Summary of diabetes study - DSpace at Cambridge - University of ...

Summary of diabetes study - DSpace at Cambridge - University of ... Summary of diabetes study - DSpace at Cambridge - University of ...

dspace.cam.ac.uk
from dspace.cam.ac.uk More from this publisher
03.04.2013 Views

The Effect of Glibenclamide on the Pathogenesis of Melioidosis Gavin Christian Kia Wee Koh Emmanuel College, University of Cambridge This dissertation is submitted for the degree of Doctor of Philosophy 31 January 2012

The Effect <strong>of</strong> Glibenclamide on the<br />

P<strong>at</strong>hogenesis <strong>of</strong> Melioidosis<br />

Gavin Christian Kia Wee Koh<br />

Emmanuel College, <strong>University</strong> <strong>of</strong> <strong>Cambridge</strong><br />

This dissert<strong>at</strong>ion is submitted for the degree <strong>of</strong> Doctor <strong>of</strong> Philosophy<br />

31 January 2012


The effect <strong>of</strong> <strong>diabetes</strong> mellitus and glibenclamide on the<br />

p<strong>at</strong>hogenesis <strong>of</strong> melioidosis. Gavin Christian Koh Kia Wee.<br />

<br />

This submission is my own work and contains nothing which is the<br />

outcome <strong>of</strong> work done in collabor<strong>at</strong>ion except where specifically<br />

where due acknowledgment has been made in the text. This work<br />

was conducted <strong>at</strong> the Wellcome Trust Mahidol-Oxford Tropical<br />

Medicine Research Unit, Mahidol <strong>University</strong>, Bangkok, Thailand<br />

(April 2007 to November 2008), the Center for Experimental and<br />

Molecular Medicine, Academic Medical Center, <strong>University</strong> <strong>of</strong><br />

Amsterdam, Amsterdam, The Netherlands (March 2009 to<br />

December 2010), and the Wellcome Trust Sanger Institute,<br />

<strong>Cambridge</strong> (January 2011 to December 2011) and was supervised by<br />

Pr<strong>of</strong>essor Sharon Jayne Peacock (Department <strong>of</strong> Medicine,<br />

<strong>University</strong> <strong>of</strong> <strong>Cambridge</strong> and the Wellcome Trust Sanger Institute),<br />

Pr<strong>of</strong>essor Nicholas Philip John Day (Mahidol <strong>University</strong> &<br />

<strong>University</strong> <strong>of</strong> Oxford), Pr<strong>of</strong>essor Gordon Dougan (Wellcome Trust<br />

Sanger Institute), Dr Willem Joost Wiersinga (<strong>University</strong> <strong>of</strong><br />

Amsterdam), and Pr<strong>of</strong>essor Tom van der Poll (<strong>University</strong> <strong>of</strong><br />

Amsterdam).<br />

<br />

This dissert<strong>at</strong>ion is printed single-sided on A4 paper in one-and-a-<br />

half spaced type, as required by the Board <strong>of</strong> Gradu<strong>at</strong>e Studies and<br />

the Degree Committee for Clinical Medicine and Clinical Veterinary<br />

Medicine, <strong>University</strong> <strong>of</strong> <strong>Cambridge</strong> and does not exceed 60,000<br />

words after excluding figures, photographs, tables, appendices and<br />

bibliography.<br />

The fount is 12 point Georgia, which is a transitional serif typeface<br />

designed in 1993 by M<strong>at</strong>thew Carter and has a larger x-height to<br />

increase clarity <strong>at</strong> smaller fount sizes. A distinctive fe<strong>at</strong>ure <strong>of</strong> the<br />

fount is its use <strong>of</strong> text figures.<br />

ad maiorem dei gloriam


My f<strong>at</strong>her, mother & godmother<br />

The effect <strong>of</strong> <strong>diabetes</strong> mellitus and glibenclamide on the p<strong>at</strong>hogenesis <strong>of</strong><br />

melioidosis. Copyright © 2009–2011 Gavin Christian Kia Wee Koh<br />

Permission is granted to copy, distribute and/or modify this document under<br />

the terms <strong>of</strong> the Cre<strong>at</strong>ive Commons Attribution-Noncommercial-Share Alike 2.0<br />

UK: England & Wales Licence, provided this work is properly cited. A copy <strong>of</strong><br />

the licence is included in the section entitled “Cre<strong>at</strong>ive Commons Licence”. A<br />

copy <strong>of</strong> the licence is also available <strong>at</strong> http://cre<strong>at</strong>ivecommons.org/licenses/by-<br />

nc-sa/2.0/uk/legalcode.


Table <strong>of</strong> contents<br />

List <strong>of</strong> figures .................................................................................. iii!<br />

List <strong>of</strong> tables ..................................................................................... v!<br />

List <strong>of</strong> abbrevi<strong>at</strong>ions ....................................................................... vi!<br />

<strong>Summary</strong> .......................................................................................... 1!<br />

1.! Introduction ............................................................................... 2!<br />

1.1! Burkholderia pseudomallei ........................................................................ 2!<br />

1.2! Epidemiology ........................................................................................... 12!<br />

1.3! Clinical fe<strong>at</strong>ures <strong>of</strong> melioidosis ............................................................... 20!<br />

1.4! Diagnosis ................................................................................................. 28!<br />

1.5! Therapy ................................................................................................... 32!<br />

1.6! Adjunctive therapies ............................................................................... 39!<br />

1.7! The host response to melioidosis ............................................................ 42!<br />

1.8! Diabetes and infection ............................................................................. 59!<br />

1.9! Diabetes and melioidosis ........................................................................ 66!<br />

1.10! Outline <strong>of</strong> the work ................................................................................ 69!<br />

2! Glibenclamide, not <strong>diabetes</strong>, protects from mortality in<br />

melioidosis .................................................................................... 70!<br />

2.1! Introduction ............................................................................................ 70!<br />

2.2! Methods ................................................................................................... 82!<br />

2.3! Results ..................................................................................................... 85!<br />

2.4! Discussion ............................................................................................... 96!<br />

3! Glibenclamide is associ<strong>at</strong>ed with reduced inflamm<strong>at</strong>ion in<br />

melioidosis .................................................................................... 99!<br />

3.1! Introduction ............................................................................................ 99!<br />

i


3.2! Methods .................................................................................................. 107!<br />

3.3! Results .................................................................................................... 109!<br />

3.4! Discussion .............................................................................................. 114!<br />

4! Glibenclamide reduces interleukin 1β secretion in a mouse model<br />

<strong>of</strong> melioidosis ................................................................................ 116!<br />

4.1! Introduction ........................................................................................... 116!<br />

4.2! Methods .................................................................................................. 125!<br />

4.3! Results .................................................................................................... 127!<br />

4.4! Discussion .............................................................................................. 135!<br />

5! Final discussion and conclusion ............................................... 138!<br />

5.1! Cardiac effects <strong>of</strong> glibenclamide ............................................................ 139!<br />

5.2! Separ<strong>at</strong>ing the anti-inflamm<strong>at</strong>ory effects <strong>of</strong> glibenclamide from its<br />

effects on insulin secretion ............................................................................. 141!<br />

5.3! Suggestions for future research ............................................................ 144!<br />

A! Appendix. Microarray results .................................................. 145!<br />

References .................................................................................... 151!<br />

Cre<strong>at</strong>ive Commons Licence ........................................................... 221!<br />

List <strong>of</strong> manuscripts ....................................................................... 227!<br />

Acknowledgements ...................................................................... 228!<br />

ii


List <strong>of</strong> figures<br />

Figure 1. Wallace’s Line. ......................................................................................... 4!<br />

Figure 2. Microscopic appearance <strong>of</strong> B. pseudomallei. ......................................... 5!<br />

Figure 3. Appearance <strong>of</strong> B. pseudomallei in clinical specimens. .......................... 7!<br />

Figure 4. Map <strong>of</strong> the global distribution <strong>of</strong> melioidosis. ..................................... 13!<br />

Figure 5. The rel<strong>at</strong>ionship between rainfall and melioidosis cases in Ubon<br />

R<strong>at</strong>ch<strong>at</strong>hani, Thailand. ................................................................................... 17!<br />

Figure 6. Farming barefoot in northeast Thailand. ............................................. 18!<br />

Figure 7. Clinical manifest<strong>at</strong>ions <strong>of</strong> melioidosis. ................................................ 22!<br />

Figure 8. A 2-year-old child with unil<strong>at</strong>eral parotitis <strong>at</strong> Sappasithiprasong<br />

Hospital in Ubon R<strong>at</strong>ch<strong>at</strong>hani, Thailand. ..................................................... 24!<br />

Figure 9. Seroprevalence rises with age in Northeast Thailand. ......................... 27!<br />

