known values<br />

gives us the solution for K r ,K g ,<strong>and</strong>K b :<br />

Y is defined to be<br />

or<br />

Kr Kg Kb =<br />

=<br />

0.3127 ⁄ 0.3290<br />

1<br />

0.3583 ⁄ 0.3290<br />

0.674<br />

1.177<br />

1.190<br />

<strong>PAL</strong> <strong>Overview</strong> 287<br />

0.64 0.29 0.15<br />

0.33 0.60 0.06<br />

0.03 0.11 0.79<br />

Y=(K r y r )R´ +(K g y g )G´ +(K b y b )B´<br />

= (0.674)(0.33)R´ + (1.177)(0.60)G´<br />

+ (1.190)(0.06)B´<br />

Y = 0.222R´ + 0.706G´ +0.071B´<br />

However, the st<strong>and</strong>ard Y = 0.299R´ +<br />

0.587G´ + 0.114B´ equation is still used. Adjustments<br />

are made in the receiver to minimize<br />

color errors.<br />

– 1


288 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

<strong>PAL</strong>plus<br />

<strong>PAL</strong>plus (ITU-R BT.1197 <strong>and</strong> ETSI ETS<br />

300731) is the result of a cooperative project<br />

started in 1990, undertaken by several European<br />

broadcasters. By 1995, they wanted to<br />

provide an enhanced definition television system<br />

(EDTV), compatible with existing receivers.<br />

<strong>PAL</strong>plus has been transmitted by a few<br />

broadcasters since 1994.<br />

A <strong>PAL</strong>plus picture has a 16:9 aspect ratio.<br />

On conventional TVs, it is displayed as a 16:9<br />

letterboxed image with 430 active lines. On<br />

<strong>PAL</strong>plus TVs, it is displayed as a 16:9 picture<br />

with 574 active lines, with extended vertical<br />

resolution. The full video b<strong>and</strong>width is available<br />

for luminance detail. Cross color artifacts<br />

are reduced by clean encoding.<br />

Wide Screen Signalling<br />

Line 23 is contains a Widescreen Signalling<br />

(WSS) control signal, defined by ITU-R<br />

BT.1119 <strong>and</strong> ETSI EN 300294, used by <strong>PAL</strong>plus<br />

TVs. This signal indicates:<br />

Program Aspect Ratio:<br />

Full Format 4:3<br />

Letterbox 14:9 Center<br />

Letterbox 14:9 Top<br />

Full Format 14:9 Center<br />

Letterbox 16:9 Center<br />

Letterbox 16:9 Top<br />

Full Format 16:9 Anamorphic<br />

Letterbox > 16:9 Center<br />

Enhanced services:<br />

Camera Mode<br />

Film Mode<br />

Subtitles:<br />

Teletext Subtitles Present<br />

Open Subtitles Present<br />

<strong>PAL</strong>plus is defined as being Letterbox 16:9<br />

center, camera mode or film mode, helper signals<br />

present using modulation, <strong>and</strong> clean<br />

encoding used. Teletext subtitles may or may<br />

not be present, <strong>and</strong> open subtitles may be<br />

present only in the active picture area.<br />

During a <strong>PAL</strong>plus transmission, any active<br />

video on lines 23 <strong>and</strong> 623 is blanked prior to<br />

encoding. In addition to WSS data, line 23<br />

includes 48 ±1 cycles of a 300 ±9 mV subcarrier<br />

with a –U phase,starting51µs ±250 ns<br />

after 0 H. Line 623 contains a 10 µs ±250 ns<br />

white pulse, starting 20 µs ±250 ns after 0 H .<br />

A <strong>PAL</strong>plus TV has the option of deinterlacing<br />

a Film Mode signal <strong>and</strong> displaying it on a<br />

50-Hz progressive-scan display or using field<br />

repeating on a 100-Hz interlaced display.<br />

Ghost Cancellation<br />

An optional ghost cancellation signal on line<br />

318, defined by ITU-R BT.1124 <strong>and</strong> ETSI ETS<br />

300732, allows a suitably adapted TV to measure<br />

the ghost signal <strong>and</strong> cancel any ghosting<br />

during the active video. A <strong>PAL</strong>plus TV may or<br />

may not support this feature.<br />

Vertical Filtering<br />

All <strong>PAL</strong>plus sources start out as a 16:9 YCbCr<br />

anamorphic image, occupying all 576 active<br />

scan lines. Any active video on lines 23 <strong>and</strong> 623<br />

is blanked prior to encoding (since these lines<br />

are used for WSS <strong>and</strong> reference information),<br />

resulting in 574 active lines per frame. Lines<br />

24–310 <strong>and</strong> 336–622areusedforactivevideo.<br />

Before transmission, the 574 active scan<br />

lines of the 16:9 image are squeezed into 430<br />

scan lines. To avoid aliasing problems, the vertical<br />

resolution is reduced by lowpass filtering.<br />

For Y, vertical filtering is done using a<br />

Quadrature Mirror Filter (QMF) highpass <strong>and</strong><br />

lowpass pair. Using the QMF process allows<br />

the highpass <strong>and</strong> lowpass information to be


esampled, transmitted, <strong>and</strong> later recombined<br />

with minimal loss.<br />

The Y QMF lowpass output is resampled<br />

into three-quarters of the original height; little<br />

information is lost to aliasing. After clean<br />

encoding, it is the letterboxed signal that conventional<br />

4:3 TVs display.<br />

The Y QMF highpass output contains the<br />

rest of the original vertical frequency. It is<br />

used to generate the helper signals that are<br />

transmitted using the “black” scan lines not<br />

used by the letterbox picture.<br />

Film Mode<br />

A film mode broadcast has both fields of a<br />

frame coming from the same image, as is usually<br />

the case with a movie scanned on a telecine.<br />

In film mode, the maximum vertical resolution<br />

per frame is about 287 cycles per active<br />

picture height (cph), limited by the 574 active<br />

scan lines per frame.<br />

The vertical resolution of Y is reduced to<br />

215 cph so it can be transmitted using only 430<br />

active lines. The QMF lowpass <strong>and</strong> highpass<br />

filters split the Y vertical information into DC–<br />

215 cph <strong>and</strong> 216–287 cph.<br />

The Y lowpass information is re-scanned<br />

into 430 lines to become the letterbox image.<br />

Since the vertical frequency is limited to a<br />

maximum of 215 cph, no information is lost.<br />

The Y highpass output is decimated so<br />

only one in four lines are transmitted. These<br />

144 lines are used to transmit the helper signals.<br />

Because of the QMF process, no information<br />

is lost to decimation.<br />

The72linesabove<strong>and</strong>72linesbelowthe<br />

central 430-line of the letterbox image are used<br />

to transmit the 144 lines of the helper signal.<br />

This results in a st<strong>and</strong>ard 574 active line picture,<br />

but with the original image in its correct<br />

aspect ratio, centered between the helper signals.<br />

The scan lines containing the 300 mV<br />

<strong>PAL</strong> <strong>Overview</strong> 289<br />

helper signals are modulated using the U subcarrier<br />

so they look black <strong>and</strong> are not visible to<br />

the viewer.<br />

After Fixed ColorPlus processing, the 574<br />

scan lines are <strong>PAL</strong> encoded <strong>and</strong> transmitted as<br />

a st<strong>and</strong>ard interlaced <strong>PAL</strong> frame.<br />

Camera Mode<br />

Camera (or video) mode assumes the fields of<br />

a frame are independent of each other, as<br />

would be the case when a camera scans a<br />

scene in motion. Therefore, the image may<br />

have changed between fields. Only intra-field<br />

processing is done.<br />

In camera mode, the maximum vertical<br />

resolution per field is about 143 cycles per<br />

active picture height (cph), limited by the 287<br />

active scan lines per field.<br />

The vertical resolution of Y is reduced to<br />

107 cph so it can be transmitted using only 215<br />

active lines. The QMF lowpass <strong>and</strong> highpass<br />

filter pair split the Y vertical information into<br />

DC–107 cph <strong>and</strong> 108–143 cph.<br />

The Y lowpass information is re-scanned<br />

into 215 lines to become the letterbox image.<br />

Since the vertical frequency is limited to a<br />

maximum of 107 cph, no information is lost.<br />

The Y highpass output is decimated so<br />

only one in four lines is transmitted. These 72<br />

lines are used to transmit the helper signals.<br />

Because of the QMF process, no information is<br />

lost to decimation.<br />

The36linesabove<strong>and</strong>36linesbelowthe<br />

central 215-line of the letterbox image are used<br />

totransmitthe72linesofthehelpersignal.<br />

This results in a 287 active line picture, but<br />

with the original image in its correct aspect<br />

ratio, centered between the helper signals. The<br />

scan lines containing the 300 mV helper signals<br />

are modulated using the U subcarrier so<br />

they look black <strong>and</strong> are not visible to the<br />

viewer.


290 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

AftereitherFixedorMotionAdaptiveColorPlus<br />

processing, the 287 scan lines are <strong>PAL</strong><br />

encoded <strong>and</strong> transmitted as a st<strong>and</strong>ard <strong>PAL</strong><br />

field.<br />

Clean Encoding<br />

Only the letterboxed portion of the <strong>PAL</strong>plus<br />

signal is clean encoded. The helper signals are<br />

not actual <strong>PAL</strong> video. However, they are close<br />

enough to video to pass through the transmission<br />

path <strong>and</strong> remain fairly invisible on st<strong>and</strong>ard<br />

TVs.<br />

ColorPlus Processing<br />

Fixed ColorPlus<br />

Film Mode uses a Fixed ColorPlus technique,<br />

making use of the lack of motion between the<br />

two fields of the frame.<br />

Fixed ColorPlus depends on the subcarrier<br />

phase of the composite <strong>PAL</strong> signal being of<br />

opposite phase when 312 lines apart. If these<br />

two lines have the same luminance <strong>and</strong><br />

chrominance information, it can be separated<br />

by adding <strong>and</strong> subtracting the composite signals<br />

from each other. Adding cancels the<br />

chrominance, leaving luminance. Subtracting<br />

cancels the luminance, leaving chrominance.<br />

In practice, Y information above 3 MHz<br />

(Y HF ) is intra-frame averaged since it shares<br />

the frequency spectrum with the modulated<br />

chrominance. For line [n], Y HF is calculated as<br />

follows:<br />

0 ≤ n ≤ 214 for 430-line letterboxed image<br />

YHF(60 + n) = 0.5(YHF(372 + n) +YHF(60 + n) )<br />

Y HF(372 + n) =Y HF(60 + n)<br />

Y HF is then added to the low-frequency Y<br />

(Y LF ) information. The same intra-frame averaging<br />

process is also used for Cb <strong>and</strong> Cr. The<br />

430-line letterbox image is then <strong>PAL</strong> encoded.<br />

Thus, Y information above 3 MHz, <strong>and</strong><br />

CbCr information, is the same on lines [n] <strong>and</strong><br />

[n+312]. Y information below 3 MHz may be<br />

different on lines [n] <strong>and</strong> [n+312]. The full vertical<br />

resolution of 287 cph is reconstructed by<br />

the decoder with the aid of the helper signals.<br />

Motion Adaptive ColorPlus (MACP)<br />

Camera Mode uses either Motion Adaptive<br />

ColorPlus or Fixed ColorPlus, depending on<br />

the amount of motion between fields. This<br />

requires a motion detector in both the encoder<br />

<strong>and</strong> decoder.<br />

To detect movement, the CbCr data on<br />

lines [n] <strong>and</strong> [n+312] are compared. If they<br />

match, no movement is assumed, <strong>and</strong> Fixed<br />

ColorPlus operation is used. If the CbCr data<br />

doesn’t match, movement is assumed, <strong>and</strong><br />

Motion Adaptive ColorPlus operation is used.<br />

During Motion Adaptive ColorPlus operation,<br />

the amount of Y HF added to Y LF is dependent<br />

on the difference between CbCr (n) <strong>and</strong><br />

CbCr (n + 312) . For the maximum CbCr difference,<br />

no Y HF data for lines [n] <strong>and</strong> [n+312] is<br />

transmitted.<br />

In addition, the amount of intra-frame averaged<br />

CbCr data mixed with the direct CbCr<br />

data is dependent on the difference between<br />

CbCr (n) <strong>and</strong> CbCr (n + 312) .Forthemaximum<br />

CbCr difference, only direct CbCr data is transmitted<br />

separately for lines [n] <strong>and</strong> [n+312].


<strong>SECAM</strong> <strong>Overview</strong><br />

<strong>SECAM</strong> (Sequentiel Couleur Avec Mémoire or<br />

Sequential Color with Memory) was developed<br />

in France, with broadcasting starting in 1967,<br />

by realizing that, if color could be b<strong>and</strong>widthlimited<br />

horizontally, why not also vertically?<br />

The two pieces of color information (Db <strong>and</strong><br />

Dr) added to the monochrome signal could be<br />

transmitted on alternate lines, avoiding the<br />

possibility of crosstalk.<br />

The receiver requires memory to store<br />

one line so that it is concurrent with the next<br />

line, <strong>and</strong> also requires the addition of a lineswitching<br />

identification technique.<br />

Like <strong>PAL</strong>, <strong>SECAM</strong> is a 625-line, 50-fieldper-second,<br />

2:1 interlaced system. <strong>SECAM</strong> was<br />

adopted by other countries; however, many are<br />

changing to <strong>PAL</strong> due to the abundance of professional<br />

<strong>and</strong> consumer <strong>PAL</strong> equipment.<br />

Luminance Information<br />

The monochrome luminance (Y) signal is<br />

derived from R´G´B´:<br />

Y = 0.299R´ + 0.587G´ + 0.114B´<br />

As with <strong>NTSC</strong> <strong>and</strong> <strong>PAL</strong>, the luminance signal<br />

occupies the entire video b<strong>and</strong>width.<br />

<strong>SECAM</strong> has several variations, depending on<br />

the video b<strong>and</strong>width <strong>and</strong> placement of the<br />

audio subcarrier. The video signal has a b<strong>and</strong>width<br />

of 5.0 or 6.0 MHz, depending on the specific<br />

<strong>SECAM</strong> st<strong>and</strong>ard.<br />

Color Information<br />

<strong>SECAM</strong> transmits Db information during one<br />

line <strong>and</strong> Dr information during the next line;<br />

luminance information is transmitted each<br />

<strong>SECAM</strong> <strong>Overview</strong> 291<br />

line. Db <strong>and</strong> Dr are scaled versions of B´ –Y<br />

<strong>and</strong> R´–Y:<br />

Dr = –1.902(R´–Y)<br />

Db = 1.505(B´ –Y)<br />

Since there is an odd number of lines, any<br />

given line contains Db information on one field<br />

<strong>and</strong> Dr information on the next field. The<br />

decoder requires a 1-H delay, switched synchronously<br />

with the Db <strong>and</strong> Dr switching, so<br />

that Db <strong>and</strong> Dr exist simultaneously in order to<br />

convert to YCbCr or RGB.<br />

Color Modulation<br />

<strong>SECAM</strong> uses FM modulation to transmit the<br />

Db <strong>and</strong> Dr color difference information, with<br />

each component having its own subcarrier.<br />

Db <strong>and</strong> Dr are lowpass filtered to 1.3 MHz<br />

<strong>and</strong>pre-emphasisisapplied.Thecurveforthe<br />

pre-emphasis is expressed by:<br />

f<br />

1 + j⎛-----<br />

⎞<br />

⎝85⎠ A =<br />

------------------------f<br />

1 + j⎛--------⎞<br />

⎝255⎠ where ƒ = signal frequency in kHz.<br />

Afterpre-emphasis,Db<strong>and</strong>Drfrequency<br />

modulate their respective subcarriers. The frequency<br />

of each subcarrier is defined as:<br />

FOB = 272 FH = 4.250000 MHz (± 2kHz)<br />

FOR = 282 FH = 4.406250 MHz (± 2kHz)<br />

These frequencies represent no color<br />

information. Nominal Dr deviation is ±280 kHz<br />

<strong>and</strong> the nominal Db deviation is ±230 kHz. Figure<br />

8.23 illustrates the frequency modulation


292 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

process of the color difference signals. The<br />

choice of frequency shifts reflects the idea of<br />

keeping the frequencies representing critical<br />

colors away from the upper limit of the spectrum<br />

to minimize distortion.<br />

After modulation of Db <strong>and</strong> Dr, subcarrier<br />

pre-emphasis is applied, changing the amplitude<br />

of the subcarrier as a function of the frequency<br />

deviation. The intention is to reduce<br />

the visibility of the subcarriers in areas of low<br />

luminance <strong>and</strong> to improve the signal-to-noise<br />

ratio of highly saturated colors. This preemphasis<br />

is given as:<br />

1 j16F<br />

G M +<br />

= -------------------------<br />

1 + j1.26F<br />

whereF=(ƒ/4286) – (4286/ƒ), ƒ = instantaneous<br />

subcarrier frequency in kHz, <strong>and</strong> 2M =<br />

23 ± 2.5% of luminance amplitude.<br />

Y<br />

EVEN LINES<br />

ODD LINES<br />

YELLOW<br />

– DB<br />

RED<br />

+ DR<br />

GRAY<br />

FOB<br />

4.25<br />

As shown in Table 8.8 <strong>and</strong> Figure 8.24, Db<br />

<strong>and</strong> Dr information is transmitted on alternate<br />

scan lines. The phase of the subcarriers is also<br />

reversed 180° on every third line <strong>and</strong> between<br />

each field to further reduce subcarrier visibility.<br />

Note that subcarrier phase information in<br />

the <strong>SECAM</strong> system carries no picture information.<br />

Composite Video Generation<br />

The subcarrier data is added to the luminance<br />

along with appropriate horizontal <strong>and</strong> vertical<br />

sync signals, blanking signals, <strong>and</strong> burst signals<br />

to generate composite video.<br />

As with <strong>PAL</strong>, <strong>SECAM</strong> requires some<br />

means of identifying the line-switching<br />

sequence. Modern practice has been to use a<br />

F OR /F OB burst after most horizontal syncs to<br />

derive the switching synchronization information,<br />

as shown in Figure 8.25.<br />

GRAY<br />

FOR<br />

4.40<br />

BLUE<br />

+ DB<br />

CYAN<br />

– DR<br />

Figure 8.23. <strong>SECAM</strong> FM Color Modulation.<br />

6<br />

MHZ


Use by Country<br />

Figure8.26showsthecommondesignations<br />

for <strong>SECAM</strong> systems. The letters refer to the<br />

monochrome st<strong>and</strong>ard for line <strong>and</strong> field rates,<br />

video b<strong>and</strong>width (5.0 or 6.0 MHz), audio carrier<br />

relative frequency, <strong>and</strong> RF channel b<strong>and</strong>width.<br />

The <strong>SECAM</strong> refers to the technique to<br />

add color information to the monochrome signal.<br />

Detailed timing parameters may be found<br />

in Table 8.9.<br />

The following countries use the (B) <strong>and</strong><br />

(G) <strong>SECAM</strong> st<strong>and</strong>ards.<br />

Greece Mauritius<br />

Iran Morocco<br />

Iraq Saudi Arabia<br />

Lebanon Tunisia<br />

Mali<br />

Table 8.8. <strong>SECAM</strong> Color Versus Line <strong>and</strong> Field Timing.<br />

<strong>SECAM</strong> <strong>Overview</strong> 293<br />

Field<br />

Line<br />

Number<br />

Color Subcarrier Phase<br />

odd N Dr 0°<br />

even N + 313 Db 180°<br />

odd N + 1 Db 0°<br />

even N + 314 Dr 0°<br />

odd N + 2 Dr 180°<br />

even N + 315 Db 180°<br />

odd N + 3 Db 0°<br />

even N + 316 Dr 180°<br />

odd N + 4 Dr 0°<br />

even N + 317 Db 0°<br />

odd N + 5 Db 180°<br />

even N + 318 Dr 180°<br />

The following countries use the (D) <strong>and</strong><br />

(K) <strong>SECAM</strong> st<strong>and</strong>ards.<br />

Azerbaijan Latvia<br />

Belarus Lithuania<br />

Bulgaria Moldova<br />

Estonia Russia<br />

Georgia Ukraine<br />

Kazakhstan Viet Nam<br />

The following countries use the (B)<br />

<strong>SECAM</strong> st<strong>and</strong>ard.<br />

Mauritania Djibouti<br />

The following countries use the (D)<br />

<strong>SECAM</strong> st<strong>and</strong>ard.<br />

Afghanistan Mongolia


294 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

DR DB<br />

START<br />

OF<br />

VSYNC<br />

620 621 622 623 624 625 1 2 3 4 5 6 7 23 24<br />

DB<br />

ANALOG<br />

FIELD 1<br />

ANALOG<br />

FIELD 2<br />

308 309 310 311 312 313 314 315 316 317 318 319 320 336 337<br />

DB DR<br />

DR DB<br />

ANALOG<br />

FIELD 3<br />

620 621 622 623 624 625 1 2 3 4 5 6 7 23 24<br />

DR<br />

DR DB<br />

DB DR<br />

DB DR<br />

ANALOG<br />

FIELD 4<br />

DR DB<br />

DB DR<br />

DB DR<br />

DR DB<br />

308 309 310 311 312 313 314 315 316 317 318 319 320 336 337<br />

Figure 8.24. Four-field <strong>SECAM</strong> Sequence. See Figure 8.5 for equalization <strong>and</strong> serration pulse<br />

details.<br />

FO<br />

HORIZONTAL<br />

BLANKING<br />

BLANK LEVEL<br />

SYNC LEVEL<br />

Figure 8.25. <strong>SECAM</strong> Chroma Synchronization Signals.


