04.04.2013 Views

Chapter 15 - Coastal Bend College

Chapter 15 - Coastal Bend College

Chapter 15 - Coastal Bend College

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Chapter</strong> <strong>15</strong><br />

The Special Senses<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


Sections of the<br />

<strong>Chapter</strong><br />

I. Olfaction (Smell)<br />

II. Gustation (Taste)<br />

III. Visual System<br />

IV. Hearing and Balance<br />

V. FX of Aging on the<br />

Special Senses<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses<br />

What are the<br />

special senses?<br />

• Smell<br />

• Taste<br />

• Sight<br />

• Hearing<br />

• Balance


I. Olfaction<br />

The sense of smell<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


Olfaction<br />

Superior region of the nasal<br />

cavity houses the Olfactory<br />

region wh/is covered in<br />

Olfactory Epithelium (epi)<br />

Olfactory (O) epi<br />

a) Supporting Cells- nonsensory<br />

b) Basal Cells- non-sensory<br />

c) Olfactory Neurons<br />

(ON’s) - sensory<br />

~10,000,000<br />

Their axons project<br />

through the Olfactory<br />

foramina in cribriform<br />

plate to the O bulbs.


Olfactory Neurons (ON)<br />

Dendrites extend into the epi<br />

surface of nasal cavity<br />

Ends Olfactory vesicles<br />

(OV)<br />

OV possess cilia (aka O hairs)<br />

These lie in the mucus film of<br />

the epi surface<br />

“Odorants” (air borne molecules)<br />

dissolve in mucus and bind to<br />

Transmembrane odorant receptors<br />

(TOR) on ON’s cells surface.


Olfaction<br />

• ~ 1000 different TOR’s can be prod’d each reacts to it’s own<br />

odorants<br />

• Thus: the intracellular pathways are GPCR’s that each have their<br />

own unique rxns prod’ing their own unique smells ~ 4000/ person<br />

• Only 7 1 o classes of odors have been proposed<br />

– 1. Camphoraceous (moth balls)<br />

– 2. Musky<br />

– 3. Floral<br />

– 4. Pepperminty<br />

– 5.Ethereal (Fresh pears)<br />

– 6.Pungent<br />

– 7.Putrid<br />

• Threshold for odorants VERY LOW<br />

• Low specificity receptors<br />

• The entire epi surface is replaced ~ 2 months<br />

• Basal Cells replace ON”s


Process: Odorant Binding to O-hair’s membrane


Neuronal Pathways for Olfaction<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