Figure 10. Histological fe<strong>at</strong>ures <strong>of</strong> human melioidosis. ..................................... 43!<br />

Figure 11. Sappasithiprasong Hospital, Ubon R<strong>at</strong>ch<strong>at</strong>hani. ................................ 71!<br />

Figure 12. Ubon R<strong>at</strong>ch<strong>at</strong>hani province. ............................................................... 72!<br />

Figure 13. The logistic function. ........................................................................... 73!<br />

Figure 14. The influence <strong>of</strong> <strong>diabetes</strong> on mortality is confounded by gender. ..... 77!<br />

Figure 15. Conceptual hierarchical framework <strong>of</strong> risk factors for melioidosis<br />

mortality. ....................................................................................................... 82!<br />

Figure 16. <strong>Summary</strong> <strong>of</strong> p<strong>at</strong>ient recruitment for cohort <strong>study</strong>. ........................... 86!<br />

Figure 17. Kaplan-Meier survival curves <strong>of</strong> 1160 p<strong>at</strong>ients with melioidosis. ..... 90!<br />

Figure 18. Glibenclamide rINN or glyburide USAN. ........................................... 97!<br />

Figure 19. General structure <strong>of</strong> sulphonylureas and sulphonamides. ................. 97!<br />

Figure 20. Illumina BeadArray. ......................................................................... 101!<br />

Figure 21. Differential expression <strong>of</strong> inflamm<strong>at</strong>ion-associ<strong>at</strong>ed genes in diabetic<br />

p<strong>at</strong>ients with acute melioidosis with or without glibenclamide. ................. 112!<br />

Figure 22. Effect <strong>of</strong> glibenclamide pre-tre<strong>at</strong>ment on neutrophil stimul<strong>at</strong>ion .. 113!<br />

Figure 23. A. D-Glucose. B. Streptozocin. .......................................................... 122!<br />

Figure 24. Development <strong>of</strong> hyperglycaemia in mice tre<strong>at</strong>ed with STZ. ............ 123!<br />

Figure 25. Glucose concentr<strong>at</strong>ions do not fall with glibenclamide tre<strong>at</strong>ment in<br />

strepztozocin-tre<strong>at</strong>ed mice. .......................................................................... 128!<br />

iii


Figure 26. Bacterial loads in the lungs and BALF are unaffected by<br />

glibenclamide therapy. ................................................................................. 129!<br />

Figure 27. Cytokine levels in glibenclamide-tre<strong>at</strong>ed mice (inflammasome<br />

rel<strong>at</strong>ed). ......................................................................................................... 130!<br />

Figure 28. Lung infiltr<strong>at</strong>ion in glibenclamide-tre<strong>at</strong>ed mice. ............................. 131!<br />

Figure 29. Bacterial loads in blood, liver and spleen are lower in glibenclamide-<br />

tre<strong>at</strong>ed mice. ................................................................................................. 132!<br />

Figure 30. IL18 and IFNγ levels in glibenclamide-tre<strong>at</strong>ed mice. ...................... 133!<br />

Figure 31. Levels <strong>of</strong> cytokine unrel<strong>at</strong>ed to the inflammasome in glibenclamide-<br />

tre<strong>at</strong>ed mice. ................................................................................................. 134!<br />

Figure 32. Structure <strong>of</strong> glibenclamide and its metabolites. ............................... 142!<br />

Figure 33. Structure <strong>of</strong> meglitinide. ................................................................... 143!<br />

iv


List <strong>of</strong> tables<br />

Table 1. <strong>Summary</strong> <strong>of</strong> Burkholderia pseudomallei virulence factors. .................. 11!<br />

Table 2. Isol<strong>at</strong>ion r<strong>at</strong>e <strong>of</strong> B. pseudomallei from soil compared to incidence <strong>of</strong><br />

melioidosis by region <strong>of</strong> Thailand. ................................................................. 16!<br />

Table 3. <strong>Summary</strong> <strong>of</strong> seroprevalence studies conducted using IHA. .................. 27!<br />

Table 4. <strong>Summary</strong> <strong>of</strong> antimicrobial chemotherapy <strong>of</strong> melioidosis. .................... 35!<br />

Table 5. Susceptibility <strong>of</strong> B. pseudomallei to first-line parenteral agents. ......... 37!<br />

Table 6. Cytokines and chemokines involved in clinical melioidosis. ................ 46!<br />

Table 7. Altern<strong>at</strong>ive names for x and y in multivariable regression models. ...... 74!<br />

Table 8. A hypothetical <strong>study</strong> popul<strong>at</strong>ion. ........................................................... 78!<br />

Table 9. P<strong>at</strong>ient characteristics, clinical fe<strong>at</strong>ures <strong>of</strong> melioidosis and outcome. . 88!<br />

Table 10. The effect <strong>of</strong> <strong>diabetes</strong> on mortality. ..................................................... 92!<br />

Table 11. Effect <strong>of</strong> <strong>diabetes</strong> on hypotension and respir<strong>at</strong>ory failure. .................. 95!<br />

Table 12. Comparison <strong>of</strong> gene expression <strong>study</strong> p<strong>at</strong>ient characteristics. ........... 111!<br />

Table 13. Results <strong>of</strong> quantit<strong>at</strong>ive reverse-transcriptase polymerase chain<br />

reaction. ........................................................................................................ 113!<br />

v


List <strong>of</strong><br />

abbrevi<strong>at</strong>ions<br />

>, gre<strong>at</strong>er than.<br />

≥, gre<strong>at</strong>er than or equal to.<br />


via the classical p<strong>at</strong>hway. Serum<br />

concentr<strong>at</strong>ions <strong>of</strong> CRP are used as a<br />

non-specific marker for sepsis.<br />

C3, complement component 3.<br />

C3H/He, a strain <strong>of</strong> inbred agouti<br />

mouse; the strain was developed in<br />

1920 from the DBA mouse by<br />

L.C. Strong. There are two major<br />

substrains: C3H/HeN (NIH) and<br />

C3H/HeJ (Jackson Labor<strong>at</strong>ories).<br />

C4, complement component 4.<br />

C5, complement component 5.<br />

C57Bl/6, a strain <strong>of</strong> inbred mouse<br />

th<strong>at</strong> origin<strong>at</strong>ed in the early 20 th<br />

century with the breeder, Abbie<br />

L<strong>at</strong>hrop (1868–1918) who lived in<br />

in Granby, Massachusetts. The<br />

strain is commonly referred to as<br />

just ‘Black 6’ and is indeed black.<br />

There are two important substrains:<br />

C57Bl/6J (Jackson Labor<strong>at</strong>ories)<br />

and C57Bl/6N (NIH).<br />

C8, complement component 8.<br />

CAP, community-acquired<br />

pneumonia.<br />

CASP, caspase.<br />

caspase, cysteine-dependent<br />

aspart<strong>at</strong>e-directed protease.<br />

CAZ, ceftazidime.<br />

CD, cluster <strong>of</strong> differenti<strong>at</strong>ion. This is<br />

an internally recognised protocol<br />

for immunophenotyping cells on<br />

the basis <strong>of</strong> their surface antigens.<br />

The CD classific<strong>at</strong>ion includes<br />

vii<br />

signalling molecules and<br />

membrane-bound receptors, but<br />

the protocol is not designed to<br />

capture inform<strong>at</strong>ion about function.<br />

CD11a, cluster <strong>of</strong> differenti<strong>at</strong>ion 11a;<br />

also known as integrin α L chain,<br />

ITGAL or αL. It is an adhesion<br />

molecule expressed by all<br />

leukocytes and also has a role in<br />

immune signalling. The<br />

CD11a/CD18 complex is known as<br />

lymphocyte function-associ<strong>at</strong>ed<br />

antigen 1 (LFA1).<br />

CD11b, cluster <strong>of</strong> differenti<strong>at</strong>ion 11b;<br />

also called integrin α M chain,<br />

ITGAM or αM. The CD11b/CD18<br />

complex is known as Macrophage<br />

antigen 1 (Mac-1).<br />

CD18, cluster <strong>of</strong> differenti<strong>at</strong>ion 18;<br />

also called integrin β 2 chain,<br />

ITGB2 or β2. CD18 forms complexes<br />

with CD11a and CD11b.<br />

CD54, cluster <strong>of</strong> differenti<strong>at</strong>ion 54;<br />

see ICAM-1.<br />

CE, common era (anno Domini).<br />

chr., chromosome.<br />

cfu, colony forming units.<br />

CI, confidence interval.<br />

CLED, cysteine lactose electrolyte<br />

deficient agar.<br />

co-amoxiclav, amoxicillin-<br />

clavulan<strong>at</strong>e.<br />

co-trimoxazole, fixed combin<strong>at</strong>ion<br />

trimethoprim-sulphamethoxazole.