FREQUENCY MODULATED SUBCARRIERS<br />

FOR = 282 FH<br />

FOB = 272 FH<br />

LINE SEQUENTIAL DR AND DB SIGNALS<br />

"D, K, K1, L"<br />

LINE / FIELD = 625 / 50<br />

FH = 15.625 KHZ<br />

FV = 50 HZ<br />

BLANKING SETUP = 0 IRE<br />

VIDEO BANDWIDTH = 6.0 MHZ<br />

AUDIO CARRIER = 6.5 MHZ<br />

CHANNEL BANDWIDTH = 8 MHZ<br />

The following countries use the (K1)<br />

<strong>SECAM</strong> st<strong>and</strong>ard.<br />

Benin Gabon<br />

Burkina Faso Guadeloupe<br />

Burundi Madagascar<br />

Cape Verde Niger<br />

Central African Senegal<br />

Republic Tahiti<br />

Chad Togo<br />

Comoros Zaire<br />

Congo<br />

"B, G"<br />

LINE / FIELD = 625 / 50<br />

FH = 15.625 KHZ<br />

FV = 50 HZ<br />

BLANKING SETUP = 0 IRE<br />

VIDEO BANDWIDTH = 5.0 MHZ<br />

AUDIO CARRIER = 5.5 MHZ<br />

CHANNEL BANDWIDTH:<br />

B = 7 MHZ<br />

G = 8 MHZ<br />

Figure 8.26. Common <strong>SECAM</strong> Systems.<br />

<strong>SECAM</strong> <strong>Overview</strong> 295<br />

The following countries use the (L)<br />

<strong>SECAM</strong> st<strong>and</strong>ard.<br />

France Monaco


296 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Luminance Equation Derivation<br />

The equation for generating luminance from<br />

RGB information is determined by the chromaticities<br />

of the three primary colors used by the<br />

receiver <strong>and</strong> what color white actually is.<br />

The chromaticities of the RGB primaries<br />

<strong>and</strong> reference white (CIE illuminate D 65 )are:<br />

R: xr =0.64 yr = 0.33 zr = 0.03<br />

G: xg = 0.29 yg =0.60zg =0.11<br />

B: xb = 0.15 yb =0.06zb =0.79<br />

white: xw = 0.3127<br />

zw = 0.3583<br />

yw = 0.3290<br />

where x <strong>and</strong> y are the specified CIE 1931 chromaticity<br />

coordinates; z is calculated by knowing<br />

that x + y + z = 1. Once again, substituting<br />

theknownvaluesgivesusthesolutionforK r ,<br />

K g ,<strong>and</strong>K b :<br />

Y is defined to be<br />

or<br />

Kr Kg Kb =<br />

=<br />

0.3127 ⁄ 0.3290<br />

1<br />

0.3583 ⁄ 0.3290<br />

0.674<br />

1.177<br />

1.190<br />

0.64 0.29 0.15<br />

0.33 0.60 0.06<br />

0.03 0.11 0.79<br />

Y=(K r y r )R´ +(K g y g )G´ +(K b y b )B´<br />

= (0.674)(0.33)R´ + (1.177)(0.60)G´<br />

+ (1.190)(0.06)B´<br />

Y = 0.222R´ + 0.706G´ +0.071B´<br />

However, the st<strong>and</strong>ard Y = 0.299R´ +<br />

0.587G´ + 0.114B´ equation is still used. Adjustments<br />

are made in the receiver to minimize<br />

color errors.<br />

– 1


SCAN LINES PER FRAME<br />

FIELD FREQUENCY<br />

(FIELDS / SECOND)<br />

LINE FREQUENCY (HZ)<br />

PEAK WHITE LEVEL (IRE)<br />

SYNC TIP LEVEL (IRE)<br />

SETUP (IRE)<br />

PEAK VIDEO LEVEL (IRE)<br />

GAMMA OF RECEIVER<br />

VIDEO BANDWIDTH (MHZ)<br />

LUMINANCE SIGNAL<br />

M<br />

525<br />

59.94<br />

15,734<br />

100<br />

–40<br />

7.5 ± 2.5<br />

120<br />

2.2<br />

4.2<br />

N<br />

625<br />

50<br />

15,625<br />

100<br />

–40 (–43)<br />

7.5 ± 2.5 (0)<br />

2.8<br />

5.0 (4.2)<br />

1 Values in parentheses apply to (NC) <strong>PAL</strong> used in Argentina.<br />

625<br />

50<br />

15,625<br />

100<br />

–43<br />

Y = 0.299R´ + 0.685G´ + 0.114B´ (RGB ARE GAMMA–CORRECTED)<br />

0<br />

<strong>SECAM</strong> <strong>Overview</strong> 297<br />

B, G H I D, K K1<br />

L<br />

133<br />

2.8<br />

5.0<br />

Table 8.9a. Basic Characteristics of Color Video Signals.<br />

2.8<br />

5.0<br />

133<br />

2.8<br />

5.5<br />

115<br />

2.8<br />

6.0<br />

115<br />

2.8<br />

6.0<br />

125<br />

2.8<br />

6.0


298 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Characteristics M N<br />

Notes<br />

1. 0 H is at 50% point of falling edge of horizontal sync.<br />

2. In case of different st<strong>and</strong>ards having different specifications <strong>and</strong> tolerances, the<br />

tightest specification <strong>and</strong> tolerance is listed.<br />

3. Timing is measured between half-amplitude points on appropriate signal edges.<br />

Table 8.9b. Details of Line Synchronization Signals.<br />

B, D, G, H, I<br />

K,K1,L,N C<br />

Nominal line period (µs) 63.5555 64 64<br />

Line blanking interval (µs) 10.7 ± 0.1 10.88 ± 0.64 11.85 ± 0.15<br />

0 H to start of active video (µs) 9.2 ± 0.1 9.6 ± 0.64 10.5<br />

Front porch (µs) 1.5 ± 0.1 1.92 ± 0.64 1.65 ± 0.15<br />

Line synchronizing pulse (µs) 4.7 ± 0.1 4.99 ± 0.77 4.7 ± 0.2<br />

Rise <strong>and</strong> fall time of line<br />

blanking (10%, 90%) (ns) 140 ± 20 300 ± 100 300 ± 100<br />

Rise <strong>and</strong> fall time of line<br />

synchronizing pulses (10%, 90%) (ns) 140 ± 20 ≤ 250 250 ± 50


Characteristics M N<br />

Notes<br />

1. In case of different st<strong>and</strong>ards having different specifications <strong>and</strong> tolerances, the tightest<br />

specification <strong>and</strong> tolerance is listed.<br />

2. Timing is measured between half-amplitude points on appropriate signal edges.<br />

Table 8.9c. Details of Field Synchronization Signals.<br />

<strong>SECAM</strong> <strong>Overview</strong> 299<br />

B, D, G, H, I<br />

K,K1,L,N C<br />

Field period (ms) 16.6833 20 20<br />

Field blanking interval 20 lines 19–25 lines 25 lines<br />

Rise <strong>and</strong> fall time of field blanking<br />

(10%, 90%) (ns)<br />

Duration of equalizing <strong>and</strong><br />

synchronizing sequences<br />

140 ± 20 ≤ 250 300 ± 100<br />

3H 3H 2.5H<br />

Equalizing pulse width (µs) 2.3 ± 0.1 2.43 ± 0.13 2.35 ± 0.1<br />

Serration pulse width (µs) 4.7 ± 0.1 4.7 ± 0.8 4.7 ± 0.1<br />

Rise <strong>and</strong> fall time of synchronizing <strong>and</strong><br />

equalizing pulses (10%, 90%) (ns)<br />

140 ± 20 < 250 250 ± 50


300 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

ATTENUATION OF COLOR<br />

DIFFERENCE SIGNALS<br />

START OF BURST<br />

AFTER 0H (µS)<br />

BURST DURATION (CYCLES)<br />

BURST PEAK AMPLITUDE<br />

Video Test Signals<br />

M / <strong>NTSC</strong><br />

U, V, I, Q:<br />

< 2 DB AT 1.3 MHZ<br />

> 20 DB AT 3.6 MHZ<br />

OR Q:<br />

< 2 DB AT 0.4 MHZ<br />

< 6 DB AT 0.5 MHZ<br />

> 6 DB AT 0.6 MHZ<br />

5.3 ± 0.07<br />

9 ± 1<br />

40 ± 1 IRE<br />

Many industry-st<strong>and</strong>ard video test signals<br />

have been defined to help test the relative quality<br />

of encoding, decoding, <strong>and</strong> the transmission<br />

path, <strong>and</strong> to perform calibration. Note that<br />

some video test signals cannot be properly<br />

generated by providing RGB data to an<br />

encoder; in this case, YCbCr data may be used.<br />

If the video st<strong>and</strong>ard uses a 7.5-IRE setup,<br />

typically only test signals used for visual examination<br />

use the 7.5-IRE setup. Test signals<br />

designed for measurement purposes typically<br />

use a 0-IRE setup, providing the advantage of<br />

defining a known blanking level.<br />

Color Bars <strong>Overview</strong><br />

Color bars are one of the st<strong>and</strong>ard video test<br />

signals, <strong>and</strong> there are several variations,<br />

depending on the video st<strong>and</strong>ard <strong>and</strong> application.<br />

For this reason, this section reviews the<br />

M / <strong>PAL</strong><br />

< 2 DB AT 1.3 MHZ<br />

> 20 DB AT 3.6 MHZ<br />

5.8 ± 0.1<br />

9 ± 1<br />

42.86 ± 4 IRE<br />

Note: Values in parentheses apply to (N C) <strong>PAL</strong>usedinArgentina.<br />

B, D, G, H, I, N / <strong>PAL</strong><br />

< 3 DB AT 1.3 MHZ<br />

> 20 DB AT 4 MHZ<br />

(> 20 DB AT 3.6 MHZ)<br />

5.6 ± 0.1<br />

10 ± 1 (9 ± 1)<br />

42.86 ± 4 IRE<br />

Table 8.9d. Basic Characteristics of Color Video Signals.<br />

B, D, G, K, K1, K / <strong>SECAM</strong><br />

< 3 DB AT 1.3 MHZ<br />

> 30 DB AT 3.5 MHZ<br />

(BEFORE LOW FREQUENCY<br />

PRE–CORRECTION)<br />

most common color bar formats. Color bars<br />

have two major characteristics: amplitude <strong>and</strong><br />

saturation.<br />

The amplitude of a color bar signal is<br />

determined by:<br />

amplitude (%)<br />

where max(R,G,B) a is the maximum value of<br />

R´G´B´ during colored bars <strong>and</strong> max(R,G,B) b<br />

is the maximum value of R´G´B´ during reference<br />

white.<br />

The saturation of a color bar signal is less<br />

than 100% if the minimum value of any one of<br />

the R´G´B´ components is not zero. The saturation<br />

is determined by:<br />

saturation (%) =<br />

=<br />

min( R, G, B)<br />

1 ⎛-------------------------------- ⎞<br />

⎝max( R, G, B)<br />

⎠<br />

γ<br />

–<br />

max (R, G, B)<br />

------------------------------------------------- a × 100<br />

max (R, G, B) b<br />

× 100


where min(R,G,B) <strong>and</strong> max(R,G,B) are the<br />

minimum <strong>and</strong> maximum values, respectively,<br />

of R´G´B´ during colored bars, <strong>and</strong> γ is the<br />

gamma exponent, typically [1/0.45].<br />

<strong>NTSC</strong> Color Bars<br />

In 1953, it was normal practice for the analog<br />

R´G´B´ signals to have a 7.5 IRE setup, <strong>and</strong> the<br />

original <strong>NTSC</strong> equations assumed this form of<br />

input to an encoder. Today, digital R´G´B´ or<br />

YCbCr signals typically do not include the 7.5<br />

IRE setup, <strong>and</strong> the 7.5 IRE setup is added<br />

within the encoder.<br />

The different color bar signals are<br />

described by four amplitudes, expressed in<br />

percent, separated by oblique strokes. 100%<br />

saturation is implied, so saturation is not specified.<br />

The first <strong>and</strong> second numbers are the<br />

white <strong>and</strong> black amplitudes, respectively. The<br />

third <strong>and</strong> fourth numbers are the white <strong>and</strong><br />

black amplitudes from which the color bars are<br />

derived.<br />

For example, 100/7.5/75/7.5 color bars<br />

would be 75% color bars with 7.5% setup in<br />

which the white bar has been set to 100% <strong>and</strong><br />

the black bar to 7.5%. Since <strong>NTSC</strong> systems usually<br />

have the 7.5% setup, the two common color<br />

bars are 75/7.5/75/7.5 <strong>and</strong> 100/7.5/100/7.5,<br />

which are usually shortened to 75% <strong>and</strong> 100%,<br />

respectively. The 75% bars are most commonly<br />

used. Television transmitters do not pass information<br />

with an amplitude greater than about<br />

120 IRE. Therefore, the 75% color bars are<br />

used for transmission testing. The 100% color<br />

bars may be used for testing in situations<br />

where a direct connection between equipment<br />

is possible. The 75/7.5/75/7.5 color bars are a<br />

part of the Electronic Industries Association<br />

EIA-189-A Encoded Color Bar St<strong>and</strong>ard.<br />

Figure 8.27 shows a typical vectorscope<br />

display for full-screen 75% <strong>NTSC</strong> color bars.<br />

Figure8.28illustratesthevideowaveformfor<br />

75% color bars.<br />

Video Test Signals 301<br />

Tables 8.10 <strong>and</strong> 8.11 list the luminance <strong>and</strong><br />

chrominance levels for the two common color<br />

barformatsfor<strong>NTSC</strong>.<br />

For reference, the RGB <strong>and</strong> YCbCr values<br />

to generate the st<strong>and</strong>ard <strong>NTSC</strong> color bars are<br />

shown in Tables 8.12 <strong>and</strong> 8.13. RGB is<br />

assumed to have a range of 0–255; YCbCr is<br />

assumed to have a range of 16–235 for Y <strong>and</strong><br />

16–240 for Cb <strong>and</strong> Cr. It is assumed any 7.5 IRE<br />

setup is implemented within the encoder.<br />

<strong>PAL</strong> Color Bars<br />

Unlike <strong>NTSC</strong>, <strong>PAL</strong> does not support a 7.5 IRE<br />

setup; the black <strong>and</strong> blank levels are the same.<br />

The different color bar signals are usually<br />

described by four amplitudes, expressed in<br />

percent, separated by oblique strokes. The<br />

first <strong>and</strong> second numbers are the maximum<br />

<strong>and</strong> minimum percentages, respectively, of<br />

R´G´B´ values for an uncolored bar. The third<br />

<strong>and</strong> fourth numbers are the maximum <strong>and</strong><br />

minimum percentages, respectively, of R´G´B´<br />

values for a colored bar.<br />

Since <strong>PAL</strong> systems have a 0% setup, the<br />

two common color bars are 100/0/75/0 <strong>and</strong><br />

100/0/100/0, which are usually shortened to<br />

75% <strong>and</strong> 100%, respectively. The 75% color bars<br />

are used for transmission testing. The 100%<br />

color bars may be used for testing in situations<br />

where a direct connection between equipment<br />

is possible.<br />

The 100/0/75/0 color bars also are<br />

referred to as EBU (European Broadcast<br />

Union) color bars. All of the color bars discussed<br />

in this section are also a part of Specification<br />

of Television St<strong>and</strong>ards for 625-line<br />

System-I Transmissions (1971) published by the<br />

Independent Television Authority (ITA) <strong>and</strong><br />

the British Broadcasting Corporation (BBC),<br />

<strong>and</strong> ITU-R BT.471.


302 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Figure 8.27. Typical Vectorscope Display for 75% <strong>NTSC</strong> Color Bars.


100 IRE<br />

40 IRE<br />

20 IRE<br />

20 IRE<br />

7.5 IRE<br />

3.58 MHZ<br />

COLOR BURST<br />

(9 CYCLES)<br />

WHITE<br />

+ 77<br />

YELLOW<br />

+ 69<br />

+ 38<br />

CYAN<br />

+ 100<br />

Figure 8.28. IRE Values for 75% <strong>NTSC</strong> Color Bars.<br />

Luminance<br />

(IRE)<br />

Chrominance<br />

Level<br />

(IRE)<br />

+ 56<br />

+ 12<br />

GREEN<br />

+ 89<br />

+ 48<br />

+ 7<br />

Minimum<br />

Chrominance<br />

Excursion<br />

(IRE)<br />

Table 8.10. 75/7.5/75/7.5 (75%) <strong>NTSC</strong> Color Bars.<br />

MAGENTA<br />

+ 77<br />

+ 36<br />

– 5<br />

RED<br />

+ 72<br />

+ 28<br />

– 16<br />

BLUE<br />

+ 46<br />

+ 15<br />

– 16<br />

BLACK<br />

Maximum<br />

Chrominance<br />

Excursion<br />

(IRE)<br />

Video Test Signals 303<br />

WHITE LEVEL (100 IRE)<br />

BLACK LEVEL (7.5 IRE)<br />

BLANK LEVEL (0 IRE)<br />

SYNC LEVEL (– 40 IRE)<br />

Chrominance<br />

Phase<br />

(degrees)<br />

white 76.9 0 – – –<br />

yellow 69.0 62.1 37.9 100.0 167.1<br />

cyan 56.1 87.7 12.3 100.0 283.5<br />

green 48.2 81.9 7.3 89.2 240.7<br />

magenta 36.2 81.9 –4.8 77.1 60.7<br />

red 28.2 87.7 –15.6 72.1 103.5<br />

blue 15.4 62.1 –15.6 46.4 347.1<br />

black 7.5 0 – – –


304 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Luminance<br />

(IRE)<br />

Chrominance<br />

Level<br />

(IRE)<br />

Minimum<br />

Chrominance<br />

Excursion<br />

(IRE)<br />

Maximum<br />

Chrominance<br />

Excursion<br />

(IRE)<br />

Table 8.11. 100/7.5/100/7.5 (100%) <strong>NTSC</strong> Color Bars.<br />

Chrominance<br />

Phase<br />

(degrees)<br />

white 100.0 0 – – –<br />

yellow 89.5 82.8 48.1 130.8 167.1<br />

cyan 72.3 117.0 13.9 130.8 283.5<br />

green 61.8 109.2 7.2 116.4 240.7<br />

magenta 45.7 109.2 –8.9 100.3 60.7<br />

red 35.2 117.0 –23.3 93.6 103.5<br />

blue 18.0 82.8 –23.3 59.4 347.1<br />

black 7.5 0 – – –<br />

White<br />

Yellow<br />

Cyan<br />

Green<br />

gamma-corrected RGB (gamma = 1/0.45)<br />

R´ 191 191 0 0 191 191 0 0<br />

G´ 191 191 191 191 0 0 0 0<br />

B´ 191 0 191 0<br />

linear RGB<br />

191 0 191 0<br />

R 135 135 0 0 135 135 0 0<br />

G 135 135 135 135 0 0 0 0<br />

B 135 0 135 0<br />

YCbCr<br />

135 0 135 0<br />

Y 180 162 131 112 84 65 35 16<br />

Cb 128 44 156 72 184 100 212 128<br />

Cr 128 142 44 58 198 212 114 128<br />

Table 8.12. RGB <strong>and</strong> YCbCr Values for 75% <strong>NTSC</strong> Color Bars.<br />

Magenta<br />

Red<br />

Blue<br />

Black


White<br />

Yellow<br />

Cyan<br />

Green<br />

gamma-corrected RGB (gamma = 1/0.45)<br />

R´ 255 255 0 0 255 255 0 0<br />

G´ 255 255 255 255 0 0 0 0<br />

B´ 255 0 255 0<br />

linear RGB<br />

255 0 255 0<br />

R 255 255 0 0 255 255 0 0<br />

G 255 255 255 255 0 0 0 0<br />

B 255 0 255 0<br />

YCbCr<br />

255 0 255 0<br />

Y 235 210 170 145 106 81 41 16<br />

Cb 128 16 166 54 202 90 240 128<br />

Cr 128 146 16 34 222 240 110 128<br />

Table 8.13. RGB <strong>and</strong> YCbCr Values for 100% <strong>NTSC</strong> Color Bars.<br />

Figure8.29illustratesthevideowaveform<br />

for 75% color bars. Figure 8.30 shows a typical<br />

vectorscope display for full-screen 75% <strong>PAL</strong><br />

color bars.<br />

Tables 8.14, 8.15, <strong>and</strong> 8.16 list the luminance<br />

<strong>and</strong> chrominance levels for the three<br />

common color bar formats for <strong>PAL</strong>.<br />

For reference, the RGB <strong>and</strong> YCbCr values<br />

to generate the st<strong>and</strong>ard <strong>PAL</strong> color bars are<br />

shown in Tables 8.17, 8.18, <strong>and</strong> 8.19. RGB is<br />

assumed to have a range of 0–255; YCbCr is<br />

assumed to have a range of 16–235 for Y <strong>and</strong><br />

16–240 for Cb <strong>and</strong> Cr.<br />

Magenta<br />

Red<br />

Blue<br />

EIA Color Bars (<strong>NTSC</strong>)<br />

Video Test Signals 305<br />

Black<br />

The EIA color bars (Figure 8.28 <strong>and</strong> Table<br />

8.10) are a part of the EIA-189-A st<strong>and</strong>ard. The<br />

seven bars (gray, yellow, cyan, green, magenta,<br />

red, <strong>and</strong> blue) are at 75% amplitude, 100% saturation.<br />

The duration of each color bar is 1/7 of<br />

the active portion of the scan line. Note that<br />

theblackbarinFigure8.28<strong>and</strong>Table8.10is<br />

not part of the st<strong>and</strong>ard <strong>and</strong> is shown for reference<br />

only. The color bar test signal allows<br />

checking for hue <strong>and</strong> color saturation accuracy.


306 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Luminance<br />

(volts)<br />

Peak-to-Peak Chrominance<br />

U axis<br />

(volts)<br />

V axis<br />

(volts)<br />

Total<br />

(volts)<br />

Line n<br />

(135° burst)<br />

Table 8.14. 100/0/75/0 (75%) <strong>PAL</strong> Color Bars.<br />

Chrominance<br />

Phase<br />

(degrees)<br />

Line n + 1<br />

(225° burst)<br />

white 0.700 0 – – – –<br />

yellow 0.465 0.459 0.105 0.470 167 193<br />

cyan 0.368 0.155 0.646 0.664 283.5 76.5<br />

green 0.308 0.304 0.541 0.620 240.5 119.5<br />

magenta 0.217 0.304 0.541 0.620 60.5 299.5<br />

red 0.157 0.155 0.646 0.664 103.5 256.5<br />

blue 0.060 0.459 0.105 0.470 347 13.0<br />

black 0 0 0 0 – –<br />

Luminance<br />

(volts)<br />

Peak-to-Peak Chrominance<br />

U axis<br />

(volts)<br />

V axis<br />

(volts)<br />

Total<br />

(volts)<br />

Line n<br />

(135° burst)<br />

Table 8.15. 100/0/100/0 (100%) <strong>PAL</strong> Color Bars.<br />

Chrominance<br />

Phase<br />

(degrees)<br />

Line n + 1<br />

(225° burst)<br />

white 0.700 0 – – – –<br />

yellow 0.620 0.612 0.140 0.627 167 193<br />

cyan 0.491 0.206 0.861 0.885 283.5 76.5<br />

green 0.411 0.405 0.721 0.827 240.5 119.5<br />

magenta 0.289 0.405 0.721 0.827 60.5 299.5<br />

red 0.209 0.206 0.861 0.885 103.5 256.5<br />

blue 0.080 0.612 0.140 0.627 347 13.0<br />

black 0 0 0 0 – –


100 IRE<br />

43 IRE<br />

21.43 IRE<br />

21.43 IRE<br />

Luminance<br />

(volts)<br />

4.43 MHZ<br />

COLOR BURST<br />

(10 CYCLES)<br />

Peak-to-Peak Chrominance<br />

U axis<br />

(volts)<br />

WHITE<br />

V axis<br />

(volts)<br />

YELLOW<br />

+ 100<br />

+ 66<br />

+ 32<br />

CYAN<br />

+ 53<br />

+ 6<br />

Total<br />

(volts)<br />

Table 8.16. 100/0/100/25 (98%) <strong>PAL</strong> Color Bars.<br />

GREEN<br />

+ 88<br />

+ 44<br />

0<br />

MAGENTA<br />

+ 75<br />

+ 31<br />

– 13<br />

RED<br />

+ 69<br />

+ 22<br />

Line n<br />

(135° burst)<br />

BLUE<br />

+ 43<br />

+ 9<br />

– 25 – 25<br />

BLACK<br />

Video Test Signals 307<br />

Chrominance<br />

Phase<br />

(degrees)<br />

Line n + 1<br />

(225° burst)<br />

white 0.700 0 – – – –<br />

yellow 0.640 0.459 0.105 0.470 167 193<br />

cyan 0.543 0.155 0.646 0.664 283.5 76.5<br />

green 0.483 0.304 0.541 0.620 240.5 119.5<br />

magenta 0.392 0.304 0.541 0.620 60.5 299.5<br />

red 0.332 0.155 0.646 0.664 103.5 256.5<br />

blue 0.235 0.459 0.105 0.470 347 13.0<br />

black 0 0 0 0 – –<br />

Figure 8.29. IRE Values for 75% <strong>PAL</strong> Color Bars.<br />

WHITE LEVEL (100 IRE)<br />

BLACK / BLANK LEVEL (0 IRE)<br />

SYNC LEVEL (– 43 IRE)


308 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Figure 8.30. Typical Vectorscope Display for 75% <strong>PAL</strong> Color Bars.