II. Gustation<br />

The sense of taste<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


d)<br />

Gustation<br />

b)<br />

a)<br />

c)<br />

• Sensory Structure<br />

– Taste Buds<br />

• 4 types of Papillae<br />

a) Vallate<br />

• Largest in size<br />

• Least in #<br />

• 8-12 form an arch dividing the<br />

front & back of tongue<br />

b) Fungiform<br />

• Scatted irregularly all over<br />

tongue surface<br />

• Higher # than filiform<br />

c) Foliate<br />

• Distributed on folds on tongue<br />

sides<br />

• House most sensitive taste<br />

buds<br />

d) Filiform<br />

• Most # in children decrease<br />

with age<br />

• Located posterior in adults<br />

• Provide rough surface for food<br />

manipulation


Histology -Taste Bud<br />

• Oval Structures embedded in<br />

tongue surface<br />

• 10,000/tongue<br />

• 3 cells types in each TB<br />

a) Supporting Cells: non-sensory<br />

b) Basal Cells: non-sensory<br />

c) Gustatory/Taste Cells: sensory<br />

~ 50/TB each w/10 day lifespan<br />

Continuously replaced<br />

Plasma Membrane Gustatory<br />

Hairs<br />

There in a tiny space called a Taste<br />

Pore that allows tastants to reach<br />

the G-hairs


Fxn of Taste<br />

• Tastants: chemicals<br />

dissolved in saliva that<br />

enter taste pores and by<br />

various mechanisms cause<br />

the taste cell’s<br />

depolarization<br />

• TC’s do not have classic<br />

axons, but have short<br />

connections with 2 o sensory<br />

neurons<br />

– This serves the same<br />

purpose as a synapse and is<br />

where NT’s are released to<br />

begin the chain rxn of neuron<br />

stimulation


5 primary tastes and threshold<br />

1. Salty<br />

Na + Channel opening causes depolarization<br />

Low sensitivity…very high Threshold<br />

Metal Ions<br />

2. Sour<br />

H + causes depolarization<br />

3 ways:<br />

a) H + enters cell thru H + channels<br />

b) H + binds to ligand-gated K+ channels and blocks K+ exit<br />

c) H + opens ligand-gated Ch’s for + ions allowing them to enter cell<br />

Acids<br />

3. Sweet<br />

Tastants binds to GPCR receptors causing depolarization<br />

Low sensitivity…very high Threshold<br />

Sugars<br />

4. Bitter<br />

Tastants binds to GPCR receptors causing depolarization<br />

High Sensitivity…very low Threshold<br />

Bases<br />

5. Umami<br />

AA’s bind to GPCR’s causing depolarization<br />

Proteins and AA’s


Salty and Sour<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


Sweet, Bitter, and Umami (GPCR)<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


Δ’s in Taste<br />

• Temperature can Δ taste fxn<br />

– Hot disrupts TB fxn<br />

– Cold take time to warm…results in<br />

enhanced taste<br />

• Texture can also Δ taste perception<br />

• Taste is a rapid Adaptor<br />

• There is also a strong correlation with<br />

smell<br />

• Threshold varies with specific taste<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