comb. nov., combin<strong>at</strong>io nova<br />

(L<strong>at</strong>in), new combin<strong>at</strong>ion (marking<br />

the first instance <strong>of</strong> a binomial in<br />

the liter<strong>at</strong>ure).<br />

Cpe, the mouse gene,<br />

carboxypeptidase E.<br />

CXCL, a family <strong>of</strong> cytokines<br />

containing a cysteine-x-cysteine<br />

motif, where x can be any amino<br />

acid. The most prominent member<br />

<strong>of</strong> this family is IL8, also known as<br />

CXCL8.<br />

DBA, a strain <strong>of</strong> inbred brown<br />

mouse. This is the oldest strain <strong>of</strong><br />

inbred mouse in existence and<br />

origin<strong>at</strong>es from Dr. C.C. Little in<br />

1909. The substrains DBA/1 and<br />

DBA2 separ<strong>at</strong>ed in 1929.<br />

DCCT, Diabetes control and<br />

complic<strong>at</strong>ions trial, was a<br />

randomised-controlled trial <strong>of</strong> 1,441<br />

volunteers with DM1 comparing<br />

intensive insulin therapy with<br />

standard therapy. 1 It was the<br />

largest, most comprehensive <strong>study</strong><br />

<strong>of</strong> <strong>diabetes</strong> ever conducted <strong>at</strong> the<br />

time. DM2 p<strong>at</strong>ients were excluded<br />

from the <strong>study</strong>. It was funded by the<br />

US NIDDK and subjects were<br />

recruited from 29 centres in the US<br />

and Canada.<br />

DIC, dissemin<strong>at</strong>ed intravascular<br />

coagul<strong>at</strong>ion.<br />

DM, <strong>diabetes</strong> mellitus.<br />

viii<br />

DM1, <strong>diabetes</strong> mellitus, type 1.<br />

DM2, <strong>diabetes</strong> mellitus, type 2.<br />

DMSO, dimethyl sulphoxide.<br />

DNA, deoxyribonucleic acid.<br />

E. coli, Escherichia coli.<br />

e.g., exempli gr<strong>at</strong>ia; for example.<br />

EDTA, ethylenediaminetetraacetic<br />

acid.<br />

ELISA, enzyme-linked<br />

immunosorbent assay.<br />

FDA, United St<strong>at</strong>es Food and Drug<br />

Administr<strong>at</strong>ion.<br />

FDR, false discovery r<strong>at</strong>e. In the<br />

st<strong>at</strong>istical analysis <strong>of</strong> high<br />

dimensional biological d<strong>at</strong>a, the<br />

false discovery r<strong>at</strong>e is the<br />

proportion <strong>of</strong> type I errors out <strong>of</strong> all<br />

the comparisons found to be<br />

st<strong>at</strong>istically significant. The<br />

Benjamini-Hochberg method and<br />

its variants are commonly used to<br />

explicitly control the FDR.<br />

FiO2, the fractional concentr<strong>at</strong>ion <strong>of</strong><br />

inspired oxygen. Normal room air<br />

is 21% oxygen or 0·21.<br />

g, gram or gramme.<br />

G-CSF, granulocyte colony-<br />

stimul<strong>at</strong>ing factor.<br />

Gb, glibenclamide (rINN); glyburide<br />

(USAN).<br />

GLUT2, glucose transporter 2<br />

(<strong>of</strong>ficial name now SLC2A2).<br />

glinide, meglitinide analogue. A<br />

class <strong>of</strong> insulin secretagogues used


to tre<strong>at</strong> <strong>diabetes</strong>, th<strong>at</strong> are not<br />

structurally rel<strong>at</strong>ed to<br />

sulphonylureas, but which have a<br />

similar mode <strong>of</strong> action: examples in<br />

current clinical use include<br />

glimepiride and repaglinide.<br />

GM-CSF, granulocyte macrophage<br />

colony-stimul<strong>at</strong>ing factor.<br />

GO, gene ontology; an intern<strong>at</strong>ional<br />

project to accur<strong>at</strong>ely annot<strong>at</strong>e all<br />

genes and gene products.<br />

h, hour(s).<br />

Hb, haemoglobin.<br />

HbA1c, haemoglobin A1c<br />

(glycosyl<strong>at</strong>ed haemoglobin).<br />

HDL, high density lipoprotein. HDL<br />

deficiency occurs in Tangier<br />

disease.<br />

HES, hydroxyethyl starch.<br />

HLA, human leukocyte antigen.<br />

There are two classes. The class I<br />

antigens are design<strong>at</strong>ed A, B and C.<br />

The class II antigens are DP, DM,<br />

DOA, DQ and DR.<br />

HRP, horseradish peroxidase.<br />

HUGO, Human Genome<br />

Organis<strong>at</strong>ion.<br />

ICAM-1, intercellular adhesion<br />

molecule 1; also known as CD54.<br />

ICAM-1 binds to the integrins<br />

CD11a/CD18 and CD11b/CD18.<br />

ICE, interleukin 1 converting<br />

enzyme; now known as caspase 1.<br />

i.e., id est; th<strong>at</strong> is.<br />

ix<br />

IFA, indirect immun<strong>of</strong>luorescence.<br />

IFFC, Intern<strong>at</strong>ional Feder<strong>at</strong>ion <strong>of</strong><br />

Clinical Chemistry.<br />

IFNγ, interferon gamma.<br />

IgG, immunoglobulin G.<br />

IgM, immunoglobulin M.<br />

IHA, indirect haemagglutin<strong>at</strong>ion<br />

test.<br />

IL, interleukin. The interleukins are<br />

small messenger proteins th<strong>at</strong> play<br />

a role in leukocyte signalling.<br />

IPM, imipenem; a carbapenem<br />

antibiotic active against<br />

B. pseudomallei.<br />

IUPAC, Intern<strong>at</strong>ional Union <strong>of</strong> Pure<br />

and Applied Chemistry. The<br />

intern<strong>at</strong>ional authority for<br />

standards in the naming <strong>of</strong> the<br />

chemical elements and their<br />

compounds.<br />

KATP-channels, ATP-sensitive<br />

potassium channels.<br />

KC, ker<strong>at</strong>inocyte-derived cytokine;<br />

now called CXCL1.<br />

KEGG, Kyoto Encyclopedia <strong>of</strong> Genes<br />

and Genomes; an online d<strong>at</strong>abase<br />

<strong>of</strong> protein and p<strong>at</strong>hway inform<strong>at</strong>ion<br />

hosted by the Kyoto <strong>University</strong>.<br />

KIR2DL1, killer cell<br />

immunoglobulin-rel<strong>at</strong>ed re;ceptor,<br />

2 domains, long cytoplasmic tail, 1.<br />

kPa, kilopascals; see Pa.<br />

L, litre.