White<br />

Yellow<br />

Cyan<br />

Green<br />

gamma-corrected RGB (gamma = 1/0.45)<br />

R´ 255 191 0 0 191 191 0 0<br />

G´ 255 191 191 191 0 0 0 0<br />

B´ 255 0 191 0<br />

linear RGB<br />

191 0 191 0<br />

R 255 135 0 0 135 135 0 0<br />

G 255 135 135 135 0 0 0 0<br />

B 255 0 135 0<br />

YCbCr<br />

135 0 135 0<br />

Y 235 162 131 112 84 65 35 16<br />

Cb 128 44 156 72 184 100 212 128<br />

Cr 128 142 44 58 198 212 114 128<br />

Table 8.17. RGB <strong>and</strong> YCbCr Values for 75% <strong>PAL</strong> Color Bars.<br />

White<br />

Yellow<br />

Cyan<br />

Green<br />

gamma-corrected RGB (gamma = 1/0.45)<br />

R´ 255 255 0 0 255 255 0 0<br />

G´ 255 255 255 255 0 0 0 0<br />

B´ 255 0 255 0<br />

linear RGB<br />

255 0 255 0<br />

R 255 255 0 0 255 255 0 0<br />

G 255 255 255 255 0 0 0 0<br />

B 255 0 255 0<br />

YCbCr<br />

255 0 255 0<br />

Y 235 210 170 145 106 81 41 16<br />

Cb 128 16 166 54 202 90 240 128<br />

Cr 128 146 16 34 222 240 110 128<br />

Table 8.18. RGB <strong>and</strong> YCbCr Values for 100% <strong>PAL</strong> Color Bars.<br />

Magenta<br />

Magenta<br />

Red<br />

Red<br />

Blue<br />

Blue<br />

Video Test Signals 309<br />

Black<br />

Black


310 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

EBU Color Bars (<strong>PAL</strong>)<br />

The EBU color bars are similar to the EIA<br />

color bars, except a 100 IRE white level is used<br />

(see Figure 8.29 <strong>and</strong> Table 8.14). The six colored<br />

bars (yellow, cyan, green, magenta, red,<br />

<strong>and</strong> blue) are at 75% amplitude, 100% saturation,<br />

while the white bar is at 100% amplitude.<br />

The duration of each color bar is 1/7 of the<br />

active portion of the scan line. Note that the<br />

black bar in Figure 8.29 <strong>and</strong> Table 8.14 is not<br />

part of the st<strong>and</strong>ard <strong>and</strong> is shown for reference<br />

only. The color bar test signal allows checking<br />

for hue <strong>and</strong> color saturation accuracy.<br />

SMPTE Bars (<strong>NTSC</strong>)<br />

White<br />

Yellow<br />

Cyan<br />

Table 8.19. RGB <strong>and</strong> YCbCr Values for 98% <strong>PAL</strong> Color Bars.<br />

This split-field test signal is composed of the<br />

EIA color bars for the first 2/3 of the field, the<br />

Reverse Blue bars for the next 1/12 of the<br />

Green<br />

gamma-corrected RGB (gamma = 1/0.45)<br />

R´ 255 255 44 44 255 255 44 44<br />

G´ 255 255 255 255 44 44 44 44<br />

B´ 255 44 255 44<br />

linear RGB<br />

255 44 255 44<br />

R 255 255 5 5 255 255 5 5<br />

G 255 255 255 255 5 5 5 5<br />

B 255 5 255 5<br />

YCbCr<br />

255 5 255 5<br />

Y 235 216 186 167 139 120 90 16<br />

Cb 128 44 156 72 184 100 212 128<br />

Cr 128 142 44 58 198 212 114 128<br />

Magenta<br />

Red<br />

Blue<br />

field, <strong>and</strong> the PLUGE test signal for the<br />

remainder of the field.<br />

Reverse Blue Bars<br />

Black<br />

The Reverse Blue bars are composed of the<br />

blue, magenta, <strong>and</strong> cyan colors bars from the<br />

EIA/EBU color bars, but are arranged in a different<br />

order—blue, black, magenta, black,<br />

cyan, black, <strong>and</strong> white. The duration of each<br />

color bar is 1/7 of the active portion of the scan<br />

line. Typically, Reverse Blue bars are used with<br />

the EIA or EBU color bar signal in a split-field<br />

arrangement, with the EIA/EBU color bars<br />

comprising the first 3/4 of the field <strong>and</strong> the<br />

Reverse Blue bars comprising the remainder<br />

of the field. This split-field arrangement eases<br />

adjustment of chrominance <strong>and</strong> hue on a color<br />

monitor.


PLUGE<br />

PLUGE (Picture Line-Up Generating Equipment)<br />

is a visual black reference, with one area<br />

blacker-than-black, one area at black, <strong>and</strong> one<br />

area lighter-than-black. The brightness of the<br />

monitor is adjusted so that the black <strong>and</strong><br />

blacker-than-black areas are indistinguishable<br />

from each other <strong>and</strong> the lighter-than-black area<br />

is slightly lighter (the contrast should be at the<br />

normal setting). Additional test signals, such<br />

as a white pulse <strong>and</strong> modulated IQ signals are<br />

usually added to facilitate testing <strong>and</strong> monitor<br />

alignment.<br />

3.58 MHZ<br />

COLOR BURST<br />

(9 CYCLES)<br />

+ 20<br />

– 20<br />

– I<br />

WHITE<br />

+ 100<br />

+ Q<br />

+ 27.5 + 27.5<br />

– 12.5 – 12.5<br />

+ 3.5<br />

+ 11.5<br />

MICROSECONDS = 9.7 19.1 28.5 38 47 49.6 52 54.5<br />

BLACK LEVEL (7.5 IRE)<br />

BLANK LEVEL (0 IRE)<br />

SYNC LEVEL (– 40 IRE)<br />

Video Test Signals 311<br />

The <strong>NTSC</strong> PLUGE test signal (shown in<br />

Figure 8.31) is composed of a 7.5 IRE (black<br />

level) pedestal with a 40 IRE “–I” phase modulation,<br />

a 100 IRE white pulse, a 40 IRE “+Q”<br />

phase modulation, <strong>and</strong> 3.5 IRE, 7.5 IRE, <strong>and</strong><br />

11.5 IRE pedestals. Typically, PLUGE is used<br />

as part of the SMPTE bars.<br />

For <strong>PAL</strong>, each country has its own slightly<br />

different PLUGE configuration, with most differences<br />

being the black pedestal level used,<br />

<strong>and</strong> work is being done on a st<strong>and</strong>ard test signal.<br />

Figure 8.32 illustrates a typical <strong>PAL</strong><br />

PLUGE test signal. Usually used as a fullscreen<br />

test signal, it is composed of a 0 IRE<br />

Figure 8.31. PLUGE Test Signal for <strong>NTSC</strong>. IRE values are indicated.


312 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

pedestal with PLUGE (–2 IRE,0IRE,<strong>and</strong>2<br />

IRE pedestals) <strong>and</strong> a white pulse. The white<br />

pulse may have five levels of brightness (0, 25,<br />

50, 75, <strong>and</strong> 100 IRE), depending on the scan<br />

line number, as shown in Figure 8.32. The<br />

PLUGE is displayed on scan lines that have<br />

non-zero IRE white pulses. ITU-R BT.1221 discusses<br />

considerations for various <strong>PAL</strong> systems.<br />

4.43 MHZ<br />

COLOR BURST<br />

(10 CYCLES)<br />

+ 21.43<br />

– 21.43<br />

– 2<br />

+ 2<br />

Y Bars<br />

WHITE LEVEL (IRE)<br />

+ 100<br />

MICROSECONDS = 22.5 24.8 27.1 29.4 41 52.6<br />

The Y bars consist of the luminance-only levels<br />

of the EIA/EBU color bars; however, the black<br />

level (7.5 IRE for <strong>NTSC</strong> <strong>and</strong> 0 IRE for <strong>PAL</strong>) is<br />

included <strong>and</strong> the color burst is still present.<br />

The duration of each luminance bar is therefore<br />

1/8 of the active portion of the scan line. Y<br />

bars are useful for color monitor adjustment<br />

<strong>and</strong> measuring luminance nonlinearity. Typically,<br />

the Y bars signal is used with the EIA or<br />

EBU color bar signal in a split-field arrangement,<br />

with the EIA/EBU color bars comprising<br />

the first 3/4 of the field <strong>and</strong> the Y bars<br />

signal comprising the remainder of the field.<br />

+ 75<br />

+ 50<br />

+ 25<br />

0<br />

FULL DISPLAY<br />

LINE NUMBERS<br />

63 / 375<br />

115 / 427<br />

167 / 479<br />

219 / 531<br />

271 / 583<br />

BLANK / BLACK LEVEL (0 IRE)<br />

SYNC LEVEL (– 43 IRE)<br />

Figure 8.32. PLUGE Test Signal for <strong>PAL</strong>. IRE values are indicated.


Red Field<br />

The Red Field signal consists of a 75% amplitude,<br />

100% saturation red chrominance signal.<br />

This is useful as the human eye is sensitive to<br />

static noise intermixed in a red field. Distortions<br />

that cause small errors in picture quality<br />

canbeexaminedvisuallyfortheeffectonthe<br />

picture. Typically, the Red Field signal is used<br />

with the EIA/EBU color bars signal in a splitfield<br />

arrangement, with the EIA/EBU color<br />

bars comprising the first 3/4 of the field, <strong>and</strong><br />

the Red Field signal comprising the remainder<br />

of the field.<br />

10-Step Staircase<br />

This test signal is composed of ten unmodulated<br />

luminance steps of 10 IRE each, ranging<br />

from0IREto100IRE,showninFigure8.33.<br />

Thistestsignalmaybeusedtomeasureluminance<br />

nonlinearity.<br />

COLOR BURST<br />

10<br />

IRE<br />

LEVELS<br />

20<br />

30<br />

40<br />

50<br />

60<br />

Modulated Ramp<br />

MICROSECONDS = 17.5 21.5 25.5 29.5 33.5 37.5 41.5 45.5 49.5 53.5 61.8<br />

70<br />

80<br />

90<br />

100<br />

Video Test Signals 313<br />

The modulated ramp test signal, shown in Figure<br />

8.34, is composed of a luminance ramp<br />

from 0 IRE to either 80 or 100 IRE, superimposed<br />

with modulated chrominance that has a<br />

phase of 0° ±1° relative to the burst. The 80<br />

IRE ramp provides testing of the normal operating<br />

range of the system; a 100 IRE ramp may<br />

be used to optionally test the entire operating<br />

range. The peak-to-peak modulated chrominance<br />

is 40 ±0.5 IRE for (M) <strong>NTSC</strong> <strong>and</strong> 42.86<br />

±0.5 IRE for (B, D, G, H, I) <strong>PAL</strong>. Note a 0 IRE<br />

setup is used. The rise <strong>and</strong> fall times at the<br />

start <strong>and</strong> end of the modulated ramp envelope<br />

are 400 ±25 ns (<strong>NTSC</strong> systems) or approximately<br />

1 µs (<strong>PAL</strong> systems). This test signal<br />

maybeusedtomeasuredifferentialgain.The<br />

modulated ramp signal is preferred over a 5step<br />

or 10-step modulated staircase signal<br />

when testing digital systems.<br />

WHITE LEVEL (100 IRE)<br />

BLANK LEVEL (0 IRE)<br />

SYNC LEVEL<br />

Figure 8.33. Ten-Step Staircase Test Signal for <strong>NTSC</strong> <strong>and</strong> <strong>PAL</strong>.


314 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Modulated Staircase<br />

The 5-step modulated staircase signal (a 10step<br />

version is also used), shown in Figure<br />

8.35, consists of 5 luminance steps, superimposed<br />

with modulated chrominance that has a<br />

phase of 0° ±1° relative to the burst. The peakto-peak<br />

modulated chrominance amplitude is<br />

40 ±0.5 IRE for (M) <strong>NTSC</strong> <strong>and</strong> 42.86 ±0.5 IRE<br />

for (B, D, G, H, I) <strong>PAL</strong>. Note a 0 IRE setup is<br />

used. The rise <strong>and</strong> fall times of each modulation<br />

packet envelope are 400 ±25 ns (<strong>NTSC</strong><br />

systems) or approximately 1 µs (<strong>PAL</strong> systems).<br />

The luminance IRE levels for the 5-step<br />

modulatedstaircasesignalareshowninFigure<br />

8.35. This test signal may be used to measure<br />

differential gain. The modulated ramp<br />

signal is preferred over a 5-step or 10-step<br />

modulated staircase signal when testing digital<br />

systems.<br />

COLOR BURST<br />

Modulated Pedestal<br />

The modulated pedestal test signal (also called<br />

a three-level chrominance bar), shown in Figure<br />

8.36, is composed of a 50 IRE luminance<br />

pedestal, superimposed with three amplitudes<br />

of modulated chrominance that has a phase<br />

relative to the burst of –90° ±1°. The peak-topeak<br />

amplitudes of the modulated chrominance<br />

are 20 ±0.5, 40 ±0.5, <strong>and</strong> 80 ±0.5 IRE for<br />

(M) <strong>NTSC</strong> <strong>and</strong> 20 ±0.5, 60 ±0.5, <strong>and</strong> 100 ±0.5<br />

IREfor(B,D,G,H,I)<strong>PAL</strong>.Notea0IREsetup<br />

is used. The rise <strong>and</strong> fall times of each modulation<br />

packet envelope are 400 ±25 ns (<strong>NTSC</strong><br />

systems) or approximately 1 µs (<strong>PAL</strong> systems).<br />

This test signal may be used to measure<br />

chrominance-to-luminance intermodulation<br />

<strong>and</strong> chrominance nonlinear gain.<br />

MICROSECONDS = 14.9 20.2 51.5 56.7 61.8<br />

80 IRE<br />

BLANK LEVEL (0 IRE)<br />

SYNC LEVEL<br />

Figure 8.34. 80 IRE Modulated Ramp Test Signal for <strong>NTSC</strong> <strong>and</strong> <strong>PAL</strong>.


COLOR BURST<br />

0<br />

18<br />

36<br />

54<br />

72<br />

90<br />

Video Test Signals 315<br />

BLANK LEVEL (0 IRE)<br />

SYNC LEVEL<br />

Figure 8.35. Five-Step Modulated Staircase Test Signal for <strong>NTSC</strong> <strong>and</strong> <strong>PAL</strong>.<br />

COLOR BURST<br />

50 IRE<br />

± 10 IRE<br />

(± 10)<br />

± 20 IRE<br />

(± 30)<br />

± 40 IRE<br />

(± 50)<br />

MICROSECONDS = 10.0 17.9 29.8 41.7 53.6 61.6<br />

BLANK LEVEL (0 IRE)<br />

SYNC LEVEL<br />

Figure 8.36. Modulated Pedestal Test Signal for <strong>NTSC</strong> <strong>and</strong> <strong>PAL</strong>.<br />

<strong>PAL</strong> IRE values are shown in parentheses.


316 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Multiburst<br />

The multiburst test signal for (M) <strong>NTSC</strong>,<br />

shown in Figure 8.37, consists of a white flag<br />

with a peak amplitude of 100 ±1 IRE<strong>and</strong>six<br />

frequency packets, each a specific frequency.<br />

The packets have a 40 ±1 IREpedestalwith<br />

peak-to-peak amplitudes of 60 ±0.5IRE.Notea<br />

0 IRE setup is used <strong>and</strong> the starting <strong>and</strong> ending<br />

point of each packet is at zero phase.<br />

The ITU multiburst test signal for (B, D, G,<br />

H, I) <strong>PAL</strong>, shown in Figure 8.38, consists of a 4<br />

µs white flag with a peak amplitude of 80 ±1<br />

IRE <strong>and</strong> six frequency packets, each a specific<br />

frequency. The packets have a 50 ±1 IREpedestal<br />

with peak-to-peak amplitudes of 60 ±0.5<br />

IRE. Note the starting <strong>and</strong> ending points of<br />

each packet are at zero phase. The gaps<br />

between packets are 0.4–2.0 µs. The ITU multiburst<br />

test signal may be present on line 18.<br />

The multiburst signals are used to test the<br />

frequency response of the system by measuring<br />

the peak-to-peak amplitudes of the packets.<br />

COLOR BURST<br />

100 IRE<br />

0.5<br />

(4)<br />

1.25<br />

(8)<br />

Line Bar<br />

The line bar is a single 100 ±0.5 IRE (reference<br />

white) pulse of 10 µs (<strong>PAL</strong>),18µs (<strong>NTSC</strong>),or<br />

25 µs (<strong>PAL</strong>) that occurs anywhere within the<br />

active scan line time (rise <strong>and</strong> fall times are ≤ 1<br />

µs). Note the color burst is not present, <strong>and</strong> a 0<br />

IRE setup is used. This test signal is used to<br />

measure line time distortion (line tilt or H tilt).<br />

A digital encoder or decoder does not generate<br />

line time distortion; the distortion is generated<br />

primarily by the analog filters <strong>and</strong> transmission<br />

channel.<br />

Multipulse<br />

MHZ<br />

(CYCLES)<br />

2<br />

(10)<br />

3<br />

(14)<br />

3.58<br />

(16)<br />

4.2<br />

(18)<br />

Figure 8.37. Multiburst Test Signal for <strong>NTSC</strong>.<br />

The (M) <strong>NTSC</strong> multipulse contains a 2T pulse<br />

<strong>and</strong> 25T <strong>and</strong> 12.5T pulses with various high-frequency<br />

components, as shown in Figure 8.39.<br />

The (B, D, G, H, I) <strong>PAL</strong> multipulse is similar,<br />

except 20T <strong>and</strong> 10T pulses are used, <strong>and</strong> there<br />

is no 7.5 IRE setup. This test signal is typically<br />

used to measure the frequency response of the<br />

transmission channel.<br />

70 IRE<br />

40 IRE<br />

10 IRE<br />

BLANK LEVEL (0 IRE)<br />

SYNC LEVEL


COLOR BURST<br />

0.5 1 2 4 4.8 5.8<br />

MICROSECONDS = 12 20 24 30 36 42 48 54 62<br />

COLOR BURST<br />

MHZ<br />

Figure 8.38. ITU Multiburst Test Signal for <strong>PAL</strong>.<br />

2T<br />

1.0<br />

25T<br />

(20T)<br />

2.0<br />

12.5T<br />

(10T)<br />

3.0<br />

(4.0)<br />

12.5T<br />

(10T)<br />

3.58<br />

(4.8)<br />

12.5T<br />

(10T)<br />

4.2<br />

(5.8)<br />

12.5T<br />

(10T)<br />

MHZ<br />

(MHZ)<br />

Video Test Signals 317<br />

80 IRE<br />

50 IRE<br />

20 IRE<br />

BLANK LEVEL (0 IRE)<br />

SYNC LEVEL<br />

Figure 8.39. Multipulse Test Signal for <strong>NTSC</strong> <strong>and</strong> <strong>PAL</strong>. <strong>PAL</strong> values are shown in parentheses.


318 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Field Square Wave<br />

The field square wave contains 100 ±0.5 IRE<br />

pulses for the entire active line time for odd<br />

fields <strong>and</strong> blanked scan lines for even fields.<br />

Note the color burst is not present <strong>and</strong> a 0 IRE<br />

setup is used. This test signal is used to measure<br />

field time distortion (field tilt or V tilt). A<br />

digital encoder or decoder does not generate<br />

field time distortion; the distortion is generated<br />

primarily by the analog filters <strong>and</strong> transmission<br />

channel.<br />

3.58 MHZ<br />

COLOR BURST<br />

(9 CYCLES)<br />

+ 20<br />

- 20<br />

100 IRE<br />

2T 12.5T<br />

Composite Test Signal<br />

MICROSECONDS = 12 30 34 37 42 46 49 52 55 58 61<br />

NTC-7 Version for <strong>NTSC</strong><br />

The NTC (U. S. Network Transmission Committee)<br />

has developed a composite test signal<br />

that may be used to test several video parameters,<br />

rather than using multiple test signals.<br />

The NTC-7 composite test signal for <strong>NTSC</strong><br />

systems (shown in Figure 8.40) consists of a<br />

100 IRE line bar, a 2T pulse, a 12.5T chrominance<br />

pulse, <strong>and</strong> a 5-step modulated staircase<br />

signal.<br />

0<br />

18<br />

36<br />

54<br />

72<br />

90<br />

BLANK LEVEL (0 IRE)<br />

SYNC LEVEL (– 40 IRE)<br />

Figure 8.40. NTC-7 Composite Test Signal for <strong>NTSC</strong>, With Corresponding IRE Values.


The line bar has a peak amplitude of 100<br />

±0.5 IRE, <strong>and</strong> 10–90% rise <strong>and</strong> fall times of 125<br />

±5 nswithanintegratedsine-squaredshape.It<br />

has a width at the 60 IRE level of 18 µs.<br />

The 2T pulse has a peak amplitude of 100<br />

±0.5 IRE, with a half-amplitude width of 250<br />

±10 ns.<br />

The 12.5T chrominance pulse has a peak<br />

amplitude of 100 ±0.5 IRE, with a half-amplitude<br />

width of 1562.5 ±50 ns.<br />

The 5-step modulated staircase signal consists<br />

of 5 luminance steps superimposed with a<br />

40 ±0.5 IRE subcarrier that has a phase of 0°<br />

±1° relative to the burst. The rise <strong>and</strong> fall times<br />

of each modulation packet envelope are 400<br />

±25 ns.<br />

TheNTC-7compositetestsignalmaybe<br />

present on line 17.<br />

4.43 MHZ<br />

COLOR BURST<br />

(10 CYCLES)<br />

2T<br />

100 IRE 100<br />

MICROSECONDS = 12 22 26 30 40 44 48 52 56 60<br />

0<br />

20<br />

40<br />

60<br />

80<br />

Video Test Signals 319<br />

ITU Version for <strong>PAL</strong><br />

The ITU (BT.628 <strong>and</strong> BT.473) has developed a<br />

composite test signal that may be used to test<br />

several video parameters, rather than using<br />

multiple test signals. The ITU composite test<br />

signal for <strong>PAL</strong> systems (shown in Figure 8.41)<br />

consists of a white flag, a 2T pulse, <strong>and</strong> a 5-step<br />

modulated staircase signal.<br />

The white flag has a peak amplitude of 100<br />

±1 IRE<strong>and</strong>awidthof10µs.<br />

The 2T pulse has a peak amplitude of 100<br />

±0.5 IRE, with a half-amplitude width of 200<br />

±10 ns.<br />

The 5-step modulated staircase signal consists<br />

of 5 luminance steps (whose IRE values<br />

are shown in Figure 8.41) superimposed with a<br />

42.86 ±0.5 IRE subcarrier that has a phase of<br />

60° ±1° relative to the U axis. The rise <strong>and</strong> fall<br />

times of each modulation packet envelope are<br />

approximately 1 µs.<br />

BLANK LEVEL (0 IRE)<br />

SYNC LEVEL (– 43 IRE)<br />

Figure 8.41. ITU Composite Test Signal for <strong>PAL</strong>, With Corresponding IRE Values.