Taste receptors<br />

<br />

Cranial nerves 7, 9, 10<br />

<br />

Brain Stem synapse with nucleus of tractus solitarius<br />

<br />

Axons synapse w/thalamus<br />

<br />

Axons terminate in taste area of the cortex<br />

Neural<br />

Pathways:<br />

Taste<br />

Cranial nerve VII<br />

Facial Nerve<br />

Anterior 2/3 of the<br />

tongue<br />

Cranial nerve IX<br />

Glossphyrengeal<br />

Nerve<br />

Posterior 1/8 of the<br />

tongue<br />

Cranial nerve X<br />

Vagus Nerve<br />

Epiglotis


III. The Visual System<br />

The sense of sight<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


Visual System<br />

• Visual input is important to learning<br />

• Light/Dark; Color/Hue; Distance<br />

• Eye<br />

– Eyeball<br />

– Lens<br />

– Responds to light and begins afferent action<br />

potentials<br />

• Eye Optic Nerve Optic Tract Brain (Visual Cortex)<br />

• Accessory Structure<br />

– Protection from direct sunlight and damaging particles<br />

• Optic<br />

– Nerves<br />

– Tracts<br />

– Pathways<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


Accessory Structures<br />

Protect, Lubricate, Move, & Aid in eye fxn<br />

A. Eyebrows<br />

B. Eyelids & Eyelashes<br />

C. Conjunctiva<br />

D. Lacrimal Apparatus<br />

E. Extrinsic Eye<br />

Muscles<br />

A. Eyebrows<br />

– Protects eyes from<br />

dripping perspiration<br />

– Helps shade from<br />

direct sunlight<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


Accessory Structures<br />

B. Eyelids w/associated<br />

lashes<br />

– A.k.a. Palpebral<br />

– Protect the eye from foreign<br />

objects<br />

– Palpebral fissure- Space<br />

between the 2 lids<br />

– Canthi (pl)- corners where<br />

eyelids meet.<br />

• One lateral one medial<br />

– Caruncle- pinkish mound in<br />

medial canthus that houses<br />

modified sebaceous &<br />

sweat glands


Accessory Structures<br />

B. Eyelids w/associated lashes<br />

– 5 layers (out in)<br />

1. Thin layer integument<br />

2. Thin Areolar CT<br />

3. Skeletal Muscle<br />

4. Tarsal Plate (keep eyelid shape)<br />

5. Palpebral Conjunctiva<br />

– Blink reflex<br />

• Protection, lubrication of eye, and<br />

light entry regulation.<br />

– Eyelashes double/triple rows of<br />

hairs<br />

• Ciliary Glands sweat glands at base<br />

of EL’s to keep hair lubricated<br />

– Tarsal Glands sebaceous glands<br />

prod sebum wh/lubricates lids &<br />

limits tear leakage


Accessory Struc’s<br />

C. Conjunctiva<br />

Thin transparent mucus membrane<br />

Inner surface of eyelid Palpebral<br />

conjunctiva<br />

White of the eye Bulbar<br />

conjunctiva<br />

E. Lacrimal Apparatus:<br />

– Lacrimal gland: produces tears that<br />

exit through lacrimal ducts.<br />

– Tears pass over the surface of the<br />

eye<br />

– They enter the lacrimal cananiculi<br />

– They are carried through the<br />

lacrimal duct<br />

– They enter the nasal cavity via the<br />

nasolacrimal duct


Accessory Structures<br />

E. Extrinsic Eye muscles<br />

Fxn eyeball mvmt<br />

Rectus Muscles: arranged<br />

front to back<br />

Inferior (Oculomotor Nerve)<br />

Superior (Oculomotor Nerve)<br />

Medial (Oculomotor Nerve)<br />

Lateral (Abducent nerve)<br />