L. pneumophila, Legionella<br />

pneumophila.<br />

LAMP, loop-medi<strong>at</strong>ed isothermal<br />

amplific<strong>at</strong>ion.<br />

LB, lysogeny broth; also called Luria-<br />

Bertani medium, or Luria broth.<br />

LD50, median lethal dose. The dose<br />

sufficient to kill half the popul<strong>at</strong>ion<br />

tested.<br />

LFA-1, lymphocyte function-<br />

associ<strong>at</strong>ed antigen 1; see CD11a.<br />

LIX, lipopolysaccharide-induced<br />

CXC chemokine. now known as<br />

CXCL5.<br />

LPS, lipopolysaccharide; also known<br />

as a endotoxin. A component <strong>of</strong> the<br />

outer membrane <strong>of</strong> all Gram-<br />

neg<strong>at</strong>ive bacteria.<br />

LY96, lymphocyte antigen 96; also<br />

known as MD2. LY96 associ<strong>at</strong>ed<br />

with Toll-like receptor 4 and is<br />

involved in the recognition <strong>of</strong><br />

lipopolysaccharide.<br />

M, molar; 1 litre <strong>of</strong> a 1 molar solution<br />

contains 1 mole <strong>of</strong> solute.<br />

M1, 4-trans-hydrocyclohexyl<br />

glibenclamide; a metabolite <strong>of</strong><br />

glibenclamide<br />

M2, now called M2b.<br />

M2a, 4-cis-hydrocyclohexyl<br />

glibenclamide; a metabolite <strong>of</strong><br />

glibenclamide.<br />

x<br />

M2b, 3-cis-hydrocyclohexyl<br />

glibenclamide; a metabolite <strong>of</strong><br />

glibenclamide.<br />

M3, 3-trans-hydrocyclohexyl<br />

glibenclamide; a metabolite <strong>of</strong><br />

glibenclamide.<br />

M4, 2-trans-hydrocyclohexyl<br />

glibenclamide; a metabolite <strong>of</strong><br />

glibenclamide.<br />

M5, ethyl-hydroxy glibenclamide; a<br />

metabolite <strong>of</strong> glibenclamide.<br />

Mac-1, macrophage antigen 1; see<br />

CD11b.<br />

MAQC, MicroArray Quality Control<br />

project; an initi<strong>at</strong>ive <strong>of</strong> the FDA to<br />

monitor the reproducibility <strong>of</strong><br />

microarrays, with the view th<strong>at</strong> they<br />

will eventually be used for<br />

diagnostic applic<strong>at</strong>ions.<br />

max., maximum.<br />

MD2, see LY96.<br />

MDP, muramyl dipeptide, a<br />

peptidoglycan constituent <strong>of</strong> both<br />

Gram-positive and Gram-neg<strong>at</strong>ive<br />

bacteria.<br />

MEM, meropenem; a carbapenem<br />

antibiotic active against<br />

B. pseudomallei.<br />

MERTH, Melioidosis Eradic<strong>at</strong>ion<br />

Therapy/Thailand; a multicentre<br />

randomised controlled trial in<br />

Northeast Thailand comparing co-<br />

trimoxazole therapy against co-<br />

tromoxazole and doxycycline


combin<strong>at</strong>ion therapy due to report<br />

<strong>at</strong> the end <strong>of</strong> 2011.<br />

MIAME, Minimum Inform<strong>at</strong>ion<br />

About a Microarray Experiment; a<br />

published checklist for the<br />

minimum inform<strong>at</strong>ion th<strong>at</strong> should<br />

be reported for all published<br />

microarray experiments.<br />

MIC, minimum inhibitory<br />

concentr<strong>at</strong>ion; the minimum<br />

concentr<strong>at</strong>ion <strong>of</strong> antibiotic required<br />

to inhibit bacterial growth.<br />

MIP-2, macrophage inflamm<strong>at</strong>ory<br />

protein 2. Now known to consist <strong>of</strong><br />

two distinct cytokines, CXCL2 and<br />

CXCL3.<br />

MLST, multi-locus sequence type.<br />

mM, millimolar. See M.<br />

mmHg, millimetres <strong>of</strong> mercury.<br />

1 mmHg = 133.3 Pa; 1 <strong>at</strong>mosphere<br />

= 760 mmHg.<br />

MODY, m<strong>at</strong>urity-onset <strong>diabetes</strong> <strong>of</strong><br />

the young.<br />

mol, mole. And SI unit defined as<br />

the number <strong>of</strong> elemental entities in<br />

12 g <strong>of</strong> carbon-12. This number is<br />

called Avogadro’s constant, and has<br />

a measured value <strong>of</strong> 6·022 141 79 ×<br />

10 23 per mol.<br />

mRNA, messenger RNA.<br />

MSD, Merck Sharp & Dohme, a<br />

pharmaceutical company based in<br />

Whitehouse St<strong>at</strong>ion, New Jersey,<br />

xi<br />

USA. It manufactures and markets<br />

imipenem/cilast<strong>at</strong>in (Primaxin®).<br />

NCBI, N<strong>at</strong>ional Center for<br />

Biotechnology Inform<strong>at</strong>ion; a part<br />

<strong>of</strong> the N<strong>at</strong>ional Library <strong>of</strong> Medicine<br />

in the United St<strong>at</strong>es.<br />

NEQAS, N<strong>at</strong>ional External Quality<br />

Assessment Service. A UK body<br />

charged with independently<br />

auditing standards in labor<strong>at</strong>ories.<br />

NET, neutrophil extracellular trap.<br />

NF-κB, nuclear factor κB.<br />

NK cell, n<strong>at</strong>ural killer cell; a form <strong>of</strong><br />

cytotoxic lymphocyte.<br />

NLR, Nod-like receptor. A family <strong>of</strong><br />

cytosolic p<strong>at</strong>tern recognition<br />

receptors. Unlike the TLRs, they are<br />

not membrane-bound. Since 2008,<br />

their new name has been<br />

‘nucleotide-binding oligomeriz<strong>at</strong>ion<br />

domain, leucine rich repe<strong>at</strong>’, a<br />

name chosen to retain the same<br />

abbrevi<strong>at</strong>ion, while adding<br />

descriptive inform<strong>at</strong>ion about their<br />

molecular properties.<br />

NIDDK, United St<strong>at</strong>es N<strong>at</strong>ional<br />

Institute <strong>of</strong> Diabetes and Digestive<br />

and Kidney Diseases.<br />

NIH, N<strong>at</strong>ional Institutes <strong>of</strong> Health; a<br />

loose feder<strong>at</strong>ion <strong>of</strong> government-<br />

funded research institutes in<br />

Bethesda, Maryland.<br />

Nod, nucleotide-binding and<br />

oligomeriz<strong>at</strong>ion domain.


NOD, non-obese diabetic mouse.<br />

OR, odds r<strong>at</strong>io.<br />

p-value, probability value calcul<strong>at</strong>ed<br />

from a st<strong>at</strong>istical test.<br />

Pa, pascals (SI unit). 1 mmHg =<br />

133.3 Pa; 1 <strong>at</strong>mosphere<br />

= 101.3 kPa.<br />

PAI-1, plasminogen activ<strong>at</strong>or<br />

inhibitor-1.<br />

PAMP, p<strong>at</strong>hogen-associ<strong>at</strong>ed<br />

molecular p<strong>at</strong>terns; these are highly<br />

conserved antigens present on a<br />

wide range <strong>of</strong> p<strong>at</strong>hogens (viruses,<br />

bacteria and parasites).<br />

PaO2, partial pressure <strong>of</strong> oxygen in<br />

arterial blood, usually expressed in<br />

mmHg, but also measured in kPa.<br />

PC, protein C.<br />

PBS, phosph<strong>at</strong>e-buffered saline.<br />

PCR, polymerase chain reaction.<br />

PEG, polyethylene glycol; also called<br />

poly(ethylene oxide) or<br />

polyoxyethylene.<br />

P:F or P/F r<strong>at</strong>io, the r<strong>at</strong>io <strong>of</strong> PaO2<br />