320 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

The ITU composite test signal may be<br />

present on line 330.<br />

U.K. Version<br />

The United Kingdom allows the use of a<br />

slightly different test signal since the 10T<br />

pulse is more sensitive to delay errors than the<br />

20T pulse (at the expense of occupying less<br />

chrominance b<strong>and</strong>width). Selection of an<br />

appropriate pulse width is a trade-off between<br />

occupying the <strong>PAL</strong> chrominance b<strong>and</strong>width as<br />

fully as possible <strong>and</strong> obtaining a pulse with sufficient<br />

sensitivity to delay errors. Thus, the<br />

national test signal (developed by the British<br />

Broadcasting Corporation <strong>and</strong> the Independent<br />

Television Authority) in Figure 8.42 may<br />

be present on lines 19 <strong>and</strong> 332 for (I) <strong>PAL</strong> systems<br />

in the United Kingdom.<br />

4.43 MHZ<br />

COLOR BURST<br />

(10 CYCLES)<br />

2T 10T<br />

100 IRE 100<br />

MICROSECONDS = 12 22 26 30 34 40 44 48 52 56 60<br />

The white flag has a peak amplitude of 100<br />

±1 IRE<strong>and</strong>awidthof10µs.<br />

The 2T pulse has a peak amplitude of 100<br />

±0.5 IRE, with a half-amplitude width of 200<br />

±10 ns.<br />

The 10T chrominance pulse has a peak<br />

amplitude of 100 ±0.5 IRE.<br />

The 5-step modulated staircase signal consists<br />

of 5 luminance steps (whose IRE values<br />

are shown in Figure 8.42) superimposed with a<br />

21.43 ±0.5 IRE subcarrier that has a phase of<br />

60° ±1° relative to the U axis. The rise <strong>and</strong> fall<br />

times of each modulation packet envelope is<br />

approximately 1 µs.<br />

Figure 8.42. United Kingdom (I) <strong>PAL</strong> National Test Signal #1,<br />

With Corresponding IRE Values.<br />

0<br />

20<br />

40<br />

60<br />

80<br />

BLANK LEVEL (0 IRE)<br />

SYNC LEVEL (– 43 IRE)


Combination Test Signal<br />

NTC-7 Version for <strong>NTSC</strong><br />

The NTC (U. S. Network Transmission Committee)<br />

has also developed a combination test<br />

signal that may be used to test several video<br />

parameters, rather than using multiple test signals.<br />

The NTC-7 combination test signal for<br />

<strong>NTSC</strong> systems (shown in Figure 8.43) consists<br />

of a white flag, a multiburst, <strong>and</strong> a modulated<br />

pedestal signal.<br />

The white flag has a peak amplitude of 100<br />

±1IRE<strong>and</strong>awidthof4µs.<br />

The multiburst has a 50 ±1 IREpedestal<br />

with peak-to-peak amplitudes of 50 ±0.5 IRE.<br />

The starting point of each frequency packet is<br />

at zero phase. The width of the 0.5 MHz packet<br />

is 5 µs; the width of the remaining packets is 3<br />

µs.<br />

COLOR BURST<br />

100 IRE<br />

MHZ<br />

0.5 1 2 3 3.58 4.2<br />

MICROSECONDS = 12 18 24 28 32 36 40 46 50 54 60<br />

Video Test Signals 321<br />

The 3-step modulated pedestal is composed<br />

of a 50 IRE luminance pedestal, superimposed<br />

with three amplitudes of modulated<br />

chrominance (20 ±0.5, 40 ±0.5, <strong>and</strong> 80 ±0.5 IRE<br />

peak-to-peak) that have a phase of –90° ±1° relative<br />

to the burst. The rise <strong>and</strong> fall times of<br />

each modulation packet envelope are 400 ±25<br />

ns.<br />

The NTC-7 combination test signal may be<br />

present on line 280.<br />

ITU Version for <strong>PAL</strong><br />

The ITU (BT.473) has developed a combination<br />

test signal that may be used to test several<br />

video parameters, rather than using multiple<br />

test signals. The ITU combination test signal<br />

for <strong>PAL</strong> systems (shown in Figure 8.44) consists<br />

of a white flag, a 2T pulse, a 20T modulated<br />

chrominance pulse, <strong>and</strong> a 5-step<br />

luminance staircase signal.<br />

Figure 8.43. NTC-7 Combination Test Signal for <strong>NTSC</strong>.<br />

50 IRE<br />

BLANK LEVEL (0 IRE)<br />

SYNC LEVEL


322 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

The line bar has a peak amplitude of 100 ±1<br />

IRE <strong>and</strong> a width of 10 µs.<br />

The 2T pulse has a peak amplitude of 100<br />

±0.5 IRE, with a half-amplitude width of 200<br />

±10 ns.<br />

The 20T chrominance pulse has a peak<br />

amplitude of 100 ±0.5 IRE, with a half-amplitude<br />

width of 2.0 ±0.06 µs.<br />

The 5-step luminance staircase signal consists<br />

of 5 luminance steps, at 20, 40, 60, 80 <strong>and</strong><br />

100 ±0.5 IRE.<br />

The ITU combination test signal may be<br />

present on line 17.<br />

ITU ITS Version for <strong>PAL</strong><br />

The ITU (BT.473) has developed a combination<br />

ITS (insertion test signal) that may be<br />

used to test several <strong>PAL</strong> video parameters,<br />

rather than using multiple test signals. The<br />

ITU combination ITS for <strong>PAL</strong> systems (shown<br />

in Figure 8.45) consists of a 3-step modulated<br />

pedestal with peak-to-peak amplitudes of 20,<br />

4.43 MHZ<br />

COLOR BURST<br />

(10 CYCLES)<br />

2T 20T<br />

100 IRE 100 IRE<br />

MICROSECONDS = 12 22 26 32 40 44 48 52 56 62<br />

Figure 8.44. ITU Combination Test Signal for <strong>PAL</strong>.<br />

60, <strong>and</strong> 100 ±1 IRE, <strong>and</strong> an extended subcarrier<br />

packet with a peak-to-peak amplitude of 60<br />

±1 IRE. The rise <strong>and</strong> fall times of each subcarrier<br />

packet envelope are approximately 1 µs.<br />

The phase of each subcarrier packet is 60°<br />

±1° relative to the U axis. The tolerance on the<br />

50 IRE level is ±1IRE.<br />

TheITUcompositeITSmaybepresenton<br />

line 331.<br />

U. K. Version<br />

The United Kingdom allows the use of a<br />

slightly different test signal, as shown in Figure<br />

8.46. It may be present on lines 20 <strong>and</strong> 333<br />

for (I) <strong>PAL</strong> systems in the United Kingdom.<br />

The test signal consists of a 50 IRE luminance<br />

bar, part of which has a 100 IRE subcarrier<br />

superimposed that has a phase of 60°<br />

±1° relative to the U axis, <strong>and</strong> an extended<br />

burst of subcarrier on the second half of the<br />

scan line.<br />

20<br />

40<br />

60<br />

80<br />

BLANK LEVEL (0 IRE)<br />

SYNC LEVEL (– 43 IRE)


4.43 MHZ<br />

COLOR BURST<br />

(10 CYCLES)<br />

60<br />

40<br />

80<br />

20<br />

100<br />

IRE<br />

MICROSECONDS = 12 14 18 22 28 34 60<br />

Figure 8.45. ITU Combination ITS Test Signal for <strong>PAL</strong>.<br />

4.43 MHZ<br />

COLOR BURST<br />

(10 CYCLES)<br />

100 IRE<br />

50 IRE<br />

MICROSECONDS = 12 14 28 32 34 62<br />

Video Test Signals 323<br />

80 IRE<br />

50 IRE<br />

20 IRE<br />

BLANK LEVEL (0 IRE)<br />

SYNC LEVEL (– 43 IRE)<br />

21.43 IRE<br />

BLANK LEVEL (0 IRE)<br />

–21.43 IRE<br />

Figure 8.46. United Kingdom (I) <strong>PAL</strong> National Test Signal #2.<br />

SYNC LEVEL (– 43 IRE)


324 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

T Pulse<br />

Square waves with fast rise times cannot be<br />

used for testing video systems, since attenuation<br />

<strong>and</strong> phase shift of out-of-b<strong>and</strong> components<br />

cause ringing in the output signal, obscuring<br />

the in-b<strong>and</strong> distortions being measured. T, or<br />

sin 2 , pulses are b<strong>and</strong>width-limited, so are used<br />

for testing video systems.<br />

The 2T pulse is shown in Figure 8.47 <strong>and</strong>,<br />

like the T pulse, is obtained mathematically by<br />

squaring a half-cycle of a sine wave. T pulses<br />

are specified in terms of half amplitude duration<br />

(HAD), which is the pulse width measured<br />

at 50% of the pulse amplitude. Pulses with<br />

HADs that are multiples of the time interval T<br />

–250 0 250<br />

(A)<br />

A<br />

50%<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

250 NS<br />

TIME (NS)<br />

0 1 2 3 4 5<br />

(C)<br />

are used to test video systems. As seen in Figures<br />

8.39 through 8.44, T, 2T, 12.5T <strong>and</strong> 25T<br />

pulses are common when testing <strong>NTSC</strong> video<br />

systems, whereas T, 2T, 10T, <strong>and</strong> 20T pulses<br />

are common for <strong>PAL</strong> video systems.<br />

T is the Nyquist interval or<br />

1/2FC where FC is the cutoff frequency of the video<br />

system.For<strong>NTSC</strong>,FCis 4 MHz, whereas FC for <strong>PAL</strong> systems is 5 MHz. Therefore, T for<br />

<strong>NTSC</strong> systems is 125 ns <strong>and</strong> for <strong>PAL</strong> systems it<br />

is 100 ns. For a T pulse with a HAD of 125 ns, a<br />

2T pulse has a HAD of 250 ns, <strong>and</strong> so on. The<br />

frequency spectra for the 2T pulse is shown in<br />

240 NS<br />

10%<br />

2A<br />

–250 0 250<br />

(B)<br />

A<br />

FREQUENCY (MHZ)<br />

90%<br />

TIME (NS)<br />

Figure 8.47. The T Pulse. (a) 2T pulse. (b) 2T step. (c) Frequency spectra of the 2T pulse.


Figure 8.47 <strong>and</strong> is representative of the energy<br />

content in a typical character generator waveform.<br />

To generate smooth rising <strong>and</strong> falling<br />

edges of most video signals, a T step (generated<br />

by integrating a T pulse) is typically used.<br />

Tstepshave10–90% rise/fall times of 0.964T<br />

<strong>and</strong> a well-defined b<strong>and</strong>width. The 2T step generated<br />

from a 2T pulse is shown in Figure 8.47.<br />

The 12.5T chrominance pulse, illustrated<br />

in Figure 8.48, is a good test signal to measure<br />

any chrominance-to-luminance timing error<br />

since its energy spectral distribution is<br />

bunched in two relatively narrow b<strong>and</strong>s. Using<br />

this signal detects differences in the luminance<br />

<strong>and</strong> chrominance phase distortion, but not<br />

between other frequency groups.<br />

0.5<br />

–1562.5 0 1562.5<br />

(A)<br />

50%<br />

0.5<br />

–0.5<br />

(B)<br />

1562.5 NS<br />

TIME (NS)<br />

TIME (NS)<br />

VBI Data<br />

50%<br />

1.0<br />

–1562.5 0 1562.5<br />

(C)<br />

1562.5 NS<br />

TIME (NS)<br />

VBI Data 325<br />

VBI (vertical blanking interval) data may be<br />

inserted up to about 5 scan lines into the active<br />

picture region to ensure it won't be deleted by<br />

equipment replacing the VBI, by DSS MPEG<br />

which deletes the VBI, or by cable systems<br />

inserting their own VBI data. This is common<br />

practice by Neilson <strong>and</strong> others to ensure their<br />

programming <strong>and</strong> commercial tracking data<br />

gets through the distribution systems to the<br />

receivers. In most cases, this will be unseen<br />

since it is masked by the TV’s overscan.<br />

Timecode<br />

Two types of time coding are commonly used,<br />

as defined by ANSI/SMPTE 12M <strong>and</strong> IEC 461:<br />

Figure 8.48. The 12.5T Chrominance Pulse. (a) Luma component.<br />

(b) Chroma component. (c) Addition of (a) <strong>and</strong> (b).


326 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

longitudinal timecode (LTC) <strong>and</strong> vertical interval<br />

timecode (VITC).<br />

The LTC is recorded on a separate audio<br />

track; as a result, the analog VCR must use<br />

high-b<strong>and</strong>width amplifiers <strong>and</strong> audio heads.<br />

This is due to the time code frequency increasing<br />

as tape speed increases, until the point that<br />

the frequency response of the system results<br />

in a distorted time code signal that may not be<br />

read reliably. At slower tape speeds, the time<br />

code frequency decreases, until at very low<br />

tape speeds or still pictures, the time code<br />

information is no longer recoverable.<br />

TheVITCisrecordedaspartofthevideo<br />

signal; as a result, the time code information is<br />

always available, regardless of the tape speed.<br />

However,theLTCallowsthetimecodesignal<br />

to be written without writing a video signal; the<br />

VITC requires the video signal to be changed if<br />

a change in time code information is required.<br />

The LTC therefore is useful for synchronizing<br />

multiple audio or audio/video sources.<br />

Frame Dropping<br />

If the field rate is 60/1.001 fields per second,<br />

straight counting at 60 fields per second yields<br />

an error of about 108 frames for each hour of<br />

running time. This may be h<strong>and</strong>led in one of<br />

three ways:<br />

Nondrop frame: During a continuous<br />

recording, each time count increases<br />

by 1 frame. In this mode, the drop<br />

frameflagwillbea“0.”<br />

Drop frame: To minimize the timing<br />

error, the first two frame numbers (00<br />

<strong>and</strong> 01) at the start of each minute,<br />

except for minutes 00, 10, 20, 30, 40,<br />

<strong>and</strong> 50, are omitted from the count. In<br />

this mode, the drop frame flag will be a<br />

“1.”<br />

Drop frame for (M) <strong>PAL</strong>: To minimize<br />

the timing error, the first four frame<br />

numbers (00 to 03) at the start of<br />

every second minute (even minute<br />

numbers) are omitted from the count,<br />

except for minutes 00, 20, <strong>and</strong> 40. In<br />

this mode, the drop frame flag will be a<br />

“1.”<br />

Even with drop framing, there is a longterm<br />

error of about 2.26 frames per 24 hours.<br />

This error accumulation is the reason timecode<br />

generators must be periodically reset if<br />

they are to maintain any correlation to the correct<br />

time-of-day. Typically, this “reset-to-realtime”<br />

is referred to as a “jam sync” procedure.<br />

Some jam sync implementations reset the<br />

timecode to 00:00:00.00 <strong>and</strong>, therefore, must<br />

occur at midnight; others allow a true re-sync<br />

to the correct time-of-day.<br />

One inherent problem with jam sync correction<br />

is the interruption of the timecode.<br />

Although this discontinuity may be brief, it<br />

may cause timecode readers to “hiccup” due to<br />

the interruption.<br />

Longitudinal Timecode (LTC)<br />

The LTC information is transferred using a<br />

separate serial interface, using the same electrical<br />

interface as the AES/EBU digital audio<br />

interfacest<strong>and</strong>ard,<strong>and</strong>isrecordedonaseparate<br />

track. The basic structure of the time data<br />

is based on the BCD system. Tables 8.20 <strong>and</strong><br />

8.21 list the LTC bit assignments <strong>and</strong> arrangement.<br />

Note the 24-hour clock system is used.<br />

LTC Timing<br />

The modulation technique is such that a transition<br />

occurs at the beginning of every bit<br />

period. “1” is represented by a second transition<br />

one-half a bit period from the start of the<br />

bit. “0” is represented when there is no transition<br />

within the bit period (see Figure 8.49).


VBI Data 327<br />

Bit(s) Function Note Bit(s) Function Note<br />

0–3 units of frames 58 flag 5 note 5<br />

4–7 user group 1 59 flag 6 note 6<br />

8–9 tens of frames 60–63 user group 8<br />

10 flag 1 note 1 64 sync bit fixed”0”<br />

11 flag 2 note 2 65 sync bit fixed”0”<br />

12–15 user group 2 66 sync bit fixed”1”<br />

16–19 units of seconds 67 sync bit fixed”1”<br />

20–23 user group 3 68 sync bit fixed”1”<br />

24–26 tens of seconds 69 sync bit fixed”1”<br />

27 flag 3 note 3 70 sync bit fixed”1”<br />

28–31 user group 4 71 sync bit fixed”1”<br />

32–35 units of minutes 72 sync bit fixed”1”<br />

36–39 user group 5 73 sync bit fixed”1”<br />

40–42 tens of minutes 74 sync bit fixed”1”<br />

43 flag 4 note 4 75 sync bit fixed”1”<br />

44–47 user group 6 76 sync bit fixed”1”<br />

48–51 units of hours 77 sync bit fixed”1”<br />

52–55 user group 7 78 sync bit fixed”0”<br />

56–57 tens of hours 79 sync bit fixed”1”<br />

Notes<br />

1. Drop frame flag. 525/60 <strong>and</strong> 1125/60 systems: “1” if frame numbers are being dropped, “0” if no frame dropping<br />

is done. 625/50 systems: “0”.<br />

2. Color frame flag. 525/60 systems: “1” if even units of frame numbers identify fields 1 <strong>and</strong> 2 <strong>and</strong> odd units of field<br />

numbers identify fields 3 <strong>and</strong> 4. 625/50 systems: “1” if timecode is locked to the video signal in accordance<br />

with 8-field sequence <strong>and</strong> the video signal has the “preferred subcarrier-to-line-sync phase”. 1125/60 systems:<br />

“0”.<br />

3. 525/60 <strong>and</strong> 1125/60 systems: Phase correction. This bit shall be put in a state so that every 80-bit word contains<br />

an even number of “0”s. 625/50 systems: Binary group flag 0.<br />

4. 525/60 <strong>and</strong> 1125/60 systems: Binary group flag 0. 625/50 systems: Binary group flag 2.<br />

5. Binary group flag 1.<br />

6. 525/60 <strong>and</strong> 1125/60 systems: Binary group flag 2. 625/50 systems: Phase correction. This bit shall be put in a<br />

state so that every 80-bit word contains an even number of “0”s.<br />

Table 8.20. LTC Bit Assignments.


328 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Frames (count 0–29 for 525/60 systems, 0–24 for 625/50 systems)<br />

units of frames (bits 0–3) 4-bit BCD (count 0–9); bit 0 is LSB<br />

tens of frames (bits 8–9) 2-bit BCD (count 0–2); bit 8 is LSB<br />

units of seconds (bits 16–19)<br />

Seconds<br />

4-bit BCD (count 0–9); bit 16 is LSB<br />

tens of seconds (bits 24–26) 3-bit BCD (count 0–5); bit 24 is LSB<br />

units of minutes (bits 32–35)<br />

Minutes<br />

4-bit BCD (count 0–9); bit 32 is LSB<br />

tens of minutes (bits 40–42) 3-bit BCD (count 0–5); bit 40 is LSB<br />

units of hours (bits 48–51)<br />

Hours<br />

4-bit BCD (count 0–9); bit 48 is LSB<br />

tens of hours (bits 56–57) 2-bit BCD (count 0–2); bit 56 is LSB<br />

Table 8.21. LTC Bit Arrangement.<br />

"0" "1"<br />

Figure 8.49. LTC Data Bit Transition Format.


The signal has a peak-to-peak amplitude of 0.5–<br />

4.5V, with rise <strong>and</strong> fall times of 40 ±10 µs (10%<br />

to 90% amplitude points).<br />

Becausetheentireframetimeisusedto<br />

generate the 80-bit LTC information, the bit<br />

rate (in bits per second) may be determined<br />

by:<br />

FC =80FV where FV istheverticalframerateinframes<br />

persecond.The80bitsoftimecodeinformation<br />

are output serially, with bit 0 being first.<br />

The LTC word occupies the entire frame time,<br />

<strong>and</strong> the data must be evenly spaced throughout<br />

this time. The start of the LTC word occurs<br />

at the beginning of line 5 ±1.5 lines for 525/60<br />

systems, at the beginning of line 2 ±1.5 lines<br />

for 625/50 systems, <strong>and</strong> at the vertical sync<br />

timing reference of the frame ±1 line for 1125/<br />

60 systems.<br />

Vertical Inter val Time Code (VITC)<br />

The VITC is recorded during the vertical<br />

blanking interval of the video signal in both<br />

fields. Since it is recorded with the video, it can<br />

be read in still mode. However, it cannot be rerecorded<br />

(or restriped). Restriping requires<br />

dubbing down a generation, deleting <strong>and</strong><br />

inserting a new time code. For YPbPr <strong>and</strong> Svideo<br />

interfaces, VITC is present on the Y signal.<br />

For analog RGB interfaces, VITC is<br />

present on all three signals.<br />

As with the LTC, the basic structure of the<br />

time data is based on the BCD system. Tables<br />

8.22 <strong>and</strong> 8.23 list the VITC bit assignments <strong>and</strong><br />

arrangement. Note the 24-hour clock system is<br />

used.<br />

VITC Cyclic Redundancy Check<br />

Eight bits (82–89) are reserved for the code<br />

word for error detection by means of cyclic<br />

redundancy checking. The generating polyno-<br />

VBI Data 329<br />

mial, x 8 + 1, applies to all bits from 0 to 81,<br />

inclusive. Figure 8.50 illustrates implementing<br />

the polynomial using a shift register. During<br />

passage of timecode data, the multiplexer is in<br />

position 0 <strong>and</strong> the data is output while the CRC<br />

calculation is done simultaneously by the shift<br />

register. After all the timecode data has been<br />

output, the shift register contains the CRC<br />

value, <strong>and</strong> switching the multiplexer to position<br />

1 enables the CRC value to be output.<br />

When the process is repeated on decoding, the<br />

shift register should contain all zeros if no<br />

errors exist.<br />

VITC Timing<br />

The modulation technique is such that each<br />

state corresponds to a binary state, <strong>and</strong> a transition<br />

occurs only when there is a change in<br />

the data between adjacent bits from a “1” to “0”<br />

or “0” to “1”. No transitions occur when adjacent<br />

bits contain the same data. This is commonly<br />

referred to as “non-return to zero”<br />

(NRZ). Synchronization bit pairs are inserted<br />

throughout the VITC data to assist the receiver<br />

in maintaining the correct frequency lock.<br />

The bit rate (F C )isdefinedtobe:<br />

F C = 115 F H ± 2%<br />

where F H is the horizontal line frequency. The<br />

90 bits of time code information are output<br />

serially, with bit 0 being first. For 625/50 systems,<br />

lines 19 <strong>and</strong> 332 are commonly used for<br />

the VITC. For 525/60 systems, lines 14 <strong>and</strong><br />

277 are commonly used. To protect the VITC<br />

against drop-outs, it may also be present two<br />

scan lines later, although any two nonconsecutive<br />

scan lines per field may be used.<br />

Figure 8.51 illustrates the timing of the<br />

VITC data on the scan line. The data must be<br />

evenly spaced throughout the VITC word. The<br />

10% to 90% rise <strong>and</strong> fall times of the VITC bit<br />

data should be 200 ±50 ns (525/60 <strong>and</strong> 625/50


330 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Bit(s) Function Note Bit(s) Function Note<br />

0 sync bit fixed “1” 42–45 units of minutes<br />

1 sync bit fixed “0” 46–49 user group 5<br />

2–5 units of frames 50 sync bit fixed “1”<br />

6–9 usergroup1 51 syncbit fixed“0”<br />

10 sync bit fixed “1” 52–54 tens of minutes<br />

11 sync bit fixed “0” 55 flag 4 note 4<br />

12–13 tens of frames 56–59 user group 6<br />

14 flag 1 note 1 60 sync bit fixed “1”<br />

15 flag 2 note 2 61 sync bit fixed”0”<br />

16–19 user group 2 62–65 units of hours<br />

20 sync bit fixed “1” 66–69 user group 7<br />

21 sync bit fixed “0” 70 sync bit fixed”1”<br />

22–25 units of seconds 71 sync bit fixed”0”<br />

26–29 user group 3 72–73 tens of hours<br />

30 sync bit fixed “1” 74 flag 5 note 5<br />

31 sync bit fixed “0” 75 flag 6 note 6<br />

32–34 tens of seconds 76–79 user group 8<br />

35 flag 3 note 3 80 sync bit fixed”1”<br />

36–39 user group 4 81 sync bit fixed”0”<br />

40 sync bit fixed “1” 82–89 CRC group<br />

41 sync bit fixed “0”<br />

Notes<br />

1. Drop frame flag. 525/60 <strong>and</strong> 1125/60 systems: “1” if frame numbers are being dropped, “0” if no frame<br />

dropping is done. 625/50 systems: “0”.<br />

2. Color frame flag. 525/60 systems: “1” if even units of frame numbers identify fields 1 <strong>and</strong> 2 <strong>and</strong> odd units<br />

of field numbers identify fields 3 <strong>and</strong> 4. 625/50 systems: “1” if timecode is locked to the video signal in<br />

accordance with 8-field sequence <strong>and</strong> the video signal has the “preferred subcarrier-to-line-sync<br />

phase”. 1125/60 systems: “0”.<br />

3. 525/60 systems: Field flag. “0” during fields 1 <strong>and</strong> 3, “1” during fields 2 <strong>and</strong> 4. 625/50 systems: Binary<br />

group flag 0. 1125/60 systems: Field flag. “0” during field 1, “1” during field 2.<br />

4. 525/60 <strong>and</strong> 1125/60 systems: Binary group flag 0. 625/50 systems: Binary group flag 2.<br />

5. Binary group flag 1.<br />

6. 525/60 <strong>and</strong> 1125/60 systems: Binary group flag 2. 625/50 systems: Field flag. “0” during fields 1, 3, 5, <strong>and</strong><br />

7, “1” during fields 2, 4, 6, <strong>and</strong> 8.<br />

Table 8.22. VITC Bit Assignments.


Frames (count 0–29 for 525/60 systems, 0–24 for 625/50 systems)<br />

units of frames (bits 2–5) 4-bit BCD (count 0–9); bit 2 is LSB<br />

tens of frames (bits 12–13) 2-bit BCD (count 0–2); bit 12 is LSB<br />

units of seconds (bits 22–25)<br />

Seconds<br />

4-bit BCD (count 0–9); bit 22 is LSB<br />

tens of seconds (bits 32–34) 3-bit BCD (count 0–5); bit 32 is LSB<br />

units of minutes (bits 42–45)<br />

Minutes<br />

4-bit BCD (count 0–9); bit 42 is LSB<br />

tens of minutes (bits 52–54) 3-bit BCD (count 0–5); bit 52 is LSB<br />

units of hours (bits 62–65)<br />

Hours<br />

4-bit BCD (count 0–9); bit 62 is LSB<br />

tens of hours (bits 72–73) 2-bit BCD (count 0–2); bit 72 is LSB<br />

DATA<br />

IN<br />

XOR<br />

Table 8.23. VITC Bit Arrangement.<br />

D Q D Q D Q D Q D Q D Q D Q D Q<br />

Figure 8.50. VITC CRC Generation.<br />

0<br />

1<br />

MUX<br />

VBI Data 331<br />

DATA<br />

+<br />

CRC<br />

OUT


332 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

10 µS MIN<br />

(19 BITS)<br />

80 ±10<br />

IRE<br />

63.556 µS (115 BITS)<br />

50.286 µS (90 BITS)<br />

525 / 60 SYSTEMS<br />

2.1 µS MIN<br />

HSYNC HSYNC<br />

11.2 µS MIN<br />

(21 BITS)<br />

78 ±7<br />

IRE<br />

64 µS (115 BITS)<br />

49.655 µS (90 BITS)<br />

625 / 50 SYSTEMS<br />

1.9 µS MIN<br />

HSYNC HSYNC<br />

2.7 µS MIN<br />

(10.5 BITS)<br />

78 ±7<br />

IRE<br />

29.63 µS (115 BITS)<br />

23.18 µS (90 BITS)<br />

1125 / 60 SYSTEMS<br />

1.5 µS<br />

MIN<br />

HSYNC HSYNC<br />

Figure 8.51. VITC Position <strong>and</strong> Timing.