Oblique Muscles: wrap<br />

around eye<br />

Superior (Trochlear nerve)<br />

Inferior (Oculomotor Nerve)<br />

H-test- move eye in “H”<br />

pattern if not indicative of eye<br />

muscle damage


1. Fibrous Layer<br />

Outer most<br />

a) Sclera<br />

b) Cornea<br />

2. Vascular Layer<br />

Middle<br />

a) Choroid<br />

b) Ciliary Body<br />

c) Iris<br />

3. Retina<br />

Inner<br />

4. Chambers of the eye<br />

5. Lens<br />

Anatomy of the eye<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


Anatomy of the eye<br />

1. Fibrous Layer<br />

a) Sclera<br />

Anatomy:<br />

Back 5/6 of the eye<br />

Dense Collagenous CT & elastic fibers<br />

White of eye<br />

Physiology<br />

Helps maintain eye shape<br />

Protect inner eye structures<br />

Attachment point for muscles to move<br />

eye<br />

b) Cornea<br />

Anatomy<br />

Continuous with sclera<br />

Anterior 1/6 of eye<br />

CT-matrix: collagen, Elastic Fibers, &<br />

proteoglycans (very little H 2O to prevent<br />

light scatter<br />

Outer surface Strat squ epi<br />

Inner surface simp squ epi<br />

Physiology<br />

Transparent to allow light to enter eye.


Anatomy of the eye<br />

2. Vascular Layer<br />

• It contains most of the blood vessels<br />

• Large # of melanocytes (looks black)<br />

a) Choroid (Posterior)<br />

Thin portion associated<br />

with sclera<br />

b) Anterior<br />

Ciliary Body<br />

Middle btwn iris and<br />

choroid<br />

2 major parts:<br />

Ciliary ring (outer)<br />

Ciliary process<br />

(inner)<br />

Prod’s<br />

aqueous<br />

humor<br />

Both are<br />

connected to the<br />

lens via<br />

suspensatory<br />

ligaments<br />

Contains smooth<br />

muscle to move and Δ<br />

shape of lens<br />

Iris


Anatomy of the eye<br />

2. Vascular Layer<br />

a) Choroid (Posterior)<br />

b) Anterior<br />

Ciliary Body<br />

Iris<br />

Pigmented portion of the<br />

eye<br />

Smooth muscle ring<br />

surrounding the hole<br />

(Pupil)<br />

Regulates the amount of<br />

light entering the eye by<br />

Δing hole size<br />

2 smooth muscle groups<br />

a) Sphincter Pupillae<br />

• Circular,<br />

contraction<br />

reduces pupil<br />

size<br />

b) Dilator Pupillae<br />

• Radial,<br />

contraction<br />

increases pupil<br />

size


Anatomy of the eye<br />

3. Retina<br />

– Inner layer of eyeball<br />

– Pigmented layer layer closest<br />

to the choroid<br />

– Neuronal Layer faces inner<br />

chamber of the eye and responds<br />

to light<br />

• Relay neurons<br />

• Photoreceptors:<br />

– Rods 120 million<br />

– Cones 6-7 million<br />

– Landmarks of the retina:<br />

• Macula- region where light is<br />

focused<br />

• Fovea Centralis- high # of<br />

photoreceptors; greatest visual<br />

acuity<br />

• Optic Disc/Blind Spot- No<br />

photoreceptors entrance for arteries<br />

and veins of eye


Anatomy of the eye<br />

4. The 3 Chambers of the eye<br />

a. Anterior Chamber<br />

Lies btwn the cornea and the iris<br />

b. Posterior Chamber<br />

Smaller than anterior lies btwn the iris and the<br />

lens<br />

c. Vitreous Chamber<br />

Largest chamber of the eye behind the lens


Anatomy of the eye<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses<br />