(in mmHg) to FiO2 (as a fraction).<br />

The r<strong>at</strong>io is used to quantify<br />

pulmonary function. In healthy<br />

adults, values are usually<br />

>380 mmHg; the cut-<strong>of</strong>f for ALI is<br />

≤300 mmHg and the cut-<strong>of</strong>f for<br />

ARDS is ≤200 mmHg.<br />

PRR, p<strong>at</strong>tern recognition receptors;<br />

the two main families <strong>of</strong> PRRS are<br />

the TLRs and the NLRs.<br />

xii<br />

PYCARD, old name for ASC.<br />

qds, qu<strong>at</strong>er die sumendus; to be<br />

taken four times a day, or every six<br />

hours.<br />

qPCR, quantit<strong>at</strong>ive reverse-<br />

transcriptase polymerase chain<br />

reaction; a method for quantifying<br />

DNA.<br />

qqh, quaque quarta hora; to be<br />

taken every four hours.<br />

R. argentiventor, R<strong>at</strong>tus<br />

argentiventor.<br />

R. exulans, R<strong>at</strong>tus exulans.<br />

R. r<strong>at</strong>tus, R<strong>at</strong>tus r<strong>at</strong>tus.<br />

R. tionamicus jalorensis, R<strong>at</strong>tus<br />

tionamicus jalorensis.<br />

RAW264.7, a cell line origin<strong>at</strong>ing<br />

from virus-transformed mouse<br />

monocytes. The cell line sheds<br />

murine leukaemia virus and should<br />

therefore be handled under<br />

biosafety II conditions.<br />

rINN, Recommended Intern<strong>at</strong>ional<br />

Nonproprietary Name. Drug name<br />

assigned by the WHO.<br />

RNA, ribonucleic acid.<br />

RNS, reactive nitrogen species; these<br />

are ·NO, ·NO2, N2O3, ONOO – ,<br />

ONOOH and ONOOCO2 – .<br />

ROS, reactive oxygen species; these<br />

are singlet oxygen, ·OH, H2O2,<br />

O=C(O·)O – , O2 – and O2 2– .<br />

RPMI 1640, Roswell Park Memorial<br />

Institute medium 1640. A


commonly used cell culture<br />

medium.<br />

rRNA, ribosomal RNA.<br />

S. enterica, Salmonella enterica.<br />

S. Typhi, Salmonella enterica var<br />

Typhi, the caus<strong>at</strong>ive agent <strong>of</strong><br />

typhoid fever in humans.<br />

S. Typhimurium, Salmonella<br />

enterica var Typhimurium. A<br />

model organism th<strong>at</strong> causes a<br />

typhoid fever-like illness in mice.<br />

S. aureus, Staphylococus aureus.<br />

sFLT-1, soluble fms-like tyrosine<br />

kinase-1. A marker for endothelial<br />

activ<strong>at</strong>ion.<br />

SLC2A2, solute carrier family 2,<br />

member 2 (also called GLUT2).<br />

SNK, Student-Newman-Keuls. This<br />

is a multiple comparison method<br />

and is discussed in the chapter on<br />

st<strong>at</strong>istical analyses. Also known as<br />

the Newman-Keuls test.<br />

SOP, standard oper<strong>at</strong>ing procedure.<br />

SPP1, Secreted phosphoprotein 1.<br />

st<strong>at</strong>in, common name for HMG-CoA<br />

reductase inhibitors; these are<br />

drugs used for the tre<strong>at</strong>ment <strong>of</strong><br />

hypercholesterolaemia.<br />

STZ, streptozocin or streptozotocin.<br />

T-cell, T-lymphocyte; a lymphocyte<br />

th<strong>at</strong> origin<strong>at</strong>es from the thymus.<br />

tds, ter die sumendus; to be taken<br />

thrice daily, or every eight hours.<br />

xiii<br />

THP-1, a human monocytic<br />

leukaemia cell line.<br />

TLR, Toll-like receptor; a class <strong>of</strong> 13<br />

single membrane-spanning<br />

leukocyte receptors th<strong>at</strong> recognise<br />

PAMPs. Recognition by TLRs<br />

results in activ<strong>at</strong>ion <strong>of</strong> the inn<strong>at</strong>e<br />

immune response.<br />

TMB, 3,3%,5,5%-<br />

tetramethylbenzadine. A substr<strong>at</strong>e<br />

for horseradish peroxidase. TMB is<br />

a colourless compound, but is<br />

oxidised by horseradish peroxidase<br />

to form a blue product th<strong>at</strong> may be<br />

detected spectrophotometrically.<br />

TNF, tumour necrosis factor. Usually<br />

refers to TNFα, but may refer also<br />

to the TNF family <strong>of</strong> cytokines.<br />

TNFα, tumour necrosis factor, alpha;<br />

a pro-inflamm<strong>at</strong>ory cytokine.<br />

TSA, trypticase soy agar.<br />

TTS, type-three secretion system.<br />

UGDP, <strong>University</strong> Group Diabetes<br />

Program, was a prospective<br />

randomised-controlled trial <strong>of</strong> the<br />

tre<strong>at</strong>ment <strong>of</strong> DM2 th<strong>at</strong> ran from<br />

1960 to 1975, and published its final<br />

report in 1982. It produced two<br />

controversial observ<strong>at</strong>ions on the<br />

safety and efficacy <strong>of</strong> two oral anti-<br />

diabetic tre<strong>at</strong>ments: first, th<strong>at</strong><br />

tolbutamide is associ<strong>at</strong>ed with an<br />

excess cardiovascular mortality, 2<br />

and second, th<strong>at</strong> phenformin is


associ<strong>at</strong>ed with an excess mortality<br />

from lactic acidosis. 3<br />

UKPDS, United Kingdom<br />

Prospective Diabetes Study, was a<br />

randomised-controlled trial funded<br />

by the British Diabetic Associ<strong>at</strong>ion<br />

<strong>at</strong> a cost <strong>of</strong> £2 million. Starting in<br />

1977, it recruited over 5,000 white<br />

p<strong>at</strong>ients with recently diagnosed<br />

type 2 <strong>diabetes</strong> and lasted for<br />

20 years. 4<br />

xiv<br />

uPAR, urokinase-type plasminogen<br />

activ<strong>at</strong>or receptor.<br />

US or USA, United St<strong>at</strong>es <strong>of</strong><br />

America.<br />

USAN, United St<strong>at</strong>es Adopted<br />

Name, assigned by the USAN<br />

Council (co-sponsored by the AMA,<br />

USP and APhA).<br />

USP, United St<strong>at</strong>es Pharmacopeial<br />

Convention.<br />

viz., videlicet; namely.<br />

WHO, World Health Organiz<strong>at</strong>ion.


<strong>Summary</strong><br />

Melioidosis is an important cause <strong>of</strong> community-acquired sepsis, endemic<br />

to Southeast Asia and Northern Australia. Melioidosis is caused by the soil<br />

saprophyte, Burkholderia pseudomallei, a motile Gram-neg<strong>at</strong>ive bacillus, and is<br />

associ<strong>at</strong>ed with a mortality r<strong>at</strong>e th<strong>at</strong> approaches 50% in Northeast Thailand.<br />

The most important risk factor for melioidosis is <strong>diabetes</strong> mellitus, and two-<br />

thirds <strong>of</strong> all adult p<strong>at</strong>ients with melioidosis have <strong>diabetes</strong> as a risk factor. It has<br />

been noted previously, however, th<strong>at</strong> p<strong>at</strong>ients with <strong>diabetes</strong> have lower<br />

mortality than p<strong>at</strong>ients without <strong>diabetes</strong>. In this dissert<strong>at</strong>ion, we look <strong>at</strong> a<br />

cohort <strong>of</strong> 1160 consecutive adult melioidosis p<strong>at</strong>ients presenting to<br />

Sappasithiprasong Hospital in Ubon R<strong>at</strong>ch<strong>at</strong>hani, Thailand, 410 (35%) <strong>of</strong> whom<br />

were diagnosed with <strong>diabetes</strong> prior to admission. We confirmed previous<br />

findings th<strong>at</strong> <strong>diabetes</strong> protected from mortality in melioidosis, but also found<br />

th<strong>at</strong> this protective effect was confined to a smaller subset <strong>of</strong> p<strong>at</strong>ients (208<br />

p<strong>at</strong>ients) who were tre<strong>at</strong>ed with glibenclamide prior to admission. P<strong>at</strong>ients with<br />

hyperglycaemia (but no diagnosis <strong>of</strong> <strong>diabetes</strong> prior to admission) had the same<br />

mortality r<strong>at</strong>e as p<strong>at</strong>ients without <strong>diabetes</strong>. In vitro experiments found no<br />

inhibitory effect <strong>of</strong> glibenclamide on bacterial growth, and we therefore looked<br />

for evidence <strong>of</strong> an effect <strong>of</strong> glibenclamide on the host. We conducted a gene<br />

expression <strong>study</strong> <strong>of</strong> circul<strong>at</strong>ing blood leukocytes in melioidosis p<strong>at</strong>ients and<br />

compared them to uninfected controls. In this <strong>study</strong>, we found th<strong>at</strong><br />

glibenclamide was associ<strong>at</strong>ed with an anti-inflamm<strong>at</strong>ory effect on the host<br />

response to melioidosis. To further elucid<strong>at</strong>e a mechanism for the action <strong>of</strong><br />

glibenclamide, we studied the effect <strong>of</strong> glibenclamide therapy in a mouse model<br />

<strong>of</strong> melioidosis and found th<strong>at</strong> the effect <strong>of</strong> glibenclamide was specific to<br />

interleukin-1β secretion. This reduction in interleukin-1β secretion was<br />

associ<strong>at</strong>ed with reduced cellular influx into the lungs as well as lower bacterial<br />

loads in blood, liver and spleen.<br />

1


1. Introduction<br />

Melioidosis is infection caused by the Gram-neg<strong>at</strong>ive bacillus,<br />

Burkholderia pseudomallei, 5 and was first reported in 1912 in a post mortem<br />

series <strong>of</strong> 38 p<strong>at</strong>ients seen by Whitmore and Krishnaswami <strong>at</strong> the Rangoon<br />

General Hospital, Burma, the majority <strong>of</strong> whom were morphine addicts. 6–8<br />

Whitmore recognised th<strong>at</strong> the caus<strong>at</strong>ive agent <strong>of</strong> melioidosis was a novel<br />

organism, which he named Bacillus pseudomallei. 8 The clinical disease only<br />

acquired its name in 1921, being coined from the Greek melis (distemper <strong>of</strong><br />

asses) and eidos (resemblance), and refers to its resemblance to glanders, an<br />

infection <strong>of</strong> equids caused by the rel<strong>at</strong>ed organism, B. mallei. 9<br />

The history <strong>of</strong> melioidosis research is punctu<strong>at</strong>ed by waves <strong>of</strong> activity th<strong>at</strong><br />

coincide with the military interests <strong>of</strong> the Western powers. British interest in the<br />

disease coincided with British imperial interests (specifically Burma for<br />

petroleum, Malaya for petroleum and rubber), 10,11 and waned as the empire<br />

waned. France reported approxim<strong>at</strong>ely 100 cases among the 400,000 troops <strong>of</strong><br />

the French Expeditionary Forces in Indochina between 1948 and 1954. 12<br />

America’s interest in (and therefore, research funding for) melioidosis increased<br />

and declined proportion<strong>at</strong>e to its involvement in the Vietnam war. 13–18<br />