User Bits Content<br />

Timecode Referenced<br />

to External Clock<br />

BGF2 BGF1 BGF0<br />

user defined no 0 0 0<br />

8-bit character set1 no 0 0 1<br />

user defined yes 0 1 0<br />

reser ved unassigned 0 1 1<br />

date <strong>and</strong> time zone3 no 1 0 0<br />

page / line2 no 1 0 1<br />

date <strong>and</strong> time zone3 yes 1 1 0<br />

page / line2 yes 1 1 1<br />

1 Conforming to ISO/IEC 646 or 2022.<br />

2 Described in SMPTE 262M.<br />

3 Described in SMPTE 309M. See Tables 8.25 through 8.27.<br />

Table 8.24. LTC <strong>and</strong> VITC Binary Group Flag (BGF) Bit Definitions.<br />

USER<br />

GROUPS<br />

7–BIT ISO:<br />

8–BIT ISO:<br />

1<br />

3<br />

5<br />

7<br />

B1 B2 B3 B4<br />

A1 A2 A3 A4<br />

2<br />

4<br />

6<br />

8<br />

ONE ISO CHARACTER<br />

B5 B6 B7 0<br />

A5 A6 A7 A8<br />

Figure 8.52. Use of Binary Groups to Describe<br />

ISO Characters Coded With 7 or 8 Bits.<br />

VBI Data 333


334 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

MJD flag: “0” = YYMMDD format, “1” =MJDformat.<br />

systems) or 100 ±25 ns (1125/60 systems)<br />

before adding it to the video signal to avoid<br />

possible distortion of the VITC signal by downstream<br />

chrominance circuits. In most circumstances,<br />

the analog lowpass filters after the<br />

video D/A converters should suffice for the filtering.<br />

User Bits<br />

The binary group flag (BGF) bits shown in<br />

Table 8.24 specify the content of the 32 user<br />

bits. The 32 user bits are organized as eight<br />

groups of four bits each.<br />

User Group 8 User Group 7<br />

Bit 3 Bit 2 Bit 1 Bit 0 Bit 3 Bit 2 Bit 1 Bit 0<br />

MJD Flag 0 time zone offset code 00 H –3F H<br />

Table 8.25. Date <strong>and</strong> Time Zone Format Coding.<br />

User<br />

Group<br />

Assignment Value Description<br />

1 D 0–9 day units<br />

2 D 0–3 day units<br />

3 M 0–9 month units<br />

4 M 0, 1 month units<br />

5 Y 0–9 yearunits<br />

6 Y 0–9 yearunits<br />

Table 8.26. YYMMDD Date Format.<br />

The user bits are intended for storage of<br />

data by users. The 32 bits may be assigned in<br />

any manner without restriction, if indicated as<br />

user-defined by the binary group flags.<br />

If an 8-bit character set conforming to<br />

ISO/IEC 646 or 2022 is indicated by the binary<br />

group flags, the characters are to be inserted<br />

asshowninFigure8.52.Notethatsomeuser<br />

bits will be decoded before the binary group<br />

flags are decoded; therefore, the decoder must<br />

store the early user data before any processing<br />

is done.


Code Hours Code Hours Code Hours<br />

00 UTC 16 UTC + 10.00 2C UTC + 09.30<br />

01 UTC – 01.00 17 UTC + 09.00 2D UTC + 08.30<br />

02 UTC – 02.00 18 UTC + 08.00 2E UTC + 07.30<br />

03 UTC – 03.00 19 UTC + 07.00 2F UTC + 06.30<br />

04 UTC – 04.00 1A UTC – 06.30 30 TP–1<br />

05 UTC – 05.00 1B UTC – 07.30 31 TP–0<br />

06 UTC – 06.00 1C UTC – 08.30 32 UTC + 12.45<br />

07 UTC – 07.00 1D UTC – 09.30 33 reserved<br />

08 UTC – 08.00 1E UTC – 10.30 34 reserved<br />

09 UTC – 09.00 1F UTC – 11.30 35 reserved<br />

0A UTC – 00.30 20 UTC + 06.00 36 reserved<br />

0B UTC – 01.30 21 UTC + 05.00 37 reserved<br />

0C UTC – 02.30 22 UTC + 04.00 38 user defined<br />

0D UTC – 03.30 23 UTC + 03.00 39 unknown<br />

0E UTC – 04.30 24 UTC + 02.00 3A UTC + 05.30<br />

0F UTC – 05.30 25 UTC + 01.00 3B UTC + 04.30<br />

10 UTC – 10.00 26 reserved 3C UTC + 03.30<br />

11 UTC – 11.00 27 reserved 3D UTC + 02.30<br />

12 UTC – 12.00 28 TP–3 3E UTC + 01.30<br />

13 UTC + 13.00 29 TP–2 3F UTC + 00.30<br />

14 UTC + 12.00 2A UTC + 11.30<br />

15 UTC + 11.00 2B UTC + 10.30<br />

Table 8.27. Time Zone Offset Codes.<br />

VBI Data 335


336 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

When the user groups are used to transfer<br />

time zone <strong>and</strong> date information, user groups 7<br />

<strong>and</strong>8specifythetimezone<strong>and</strong>theformatof<br />

thedateintheremainingsixusergroups,as<br />

showninTables8.25<strong>and</strong>8.27.Thedatemay<br />

be either a six-digit YYMMDD format (Table<br />

8.26) or a six-digit modified Julian date (MJD),<br />

as indicated by the MJD flag.<br />

Closed Captioning<br />

This section reviews closed captioning for the<br />

hearing impaired in the United States. Closed<br />

captioning<strong>and</strong>textaretransmittedduringthe<br />

blanked active line-time portion of lines 21 <strong>and</strong><br />

284.<br />

Extended data services (XDS) also may be<br />

transmitted during the blanked active line-time<br />

BLANK LEVEL<br />

SYNC LEVEL<br />

50 ±2 IRE<br />

40 IRE<br />

10.5 ± 0.25 µS<br />

3.58 MHZ<br />

COLOR BURST<br />

(9 CYCLES)<br />

10.003 ± 0.25 µS<br />

12.91 µS<br />

7 CYCLES<br />

OF 0.5035 MHZ<br />

(CLOCK RUN–IN)<br />

portion of line 284. XDS may indicate the program<br />

name, time into the show, time remainingtotheend,<strong>and</strong>soon.<br />

Note that due to editing before transmission,<br />

it may be possible that the caption information<br />

is moved down a scan line or two.<br />

Therefore, caption decoders should monitor<br />

more than just lines 21 <strong>and</strong> 284 for caption<br />

information.<br />

Waveform<br />

The data format for both lines consists of a<br />

clockrun-insignal,astartbit,<strong>and</strong>two7-bit<br />

plus parity words of ASCII data (per X3.4-<br />

1967). For YPbPr <strong>and</strong> S-video interfaces, captioning<br />

is present on the Y signal. For analog<br />

RGB interfaces, captioning is present on all<br />

three signals.<br />

TWO 7–BIT + PARITY<br />

ASCII CHARACTERS<br />

(DATA)<br />

27.382 µS 33.764 µS<br />

S<br />

T<br />

A<br />

R<br />

T<br />

D0–D6 P D0–D6<br />

A<br />

R<br />

I<br />

T<br />

Y<br />

Figure 8.53. <strong>NTSC</strong> Line 21 <strong>and</strong> Line 284 Closed Captioning Timing.<br />

P<br />

A<br />

R<br />

I<br />

T<br />

Y<br />

240–288 NS<br />

RISE / FALL<br />

TIMES<br />

(2T BAR<br />

SHAPING)


Figure 8.53 illustrates the waveform <strong>and</strong><br />

timing for transmitting the closed captioning<br />

<strong>and</strong>XDSinformation<strong>and</strong>conformstotheTelevision<br />

Synchronizing Waveform for Color<br />

Transmission in Subpart E, Part 73 of the FCC<br />

Rules <strong>and</strong> Regulations <strong>and</strong> EIA-608. The clock<br />

run-in is a 7-cycle sinusoidal burst that is frequency-locked<br />

<strong>and</strong> phase-locked to the caption<br />

data <strong>and</strong> is used to provide synchronization for<br />

the decoder. The nominal data rate is 32× F H .<br />

However, decoders should not rely on this timing<br />

relationship due to possible horizontal timing<br />

variations introduced by video processing<br />

circuitry <strong>and</strong> VCRs. After the clock run-in signal,<br />

the blanking level is maintained for a two<br />

data bit duration, followed by a “1” start bit.<br />

The start bit is followed by 16 bits of data, composed<br />

of two 7-bit + odd parity ASCII characters.<br />

Caption data is transmitted using a non–<br />

return-to-zero (NRZ) code; a “1” corresponds<br />

to the 50 ± 2IRElevel<strong>and</strong>a“0” corresponds to<br />

the blanking level (0–2 IRE). The negativegoing<br />

crossings of the clock are coherent with<br />

the data bit transitions.<br />

Typical decoders specify the time between<br />

the 50% points of sync <strong>and</strong> clock run-in to be<br />

10.5 ±0.5 µs, with a ±3% tolerance on F H ,50±12<br />

IRE for a “1” bit, <strong>and</strong> –2 to+12IREfora“0” bit.<br />

Decoders must also h<strong>and</strong>le bit rise/fall times<br />

of 240–480 ns.<br />

NUL characters (00 H ) should be sent<br />

when no display or control characters are<br />

being transmitted. This, in combination with<br />

the clock run-in, enables the decoder to determine<br />

whether captioning or text transmission<br />

is being implemented.<br />

If using only line 21, the clock run-in <strong>and</strong><br />

data do not need to be present on line 284.<br />

However, if using only line 284, the clock runin<br />

<strong>and</strong> data should be present on both lines 21<br />

<strong>and</strong> 284; data for line 21 would consist of NUL<br />

characters.<br />

VBI Data 337<br />

At the decoder, as shown in Figure 8.54,<br />

the display area of a 525-line 4:3 interlaced display<br />

is typically 15 rows high <strong>and</strong> 34 columns<br />

wide. The vertical display area begins on lines<br />

43 <strong>and</strong> 306 <strong>and</strong> ends on lines 237 <strong>and</strong> 500. The<br />

horizontal display area begins 13 µs <strong>and</strong>ends<br />

58 µs, after the leading edge of horizontal sync.<br />

In text mode, all rows are used to display<br />

text; each row contains a maximum of 32 characters,<br />

with at least a one-column wide space<br />

on the left <strong>and</strong> right of the text. The only transparent<br />

area is around the outside of the text<br />

area.<br />

In caption mode, text usually appears only<br />

on rows 1–4 or12–15; the remaining rows are<br />

usually transparent. Each row contains a maximum<br />

of 32 characters, with at least a one-column<br />

wide space on the left <strong>and</strong> right of the<br />

text.<br />

Some caption decoders support up to 48<br />

columns per row, <strong>and</strong> up to 16 rows, allowing<br />

some customization for the display of caption<br />

data.<br />

Basic Ser vices<br />

There are two types of display formats: text<br />

<strong>and</strong> captioning. In underst<strong>and</strong>ing the operation<br />

of the decoder, it is easier to visualize an invisible<br />

cursor that marks the position where the<br />

next character will be displayed. Note that if<br />

you are designing a decoder, you should obtain<br />

the latest FCC Rules <strong>and</strong> Regulations <strong>and</strong> EIA-<br />

608 to ensure correct operation, as this section<br />

is only a summary.<br />

Text Mode<br />

Text mode uses 7–15 rows of the display <strong>and</strong> is<br />

enabled upon receipt of the Resume Text Display<br />

or Text Restart code. When text mode has<br />

been selected, <strong>and</strong> the text memory is empty,<br />

the cursor starts at the top-most row, character<br />

1 position. Once all the rows of text are displayed,<br />

scrolling is enabled.


338 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

With each carriage return received, the<br />

top-most row of text is erased, the text is rolled<br />

up one row (over a maximum time of 0.433 seconds),<br />

the bottom row is erased, <strong>and</strong> the cursor<br />

is moved to the bottom row, character 1<br />

position. If new text is received while scrolling,<br />

it is seen scrolling up from the bottom of the<br />

display area. If a carriage return is received<br />

while scrolling, the rows are immediately<br />

moved up one row to their final position.<br />

Once the cursor moves to the character 32<br />

position on any row, any text received before a<br />

carriage return, preamble address code, or<br />

backspace will be displayed at the character 32<br />

position, replacing any previous character at<br />

that position. The Text Restart comm<strong>and</strong><br />

erases all characters on the display <strong>and</strong> moves<br />

the cursor to the top row, character 1 position.<br />

LINE COUNT<br />

LINE 43<br />

56<br />

69<br />

82<br />

95<br />

108<br />

121<br />

134<br />

147<br />

160<br />

173<br />

186<br />

199<br />

212<br />

225<br />

237<br />

45.02 µS (34 CHARACTERS)<br />

ROW 1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

Figure 8.54. Closed Captioning Display Format.<br />

Captioning Mode<br />

Captioning has several modes available, including<br />

roll-up, pop-on, <strong>and</strong> paint-on.<br />

Roll-up captioning is enabled by receiving<br />

one of the miscellaneous control codes to<br />

select the number of rows displayed. “Roll-up<br />

captions, 2 rows” enables rows 14 <strong>and</strong> 15; “rollup<br />

captions, 3 rows” enables rows 13–15, “rollup<br />

captions, 4 rows” enables rows 12–15.<br />

Regardless of the number of rows enabled, the<br />

cursor remains on row 15. Once row 15 is full,<br />

the rows are scrolled up one row (at the rate of<br />

one dot per frame), <strong>and</strong> the cursor is moved<br />

back to row 15, character 1.<br />

Pop-on captioning may use rows 1–4or12–<br />

15, <strong>and</strong> is initiated by the Resume Caption<br />

Loading comm<strong>and</strong>. The display memory is<br />

essentially double-buffered. While memory<br />

buffer 1 is displayed, memory buffer 2 is being<br />

loaded with caption data. At the receipt of a<br />

CAPTIONS<br />

OR<br />

INFOTEXT<br />

INFOTEXT<br />

ONLY<br />

CAPTIONS<br />

OR<br />

INFOTEXT


End of Caption code, memory buffer 2 is displayed<br />

while memory buffer 1 is being loaded<br />

with new caption data.<br />

Paint-on captioning, enabled by the<br />

Resume Direct Captioning comm<strong>and</strong>, is similar<br />

to Pop-on captioning, but no double-buffering<br />

is used; caption data is loaded directly into<br />

display memory.<br />

Three types of control codes (preamble<br />

address codes, midrow codes, <strong>and</strong> miscellaneous<br />

control codes) are used to specify the<br />

format, location, <strong>and</strong> attributes of the characters.<br />

Each control code consists of two bytes,<br />

transmitted together on line 21 or line 284. On<br />

line 21, they are normally transmitted twice in<br />

succession to help ensure correct reception.<br />

They are not transmitted twice on line 284 to<br />

minimize b<strong>and</strong>width used for captioning.<br />

The first byte is a nondisplay control byte<br />

with a range of 10 H to 1F H ; the second byte is a<br />

display control byte in the range of 20 H to 7F H .<br />

At the beginning of each row, a control code is<br />

sent to initialize the row. Caption roll-up <strong>and</strong><br />

text modes allow either a preamble address<br />

START<br />

BIT<br />

PREAMBLE CONTROL CODE<br />

(TRANSMITTED TWICE)<br />

NON-DISPLAY<br />

CONTROL<br />

CHARACTER<br />

(7 BITS<br />

LSB FIRST)<br />

ODD<br />

PARITY<br />

BIT<br />

DISPLAY<br />

CONTROL<br />

CHARACTER<br />

(7 BITS<br />

LSB FIRST)<br />

IDENTIFICATION CODE, ROW POSITION, INDENT,<br />

AND DISPLAY CONDITION INSTRUCTIONS<br />

ODD<br />

PARITY<br />

BIT<br />

START<br />

BIT<br />

CAPTION TEXT UP TO 32<br />

CHARACTERS PER ROW<br />

FIRST<br />

TEXT<br />

CHARACTER<br />

(7 BITS<br />

LSB FIRST)<br />

ODD<br />

PARITY<br />

BIT<br />

SECOND<br />

TEXT<br />

CHARACTER<br />

(7 BITS<br />

LSB FIRST)<br />

BEGINNING OF DISPLAYED<br />

CAPTION<br />

VBI Data 339<br />

code or midrow control code at the start of a<br />

row; the other caption modes use a preamble<br />

address code to initialize a row. The preamble<br />

address codes are illustrated in Figure 8.55<br />

<strong>and</strong> Table 8.28.<br />

The midrow codes are typically used<br />

within a row to change the color, italics, underline,<br />

<strong>and</strong> flashing attributes <strong>and</strong> should occur<br />

only between words. Color, italics, <strong>and</strong> underline<br />

are controlled by the preamble address<br />

<strong>and</strong> midrow codes; flash on is controlled by a<br />

miscellaneous control code. An attribute<br />

remains in effect until another control code is<br />

received or the end of row is reached. Each<br />

row starts with a control code to set the color<br />

<strong>and</strong> underline attributes (white nonunderlined<br />

is the default if no control code is received<br />

before the first character on an empty row).<br />

The color attribute can be changed only by the<br />

midrow code of another color; the italics<br />

attribute does not change the color attribute.<br />

However, a color attribute turns off the italics<br />

attribute. The flash on comm<strong>and</strong> does not alter<br />

the status of the color, italics, or underline<br />

Figure 8.55. Closed Captioning Preamble Address Code Format.<br />

ODD<br />

PARITY<br />

BIT


340 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Non-display Control Byte Display Control Byte<br />

D6 D5 D4 D3 D2 D1 D0 D6 D5 D4 D3 D2 D1 D0<br />

0 0 1 CH<br />

0 0 1<br />

0 1 0<br />

1 0 1<br />

1 1 0<br />

U: “0” = no underline, “1” = underline<br />

CH: “0” = data channel 1, “1” = data channel 2<br />

Row Position<br />

1 0<br />

1<br />

1 1 2<br />

1 0 3<br />

1 1 4<br />

1 0 5<br />

1 1 6<br />

1 0 7<br />

1 1 A B C D U<br />

8<br />

1 1 1<br />

1<br />

1<br />

0<br />

1<br />

9<br />

10<br />

0 0 0 1 0 11<br />

0 1 1<br />

1 0 0<br />

1 0 12<br />

1 1 13<br />

1 0 14<br />

1 1 15<br />

A B C D Attribute<br />

0 0 0 0 white<br />

0 0 0 1 green<br />

0 0 1 0 blue<br />

0 0 1 1 cyan<br />

0 1 0 0 red<br />

0 1 0 1 yellow<br />

0 1 1 0 magenta<br />

0 1 1 1 italics<br />

1 0 0 0 indent0,white<br />

1 0 0 1 indent4,white<br />

1 0 1 0 indent8,white<br />

1 0 1 1 indent 12, white<br />

1 1 0 0 indent 16, white<br />

1 1 0 1 indent 20, white<br />

1 1 1 0 indent 24, white<br />

1 1 1 1 indent 28, white<br />

Table 8.28. Closed Captioning Preamble Address Codes. In text mode, the indent codes<br />

may be used to perform indentation; in this instance, the row information is ignored.


attributes. However, a color or italics midrow<br />

control code turns off the flash. Note that the<br />

underline color is the same color as the character<br />

being underlined; the underline resides on<br />

dot row 11 <strong>and</strong> covers the entire width of the<br />

character column.<br />

Table 8.29, Figure 8.56, <strong>and</strong> Table 8.30<br />

illustrate the midrow <strong>and</strong> miscellaneous control<br />

code operation. For example, if it were the<br />

end of a caption, the control code could be End<br />

ofCaption(transmittedtwice).Itcouldbefollowed<br />

by a preamble address code (transmitted<br />

twice) to start another line of captioning.<br />

Characters are displayed using a dot<br />

matrix format. Each character cell is typically<br />

16 samples wide <strong>and</strong> 26 samples high (16×26),<br />

as shown in Figure 8.57. Dot rows 2–19 are<br />

usually used for actual character outlines. Dot<br />

rows 0, 1, 20, 21, 24, <strong>and</strong> 25 are usually blanked<br />

to provide vertical spacing between characters,<br />

<strong>and</strong> underlining is typically done on dot rows<br />

VBI Data 341<br />

22 <strong>and</strong> 23. Dot columns 0, 1, 14 <strong>and</strong> 15 are<br />

blanked to provide horizontal spacing between<br />

characters, except on dot rows 22 <strong>and</strong> 23 when<br />

the underline is displayed. This results in<br />

12×18 characters stored in character ROM.<br />

Table 8.31 shows the basic character set.<br />

Some caption decoders support multiple<br />

character sizes within the 16×26 region, including<br />

13×16, 13×24, 12×20, <strong>and</strong> 12×26. Not all<br />

combinations generate a sensible result due to<br />

the limited display area available.<br />

Optional Captioning Features<br />

Three sets of optional features are available for<br />

advanced captioning decoders.<br />

Optional Attributes<br />

Additional color choices are available for<br />

advanced captioning decoders, as shown in<br />

Table 8.32.<br />

Non-display Control Byte Display Control Byte<br />

D6 D5 D4 D3 D2 D1 D0 D6 D5 D4 D3 D2 D1 D0 Attribute<br />

0 0 1 CH 0 0 1 0 1 0<br />

0 0 0<br />

white<br />

0 0 1 green<br />

0 1 0 blue<br />

0<br />

1<br />

1<br />

0<br />

1<br />

0<br />

U<br />

cyan<br />

red<br />

1 0 1 yellow<br />

1 1 0 magenta<br />

1 1 1 italics<br />

U: “0” = no underline, “1” = underline CH: “0” = data channel 1, “1” = data channel 2<br />

Note: Italics is implemented as a two-dot slant to the right over the vertical range of the character. Some decoders<br />

implement a one dot slant for every four scan lines. Underline resides on dot rows 22 <strong>and</strong> 23, <strong>and</strong> covers the<br />

entire column width.<br />

Table 8.29. Closed Captioning Midrow Codes.