4. Chambers of the Eye<br />

Anterior & Posterior Chamber<br />

• Both filled w/Aqueous Humor<br />

– Fxn of AqH. helps maintain<br />

intraocular pressure thus<br />

maintaining eye shape<br />

– Refracts light (bends)<br />

– Provides nutrition for structures<br />

of the anterior eye<br />

– Prod’d by cilliary processes as<br />

bld filtrate


Anatomy of the eye<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses<br />

4. Chambers of the Eye<br />

Vitreous Chamber<br />

• Filled with vitreous humor<br />

– Transparent jelly-like substance<br />

– Its turnover is very slow<br />

compared to AqH<br />

– Fxn of VitH helps maintain<br />

intraocular pressure and thus<br />

the shape of the eyeball<br />

– Holds lens and retina in place<br />

with that pressure<br />

– Fxns in the refraction of light


5. Lens<br />

– Transparent biconvex<br />

with greatest curve<br />

posterior<br />

– Anterior surface <br />

simp cube epi<br />

• Give rise to cells that b/<br />

c lens fibers<br />

– Posterior surface <br />

simp col. epi<br />

• “Lens fibers”<br />

– Cells that loose their<br />

nuclei, organelles,<br />

and accumulate a<br />

protein<br />

crystallines<br />

– Covered by highly<br />

elastic transparent<br />

capsule<br />

Anatomy of the eye<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


Fxns of the complete eye<br />

Light entry<br />

• Light entry into the eye<br />

is regulated by the iris.<br />

• It must pass thru the<br />

Cornea, Lens and<br />

various humors to be<br />

focused on the retina<br />

– The retina is responsible<br />

for converting the light<br />

into an action potential<br />

that can be carried to the<br />

brain for interpretation<br />

– What does the retina<br />

respond to??? <br />

• Electromagnetic<br />

spectrum range of<br />

wavelengths<br />

positioned by<br />

frequency<br />

• Visible light<br />

– 380-750 nM This short<br />

range is the only range<br />

our eyes can detect


Fxns of the complete eye<br />

• Refraction:<br />

– Light can be bent when it goes<br />

from air into a different<br />

medium<br />

• Reflection<br />

– When light rays strike an<br />

object that isn’t transparent,<br />

they bounce off of its surface<br />

and come back to the eyeball<br />

in a specific pattern<br />

• “Focal Point”<br />

– Point at which refracted light<br />

rays converge and focus by<br />

changing lens shape<br />

• Distant Vision<br />

– Ciliary bodies and muscles<br />

relax lens flattens<br />

• Near Vision<br />

– Ciliary bodies and muscles<br />

contract lens thickens


3 events to bring object into focus<br />

on retina (Closer than 20 ft)<br />

1. Accommodation<br />

– Ciliary muscles and ligaments contract, less<br />

tension to the lens, lens becomes thicker and<br />

there is a greater refraction of light<br />

2. Pupil Constriction<br />

– The smaller the pupil the more centered light is<br />

on lens the more focused<br />

3. Convergence<br />

– To keep an object in focus both eyes must focus<br />

simultaneously. This means the closer the<br />

object the eyes rotate medially to keep in focus<br />

for both eyes…it is a reflex


Visual System<br />

Physiology of the Retina<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


Structure and fxn of retina<br />

2 Layers:<br />

1. Neural Layer<br />

• 2 networks of communication<br />

1. Outer Plexiform<br />

Communication<br />

2. Inner Plexiform Layer<br />

• 3 main cell types<br />

1. Photoreceptors (next to<br />

pigmented layer)<br />

1. Respond to light<br />

2. Bipolar Cells<br />

1. React to photoreceptors<br />

response to light and pass<br />

action potential to ganglionic<br />

cells<br />

3. Ganglionic Cells (next to<br />

Vitreous Humor)<br />

1. Carry signal to Optic Nerve<br />

2. Pigmented layer<br />

• Outer layers connected to<br />

the choroid<br />

• Simple Cub. Epi, filled with<br />

melanin to enhance visual<br />

acuity by isolating individual<br />

photoreceptors and reducing<br />

light scatter


Retina orientation & Photoreceptors<br />

• Photoreceptor Cell Types:<br />

1. Rods<br />

• Fxn in non-color vision<br />

• Vision in low light conditions<br />

(night vision)<br />

• Responds to entire visual<br />

spectrum<br />

• Found over most of the retina,<br />

missing from fovea<br />

2. Cones<br />

• Function in color vision<br />

• Visual acuity (fine vision)<br />

• Require relatively bright light<br />

to fxn


Rods<br />

• Outer “rod” contains ~ 700<br />

double layered membranous<br />

discs that contain a pigment<br />

called rhodopsin<br />

– Combo of Opsin (a protein)<br />

covalently bound to retinal (yellow<br />

photosynthetic pigment derived<br />

from Vitamin A)<br />

– Rhodopsin is associated with a Gprotein<br />

– When activated the G-protein<br />

activates cGMP phophodiesterase<br />

– cGMP phophodiesterase breaks<br />

down cGMP into GMP<br />

– cGMP can keep Na+ channels<br />

open<br />

– Without cGMP Na+ channels close


The Players in retina function


Dark Confirmation<br />

• When there is no light the G-protein remains<br />

inactive thus the enzyme (cGMP<br />

phosphodiesterase) also remains inactive<br />

• Because the sodium channel has cGMP bound<br />

to it, the channel remains open allowing Na+ to<br />

flood (influx) into the rod.<br />

• As a result of Na+ influx the rod releases the<br />

inhibitory NT- glutamate.<br />

• Glutamate effectively “shuts down” the bipolar<br />

cell.


Light confirmation<br />

Step #1:<br />

• Light hits the rhodopsin<br />

changing retinal’s<br />

confirmation


Light confirmation<br />

Step #2:<br />

• By changing the<br />

confirmation of retinal it<br />

activates the G-protein<br />

• (Alpha)