Following the events <strong>of</strong> September 11, 2001, funding for melioidosis research in<br />

the last ten years has again increased with the realis<strong>at</strong>ion th<strong>at</strong> B. pseudomallei<br />

is easily obtained (it is an environmental organism) and when aerosolised,<br />

might see utility as a bioterror agent with a high mortality r<strong>at</strong>e.<br />

1.1 Burkholderia pseudomallei<br />

1.1.1 Taxonomy<br />

B. pseudomallei was for a long time placed in the genus Pseudomonas on<br />

the basis <strong>of</strong> its Gram-stain appearance and biochemistry 19 (it is a non-lactose<br />

fermenting oxidase-positive Gram-neg<strong>at</strong>ive bacillus 20 ), but the organism was<br />

moved to a new genus, Burkholderia, in 1992 on the basis <strong>of</strong> 16S ribosomal<br />

RNA (rRNA) sequence. 21<br />

The caus<strong>at</strong>ive organism <strong>of</strong> melioidosis and its characteristics were<br />

described very shortly after the disease was first described. 8 Initially named<br />

2


Bacillus pseudomallei by its discoverer, 6 it was l<strong>at</strong>er named Bacterium<br />

whitmori (Stanton & Fletcher 1921) for its discoverer, by which appell<strong>at</strong>ion it is<br />

still known to French researchers (bacille de Whitmore or Whitmore’s<br />

bacillus). 22<br />

In common with many other non-fermenting Gram-neg<strong>at</strong>ive bacteria, the<br />

organism has struggled to find a taxonomic home. The 5 th edition <strong>of</strong> Bergey’s<br />

Manual placed it in the genus Malleomyces 23 due to the many characteristics it<br />

shares with the caus<strong>at</strong>ive agent <strong>of</strong> glanders (B. mallei was type species for the<br />

now-defunct genus Malleomyces). 24,25 It was, for a time, called Pfeifferella<br />

whitmori. 26 It was suggested also th<strong>at</strong> the bacterium be housed in the genus<br />

Loefflerella. 27 The organism was transferred to the genus Pseudomonas in the<br />

6 th edition <strong>of</strong> Bergey’s Manual, 19 a decision supported by the best<br />

morphological, phenotypic and biochemical evidence available <strong>at</strong> the time. 28<br />

The organism was finally transferred to the genus Burkholderia in 1992 (as<br />

Burkholderia pseudomallei comb. nov.) on evidence from its 16S ribosomal<br />

subunit sequence: 21 B. pseudomallei and P. aeruginosa are now no longer even<br />

in the same class, let alone the same genus, family or order. B. mallei was also<br />

moved to the same genus using the same criteria, 21 and has been shown to have<br />

evolved from B. pseudomallei by specialis<strong>at</strong>ion to an equine host and a process<br />

<strong>of</strong> genome reduction. 29 Indeed, B. mallei may be considered a subspecies <strong>of</strong><br />

B. pseudomallei by multilocus sequence typing. 30 Although B. mallei can<br />

survive in tap w<strong>at</strong>er for up to four weeks (and horses can become infected from<br />

contamin<strong>at</strong>ed drinking w<strong>at</strong>er), 20 B. mallei has lost the ability to persist<br />

indefinitely in the environment.<br />

In environmental isol<strong>at</strong>es, the main differential for B. pseudomallei is<br />

B. thailandensis. One puzzle <strong>of</strong> the early 1990’s was th<strong>at</strong> environmental surveys<br />

<strong>of</strong> B. pseudomallei seemed to show a much larger endemic area than was<br />

clinically evident. 31,32 Many <strong>of</strong> those environmental isol<strong>at</strong>es were l<strong>at</strong>er shown to<br />

be due to a separ<strong>at</strong>e species, B. thailandensis, which is distinguished from<br />

B. pseudomallei on the basis <strong>of</strong> its ability to assimil<strong>at</strong>e arabinose and its<br />

avirulence in mice and hamsters. 32–37 In 1998, B. thailandensis was given st<strong>at</strong>us<br />

as a separ<strong>at</strong>e species on the basis <strong>of</strong> evidence from its 16S ribosomal subunit<br />

sequence. 38<br />

3


Phylogenetic studies combined with geographical d<strong>at</strong>a support an<br />

Australian origin for B. pseudomallei with a single introduction event into<br />

Southeast Asia hypothesised to have occurred during a recent glacial period.<br />

B. pseudomallei isol<strong>at</strong>es may be resolved into two distinct popul<strong>at</strong>ions divided<br />

by Wallace’s Line 39 (a deep-w<strong>at</strong>er channel th<strong>at</strong> forms a physical boundary<br />

separ<strong>at</strong>ing Australian flora and fauna from those <strong>of</strong> Asia). Wallace’s Line has<br />

separ<strong>at</strong>ed Australia and Asia for a period in excess <strong>of</strong> 50 million years, even<br />

during glacial advances (when sea levels dropped by up to 120 metres from<br />

current levels). It runs along the Lombok Straits, separ<strong>at</strong>ing Bali (to the west)<br />

and Lombok (to the east). Further north, Wallace’s Line runs between Borneo<br />

(west) and Sulawesi (east).<br />

Figure 1. Wallace’s Line.<br />

Wallace’s Line marks the end <strong>of</strong> the Sunda Shelf, an area <strong>of</strong> shallow ocean linking the<br />

islands <strong>of</strong> Sum<strong>at</strong>ra, Java, Bali and Borneo to the continent <strong>of</strong> Asia. Lydekker’s Line marks<br />

the limit <strong>of</strong> the Sahul Shelf, which links Australia and New Guinea. Weber’s line marks<br />

the transitional area between the two. Image ©2007 Maximilian Dörrbecker.<br />

4


1.1.2 Labor<strong>at</strong>ory identific<strong>at</strong>ion <strong>of</strong> B. pseudomallei<br />

The clinical fe<strong>at</strong>ures <strong>of</strong> melioidosis are non-specific, and the diagnosis <strong>of</strong><br />

melioidosis therefore depends on finding B. pseudomallei in a clinical<br />

specimen. 40,41 It is recommended th<strong>at</strong> B. pseudomallei be handled in biosafety<br />

level 3 facilities 42 and this recommend<strong>at</strong>ion is motiv<strong>at</strong>ed by the fact th<strong>at</strong> it may<br />

be acquired by inhal<strong>at</strong>ion and mortality following infection is high. It has been<br />

argued th<strong>at</strong> level 2 facilities <strong>of</strong>fer adequ<strong>at</strong>e protection as long as samples are<br />

centrifuged in sealed cups and opened only in a biosafety cabinet. 43,44<br />

Figure 2. Microscopic appearance <strong>of</strong> B. pseudomallei.<br />

Drawing <strong>of</strong> B. pseudomallei in a pus from an abscess in a guinea pig. The figure is taken<br />

from Stanton & Fletcher’s 1932 monograph and emphasises the safety-pin appearance <strong>of</strong><br />

the bacterium.<br />

B. pseudomallei is a motile, non-lactose fermenting, oxidase-positive,<br />

Gram-neg<strong>at</strong>ive bacillus. 19 Although initially believed to be a strict aerobe, 20<br />

B. pseudomallei will grow anaerobically if nitr<strong>at</strong>e is present as a terminal<br />

electron acceptor. 45,46 The optimum temper<strong>at</strong>ure for B. pseudomallei is 24–<br />

32°C, but it will grow <strong>at</strong> temper<strong>at</strong>ures up to 42°C. 13,47 Clinical samples are<br />

usually incub<strong>at</strong>ed <strong>at</strong> 37°C in 5% carbon dioxide.<br />

5


B. pseudomallei is not fastidious and grows readily on a wide variety <strong>of</strong><br />

media, including blood agar, tryptic soy broth, LB, CLED and MacConkey. It<br />

will even survive for extended periods in nutrient deficient media. Stanton &<br />

Fletcher (1932) reported th<strong>at</strong> B. pseudomallei would survive for 44 days in tap<br />

w<strong>at</strong>er, Miller et al. (1948) reported 8 weeks. 20 Wuthiekanun has found th<strong>at</strong><br />

B. pseudomallei can survive in distilled w<strong>at</strong>er for 16 years and possibly<br />

longer. 48–50<br />

In culture, the B. pseudomallei has a characteristic bipolar (‘safety pin’)<br />

appearance when stained for light microscopy (Figure 2), which was first noted<br />

by Whitmore, 8 and has been ascribed to the presence <strong>of</strong> large lipid vacuoles in<br />

the centre <strong>of</strong> the cell th<strong>at</strong> do not stain. 20 Although characteristic, 17 this safety pin<br />

appearance is not sufficiently specific as to be diagnostic 51 and does not occur<br />

frequently in clinical specimens. 52 B. pseudomallei does not form spores. 8<br />