342 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

START<br />

BIT<br />

TEXT<br />

CHARACTER<br />

(7 BITS<br />

LSB FIRST)<br />

TEXT MID–ROW CONTROL CODE<br />

(TRANSMITTED TWICE)<br />

ODD<br />

PARITY<br />

BIT<br />

TEXT<br />

CHARACTER<br />

(7 BITS<br />

LSB FIRST)<br />

ODD<br />

PARITY<br />

BIT<br />

START<br />

BIT<br />

NON-DISPLAY<br />

CONTROL<br />

CHARACTER<br />

(7 BITS<br />

LSB FIRST)<br />

ODD<br />

PARITY<br />

BIT<br />

DISPLAY<br />

CONTROL<br />

CHARACTER<br />

(7 BITS<br />

LSB FIRST)<br />

ODD<br />

PARITY<br />

BIT<br />

Figure 8.56. Closed Captioning Midrow Code Format. Miscellaneous control codes may also be<br />

transmitted in place of the midrow control code.<br />

Non-display Control Byte Display Control Byte<br />

D6 D5 D4 D3 D2 D1 D0 D6 D5 D4 D3 D2 D1 D0<br />

0 0 1 CH 1 0 F 0 1 0<br />

0 0 1 CH 1 1 1 0 1 0<br />

CH: “0” = data channel 1, “1” = data channel 2 F: “0” = line 21, “1” = line 284<br />

Note: “flash on” blanks associated characters for 0.25 seconds once per second.<br />

Table 8.30. Closed Captioning Miscellaneous Control Codes.<br />

Comm<strong>and</strong><br />

0 0 0 0 resume caption loading<br />

0 0 0 1 backspace<br />

0 0 1 0 reserved<br />

0 0 1 1 reserved<br />

0 1 0 0 delete toendof row<br />

0 1 0 1 roll-up captions,2 rows<br />

0 1 1 0 roll-up captions,3 rows<br />

0 1 1 1 roll-up captions,4 rows<br />

1 0 0 0 flash on<br />

1 0 0 1 resume direct captioning<br />

1 0 1 0 textrestart<br />

1 0 1 1 resume text display<br />

1 1 0 0 erase displayedmemory<br />

1 1 0 1 carriage return<br />

1 1 1 0 erase nondisplayedmemory<br />

1 1 1 1 end of caption (flip memories)<br />

0 0 0 1 tab offset(1 column)<br />

0 0 1 0 taboffset(2 columns)<br />

0 0 1 1 taboffset(3 columns)


LINE 43<br />

LINE 306<br />

LINE 44<br />

LINE 307<br />

LINE 45<br />

LINE 308<br />

LINE 46<br />

LINE 309<br />

LINE 47<br />

LINE 310<br />

LINE 48<br />

LINE 311<br />

LINE 49<br />

LINE 312<br />

LINE 50<br />

LINE 313<br />

LINE 51<br />

LINE 314<br />

LINE 52<br />

LINE 315<br />

LINE 53<br />

LINE 316<br />

LINE 54<br />

LINE 317<br />

LINE 55<br />

LINE 318<br />

BLANK DOT<br />

CHARACTER DOT<br />

UNDERLINE<br />

Figure 8.57. Typical 16×26 Closed Captioning Character Cell Format for Row 1.<br />

DOT<br />

ROW<br />

0<br />

2<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

16<br />

18<br />

20<br />

22<br />

24<br />

VBI Data 343


344 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Nondisplay Control Byte Display Control Byte Special<br />

Characters<br />

D6 D5 D4 D3 D2 D1 D0 D6 D5 D4 D3 D2 D1 D0<br />

0 0 1 CH 0 0 1 0 1 1<br />

D6 D5 D4 D3<br />

0100<br />

0101<br />

0110<br />

0111<br />

1000<br />

0 0 0 0 ®<br />

0 0 0 1 °<br />

0 0 1 0 1/2<br />

0 0 1 1 ¿<br />

0 1 0 0 <br />

0 1 0 1 ¢<br />

0 1 1 0 £<br />

0 1 1 1 music note<br />

1 0 0 0 à<br />

1 0 0 1 transparentspace<br />

1 0 1 0 è<br />

1 0 1 1 â<br />

1 1 0 0 ê<br />

1 1 0 1 î<br />

1 1 1 0 ô<br />

1 1 1 1 û<br />

D2 D1 D0<br />

000 ( 0 8 @ H P X ú h p x<br />

001 ! ) 1 9 A I Q Y a i q y<br />

010 “ á 2 : B J R Z b j r z<br />

011 # + 3 ; C K S [ c k s ç<br />

100 $ , 4 < D L T é d l t ÷<br />

101 % – 5 = E M U ] e m u Ñ<br />

110 & . 6 > F N V í f n v ñ<br />

111 ‘ / 7 ? G O W ó g o w ■<br />

Table 8.31. Closed Captioning Basic Character Set.<br />

1001<br />

1010<br />

1011<br />

1100<br />

1101<br />

1110<br />

1111


Non-display Control Byte Display Control Byte<br />

D6 D5 D4 D3 D2 D1 D0 D6 D5 D4 D3 D2 D1 D0<br />

T: “0” =opaque,“1” = semi-transparent CH: “0” = data channel 1, “1” = data channel 2<br />

Underline resides on dot rows 22 <strong>and</strong> 23, <strong>and</strong> covers the entire column width.<br />

Table 8.32. Closed Captioning Optional Attribute Codes.<br />

If a decoder doesn’t support semitransparent<br />

colors, the opaque colors may be used<br />

instead. If a specific background color isn’t<br />

supported by a decoder, it should default to the<br />

black background color. However, if the black<br />

foreground color is supported in a decoder, all<br />

the background colors should be implemented.<br />

A background attribute appears as a st<strong>and</strong>ard<br />

space on the display, <strong>and</strong> the attribute<br />

remains in effect until the end of the row or<br />

until another background attribute is received.<br />

The foreground attributes provide an<br />

eighth color (black) as a character color. As<br />

with midrow codes, a foreground attribute<br />

code turns off italics <strong>and</strong> blinking, <strong>and</strong> the<br />

least significant bit controls underlining.<br />

VBI Data 345<br />

Background<br />

Attribute<br />

0 0 0<br />

white<br />

0 0 1 green<br />

0 1 0 blue<br />

0 0 1 CH 0 0 0 0 1 0<br />

0<br />

1<br />

1<br />

0<br />

1<br />

0<br />

T<br />

cyan<br />

red<br />

1 0 1 yellow<br />

1 1 0 magenta<br />

1 1 1 black<br />

0 0 1 CH 1 1 1 0 1 0 1 1 0 1 transparent<br />

D6 D5 D4 D3 D2 D1 D0 D6 D5 D4 D3 D2 D1 D0<br />

0 0 1 CH 1 1 1 0 1 0 1 1 1<br />

Foreground<br />

Attribute<br />

0 black<br />

1 black underline<br />

Background <strong>and</strong> foreground attribute<br />

codes have an automatic backspace for backward<br />

compatibility with current decoders.<br />

Thus, an attribute must be preceded by a st<strong>and</strong>ard<br />

space character. St<strong>and</strong>ard decoders display<br />

the space <strong>and</strong> ignore the attribute.<br />

Extended decoders display the space, <strong>and</strong> on<br />

receiving the attribute, backspace, then display<br />

a space that changes the color <strong>and</strong> opacity.<br />

Thus, text formatting remains the same<br />

regardless of the type of decoder.<br />

Optional Closed Group Extensions<br />

To support custom features <strong>and</strong> characters not<br />

defined by the st<strong>and</strong>ards, the EIA/CEG maintains<br />

a set of code assignments requested by<br />

various caption providers <strong>and</strong> decoder manu-


346 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

facturers. These code assignments (currently<br />

used to select various character sets) are not<br />

compatible with caption decoders in the United<br />

States <strong>and</strong> videos using them should not be<br />

distributedintheU.S.market.<br />

Closed group extensions require two<br />

bytes. Table 8.33 lists the currently assigned<br />

closed group extensions to support captioning<br />

in the Asian languages.<br />

Optional Extended Characters<br />

An additional 64 accented characters (eight<br />

character sets of eight characters each) may<br />

be supported by decoders, permitting the display<br />

of other languages such as Spanish,<br />

French, Portuguese, German, Danish, Italian,<br />

Finnish, <strong>and</strong> Swedish. If supported, these<br />

accented characters are available in all caption<br />

<strong>and</strong> text modes.<br />

Non-display Control Byte Display Control Byte<br />

D6 D5 D4 D3 D2 D1 D0 D6 D5 D4 D3 D2 D1 D0<br />

0 0 1 CH 1 1 1 0 1 0<br />

CH: “0” = data channel 1, “1” = data channel 2<br />

Each of the extended characters incorporates<br />

an automatic backspace for backward<br />

compatibility with current decoders. Thus, an<br />

extended character must be preceded by the<br />

st<strong>and</strong>ard ASCII version of the character. St<strong>and</strong>ard<br />

decoders display the ASCII character <strong>and</strong><br />

ignore the accented character. Extended<br />

decoders display the ASCII character, <strong>and</strong> on<br />

receiving the accented character, backspace,<br />

then display the accented character. Thus, text<br />

formatting remains the same regardless of the<br />

type of decoder.<br />

Extended characters require two bytes.<br />

The first byte is 12 H or 13 H for data channel<br />

one (1A H or 1B H for data channel two), followed<br />

by a value of 20 H –3F H .<br />

Table 8.33. Closed Captioning Optional Closed Group Extensions.<br />

Background<br />

Attribute<br />

0 1 0 0<br />

st<strong>and</strong>ard character<br />

set (normal size)<br />

0 1 0 1<br />

st<strong>and</strong>ard character<br />

set (double size)<br />

0 1 1 0<br />

first private<br />

character set<br />

0 1 1 1<br />

second private<br />

character set<br />

People’s Republic<br />

1 0 0 0 of China character<br />

set (GB 2312)<br />

Korean St<strong>and</strong>ard<br />

1 0 0 1<br />

character set<br />

(KSC 5601-1987)<br />

1 0 1 0 first registered character set


Extended Data Ser vices<br />

Line 284 may contain extended data service<br />

information, interleaved with the caption <strong>and</strong><br />

text information, as b<strong>and</strong>width is available. In<br />

this case, control codes are not transmitted<br />

twice, as they may be for the caption <strong>and</strong> text<br />

services.<br />

Information is transmitted as packets <strong>and</strong><br />

operates as a separate unique data channel.<br />

Data for each packet may or may not be contiguous<br />

<strong>and</strong> may be separated into subpackets<br />

that can be inserted anywhere space is available<br />

in the line 284 information stream.<br />

There are four types of extended data characters:<br />

Control: Control characters are used as a<br />

mode switch to enable the extended data<br />

mode. They are the first character of two <strong>and</strong><br />

have a value of 01 F to 0F H .<br />

Type: Type characters follow the control<br />

character (thus, they are the second character<br />

of two) <strong>and</strong> identify the packet type. They have<br />

a value of 01 F to 0F H .<br />

Checksum: Checksum characters always<br />

follow the “end of packet” control character.<br />

Thus, they are the second character of two <strong>and</strong><br />

have a value of 00 F to 7F H .<br />

Informational: These characters may be<br />

ASCII or non-ASCII data. They are transmitted<br />

in pairs up to <strong>and</strong> including 32 characters. A<br />

NUL character (00 H) is used to ensure pairs of<br />

characters are always sent.<br />

Control Characters<br />

Table8.34liststhecontrolcodes.Thecurrent<br />

class describes a program currently being<br />

transmitted. The future class describes a pro-<br />

VBI Data 347<br />

gram to be transmitted later. It contains the<br />

same information <strong>and</strong> formats as the current<br />

class. The channel class describes non-program-specific<br />

information about the channel.<br />

The miscellaneous class describes miscellaneous<br />

information. The public class transmits<br />

data or messages of a public service nature.<br />

The undefined class is used in proprietary systems<br />

for whatever that system wishes.<br />

Type Characters (Current, Future Class)<br />

Program Identification Number (01 H )<br />

This packet uses four characters to specify the<br />

program start time <strong>and</strong> date relative to Coordinated<br />

Universal Time (UTC). The format is<br />

shown in Table 8.35.<br />

Minutes have a range of 0–59. Hours have<br />

arangeof0–23. Dates have a range of 1–31.<br />

Months have a range of 1–12. “T” indicates if a<br />

program is routinely tape delayed for the<br />

Mountain <strong>and</strong> Pacific time zones. The “D,” “L,”<br />

<strong>and</strong> “Z” bits are ignored by the decoder.<br />

Program Length (02 H )<br />

This packet has 2, 4, or 6 characters <strong>and</strong> indicates<br />

the scheduled length of the program <strong>and</strong><br />

elapsed time for the program. The format is<br />

shown in Table 8.36.<br />

Minutes <strong>and</strong> seconds have a range of 0–59.<br />

Hours have a range of 0–63.<br />

Program Name (03 H )<br />

This packet contains 2–32 ASCII characters<br />

that specify the title of the program.<br />

Program Type (04 H )<br />

This packet contains 2–32 characters that specify<br />

the type of program. Each character is<br />

assigned a keyword, as shown in Table 8.37.


348 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Control<br />

Code<br />

01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH Function Class<br />

start<br />

continue<br />

start<br />

continue<br />

start<br />

continue<br />

start<br />

continue<br />

start<br />

continue<br />

start<br />

continue<br />

start<br />

continue<br />

current<br />

future<br />

channel<br />

miscellaneous<br />

public service<br />

reserved<br />

undefined<br />

0F H end all<br />

Table 8.34. EIA-608 Control Codes.<br />

D6 D5 D4 D3 D2 D1 D0 Character<br />

1 m5 m4 m3 m2 m1 m0 minute<br />

1 D h4 h3 h2 h1 h0 hour<br />

1 L d4 d3 d2 d1 d0 date<br />

1 Z T m3 m2 m1 m0 month<br />

Table 8.35. EIA-608 Program Identification Number Format.


Code<br />

(hex)<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

2A<br />

2B<br />

2C<br />

2D<br />

2E<br />

2F<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

5A<br />

5B<br />

5C<br />

5D<br />

5E<br />

5F<br />

D6 D5 D4 D3 D2 D1 D0 Character<br />

1 m5 m4 m3 m2 m1 m0 length,minute<br />

1 h5 h4 h3 h2 h1 h0 length,hour<br />

1 m5 m4 m3 m2 m1 m0 elapsed time,minute<br />

1 h5 h4 h3 h2 h1 h0 elapsed time,hour<br />

1 s5 s4 s3 s2 s1 s0 elapsed time,second<br />

0 0 0 0 0 0 0 null character<br />

Keyword<br />

education<br />

entertainment<br />

movie<br />

news<br />

religious<br />

sports<br />

other<br />

action<br />

advertisement<br />

animated<br />

anthology<br />

automobile<br />

awards<br />

baseball<br />

basketball<br />

bulletin<br />

hockey<br />

home<br />

horror<br />

information<br />

instruction<br />

international<br />

interview<br />

language<br />

legal<br />

live<br />

local<br />

math<br />

medical<br />

meeting<br />

military<br />

miniseries<br />

Table 8.36. EIA-608 Program Length Format.<br />

Code<br />

(hex)<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

3A<br />

3B<br />

3C<br />

3D<br />

3E<br />

3F<br />

60<br />

61<br />

62<br />

63<br />

64<br />

65<br />

66<br />

67<br />

68<br />

69<br />

6A<br />

6B<br />

6C<br />

6D<br />

6E<br />

6F<br />

Keyword<br />

business<br />

classical<br />

college<br />

combat<br />

comedy<br />

commentary<br />

concert<br />

consumer<br />

contemporary<br />

crime<br />

dance<br />

documentary<br />

drama<br />

elementary<br />

erotica<br />

exercise<br />

music<br />

mystery<br />

national<br />

nature<br />

police<br />

politics<br />

premiere<br />

prerecorded<br />

product<br />

professional<br />

public<br />

racing<br />

reading<br />

repair<br />

repeat<br />

review<br />

Table 8.37. EIA-608 Program Types.<br />

Code<br />

(hex)<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

4A<br />

4B<br />

4C<br />

4D<br />

4E<br />

4F<br />

70<br />

71<br />

72<br />

73<br />

74<br />

75<br />

76<br />

77<br />

78<br />

79<br />

7A<br />

7B<br />

7C<br />

7D<br />

7E<br />

7F<br />

VBI Data 349<br />

Keyword<br />

fantasy<br />

farm<br />

fashion<br />

fiction<br />

food<br />

football<br />

foreign<br />

fund raiser<br />

game/quiz<br />

garden<br />

golf<br />

government<br />

health<br />

high school<br />

history<br />

hobby<br />

romance<br />

science<br />

series<br />

service<br />

shopping<br />

soap opera<br />

special<br />

suspense<br />

talk<br />

technical<br />

tennis<br />

travel<br />

variety<br />

video<br />

weather<br />

western


350 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Program Rating (05 H )<br />

This packet, commonly referred to regarding<br />

the ”v” chip, contains the information shown in<br />

Table 8.38 to indicate the program rating.<br />

V indicates if violence is present. S indicates<br />

if sexual situations are present. L indicates<br />

if adult language is present. D indicates if<br />

sexually suggestive dialog is present.<br />

Program Audio Services (06 H )<br />

This packet contains two characters as shown<br />

in Table 8.39 to indicate the program audio services<br />

available.<br />

Program Caption Services (07 H )<br />

This packet contains 2–8 charactersasshown<br />

in Table 8.40 to indicate the program caption<br />

services available. L2–L0 are coded as shown<br />

in Table 8.39.<br />

Copy Generation Management System (08 H )<br />

This CGMS-A (Copy Generation Management<br />

System—Analog) packet contains 2 charactersasshowninTable8.41.<br />

InthecasewhereeitherB3orB4isa“0”,<br />

there is no Analog Protection System (B1 <strong>and</strong><br />

B2 are “0”). B0 is the analog source bit.<br />

Program Aspect Ratio (09 H )<br />

This packet contains two or four characters as<br />

shown in Table 8.42 to indicate the aspect ratio<br />

of the program.<br />

S0–S5 specify the first line containing<br />

active picture information. The value of S0–S5<br />

is calculated by subtracting 22 from the first<br />

line containing active picture information. The<br />

valid range for the first line containing active<br />

picture information is 22–85.<br />

E0–E5 specify the last line containing<br />

active picture information. The last line containing<br />

active video is calculated by subtracting<br />

the value of E0–E5 from 262. The valid range<br />

for the last line containing active picture information<br />

is 199–262.<br />

When this packet contains all zeros for<br />

both characters, or the packet is not detected,<br />

an aspect ratio of 4:3 is assumed.<br />

The Q0 bit specifies whether the video is<br />

squeezed (“1”) or normal (“0”). Squeezed<br />

video (anamorphic) is the result of compressing<br />

a 16:9 aspect ratio picture into a 4:3 aspect<br />

ratio picture without cropping side panels.<br />

The aspect ratio is calculated as follows:<br />

320 / (E – S) : 1<br />

Program Description (10 H –17 H )<br />

This packet contains 1–8 packet rows, with<br />

each packet row containing 0–32 ASCII characters.<br />

A packet row corresponds to a line of text<br />

on the display.<br />

Each packet is used in numerical<br />

sequence, <strong>and</strong> if a packet contains no ASCII<br />

characters, a blank line will be displayed.<br />

Type Characters (Channel Class)<br />

Network Name (01 H )<br />

This packet uses 2–32 ASCII characters to<br />

specify the network name.<br />

Network Call Letters (02 H )<br />

This packet uses four or six ASCII characters<br />

to specify the call letters of the channel. When<br />

six characters are used, they reflect the overthe-air<br />

channel number (2–69) assigned by the<br />

FCC. Single-digit channel numbers are preceded<br />

by a zero or a null character.<br />

Channel Tape Delay (03 H )<br />

This packet uses two characters to specify the<br />

number of hours <strong>and</strong> minutes the local station<br />

typically delays network programs. The format<br />

of this packet is shown in Table 8.43.


D6 D5 D4 D3 D2 D1 D0 Character<br />

1 D / a2 a1 a0 r2 r1 r0 MPAA movie rating<br />

1 V S L/ a3 g2 g1 g0 TV rating<br />

VBI Data 351<br />

r2–r0: Movie Rating g2–g0: USA TV Rating a3–a0: xxx0 MPAA movie rating<br />

000 not applicable 000 not rated LD01 USA TV rating<br />

001 G 001 TV-Y 0011 Canadian English TV rating<br />

010 PG 010 TV-Y7 0111 Canadian French TV rating<br />

011 PG-13 011 TV-G 1011 reserved<br />

100 R 100 TV-PG 1111 reserved<br />

101 NC-17 101 TV-14<br />

110 X 110 TV-MA<br />

111 not rated 111 not rated<br />

g2–g0: Canadian English TV Rating g2–g0: Canadian French TV Rating<br />

000 exempt 000 exempt<br />

001 C 001 G<br />

010 C8 + 010 8 ans +<br />

011 G 011 13 ans +<br />

100 PG 100 16 ans +<br />

101 14 + 101 18 ans +<br />

110 18 + 110 reserved<br />

111 reserved 111 reserved<br />

Table 8.38. EIA-608 <strong>and</strong> EIA-744 Program Rating Format.<br />

D6 D5 D4 D3 D2 D1 D0 Character<br />

1 L2 L1 L0 T2 T1 T0 main audio program<br />

1 L2 L1 L0 S2 S1 S0 secondaudio program (SAP)<br />

L2–L0: 000 unknown T2–T0: 000 unknown S2–S0: 000 unknown<br />

001 english 001 mono 001 mono<br />

010 spanish 010 simulated stereo 010 video descriptions<br />

011 french 011 true stereo 011 non-program audio<br />

100 german 100 stereo surround 100 special effects<br />

101 italian 101 data service 101 data service<br />

110 other 110 other 110 other<br />

111 none 111 none 111 none<br />

Table 8.39. EIA-608 Program Audio Services Format.


352 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

D6 D5 D4 D3 D2 D1 D0 Character<br />

1 L2 L1 L0 F C T service code<br />

FCT: 000 line 21, data channel 1 captioning<br />

001 line 21, data channel 1 text<br />

010 line 21, data channel 2 captioning<br />

011 line 21, data channel 2 text<br />

100 line 284, data channel 1 captioning<br />

101 line 284, data channel 1 text<br />

110 line 284, data channel 2 captioning<br />

111 line 284, data channel 2 text<br />

Table 8.40. EIA-608 Program Caption Services Format.<br />

D6 D5 D4 D3 D2 D1 D0 Character<br />

1 0 B4 B3 B2 B1 B0 CGMS<br />

0 0 0 0 0 0 0 null<br />

B4–B3 CGMS–A Services:<br />

00 copying permitted without restriction<br />

01 condition not to be used<br />

10 one generation copy allowed<br />

11 no copying permitted<br />

B2–B1 Analog Protection Ser vices:<br />

00 no pseudo-sync pulse<br />

01 pseudo-sync pulse on; color striping off<br />

10 pseudo-sync pulse on; 2-line color striping on<br />

11 pseudo-sync pulse on; 4-line color striping on<br />

Table 8.41. EIA-608 <strong>and</strong> EIA IS–702 CGMS–A Format.


D6 D5 D4 D3 D2 D1 D0 Character<br />

1 S5 S4 S3 S2 S1 S0 start<br />

1 E5 E4 E3 E2 E1 E0 end<br />

1 – – – – – Q0 other<br />

0 0 0 0 0 0 0 null<br />

Table 8.42. EIA-608 Program Aspect Ratio Format.<br />

D6 D5 D4 D3 D2 D1 D0 Character<br />

1 m5 m4 m3 m2 m1 m0 minute<br />

1 – h4 h3 h2 h1 h0 hour<br />

Table 8.43. EIA-608 Channel Tape Delay Format.<br />

D6 D5 D4 D3 D2 D1 D0 Character<br />

1 m5 m4 m3 m2 m1 m0 minute<br />

1 D h4 h3 h2 h1 h0 hour<br />

1 L d4 d3 d2 d1 d0 date<br />

1 Z T m3 m2 m1 m0 month<br />

1 – – – D2 D1 D0 day<br />

1 Y5 Y4 Y3 Y2 Y1 Y0 year<br />

Table 8.44. EIA-608 Time of Day Format.<br />

VBI Data 353


354 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Minutes have a range of 0–59. Hours have<br />

a range of 0–23. This delay applies to all programs<br />

on the channel that have the “T” bit set<br />

in their Program ID packet (Table 8.35).<br />

Type Characters (Miscellaneous Class)<br />

Time of Day (01 H )<br />

This packet uses six characters to specify the<br />

current time of day, month, <strong>and</strong> date relative to<br />

Coordinated Universal Time (UTC). The format<br />

is shown in Table 8.44.<br />

Minutes have a range of 0–59. Hours have<br />

a range of 0–23. Dates have a range of 1–31.<br />

Months have a range of 1–12. Days have a<br />

range of 1 (Sunday) to 7 (Saturday). Years<br />

have a range of 0–63 (added to 1990).<br />

“T” indicates if a program is routinely tape<br />

delayed for the Mountain <strong>and</strong> Pacific time<br />

zones. “D” indicates whether daylight savings<br />

time currently is being observed. “L” indicates<br />

whether the local day is February 28th or 29th<br />

when it is March 1st UTC. “Z” indicates<br />

whether the seconds should be set to zero (to<br />

allow calibration without having to transmit the<br />

full 6 bits of seconds data).<br />

Impulse Capture ID (02 H )<br />

This packet carries the program start time <strong>and</strong><br />

length, <strong>and</strong> can be used to tell a VCR to record<br />

this program. The format is shown in Table<br />

8.45.<br />

Start <strong>and</strong> length minutes have a range of<br />

0–59. Start hours have a range of 0–23; length<br />

hours have a range of 0–63. Dates have a range<br />

of 1–31. Months have a range of 1–12. “T” indicates<br />

if a program is routinely tape delayed for<br />

the Mountain <strong>and</strong> Pacific time zones. The “D,”<br />

“L.” <strong>and</strong> “Z” bits are ignored by the decoder.<br />

Supplemental Data Location (03 H )<br />

This packet uses 2–32 characters to specify<br />

other lines where additional VBI data may be<br />

found. Table 8.46 shows the format.<br />

“F” indicates field one (“0”) orfieldtwo<br />

(“1”). N may have a value of 7–31, <strong>and</strong> indicates<br />

a specific line number.<br />

Local Time Zone (04 H )<br />

This packet uses two characters to specify the<br />

viewer time zone <strong>and</strong> whether the locality<br />

observes daylight savings time. The format is<br />

shown in Table 8.47.<br />

Hours have a range of 0–23. This is the<br />

nominal time zone offset, in hours, relative to<br />

UTC. “D” is a “1” when the area is using daylight<br />

savings time.<br />

Out-of-B<strong>and</strong> Channel Number (40 H )<br />

This packet uses two characters to specify a<br />

channel number to which all subsequent outof-b<strong>and</strong><br />

packets refer. This is the CATV channel<br />

number to which any following out-of-b<strong>and</strong><br />

packets belong to. The format is shown in<br />

Table 8.48.<br />

Closed Captioning for Europe<br />

Closed captioning may be also used with <strong>PAL</strong><br />

videotapes <strong>and</strong> laserdiscs in Europe, present<br />

during the blanked active line-time portion of<br />

lines 22 <strong>and</strong> 335.<br />

The data format, amplitudes, <strong>and</strong> rise <strong>and</strong><br />

fall times are the same as for closed captioning<br />

in the United States. The timing, as shown in<br />

Figure 8.58, is slightly different due to the <strong>PAL</strong><br />

horizontal timing. Older closed captioning<br />

decoders designed for use only with <strong>NTSC</strong> systems<br />

may not work due to these timing differences.