Step #3:<br />

• Alpha sub-unit activate<br />

the cGMP<br />

phosphodiesterase<br />

turning it “on.”<br />

Light confirmation<br />

Activated cGMP<br />

phosphodiesterase


Light confirmation<br />

Step #4:<br />

• Active cGMP phosphodiesterase removes cGMP<br />

from the Na+ channel<br />

• The cGMP is converted into GMP<br />

• Because cGMP is no longer bound to the Na+<br />

channel, the Na+ channel closes


Light confirmation<br />

Step #4 ½ :<br />

• Because Na+ is no longer flooding into the rod,<br />

the glutamate release stops, thus the bipolar cell<br />

can release its NT activating the ganglionic cells


Cones<br />

• Found in highest # in fovea (35,000)<br />

• Outer cone contains double layered<br />

discs<br />

• These discs contain the pigment<br />

Iodopsin<br />

– A combo of Retinol and 1 of 3<br />

phodisplaystopigments (each cone only<br />

contains1 of the 3)<br />

1. Blue<br />

2. Red<br />

Genetically variable<br />

a) Ser 180<br />

b) Ala 180<br />

3. Green<br />

– Fxn in the same manner as rhodopsin<br />

but each only responds to a narrow<br />

region of the visual spectrum<br />

– Various combinations of cones<br />

produce gradations of light and hue


Bipolar Cells (BP)<br />

<br />

Ganglionic Cells (GC)<br />

<br />

GC’s axons extend along retina<br />

surface (except 4 fovea)<br />

<br />

Converge at Optic Disc<br />

<br />

Exit at Optic Nerve<br />

Inner Layers: Retina<br />

• Rods<br />

– BP receives input from >1 Rod<br />

– GC receives input from >1 BP<br />

Spatial summation results in signal<br />

enhancement<br />

THUS: low light still causes<br />

stimulation<br />

• Cones<br />

– BP receives input from 1 Cone<br />

Lower light sensitivity increases<br />

visual acuity<br />

• Interneurons<br />

– Modify signal from Photoreceptor<br />

b4 signal leaves retina<br />

– Can be excitatory or inhibitory<br />

– 3 types<br />

• Horizontal Cells<br />

• Amacrine Cells<br />

• Interplexiform Cells


Neuronal Pathways for Vision<br />

• ½ of the eye remain on the same<br />

side of the brain (lateral)<br />

• ½ of the eye crosses over to the<br />

other side of the brain (Medial)<br />

• Crossover Optic Chiasm<br />

• Superior Colliculi center of<br />

visual reflexes<br />

• Visual Cortex where neurons<br />

integrate information into single<br />

message; translate it into a<br />

mental image; transfer image to<br />

other parts of the brain for<br />

evaluation (action/ignore)<br />

• Binocular Vision visual fields of<br />

2 eyes overlap (2 separate<br />

images must be merged (depth<br />

perception)<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


IV. Hearing and Balance<br />

Ears do more than hear they also<br />

provide you with body position<br />

recognition<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


3 Major regions of the ear<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses<br />

1. External Ear<br />

– Fxn in Hearing<br />

– Parts<br />

a) Auricle<br />

b) External Auditory Meatus<br />

c) Tympanic Membrane<br />

2. Middle Ear<br />

– Fxn in Hearing<br />

– Parts<br />

a) Auditory ossicles<br />

3. Inner Ear<br />

– Fxn in Hearing and<br />

Balance<br />

– Parts<br />

a) Sensory organs


Auditory Structures & their fxns:<br />

1. External Ear<br />

a) Auricle/Pinna<br />

Anatomy<br />

• Fleshy portion of external ear<br />

• Elastic Cartilage covered with Skin<br />

Physiology<br />

• Collects sounds waves and directs them toward<br />

the External Auditory Meatus<br />

b) External Auditory Meatus<br />

Anatomy<br />

• Tube in temporal bone lined with hairs and<br />

ceriminous glands (ear wax)<br />

Physiology<br />

• Prevent foreign objects from reaching Tympanic<br />

Membrane<br />

• Guide sound waves to tympanic membrane<br />

c) Tympanic Membrane/ Ear Drum<br />

Anatomy<br />

• Thin, semitransparent, 3 layered oval membrane<br />

Physiology<br />

• Sounds waves hitting it make it vibrate


Auditory Structures & their fxns:<br />

2. Middle Ear<br />

• Air filled cavity with 3 major<br />

structures of importance.<br />

1. Round window and Oval<br />

Window<br />

Each of which is essential for<br />

communication between<br />

middle and inner ear<br />

2. Auditory Ossicles<br />

3 bones used to transfer<br />

vibrations from the tympanic<br />

membrane to the inner ear<br />

a) Malleus/Hammer<br />

• Attached to the TM<br />

b) Incus/Anvil<br />

• Attached to hammer and<br />

stirrup<br />

c) Stapes/Stirrup<br />

• Attached to oval window


Auditory Structures & their fxns:<br />

2. Middle Ear<br />

• Air filled cavity with 3 major structures of<br />

importance.<br />

3. 2 Muscles of the middle ear<br />

Tensor Tympani<br />

Attached to Malleus helps with TM tension<br />

Stapedius Muscle<br />

Attached to stapes helps control stapes vibration to sound<br />

waves


Auditory Structures & their fxns:<br />

3. Inner Ear<br />