Cultured bacteria are ~0·8 × 1·5 µm, but bacteria found in clinical samples may<br />

also form long tangled filaments (Figure 3). 41,52<br />

Recognition <strong>of</strong> B. pseudomallei is seldom a problem for the microbiologist<br />

when the specimen has been taken from an otherwise sterile site such as blood,<br />

or pus from a deep collection. The main technical problem is th<strong>at</strong> the doubling<br />

time for B. pseudomallei is roughly two hours, which is longer than many other<br />

bacteria. In specimens taken from non-sterile sites (e.g., c<strong>at</strong>heter urine, sputum<br />

and thro<strong>at</strong> swabs) colonies <strong>of</strong> B. pseudomallei are easily overgrown. 53 For this<br />

reason, selective media should be used to isol<strong>at</strong>e B. pseudomallei from these<br />

specimens. 53<br />

Ashdown agar is made from a base <strong>of</strong> trypticase soy agar (TSA): it contains<br />

crystal violet to inhibit the growth <strong>of</strong> Gram-positive bacteria and gentamicin to<br />

inhibit the growth <strong>of</strong> other Gram-neg<strong>at</strong>ives. 53 B. pseudomallei colonies absorb<br />

neutral red, which acts as an indic<strong>at</strong>or and helps to distinguish B. pseudomallei<br />

from other bacteria. The addition <strong>of</strong> glycerol causes the colonies to wrinkle<br />

(colonies are smooth on TSA) and the appearance <strong>of</strong> B. pseudomallei colonies<br />

on Ashdown agar has been likened to the appearance <strong>of</strong> cornflowers (Figure 3).<br />

Colonial morphology is extremely variable, with seven morphotypes described,<br />

and it is common for pure cultures <strong>of</strong> a single strain to exhibit multiple<br />

morphologies. 54<br />

6


A<br />

C<br />

Figure 3. Appearance <strong>of</strong> B. pseudomallei in clinical specimens.<br />

Note.—Both microscope specimens are from the urine <strong>of</strong> a 71-year-old woman with<br />

B. pseudomallei septic arthritis <strong>of</strong> the right knee. She had no urinary symptoms and she<br />

had previously had melioidosis two years previous to this present<strong>at</strong>ion. Long filamentous<br />

bacteria were seen on Gram stain <strong>of</strong> urine (A, magnific<strong>at</strong>ion ×1000) and<br />

immun<strong>of</strong>luorescence staining showed these to be B. pseudomallei (B, magnific<strong>at</strong>ion<br />

×1000). The cells visible in the background are a combin<strong>at</strong>ion <strong>of</strong> leukocytes and<br />

epithelial cells. Culture <strong>of</strong> this sample confirmed B. pseudomallei (C, Ashdown agar). The<br />

lavender colonies take on their characteristic wrinkled appearance after four-days’<br />

incub<strong>at</strong>ion and are said to resemble cornflowers (D). Images A, B, C © 2008 Gavin Koh.<br />

Image D © 2007 J Stegman.<br />

Ashdown agar is cheap and easily prepared using readily available<br />

ingredients. However, many labor<strong>at</strong>ories in the West have moved away from<br />

preparing their own media to using commercially prepared media, and<br />

Ashdown agar is not commercially available. For these labor<strong>at</strong>ories,<br />

7<br />

B<br />

D


commercially prepared Burkholderia cepacia agar or Pseudomonas cepacia<br />

agar are suitable altern<strong>at</strong>ives. 55,56<br />

Diagnosis may be achieved with biochemical methods. Using the API 20E<br />

system (bioMérieux, Marcy l’Etoile, France), most B. pseudomallei isol<strong>at</strong>es have<br />

one <strong>of</strong> the following seven digit pr<strong>of</strong>iles: 2006727, 2206706, 2206707 and<br />

2206727. 36 Pr<strong>of</strong>iles on API 20NE are 1156576, 1156577, 1556576 and 1556577. 57<br />

Of the autom<strong>at</strong>ed systems available commercially, VITEK 1 (bioMérieux)<br />

correctly identifies 99% <strong>of</strong> isol<strong>at</strong>es. 58 Performance on VITEK 2 (bioMérieux) has<br />

been uniformly poor by contrast. In an initial assessment performed in 2002,<br />

VITEK 2 correctly identified only 19% <strong>of</strong> isol<strong>at</strong>es. 58 In 2006, using a new<br />

colorimetric GN card, this had improved to only 63–81%. 59 Common<br />

misidentific<strong>at</strong>ions include Burkholderia cepacia, Pseudomonas aeruginosa,<br />

Chromobacterium violaceum and other non-lactose fermenting Gram-neg<strong>at</strong>ive<br />

bacilli.<br />

Vari<strong>at</strong>ion in the API pr<strong>of</strong>ile occurs primarily in citr<strong>at</strong>e utilis<strong>at</strong>ion, and in<br />

sucrose and amygdalin assimil<strong>at</strong>ion. The antibiotic susceptibility p<strong>at</strong>tern for<br />

B. pseudomallei is also helpful in allowing it to be differenti<strong>at</strong>ed from<br />

P. aeruginosa, because B. pseudomallei is invariably resistant to gentamicin<br />

and colistin, but is usually susceptible to co-amoxiclav, 36,40,60 a resistance<br />

p<strong>at</strong>tern th<strong>at</strong> does not occur in P. aeruginosa.<br />

The ability <strong>of</strong> p<strong>at</strong>ient sera to agglutin<strong>at</strong>e suspensions <strong>of</strong> B. pseudomallei<br />

was first reported in 1932, first by the English physicians, Stanton and Fletcher,<br />

and by the Dutch physicians, de Moor and van der Walle. Both these groups<br />

evalu<strong>at</strong>ed this technique as a means <strong>of</strong> diagnosing melioidosis serologically. It<br />

was Miller in 1947, 20 who first had the insight th<strong>at</strong> the ability <strong>of</strong> serum from<br />

infected rabbits to agglutin<strong>at</strong>e unknown bacteria obtained from cultures might<br />

be used as a means to identify B. pseudomallei. Unfortun<strong>at</strong>ely, Miller’s slide<br />

agglutin<strong>at</strong>ion test never entered routine clinical use.<br />

The sensitivity <strong>of</strong> slide agglutin<strong>at</strong>ion test may be increased by conjug<strong>at</strong>ing<br />

the antibody to l<strong>at</strong>ex beads, so th<strong>at</strong> even bacteria from a single colony may form<br />

a visible precipit<strong>at</strong>e. A non-commercial l<strong>at</strong>ex agglutin<strong>at</strong>ion test based on a<br />

monoclonal antibody to the exopolysaccharide <strong>of</strong> B. pseudomallei has been<br />

clinically evalu<strong>at</strong>ed and has a sensitivity <strong>of</strong> 99·5%. The test has been available in<br />

Thailand since 2002 (Chulaborn Research Institute, Bangkok, Thailand). 57,61 As<br />

8


with previous tests based on serological methods (including Miller’s test 20 ), the<br />

test cannot distinguish B. mallei from B. pseudomallei.<br />

Immun<strong>of</strong>luorescence microscopy is useful in samples with a high bacterial<br />

load 62 (≥10 4 cfu/ml; e.g., sputum, urine or pus from a normally sterile site) and<br />

is capable <strong>of</strong> giving same-day results with >99% specificity. 63,64 Bacterial loads<br />

in blood are too low for immun<strong>of</strong>luorescence microscopy, 65,62 which means th<strong>at</strong><br />

immun<strong>of</strong>luorescence is not useful in p<strong>at</strong>ients who are bacteraemic but with no<br />

identifiable focus. The sensitivity is reported to be 66–73% in an idealised<br />

research setting, 63,64 but is probably lower in routine clinical practice.<br />