D6 D5 D4 D3 D2 D1 D0 Character<br />

1 m5 m4 m3 m2 m1 m0 start,minute<br />

1 D h4 h3 h2 h1 h0 start, hour<br />

1 L d4 d3 d2 d1 d0 start, date<br />

1 Z T m3 m2 m1 m0 start,month<br />

1 m5 m4 m3 m2 m1 m0 length,minute<br />

1 h5 h4 h3 h2 h1 h0 length,hour<br />

Table 8.45. EIA-608 Impulse Capture ID Format.<br />

D6 D5 D4 D3 D2 D1 D0 Character<br />

1 F N4 N3 N2 N1 N0 location<br />

Table 8.46. EIA-608 Supplemental Data Format.<br />

D6 D5 D4 D3 D2 D1 D0 Character<br />

1 D h4 h3 h2 h1 h0 hour<br />

0 0 0 0 0 0 0 null<br />

Table 8.47. EIA-608 Local Time Zone Format.<br />

D6 D5 D4 D3 D2 D1 D0 Character<br />

1 c5 c4 c3 c2 c1 c0 channel low<br />

1 c11 c10 c9 c8 c7 c6 channel high<br />

Table 8.48. EIA-608 Out-of-B<strong>and</strong> Channel Number Format.<br />

VBI Data 355


356 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Widescreen Signalling<br />

To facilitate the h<strong>and</strong>ling of various aspect<br />

ratios of program material received by TVs, a<br />

widescreen signalling (WSS) system has been<br />

developed. This st<strong>and</strong>ard allows a WSSenhanced<br />

16:9 TV to display programs in their<br />

correct aspect ratio.<br />

625-Line <strong>PAL</strong> <strong>and</strong> <strong>SECAM</strong> Systems<br />

625-line <strong>PAL</strong> <strong>and</strong> <strong>SECAM</strong> systems are based<br />

on ITU-R BT.1119 <strong>and</strong> ETSI EN 300294. For<br />

YPbPr <strong>and</strong> S-video interfaces, WSS is present<br />

on the Y signal. For analog RGB interfaces,<br />

WSS is present on all three signals.<br />

The Analog Copy Generation Management<br />

System (CGMS-A) is also supported by the<br />

WSS signal.<br />

BLANK LEVEL<br />

SYNC LEVEL<br />

50 ±2 IRE<br />

43 IRE<br />

10.5 ± 0.25 µS<br />

4.43 MHZ<br />

COLOR BURST<br />

(10 CYCLES)<br />

10.00 ± 0.25 µS<br />

13.0 µS<br />

7 CYCLES<br />

OF 0.500 MHZ<br />

(CLOCK RUN–IN)<br />

Data Timing<br />

The first part of line 23 is used to transmit the<br />

WSS information, as shown in Figure 8.59.<br />

The clock frequency is 5 MHz (±100 Hz).<br />

The signal waveform should be a sine-squared<br />

pulse, with a half-amplitude duration of 200 ±10<br />

ns. The signal amplitude is 500 mV ±5%.<br />

The NRZ data bits are processed by a biphase<br />

code modulator, such that one data<br />

period equals 6 elements at 5 MHz.<br />

Data Content<br />

The WSS consists of a run-in code, a start<br />

code, <strong>and</strong> 14 bits of data, as shown in Table<br />

8.49.<br />

TWO 7–BIT + PARITY<br />

ASCII CHARACTERS<br />

(DATA)<br />

27.5 µS 34.0 µS<br />

S<br />

T<br />

A<br />

R<br />

T<br />

D0–D6 P D0–D6<br />

A<br />

R<br />

I<br />

T<br />

Y<br />

Figure 8.58. (B, D, G, H, I) <strong>PAL</strong> Line 22 <strong>and</strong> Line 335 Closed Captioning Timing.<br />

P<br />

A<br />

R<br />

I<br />

T<br />

Y<br />

240–288 NS<br />

RISE / FALL<br />

TIMES<br />

(2T BAR<br />

SHAPING)


Run-In<br />

The run-in consists of 29 elements at 5 MHz of<br />

a specific sequence, shown in Table 8.49.<br />

Start Code<br />

The start code consists of 24 elements at 5<br />

MHz of a specific sequence, shown in Table<br />

8.49.<br />

Group A Data<br />

The group A data consists of 4 data bits that<br />

specify the aspect ratio. Each data bit generates<br />

6 elements at 5 MHz. Data bit b0 is the<br />

LSB.<br />

Table 8.50 lists the data bit assignments<br />

<strong>and</strong>usage.Thenumberofactivelineslistedin<br />

Table 8.50 are for the exact aspect ratio (a =<br />

1.33, 1.56, or 1.78).<br />

The aspect ratio label indicates a range of<br />

possible aspect ratios (a) <strong>and</strong> number of active<br />

lines:<br />

4:3 a ≤ 1.46 527–576<br />

14:9 1.46 < a ≤ 1.66 463–526<br />

16:9 1.66 < a ≤ 1.90 405–462<br />

>16:9 a > 1.90 < 405<br />

BLANK LEVEL<br />

SYNC LEVEL<br />

500 MV ±5%<br />

43 IRE<br />

COLOR<br />

BURST<br />

RUN<br />

IN<br />

29<br />

5 MHZ<br />

ELEMENTS<br />

START<br />

CODE<br />

24<br />

5 MHZ<br />

ELEMENTS<br />

11.00 ± 0.25 µS 27.4 µS<br />

DATA<br />

(B0 - B13)<br />

84<br />

5 MHZ<br />

ELEMENTS<br />

FIgure 8.59. <strong>PAL</strong> Line 23 WSS Timing.<br />

VBI Data 357<br />

To allow automatic selection of the display<br />

mode, a 16:9 receiver should support the following<br />

minimum requirements:<br />

Case 1: The 4:3 aspect ratio picture should<br />

be centered on the display, with black bars<br />

on the left <strong>and</strong> right sides.<br />

Case 2: The 14:9 aspect ratio picture<br />

should be centered on the display, with<br />

black bars on the left <strong>and</strong> right sides. Alternately,<br />

the picture may be displayed using<br />

the full display width by using a small (typically<br />

8%) horizontal geometrical error.<br />

Case 3: The 16:9 aspect ratio picture<br />

should be displayed using the full width of<br />

the display.<br />

Case 4: The >16:9 aspect ratio picture<br />

should be displayed as in Case 3 or use the<br />

full height of the display by zooming in.<br />

Group B Data<br />

The group B data consists of four data bits that<br />

specify enhanced services. Each data bit gen-<br />

190–210 NS<br />

RISE / FALL<br />

TIMES<br />

(2T BAR<br />

SHAPING)


358 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

run-in<br />

start code<br />

group A<br />

(aspect ratio)<br />

group B<br />

(enhanced services)<br />

group C<br />

(subtitles)<br />

group D<br />

(reserved)<br />

b3,b2,b1,b0<br />

Aspect Ratio<br />

Label<br />

29 elements<br />

at 5 MHz<br />

24 elements<br />

at 5 MHz<br />

24 elements<br />

at 5 MHz<br />

“0” = 000 111<br />

“1” = 111 000<br />

24 elements<br />

at 5 MHz<br />

“0” = 000 111<br />

“1” = 111 000<br />

18 elements<br />

at 5 MHz<br />

“0” = 000 111<br />

“1” = 111 000<br />

18 elements<br />

at 5 MHz<br />

“0” = 000 111<br />

“1” = 111 000<br />

1 1111 0001 1100 0111 0001 1100 0111<br />

(1F1C 71C7 H)<br />

0001 1110 0011 1100 0001 1111<br />

(1E 3C1F H)<br />

b0,b1,b2,b3<br />

b4,b5,b6,b7<br />

(b7 = “0” since reserved)<br />

b8, b9, b10<br />

b11, b12, b13<br />

Table 8.49. <strong>PAL</strong> WSS Information.<br />

Format<br />

Position On<br />

4:3 Display<br />

Active<br />

Lines<br />

Minimum<br />

Requirements<br />

1000 4:3 full format – 576 case 1<br />

0001 14:9 letterbox center 504 case 2<br />

0010 14:9 letterbox top 504 case 2<br />

1011 16:9 letterbox center 430 case 3<br />

0100 16:9 letterbox top 430 case 3<br />

1101 > 16:9 letterbox center – case 4<br />

1110 14:9 full format center 576 –<br />

0111 16:9<br />

full format<br />

(anamorphic)<br />

– 576 –<br />

Table 8.50. <strong>PAL</strong> WSS Group A (Aspect Ratio) Data Bit Assignments <strong>and</strong> Usage.


erates six elements at 5 MHz. Data bit b4 is the<br />

LSB. Bits b5 <strong>and</strong> b6 are used for <strong>PAL</strong>plus.<br />

b4: mode<br />

0 camera mode<br />

1 film mode<br />

b5: color encoding<br />

0 normal <strong>PAL</strong><br />

1 Motion Adaptive ColorPlus<br />

b6: helper signals<br />

0 not present<br />

1 present<br />

Group C Data<br />

The group C data consists of three data bits<br />

that specify subtitles. Each data bit generates<br />

six elements at 5 MHz. Data bit b8 is the LSB.<br />

b8: teletext subtitles<br />

0 no<br />

1 yes<br />

b10, b9: open subtitles<br />

00 no<br />

01 inside active picture<br />

10 outsideactivepicture<br />

11 reserved<br />

Group D Data<br />

The group D data consists of three data bits<br />

that specify surround sound <strong>and</strong> copy protection.<br />

Each data bit generates six elements at 5<br />

MHz. Data bit b11 is the LSB.<br />

b11: surround sound<br />

0 no<br />

1 yes<br />

b12: copyright<br />

0 no copyright asserted or unknown<br />

1 copyright asserted<br />

b13: copy protection<br />

0 copying not restricted<br />

1 copying restricted<br />

VBI Data 359<br />

525-Line <strong>NTSC</strong> Systems<br />

EIA-J CPR-1204 <strong>and</strong> IEC 61880 define a widescreen<br />

signalling st<strong>and</strong>ard for <strong>NTSC</strong> systems.<br />

For YPbPr <strong>and</strong> S-video interfaces, WSS is<br />

present on the Y signal. For analog RGB interfaces,<br />

WSS is present on all three signals.<br />

Data Timing<br />

Lines20<strong>and</strong>283areusedtotransmittheWSS<br />

information, as shown in Figure 8.60.<br />

The clock frequency is F SC /8 or about<br />

447.443 kHz; F SC is the color subcarrier frequency<br />

of 3.579545 MHz. The signal waveform<br />

should be a sine-squared pulse, with a halfamplitude<br />

duration of 2.235 µs ±50 ns. The signal<br />

amplitude is 70 ±10 IRE for a “1”, <strong>and</strong>0±5<br />

IRE for a “0”.<br />

Data Content<br />

The WSS consists of 2 bits of start code, 14 bits<br />

ofdata,<strong>and</strong>6bitsofCRC,asshowninTable<br />

8.51. The CRC used is X 6 +X+1,allpresetto<br />

“1”.<br />

Start Code<br />

The start code consists of a “1” data bit followed<br />

by a “0” data bit, as shown in Table 8.51.<br />

Word 0 Data<br />

Word 0 data consists of 2 data bits:<br />

b1, b0:<br />

00 4:3 aspect ratio normal<br />

01 16:9 aspect ratio anamorphic<br />

10 4:3 aspect ratio letterbox<br />

11 reserved


360 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

BLANK LEVEL<br />

SYNC LEVEL<br />

70 ±10 IRE<br />

40 IRE<br />

COLOR<br />

BURST<br />

START<br />

CODE<br />

"1"<br />

START<br />

CODE<br />

"0"<br />

DATA<br />

(B0 - B19)<br />

11.20 ± 0.30 µS 49.1 ± 0.44 µS<br />

FIgure 8.60. <strong>NTSC</strong> Line 20 <strong>and</strong> Line 283 WSS Timing.<br />

start code “1”<br />

start code “0”<br />

word 0 b0, b1<br />

word 1 b2, b3, b4, b5<br />

word 2 b6, b7, b8, b9, b10, b11, b12, b13<br />

CRC b14, b15, b16, b17, b18, b19<br />

Table 8.51. <strong>NTSC</strong> WSS Data Bit Assignments <strong>and</strong> Usage.<br />

2235 ±50 NS<br />

RISE / FALL<br />

TIMES<br />

(2T BAR<br />

SHAPING)


Word 1 Data<br />

Word 1 data consists of 4 data bits:<br />

b5, b4, b3, b2:<br />

0000 copy control information<br />

1111 default<br />

Copy control information is transmitted in<br />

Word2datawhenWord1datais“0000”. When<br />

copy control information is not to be transferred,<br />

Word 1 data must be set to the default<br />

value “1111”.<br />

Word 2 Data<br />

Word 2 data consists of 14 data bits. When<br />

Word 1 data is “0000”, Word 2 data consists of<br />

copy control information. Word 2 copy control<br />

data must be transferred at the rate of two or<br />

more frames per two seconds.<br />

Bits b6 <strong>and</strong> b7 specify the copy generation<br />

management system in an analog signal<br />

(CGMS-A). CGMS-A consists of two bits of digital<br />

information:<br />

b7, b6:<br />

00 copying permitted<br />

01 one copy permitted<br />

10 reserved<br />

11 no copying permitted<br />

Bits b8 <strong>and</strong> b9 specify the operation of the<br />

the Macrovision copy protection signals added<br />

to the analog <strong>NTSC</strong> video signal:<br />

b9, b8:<br />

00 PSP off<br />

01 PSP on, 2-line split burst on<br />

10 PSP on, split burst off<br />

11 PSP on, 4-line split burst on<br />

PSP is the Macrovision pseudo-sync pulse<br />

operation.<br />

VBI Data 361<br />

Split burst operation inverts the normal<br />

phase of the first half of the color burst signal<br />

on specified scan lines in a normal analog<br />

video signal. The color burst of four successive<br />

lines of every 21 lines is modified, beginning at<br />

lines 24 <strong>and</strong> 297 (four-line split burst system)<br />

or of two successive lines of every 17 lines,<br />

beginning at lines 30 <strong>and</strong> 301 (two-line split<br />

burst system). The color burst on all other<br />

linesisnotmodified.<br />

Bit b10 specifies whether the source originatedfromananalogpre-recordedmedium.<br />

b10:<br />

0 not analog pre-recorded medium<br />

1 analog pre-recorded medium<br />

Bits b11, b12, <strong>and</strong> b13 are reserved <strong>and</strong> are<br />

“000”.<br />

Teletext<br />

Teletext allows the transmission of text, graphics,<br />

<strong>and</strong> data. Data may be transmitted on any<br />

line, although the VBI interval is most commonly<br />

used. The teletext st<strong>and</strong>ards are specified<br />

by ETSI ETS 300706, ITU-R BT.653 <strong>and</strong><br />

EIA–516.<br />

For YPbPr <strong>and</strong> S-video interfaces, teletext<br />

is present on the Y signal. For analog RGB<br />

interfaces, teletext is present on all three signals.<br />

There are many systems that use the teletext<br />

physical layer to transmit proprietary<br />

information. The advantage is that teletext has<br />

already been approved in many countries for<br />

broadcast, so certification for a new transmission<br />

technique is not required.<br />

The data rate for teletext is much higher<br />

than that used for closed captioning, approachingupto7Mbpsinsomecases.Therefore,<br />

ghost cancellation is needed to reliably recover<br />

the transmitted data.


362 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

There are seven teletext systems, as<br />

shown in Table 8.52. EIA–516, also referred to<br />

as NABTS (North American Broadcast Teletext<br />

Specification), is used in the United States,<br />

<strong>and</strong> is an expansion of the BT.653 525-line system<br />

C st<strong>and</strong>ard.<br />

System A:<br />

Columbia India<br />

France<br />

System B:<br />

Australia Netherl<strong>and</strong>s<br />

Belgium New Zeal<strong>and</strong><br />

China Norway<br />

Denmark Pol<strong>and</strong><br />

Egypt Singapore<br />

Finl<strong>and</strong> South Africa<br />

Germany Spain<br />

Italy Sweden<br />

Jordan Turkey<br />

Kuwait United Kingdom<br />

Malaysia Yugoslavia<br />

Morocco<br />

System C:<br />

Brazil United States<br />

Canada<br />

System D:<br />

Japan<br />

Figure 8.61 illustrates the teletext data on a<br />

scan line. If a line normally contains a color<br />

burst signal, it will still be present if teletext<br />

data is present. The 16 bits of clock run-in (or<br />

clock sync) consists of alternating “1’s” <strong>and</strong><br />

“0’s”.<br />

Figures 8.62 <strong>and</strong> 8.63 illustrates the structure<br />

of teletext systems B <strong>and</strong> C, respectively.<br />

System B Teletext Over view<br />

Since teletext System B is the most popular<br />

teletext format, a basic overview is presented<br />

here.<br />

A teletext service typically consists of<br />

pages, with each page corresponding to a<br />

screen of information. The pages are transmitted<br />

one at time, <strong>and</strong> after all pages have been<br />

Parameter System A System B System C System D<br />

bit rate (Mbps) 6.203125<br />

625-Line Video Systems<br />

6.9375 5.734375 5.6427875<br />

data amplitude 67 IRE 66 IRE 70 IRE 70 IRE<br />

data per line 40 bytes 45 bytes 36 bytes 37 bytes<br />

525-Line Video Systems<br />

bit rate (Mbps) – 5.727272 5.727272 5.727272<br />

data amplitude – 70 IRE 70 IRE 70 IRE<br />

data per line – 37 bytes 36 bytes 37 bytes<br />

Table 8.52. Summary of Teletext Systems <strong>and</strong> Parameters.


transmitted, the cycle repeats, with a typical<br />

cycle time of about 30 seconds. However, the<br />

broadcaster may transmit some pages more<br />

frequently than others, if desired.<br />

The teletext service is usually based on up<br />

to eight magazines (allowing up to eight independent<br />

teletext services), with each magazine<br />

containing up to 100 pages. Magazine 1 uses<br />

page numbers 100–199, magazine 2 uses page<br />

numbers 200–299, etc. Each page may also<br />

have sub-pages, used to extend the number of<br />

pages within a magazine.<br />

Each page contains 24 rows, with up to 40<br />

characters per row. A character may be a letter,<br />

number, symbol, or simple graphic. There are<br />

also control codes to select colors <strong>and</strong> other<br />

attributes such as blinking <strong>and</strong> double height.<br />

In addition to teletext information, the teletext<br />

protocol may be used to transmit other<br />

information, such as subtitling, program delivery<br />

control (PDC), <strong>and</strong> private data.<br />

BLANK LEVEL<br />

SYNC LEVEL<br />

COLOR<br />

BURST<br />

CLOCK<br />

RUN-IN<br />

FIgure 8.61. Teletext Line Format.<br />

DATA AND ADDRESS<br />

VBI Data 363<br />

Subtitling<br />

Subtitling is similar to the closed captioning<br />

used in the United States. “Open” subtitles are<br />

the insertion of text directly into the picture<br />

prior to transmission. “Closed” subtitles are<br />

transmitted separately from the picture. The<br />

transmission of closed subtitles in the UK use<br />

teletext page 888. In the case where multiple<br />

languages are transmitted using teletext, separate<br />

pages are used for each language.<br />

Program Delivery Control (PDC)<br />

Program Delivery Control (defined by ETSI<br />

ETS 300231 <strong>and</strong> ITU-R BT.809) is a system that<br />

controls VCR recording using teletext information.<br />

The VCR can be programmed to look for<br />

<strong>and</strong>recordvarioustypesofprogramsoraspecific<br />

program. Programs are recorded even if<br />

the transmission time changes for any reason.<br />

There are two methods of transmitting<br />

PDC information via teletext: methods A <strong>and</strong><br />

B.


364 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

PAGE ADDRESS<br />

(1 BYTE)<br />

MAGAZINE / PACKET ADDRESS<br />

(2 BYTES)<br />

BYTE SYNC<br />

(1 BYTE)<br />

CLOCK SYNC<br />

(2 BYTES)<br />

TELETEXT<br />

PACKET 27<br />

HEADER PACKET<br />

NEXT HEADER PACKET<br />

DATA BLOCK<br />

DATA PACKET<br />

NEXT HEADER PACKET<br />

LAST PACKET OF PAGE<br />

PACKET 26<br />

PACKET 28<br />

PAGE<br />

PACKET 27 DATA<br />

HEADER PACKET<br />

GROUP<br />

APPLICATION LAYER<br />

PRESENTATION LAYER<br />

SESSION LAYER<br />

TRANSPORT LAYER<br />

NETWORK LAYER<br />

LINK LAYER<br />

DATA UNIT PHYSICAL LAYER<br />

FIgure 8.62. Teletext System B Structure.