3 major regions<br />

1. Cochlea<br />

– Fxns in hearing<br />

2. Vestibule<br />

– Fxns in static (1 o ) balance<br />

3. Semicircular canals<br />

– Fxns in dynamic balance<br />

**Notice the placement of the<br />

round and oval windows**<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


Auditory Structures & their fxns:<br />

3. Inner Ear<br />

• Bony Labyrinth series<br />

of tunnels embedded<br />

w/in the temporal bone<br />

– Btwn BL and ML is<br />

Perilymph<br />

• W/in the bony labyrinth<br />

is a membranous<br />

labyrinth of the same<br />

shape<br />

– ML is filled with<br />

endolymph


Auditory Structures & their fxns:<br />

3. Inner Ear (Cochlea)


Auditory Structures & their fxns:<br />

3. Inner Ear (Cochlea)<br />

• Scala Vestibuli (Sv)<br />

• Scala Tympani (St)<br />

• Vestibular Membrane (Vm)<br />

• Basilar Membrane (Bam)<br />

• Cochlear Duct (Cd)<br />

• Perilymph: Sv & St<br />

• Endolymph : Cd<br />

• Cd: Spiral Organ.<br />

• Sv- extends from the oval window<br />

under the stapes to the<br />

helicotrema (apex of the cochlea)<br />

– Part of the bony labyrinth<br />

• St extends from the helicotrema<br />

back to the round window.<br />

– Part of the bony labyrinth<br />

• Vm- thin membrane btwn Sv and<br />

Cd. So thin that there are no fx on<br />

sound wave transmission.<br />

• Bam: much more complex and of<br />

greater physiological interest in the<br />

mechanics of hearing.<br />

– Width increases with distance


Auditory Structures & their fxns:<br />

3. Inner Ear (Cochlea)<br />

• Bam:<br />

– 2 major regions<br />

1. Acellular Portion<br />

• Collagen fibers<br />

• Ground substance<br />

• Sparse Elastic Fibers<br />

2. Cellular Portion<br />

• Thin layer of vascular CT<br />

overlaid with simp squ Epi<br />

– Collagen fibers near the<br />

oval window:<br />

• Short and stiff<br />

• Activate w/high frequency<br />

vibrations<br />

– Collagen fibers near<br />

helicotrema:<br />

• Wide and limber<br />

• Activation w/low frequency<br />

vibrations


Auditory Structures & their fxns:<br />

3. Inner Ear (Cochlea)<br />

Organ of Corti/Spiral organ<br />

• Made up of:<br />

– Supporting epithelial cells<br />

– Hair Cells- stereocilia (part of the plasma membrane)<br />

• Arranged in 4 long rows<br />

1. Inner Row of 1 cell<br />

– Responsible for hearing<br />

2. Outer Row of 3 cells<br />

– Responsible for setting tension of Bam


Auditory Structures & their fxns:<br />

3. Inner Ear (Cochlea)<br />

• Single Inner Row<br />

– Responsible for hearing<br />

– “Hairs” form a conical<br />

structure aka Conical Bundle<br />

• They increase in length from 1<br />

to the next<br />

• “Tip Link” Connects<br />

neighboring hairs to each<br />

other that are actually<br />

mechanically gated K +<br />

channels. As the hairs bend<br />

the K+ channels open<br />

– This isn’t an axon but the K +<br />

level Δ does cause the<br />

synaptic terminals at its base<br />

to activate the sensory neuron<br />

and carry the signal to the<br />

cochlear ganglion


Auditory Structures & their fxns:<br />

3. Inner Ear (Cochlea)<br />

• Outer hair cells (3)<br />

– Responsible for tension of<br />

the Bam<br />

– Separated from the outer<br />

cell by a gap<br />

– The hairs on these cells are<br />

arranged in a curved<br />

pattern<br />

• The longest is embedded in<br />

the acellular gelatinous shelf<br />

of the tectorial membrane


Auditory Fxn<br />

Terminology:<br />

• Vibration:<br />

– Ripples propagated along matter<br />

• Volume:<br />

– Fxn of wave amplitude (height)<br />

measured in decibels<br />

• Pitch:<br />

– Fxn of wave frequency (# of waves/<br />

second) measured in hertz<br />

– High Frequency = High pitch<br />

– Low Frequency = Low Pitch<br />

• Timbre:<br />

– resonance quality or overtones of<br />

sound (Distinguishing between a<br />

piano hitting a note or someone<br />

singing the note…the sound is<br />

different.)<br />

Normal Range:<br />

– 20-20,000 Hz<br />

– 0 or more dbs<br />

• BUT higher than 125<br />

db is painful to the<br />

ear


Auditory<br />

Fxn<br />

Steps<br />

involved in<br />

the<br />

mechanical<br />

portion of<br />

hearing


Auditory<br />

Fxn<br />

Steps<br />

involved in<br />

the<br />

mechanical<br />

portion of<br />

hearing<br />

EE:<br />

Auricle directs the sound waves into the EAM<br />

and the TM<br />

Sound waves are slow (332 m/s) thus they<br />

reach the ears at different times and allow us<br />

to distinguish directionality.<br />

ME:<br />

TM vibrates through the ossicles (Malleus<br />

vibrates with the TM and in turn hits the Incus<br />

which vibrates the stapes on the oval<br />

window.)<br />

**Run into an issue going from the ME to the<br />

IE. The vibration must go from air into the<br />

liquid of the perilymph. Thus the vibration<br />

must be amplified significantly!<br />

How?<br />