RECORD HEADER<br />

DATA GROUP HEADER<br />

(8 BYTES)<br />

P HEADER<br />

(5 BYTES)<br />

BYTE SYNC<br />

(1 BYTE)<br />

CLOCK SYNC<br />

(2 BYTES)<br />

TELETEXT<br />

ITU-T T.101, ANNEX D<br />

RECORD 1<br />

DATA GROUP 1<br />

DATA BLOCK<br />

DATA PACKET<br />

RECORD N<br />

DATA GROUP N<br />

S (1 BYTE)<br />

APPLICATION LAYER<br />

PRESENTATION LAYER<br />

SESSION LAYER<br />

TRANSPORT LAYER<br />

NETWORK LAYER<br />

LINK LAYER<br />

DATA UNIT PHYSICAL LAYER<br />

FIgure 8.63. Teletext System C Structure.<br />

VBI Data 365


366 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

Method A places the data on a viewable<br />

teletext page, <strong>and</strong> is usually transmitted on<br />

scan line 16. This method is also known as the<br />

Video Programming System (VPS).<br />

Method B places the data on a hidden<br />

packet (packet 26) in the teletext signal. This<br />

packet 26 data contains the data on each program,<br />

including channel, program data, <strong>and</strong><br />

start time.<br />

Data Broadcasting<br />

Data broadcasting may be used to transmit<br />

information to private receivers. Typical applications<br />

include real-time financial information,<br />

airport flight schedules for hotels <strong>and</strong> travel<br />

agents, passenger information for railroads,<br />

software upgrades, etc.<br />

Packets 0–23<br />

A typical teletext page uses 24 packets, numbered<br />

0–23, that correspond to the 24 rows on<br />

a displayed page. Packet 24 can add a status<br />

rowatthebottomforuserprompting.Foreach<br />

packet, three bits specify the magazine<br />

address (1–8), <strong>and</strong> five bits specify the row<br />

address (0–23). The magazine <strong>and</strong> row<br />

address bits are Hamming error protected to<br />

permit single-bit errors to be corrected.<br />

To save b<strong>and</strong>width, the whole address isn’t<br />

sent with all packets. Only packet 0 (also called<br />

the header packet) has all the address information<br />

such as row, page, <strong>and</strong> magazine address<br />

data. Packets 1–28 contain information that is<br />

part of the page identified by the most recent<br />

packet 0 of the same magazine.<br />

The transmission of a page starts with a<br />

header packet. Subsequent packets with the<br />

same magazine address provide additional<br />

data for that page. These packets may be transmitted<br />

in any order, <strong>and</strong> interleaved with packets<br />

from other magazines. A page is<br />

considered complete when the next header<br />

packet for that magazine is received.<br />

The general format for packet 0 is:<br />

clock run-in 2 bytes<br />

framing code 1 byte<br />

magazine <strong>and</strong> row address 2 bytes<br />

page number 2 bytes<br />

subcode 4 bytes<br />

control codes 2 bytes<br />

display data 32 bytes<br />

The general format for packets 1–23 is:<br />

clock run-in 2 bytes<br />

framing code 1 byte<br />

magazine <strong>and</strong> row address 2 bytes<br />

display data 40 bytes<br />

Packet 24<br />

This packet defines an additional row for user<br />

prompting. Teletext decoders may use the data<br />

in packet 27 to react to prompts in the packet<br />

24 display row.<br />

Packet 25<br />

This packet defines a replacement header line.<br />

If present, the 40 bytes of data are displayed<br />

instead of the channel, page, time, <strong>and</strong> date<br />

from packet 8.30.<br />

Packet 26<br />

Packet 26 consists of:<br />

clock run-in 2 bytes<br />

framing code 1 byte<br />

magazine <strong>and</strong> row address 2 bytes<br />

designation code 1 byte<br />

13 3-byte data groups, each consisting of<br />

7databits<br />

6addressbits<br />

5modebits<br />

6 Hamming bits


There are 15 variations of packet 26,<br />

defined by the designation code. Each of the 13<br />

data groups specify a specific display location<br />

<strong>and</strong> data relating to that location.<br />

This packet is also used to extend the<br />

addressable range of the basic character set in<br />

order to support other languages, such as Arabic,<br />

Spanish, Hungarian, Chinese, etc.<br />

For PDC, packet 26 contains data for each<br />

program, identifying the channel, program<br />

date, start time, <strong>and</strong> the cursor position of the<br />

program information on the page. When the<br />

user selects a program, the cursor position is<br />

linked to the appropriate packet 26 preselection<br />

data. This data is then used to program the<br />

VCR. When the program is transmitted, the<br />

program information is transmitted using<br />

packet 8.30 format 2. A match between the preselection<br />

data <strong>and</strong> the packet 8.30 data turns<br />

the VCR record mode on.<br />

Packet 27<br />

Packet 27 tells the teletext decoder how to<br />

respond to user selections for packet 24. There<br />

may be up to four packet 27s (packets 27/0<br />

through 27/3), allowing up to 24 links. It consists<br />

of:<br />

clock run-in 2 bytes<br />

framing code 1 byte<br />

magazine <strong>and</strong> row address 2 bytes<br />

designation code 1 byte<br />

link 1 (red) 6 bytes<br />

link 2 (green) 6 bytes<br />

link 3 (yellow) 6 bytes<br />

link 4 (cyan) 6 bytes<br />

link 5 (next page) 6 bytes<br />

link 6 (index) 6 bytes<br />

link control data 1 byte<br />

page check digit 2 bytes<br />

Each link consists of:<br />

7databits<br />

6addressbits<br />

5modebits<br />

6hammingbits<br />

VBI Data 367<br />

This packet contains information linking<br />

the current page to six page numbers (links).<br />

The four colored links correspond to the four<br />

colored Fastext page request keys on the<br />

remote. Typically, these four keys correspond<br />

to four colored menu selections at the bottom<br />

of the display using packet 24. Selection of one<br />

of the colored page request keys results in the<br />

selection of the corresponding linked page.<br />

The fifth link is used for specifying a page<br />

theusermightwanttoseeafterthecurrent<br />

page, such as the next page in a sequence.<br />

The sixth link corresponds to the Fastext<br />

index key on the remote, <strong>and</strong> specifies the<br />

page address to go to when the index is<br />

selected.<br />

Packets 28 <strong>and</strong> 29<br />

These are used to define level 2 <strong>and</strong> level 3<br />

pages to support higher resolution graphics,<br />

additional colors, alternate character sets, etc.<br />

They are similar in structure to packet 26.<br />

Packet 8.30 Format 1<br />

Packet 8.30 (magazine 8, packet 30) isn’t associated<br />

with any page, but is sent once per second.<br />

This packet is also known as the<br />

Television Service Data Packet, or TSDP. It<br />

contains data that notifies the teletext decoder<br />

about the transmission in general <strong>and</strong> the time.<br />

clock run-in 2 bytes<br />

framing code 1 byte<br />

magazine <strong>and</strong> row address 2 bytes<br />

designation code 1 byte<br />

initial teletext page 6 bytes<br />

network ID 2 bytes


368 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

time offset from UTC 1 byte<br />

date (Modified Julian Day) 3 bytes<br />

UTC time 3 bytes<br />

TV program label 4 bytes<br />

status display 20 bytes<br />

The Designation Code indicates whether<br />

the transmission is during the VBI or full-field.<br />

Initial Teletext Page tells the decoder<br />

which page should be captured <strong>and</strong> stored on<br />

power-up. This is usually an index or menu<br />

page.<br />

The Network Identification code identifies<br />

the transmitting network.<br />

The TV Program Label indicates the program<br />

label for the current program.<br />

Status Display is used to display a transmission<br />

status message.<br />

Packet 8.30 Format 2<br />

This format is used for PDC recorder control,<br />

<strong>and</strong> is transmitted once per second per stream.<br />

It contains a program label indicating the start<br />

of each program, usually transmitted about 30<br />

seconds before the start of the program to<br />

allow the VCR to detect it <strong>and</strong> get ready to<br />

record.<br />

clock run-in 2 bytes<br />

framing code 1 byte<br />

magazine <strong>and</strong> row address 2 bytes<br />

designation code 1 byte<br />

initial teletext page 6 bytes<br />

label channel ID 1 byte<br />

program control status 1 byte<br />

country <strong>and</strong> network ID 2 bytes<br />

program ID label 5 bytes<br />

country <strong>and</strong> network ID 2 bytes<br />

program type 2 bytes<br />

status display 20 bytes<br />

ThecontentisthesameasforFormat1,<br />

except for the 13 bytes of information before<br />

the status display information.<br />

Label channel ID (LCI) identifies each of<br />

up to four PDC streams that may be transmitted<br />

simultaneously.<br />

The Program Control Status (PCS) indicates<br />

real-time status information, such as the<br />

type of analog sound transmission.<br />

The Country <strong>and</strong> Network ID (CNI) is split<br />

into two groups. The first part specifies the<br />

country <strong>and</strong> the second part specifies the network.<br />

Program ID Label (PIL) specifies the<br />

month, day, <strong>and</strong> local time of the start of the<br />

program.<br />

Program Type (PTY) is a code that indicates<br />

an intended audience or a particular<br />

series. Examples are “adult”, “children”,<br />

“music”, “drama”, etc.<br />

Packet 31<br />

Packet 31 is used for the transmission of data<br />

to private receivers. It consists of:<br />

clock run-in 2 bytes<br />

framing code 1 byte<br />

data channel group 1 byte<br />

message bits 1 byte<br />

format type 1 byte<br />

address length 1 byte<br />

address 0–6 bytes<br />

repeat indicator 0–1byte<br />

continuity indicator 0–1byte<br />

data length 0–1byte<br />

user data 28–36 bytes<br />

CRC 2 bytes


ATVEF Interactive Content<br />

ATVEF (Advanced Television Enhancement<br />

Forum) is a st<strong>and</strong>ard for creating <strong>and</strong> delivering<br />

enhanced <strong>and</strong> interactive programs. The<br />

enhanced content can be delivered over a variety<br />

of mediums—including analog <strong>and</strong> digital<br />

television broadcasts—using terrestrial, cable,<br />

<strong>and</strong> satellite networks.<br />

In defining how to create enhanced content,<br />

the ATVEF specification defines the minimum<br />

functionality required by ATVEFcompliant<br />

receivers. To minimize the creation<br />

of new specifications, the ATVEF uses existing<br />

Internet technologies such as HTML <strong>and</strong> Javascript.<br />

Two additional benefits of doing this are<br />

that there are already millions of pages of<br />

potential content, <strong>and</strong> the ability to use existing<br />

web-authoring tools.<br />

The ATVEF 1.0 Content Specification m<strong>and</strong>ates<br />

that receivers support, as a minimum,<br />

HTML 4.0, Javascript 1.1, <strong>and</strong> Cascading Style<br />

Sheets. Supporting additional capabilities,<br />

such as Java <strong>and</strong> VRML, are optional. This<br />

ensures content is available to the maximum<br />

number of viewers.<br />

For increased capability, a new “tv:”<br />

attribute is added to the HTML. This attribute<br />

enables the insertion of the television program<br />

intothecontent,<strong>and</strong>maybeusedinaHTML<br />

document anywhere that a regular image may<br />

be placed. Creating an enhanced content page<br />

that displays the current television channel<br />

anywhere on the display is as easy as inserting<br />

an image in a HTML document.<br />

The specification also defines how the<br />

receiver obtains the content <strong>and</strong> how it is<br />

informed that enhancements are available. The<br />

latter task is accomplished with triggers.<br />

VBI Data 369<br />

Triggers<br />

Triggers alert receivers to content enhancements,<br />

<strong>and</strong> contain information about the<br />

enhancements. Among other things, triggers<br />

contain a Universal Resource Locator (URL)<br />

that defines the location of the enhanced content.<br />

Content may reside locally—such as<br />

when delivered over the network <strong>and</strong> cached<br />

to a local hard drive—oritmayresideonthe<br />

Internet or another network.<br />

Triggers may also contain a human-readable<br />

description of the content. For example, it<br />

maycontainthedescription“Press ORDER to<br />

order this product”, which can be displayed for<br />

the viewer. Triggers also may contain expiration<br />

information, indicating how long the<br />

enhancement should be offered to the viewer.<br />

Lastly, triggers may contain scripts that<br />

trigger the execution of Javascript within the<br />

associated HTML page, to support synchronization<br />

of the enhanced content with the video<br />

signal <strong>and</strong> updating of dynamic screen data.<br />

Transports<br />

Besides defining how content is displayed, <strong>and</strong><br />

how the receiver is notified of new content, the<br />

specification also defines how content is delivered.<br />

Because a receiver may not have an<br />

Internet connection, the specification<br />

describes two models for delivering content.<br />

These two models are called transports, <strong>and</strong><br />

the two transports are referred to as Transport<br />

Type A <strong>and</strong> Transport Type B.<br />

If the receiver has a back-channel (or<br />

return path) to the Internet, Transport Type A<br />

will broadcast the trigger <strong>and</strong> the content will<br />

be pulled over the Internet.


370 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

If the receiver does not have an Internet<br />

connection, Transport Type B provides for<br />

delivery of both triggers <strong>and</strong> content via the<br />

broadcast medium. Announcements are sent<br />

over the network to associate triggers with<br />

content streams. An announcement describes<br />

the content, <strong>and</strong> may include information<br />

regarding b<strong>and</strong>width, storage requirements,<br />

<strong>and</strong> language.<br />

Deliver y Protocols<br />

For traditional bi-directional Internet communication,<br />

the Hypertext Transfer Protocol<br />

(HTTP) defines how data is transferred at the<br />

application level. For uni-directional broadcasts<br />

where a two-way connection is not available,<br />

ATVEF also defines a uni-directional<br />

application-level protocol for data delivery:<br />

Uni-directional Hypertext Transfer Protocol<br />

(UHTTP).<br />

Like HTTP, UHTTP uses traditional URL<br />

naming schemes to reference content. Content<br />

can reference enhancement pages using the<br />

st<strong>and</strong>ard “http:” <strong>and</strong> “ftp:” naming schemes.<br />

However, ATVEF also adds the “lid:,” or local<br />

identifier URL, naming scheme. This allows<br />

reference to content that exists locally (such as<br />

on the receiver's hard drive) as opposed to on<br />

the Internet or other network.<br />

Bindings<br />

How data is delivered over a specific network<br />

is called binding. The ATVEF has defined bindings<br />

for IP multicast <strong>and</strong> <strong>NTSC</strong>. The binding to<br />

IP is referred to as “reference binding”.<br />

ATVEF Over <strong>NTSC</strong><br />

Transport Type A triggers are broadcast on<br />

data channel 2 of the EIA-608 captioning signal.<br />

Transport Type B binding also includes a<br />

mechanism for delivering IP over the vertical<br />

blanking interval (VBI), otherwise knows as<br />

IP over VBI (IP/VBI). At the lowest level, the<br />

television signal transports NABTS (North<br />

American Basic Teletext St<strong>and</strong>ard) packets<br />

during the VBI. These NABTS packets are<br />

recovered to form a sequential data stream<br />

(encapsulated in a SLIP-like protocol) that is<br />

unframed to produce IP packets.<br />

“Raw” VBI Data<br />

“Raw”, or oversampled, VBI data is simply digitized<br />

VBI data. It is typically oversampled<br />

using a 2× video sample clock, such as 27<br />

MHz. Two applications for “raw” VBI data are<br />

PCs (for software decoding of VBI data) <strong>and</strong><br />

settop boxes (to pass the VBI data on to the<br />

<strong>NTSC</strong>/<strong>PAL</strong> encoder).<br />

VBI data may be present on any scan line,<br />

except during the serration <strong>and</strong> equalization<br />

intervals.<br />

One requirement for oversampled VBI<br />

data is that the “active line time” be a constant,<br />

independent of the horizontal timing of the<br />

BLANK* control signal. Thus, all the VBI data<br />

is assured to be captured regardless of the output<br />

resolution of the active video data.<br />

A separate control signal, called<br />

VBIVALID*, may be used to indicate when VBI<br />

data is present on the digital video interface.<br />

This simplifies the design of graphics chips,<br />

<strong>NTSC</strong>/<strong>PAL</strong> encoders, <strong>and</strong> ASICs that are<br />

required to separate the VBI data from the digital<br />

video data.


“Sliced” VBI Data<br />

“Sliced”, orbinary,VBIdataisusefulinMPEG<br />

video systems, such as settop boxes, DVD, digital<br />

VCRs, <strong>and</strong> TVs. It may also be used in PC<br />

applications to reduce PCI b<strong>and</strong>width.<br />

VBI data may be present on any scan line,<br />

except during the serration <strong>and</strong> equalization<br />

intervals.<br />

A separate control signal, called<br />

VBIVALID*, may be used to indicate when VBI<br />

data is present on the digital video interface.<br />

This simplifies the design of graphics chips,<br />

<strong>NTSC</strong>/<strong>PAL</strong> encoders, <strong>and</strong> ASICs that are<br />

required to separate the VBI data from the digital<br />

video data.<br />

<strong>NTSC</strong>/<strong>PAL</strong> Decoder Considerations<br />

For sliced VBI data capture, hysteresis must<br />

be used to prevent VBI decoders from rapidly<br />

turning on <strong>and</strong> off due to noise <strong>and</strong> transmission<br />

errors. In addition, the VBI decoders<br />

must also compensate for DC offsets, amplitude<br />

variations, ghosting, <strong>and</strong> timing variations.<br />

For closed captioning, the caption VBI<br />

decoder monitors the appropriate scan lines<br />

looking for the clock run-in <strong>and</strong> start bits used<br />

by captioning. If found, it locks on to the clock<br />

run-in, the caption data is sampled, converted<br />

to binary data, <strong>and</strong> the 16 bits of data are transferred<br />

to registers to be output via the host<br />

processor or video interface. If the clock run-in<br />

<strong>and</strong> start bits are not found, it is assumed the<br />

scan line contains video data, unless other VBI<br />

data is detected.<br />

For WSS, the WSS VBI decoder monitors<br />

the appropriate scan lines looking for the runin<br />

<strong>and</strong> start codes used by WSS. If found, it<br />

locks on to the run-in code, the WSS data is<br />

sampled, converted to binary data, <strong>and</strong> the 14<br />

or 20 bits of data are transferred to registers to<br />

VBI Data 371<br />

be output via the host processor or video interface.<br />

If the clock run-in <strong>and</strong> start codes are not<br />

found, it is assumed the scan line contains<br />

video data, unless other VBI data is detected.<br />

For teletext, the teletext VBI decoder monitors<br />

each scan line looking for the 16-bit clock<br />

run-in code used by teletext. If found, it locks<br />

on to the clock run-in code, the teletext data is<br />

sampled, converted to binary data, <strong>and</strong> the<br />

data is then transferred to registers to be output<br />

via the teletext or video interface. Conventional<br />

host serial interfaces, such as I 2 C,<br />

cannot h<strong>and</strong>le the high bit rates of teletext.<br />

Thus, a 2-pin serial teletext interface is commonly<br />

used. If the 16-bit clock run-in code is<br />

not found, it is assumed the scan line contains<br />

video data, unless other VBI data is detected.<br />

Ghost Cancellation<br />

Ghost cancellation is required due to the high<br />

data rate of some services, such as teletext.<br />

Ghosting greater than 100 ns <strong>and</strong> –12 dB corrupts<br />

teletext data. Ghosting greater than –3<br />

dB is difficult to remove cost-effectively in<br />

hardware or software, while ghosting less than<br />

–12 dB need not be removed. Ghost cancellation<br />

for VBI data is not as complex as ghost<br />

cancellation for active video.<br />

Unfortunately, the GCR (ghost cancellation<br />

reference) signal is not commonly used in<br />

many countries. Thus, a ghost cancellation<br />

algorithm must determine the amount of<br />

ghosting using other available signals, such as<br />

the serration <strong>and</strong> equalization pulses.<br />

<strong>NTSC</strong> Ghost Cancellation<br />

The <strong>NTSC</strong> GCR signal is specified in ATSC A/<br />

49 <strong>and</strong> ITU-R BT.1124. If present, it occupies<br />

lines 19 <strong>and</strong> 282. The GCR permits the detection<br />

of ghosting from –3 to +45 µs, <strong>and</strong> follows<br />

an 8-field sequence.


372 <strong>Chapter</strong> 8: <strong>NTSC</strong>, <strong>PAL</strong>, <strong>and</strong> <strong>SECAM</strong> <strong>Overview</strong><br />

<strong>PAL</strong> Ghost Cancellation<br />

The <strong>PAL</strong> GCR signal is also specified in<br />

BT.1124 <strong>and</strong> ETSI ETS 300732. If present, it<br />

occupies line 318. The GCR permits the detection<br />

of ghosting from –3 to +45 µs, <strong>and</strong> follows<br />

a4-framesequence.<br />

References<br />

1. Advanced Television Enhancement<br />

Forum, Enhanced Content Specification,<br />

1999.<br />

2. ANSI/SMPTE 12M–1999, Television,<br />

Audio <strong>and</strong> Film—Time <strong>and</strong> Control Code.<br />

3. ANSI/SMPTE 170M–1999, Television—<br />

Composite Analog Video Signal—<strong>NTSC</strong> for<br />

Studio Applications.<br />

4. ANSI/SMPTE 262M–1995, Television,<br />

Audio <strong>and</strong> Film—Binary Groups of Time<br />

<strong>and</strong> Control Codes—Storage <strong>and</strong> Transmission<br />

of Data.<br />

5. ANSI/SMPTE 309M–1999, Television—<br />

Transmission of Date <strong>and</strong> Time Zone Information<br />

in Binary Groups of Time <strong>and</strong> Control<br />

Code.<br />

6. ATSC A/49, 13 May 1993, Ghost Cancelling<br />

Reference Signal for <strong>NTSC</strong>.<br />

7. BBC Technical Requirements for Digital<br />

Television Services, Version 1.0, February<br />

3, 1999, BBC Broadcast.<br />

8. EIA-189-A, July 1976, Encoded Color Bar<br />

Signal.<br />

9. EIA–516, May 1988, North American Basic<br />

Teletext Specification (NABTS).<br />

10. EIA–608, September 1994, Recommended<br />

Practice for Line 21 Data Service.<br />

11. EIA–744–A, December 1998, Transport of<br />

Content Advisory Information Using<br />

Extended Data Service (XDS).<br />

12. EIA/IS–702, July 1997, Copy Generation<br />

Management System (Analog).<br />

13. EIA-J CPR–1204–1, 1998, Specifications<br />

<strong>and</strong>TransferMethodofVideoAspectRatio<br />

Identification Signal (II).<br />

14. ETSI EN 300163, Television Systems:<br />

NICAM 728: Transmission of Two Channel<br />

Digital Sound with Terrestrial Television<br />

SystemsB,G,H,I,K1,<strong>and</strong>L, March 1998.<br />

15. ETSI EN 300294, Television Systems: 625line<br />

Television Widescreen Signalling<br />

(WSS), April 1998.<br />

16. ETSI ETS 300231, Television Systems: Specification<br />

of the Domestic Video Programme<br />

Delivery Control System (PDC), April 1998.<br />

17. ETSI ETS 300706, Enhanced Teletext Specification,<br />

May 1997.<br />

18. ETSI ETS 300708, Television Systems: Data<br />

Transmission within Teletext, March 1997.<br />

19. ETSI ETS 300731, Television Systems:<br />

Enhanced 625-Line Phased Alternate Line<br />

(<strong>PAL</strong>) Television: <strong>PAL</strong>plus, March 1997.<br />

20. ETSI ETS 300732, Television Systems:<br />

Enhanced 625-Line <strong>PAL</strong>/<strong>SECAM</strong> Television;<br />

Ghost Cancellation Reference (GCR)<br />

Signals, January 1997.<br />

21. Faroudja, Yves Charles, <strong>NTSC</strong> <strong>and</strong> Beyond,<br />

IEEE Transactions on Consumer Electronics,<br />

Vol. 34, No. 1, February 1988.<br />

22. IEC 61880, 1998–1, Video Systems (525/<br />

60)—Video <strong>and</strong> Accompanied Data Using<br />

the Vertical Blanking Interval—Analog<br />

Interface.<br />

23. ITU-R BS.707–3, 1998, Transmission of<br />

Multisound in Terrestrial Television Systems<strong>PAL</strong>B,G,H,<strong>and</strong>I<strong>and</strong><strong>SECAM</strong>D,K,<br />

K1, <strong>and</strong> L.<br />

24. ITU-R BT.470–6, 1998, Conventional Television<br />

Systems.


25. ITU-R BT.471–1, 1986, Nomenclature <strong>and</strong><br />

Description of Colour Bar Signals.<br />

26. ITU-R BT.472–3, 1990, Video Frequency<br />

Characteristics of a Television System to Be<br />

Used for the International Exchange of Programmes<br />

Between Countries that Have<br />

Adopted 625-Line Colour or Monochrome<br />

Systems.<br />

27. ITU-R BT.473–5, 1990, Insertion of Test Signals<br />

in the Field-Blanking Interval of Monochrome<br />

<strong>and</strong> Colour Television Signals.<br />

28. ITU-R BT.569–2, 1986, Definition of Parameters<br />

for Simplified Automatic Measurement<br />

of Television Insertion Test Signals.<br />

29. ITU-R BT.653–3, 1998, Teletext Systems.<br />

30. ITU-R BT.809, 1992, Programme Delivery<br />

Control (PDC) System for Video Recording.<br />

31. ITU-R BT.1118, 1994, Enhanced Compatible<br />

Widescreen Television Based on Conventional<br />

Television Systems.<br />

32. ITU-R BT.1119–2, 1998, Wide-Screen Signalling<br />

for Broadcasting.<br />

33. ITU-R BT.1124, 1994, Reference Signals for<br />

Ghost Cancelling in Analogue Television<br />

Systems.<br />

34. ITU-R BT.1197–1, 1998, Enhanced Wide-<br />

Screen <strong>PAL</strong> TV Transmission System (the<br />

<strong>PAL</strong>plus System).<br />

References 373<br />

35. ITU-R BT.1298, 1997, Enhanced Wide-<br />

Screen <strong>NTSC</strong> TV Transmission System.<br />

36. Multichannel Television Sound, BTSCSystem<br />

Recommended Practices, EIA Television<br />

Systems Bulletin No. 5, July 1985,<br />

Electronic Industries Association.<br />

37. <strong>NTSC</strong> Video Measurements, Tektronix,<br />

Inc., 1997.<br />

38. SMPTE RP164–1996, Location of Vertical<br />

Interval Time Code.<br />

39. SMPTE RP186–1995, Video Index Information<br />

Coding for 525- <strong>and</strong> 625-Line Television<br />

Systems.<br />

40. SMPTE RP201–1999, Encoding Film<br />

Transfer Information Using Vertical Interval<br />

Time Code.<br />

41. Specification of Television St<strong>and</strong>ards for<br />

625-Line System-I Transmissions, 1971,<br />

Independent Television Authority (ITA)<br />

<strong>and</strong> British Broadcasting Corporation<br />

(BBC).<br />

42. Television Measurements, <strong>NTSC</strong> Systems,<br />

Tektronix, Inc., 1998.<br />

43. Television Measurements, <strong>PAL</strong> Systems,<br />

Tektronix, Inc., 1990.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!