TM is 20X as large as the stapes’ foot and the oval<br />

window. This alone amplifies the sound waves<br />

because of differences in size and mechanical<br />

vibration


Auditory<br />

Fxn<br />

Steps<br />

involved in<br />

the<br />

mechanical<br />

portion of<br />

hearing<br />

IE:<br />

Vibration of the foot plate of the stapes<br />

causes the perilymph of the Sv to<br />

vibrate wh/in turn vibrates the Vm<br />

which transmits vibration to the<br />

endolymph. The Endolymph causes<br />

the Bam to move, which have the hair<br />

cells on top of it.<br />

Short Waves High Pitch<br />

Displacement of hairs near the oval window<br />

Long Waves Low Pitch<br />

Displacement of hairs near the helicotrema<br />

Hair cells are bent because tectorial<br />

membrane doesn’t move


Unstimulated<br />

• ~ <strong>15</strong>% channels are open<br />

• RMP= -60mV<br />

• If the hairs are bent toward<br />

the “short” hairs (stereocilia)<br />

– It is a negative stimulus .<br />

– The “springs” go slack, which<br />

results in closing of the open<br />

ch’s<br />

– Cells become hyperpolarized<br />

(more -)<br />

Stimulated<br />

• Hairs bent toward the “long”<br />

hairs (stereocilia)<br />

– Positive stimulus<br />

– Pulls more K+ Ch’s open<br />

– Cells depolarize with K+<br />

causing Voltage-gated Ca2+<br />

channels to open<br />

– Ca2+ influx signals the release<br />

of NT (glutamate/aa)<br />

– Induces action potential in<br />

cochlear neurons that synapse<br />

with hair cells. (Afferent signal)


Neuronal Pathways for Hearing<br />

• Some go to the superior colliculus where reflexes will turn<br />

the head in response to sound


Hearing and Balance<br />

Divided structurally & fxnally into 2 parts<br />

1. Static Labyrinth<br />

• Located w/in the vestibule<br />

• Internally there are 2<br />

fxnal units:<br />

a) Utricle<br />

b) Saccule<br />

• Fxns:<br />

a) Primary position of head<br />

relative to gravity<br />

b) Responds to linear<br />

acceleration and<br />

deceleration<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses<br />

2. Kinetic Labyrinth<br />

• Located w/in the<br />

semicircular canals<br />

• Fxn:<br />

– Evaluating movements of<br />

the head


Hearing and Balance<br />

Static Labyrinth<br />

• Utricle & Saccule<br />

– Simple cuboidal epi<br />

– Contains a specialized<br />

patch of epi called the<br />

macula<br />

a) Macula Utricle:<br />

• Oriented parallel to<br />

the base of the skull<br />

b) Macula Saccule:<br />

• Oriented<br />

perpendicular to the<br />

base of the skull


Hearing and Balance<br />

Static Labyrinth (Macula)<br />

• Resembles the spiral<br />

organ<br />

– Colum. supporting cells + hair<br />

cells<br />

• Numerous hair cells (hc)<br />

that contain stereocilia &<br />

1kinocilium<br />

– These “hairs” are<br />

embedded in a gelatinous<br />

matrix (Gm), (weighted<br />

by otoliths)<br />

– Gm moves in response to<br />

gravity because of<br />

embedded otoliths &<br />

bends the hc initiating<br />

action potentials.<br />

• <strong>Bend</strong> hair cells:<br />

• Toward kinocilium= depolarization<br />

• Away kinocilium= hyperpolarization<br />

• hc’s are synapsed with<br />

Vestibulocochlear nerve & use<br />

glutamate as a NT<br />

• The “pattern of stimulation” gives<br />

specific information about head<br />

position and acceleration/<br />

deceleration<br />

• In response the body Δ’s muscle<br />

tone of back & neck


Hearing and Balance<br />

Static Labyrinth (Macula urticle)


Macula Saccule<br />

Effect of gravity on<br />

the macula Saccule<br />

that is perpendicular<br />

to the skull’s base<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


Hearing and Balance<br />

Kinetic Labyrinth<br />

• The 3 semicircular canals<br />

(sc) occupy the X, Y, and Z<br />

plane<br />

– Thus movement in all<br />

directions can be detected<br />

• At the base of each sc is<br />

the ampullae<br />

– w/in the ampullae the epi is<br />

specialized to form the crista<br />

ampullaris.<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


Hearing and Balance<br />

Kinetic Labyrinth (crista ampullaris)<br />

• CA: ridge/crest of epi w/curved gm<br />

(Cupula) over the crest<br />

– Crista hc’s are embedded in the<br />

cupula w/o otoliths there for there isn’t<br />

a response to gravity<br />

– This cupula is displaced when the<br />

endolymph shifts in response to mvmt<br />

of the head.<br />

• Cupula mvmt, bend hc’s and initiates an<br />

action potential<br />

• Response to mvmt is largely subconscious


Neuronal Pathways for Balance<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses


Fxn of Aging on the Special Senses<br />

• Decline in all fxns<br />

• Loss of appetite, visual impairment,<br />

disorientation, risk of falling<br />

AP2 <strong>Chapter</strong> <strong>15</strong>: The Special Senses

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!