Molecular techniques have been <strong>at</strong>tempted, but are not routinely available<br />

in clinical practice. Targets for polymerase chain reaction (PCR) have included<br />

the 16S ribosomal subunit, 66,67 the gltB and narK genes 68 (which are also part <strong>of</strong><br />

the MLST scheme); orf11, orf13 and BpSCU2 (components <strong>of</strong> the type 3<br />

secretion system), 69 fliC (which codes for flagellin), 67 and repetitive elements <strong>of</strong><br />

non-protein-coding DNA. 70 Few <strong>of</strong> these have been valid<strong>at</strong>ed in the clinical<br />

setting, and the need for equipment capable <strong>of</strong> PCR make the majority <strong>of</strong> these<br />

methods impractical in the field. On top <strong>of</strong> this, mere amplific<strong>at</strong>ion <strong>of</strong> genes<br />

may not be sufficient and additional tests such as gene sequencing may be<br />

required. 71<br />

Loop-medi<strong>at</strong>ed isothermal amplific<strong>at</strong>ion (LAMP) appears to have a<br />

number <strong>of</strong> characteristics th<strong>at</strong> make it preferable to PCR for nucleic acid<br />

amplific<strong>at</strong>ion in resource-poor settings. The method employs a DNA polymerase<br />

and a set <strong>of</strong> four specially designed primers th<strong>at</strong> recognise a total <strong>of</strong> six distinct<br />

sequences on the target DNA. The reaction is simple to set up and requires<br />

much less training than PCR, and the initial capital outlay is minimal (the only<br />

equipment required is a w<strong>at</strong>er b<strong>at</strong>h or he<strong>at</strong> block capable <strong>of</strong> maintaining a<br />

constant temper<strong>at</strong>ure <strong>of</strong> 60–65°C). A LAMP assay was developed targeting the<br />

BPSS 1406 hypothetical protein, situ<strong>at</strong>ed within the TTS1 gene cluster <strong>of</strong><br />

B. pseudomallei. 72 The lower limit <strong>of</strong> detection was 38 genomic copies per<br />

reaction, which is still too high to reliably detect B. pseudomallei in blood. 62,65<br />

Performance was better in other sample types including sputum, urine and pus<br />

(sensitivity 45·8–75%, specificity ≥97·9%). No direct comparison was made<br />

against immun<strong>of</strong>luorescence, but these results seem comparable to th<strong>at</strong><br />

9


technique, 63,64 which means LAMP is unlikely to supplant immun<strong>of</strong>luorescence<br />

as a method for rapid antigen detection.<br />

Techniques for rapid diagnosis are urgently needed, because culture-based<br />

methods entail a minimum turnaround time <strong>of</strong> 48 hours or more.<br />

Immun<strong>of</strong>luorescence microscopy currently fulfils th<strong>at</strong> function, but is<br />

insufficiently sensitive.<br />

B. thailandensis has a biochemical phenotype very similar to<br />

B. pseudomallei, but B. thailandensis almost never causes disease in humans.<br />

There are only two reported cases <strong>of</strong> human B. thailandensis infection in the<br />

liter<strong>at</strong>ure 73,74 and the need for a clinical labor<strong>at</strong>ory to distinguish between the<br />

two species therefore almost never arises. If necessary, B. thailandensis can be<br />

differenti<strong>at</strong>ed from B. pseudomallei by its ability to assimil<strong>at</strong>e arabinose, which<br />

B. pseudomallei cannot do. 34,38 A definitive distinction between the two species<br />

may be made using MLST. 30<br />

B. mallei (the caus<strong>at</strong>ive agent <strong>of</strong> glanders) is morphologically and<br />

biochemically indistinguishable from B. pseudomallei, except th<strong>at</strong> the<br />

bacterium is immotile. Like B. pseudomallei, autom<strong>at</strong>ed labor<strong>at</strong>ory methods<br />

may misidentify it as other non-lactose fermenting Gram-neg<strong>at</strong>ive bacilli. 75 For<br />

a clinical labor<strong>at</strong>ory on the ‘front lines’, the first indic<strong>at</strong>ion th<strong>at</strong> the isol<strong>at</strong>e is<br />

B. mallei and not B. pseudomallei is the susceptibility pr<strong>of</strong>ile: ~80% <strong>of</strong> B. mallei<br />

isol<strong>at</strong>es are susceptible to gentamicin and may also be susceptible to some<br />

macrolides. 76,77 Some isol<strong>at</strong>es may also be susceptible to ampicillin, which<br />

B. pseudomallei never is. 76 A definitive diagnosis may require 16S RNA<br />

sequencing or MLST, but this issue is unlikely to arise, except in a biothre<strong>at</strong><br />

setting, since glanders has been largely eradic<strong>at</strong>ed and the last n<strong>at</strong>urally<br />

occurring infection reported in the English-language liter<strong>at</strong>ure was in 1949. 75<br />

Outbreaks continue to occur in susceptible equids, the most recent <strong>of</strong> which was<br />

an outbreak in dromedaries in Bahrain. 78<br />

1.1.3 A brief survey <strong>of</strong> virulence factors<br />

B. pseudomallei is a facult<strong>at</strong>ive intracellular p<strong>at</strong>hogen 79–81 and much <strong>of</strong> the<br />

liter<strong>at</strong>ure on host-p<strong>at</strong>hogen interactions centres on, or needs to be interpreted<br />

in light <strong>of</strong>, this fact.<br />

10


Virulence factor Function References<br />

BimA Actin polymeriz<strong>at</strong>ion,<br />

intracytoplasmic movement and cellto-cell<br />

spread<br />

BPSS1823 Intracellular survival, swarming<br />

motility, resistance to low pH,<br />

protease production<br />

Capsular polysaccharide Resistance to serum lysis; complement<br />

resistance<br />

Flagellin Motility; cell invasion<br />

Lipopolysaccharide Complement resistance;<br />

endotoxin<br />

Quorum sensing Downstream virulence factors as yet<br />

unidentified<br />

11<br />

Kespichayaw<strong>at</strong>tana 2000, 82<br />

Breitbach 2003, 83 Stevens 2005, 84<br />

French 2011 81<br />

Norville 2011 85<br />

Reckseidler 2001, 86 Atkins 2002, 87<br />

Reckseidler-Zenteno 2005, 88<br />

Warawa 2009, 89<br />

Wikraiph<strong>at</strong> 2009, 90<br />

Reckseidler-Zenteno 2010 91<br />

Brett 1994, 92 DeShazer 1997, 93<br />

Chua 2003, 94 Inglis 2003, 95<br />

Chuaygud 2008 96<br />

M<strong>at</strong>suura 1996, 97 Luc[1<br />

DeShazer 1998, 98<br />

Wikraiph<strong>at</strong> 2009, 90 Novem 2009 99<br />

Ulrich 2004, 100 Juhas 2004, 101<br />

Valade 2004, 102 Song 2005, 103<br />

Diggle 2006, 104<br />

Lumjiaktase 2006 105<br />

Superoxide dismutase Resistance to killing by superoxide Vanaporn 2011 106<br />

Type IV pilin Adhesion to respir<strong>at</strong>ory epithelium<br />

Type III secretion<br />

systems<br />

Type VI secretion<br />

systems<br />

Injecting effector proteins into the host<br />

cell; escape from endocytic vacuoles<br />

Injecting effector proteins into the host<br />

cell<br />

Table 1. <strong>Summary</strong> <strong>of</strong> B. pseudomallei virulence factors.<br />

Essex-Lopresti 2005 107<br />

Stevens 2002, 108 Stevens 2004, 109<br />

Warawa 2005, 110 Pil<strong>at</strong>z 2006, 111<br />

Burtnick 2008, 112 Sun 2010, 113<br />

French 2011 81<br />

Schell 2007, 114 Shalom 2007, 115<br />

Burtnick 2011, 116 French 2011 81<br />

In 1990, Pruksachartvuthi et al. showed by electron microscopy th<strong>at</strong><br />

B. pseudomallei was able to persist within both neutrophils and monocytes<br />

collected from healthy human volunteers. 79 Th<strong>at</strong> the intracellular bacteria were<br />

viable and capable <strong>of</strong> replic<strong>at</strong>ion was confirmed by culture. 79 B. pseudomallei is<br />

also capable <strong>of</strong> parasitizing a number <strong>of</strong> phagocytic and non-phagocytic cell<br />

lines, including A549 (human adenocarcinomic basal epithelial lung cells), 80,85<br />

CHO (Cricetulus griseus ovary cells), HeLa (human cervical epithelial cells), 80<br />

J774.1A1 (Mus musculus BALB/c peritoneal macrophage), 117 Vero


(Cercopithecus aethiops kidney epithelial cells), 80 and U937 cells (human<br />

monocyte line). 80 It will also invade r<strong>at</strong> alveolar macrophages 80 and<br />

Acanthamoeba species. 118<br />

After entry into the cell, B. pseudomallei is able to evade intracellular<br />

killing, 85,119 lyse the endosome membrane and enter the cytoplasm. 81 In the<br />

cytoplasm, it is able to mobilise by polymerising actin <strong>at</strong> one pole <strong>of</strong> the<br />

bacterial cell to form membrane protrusions, which allow it to invade adjacent<br />

cells. 82–84 Virulence factors <strong>of</strong> B. pseudomallei are summarised in Table 1.<br />

1.2 Epidemiology<br />

1.2.1 Geographical distribution <strong>of</strong> melioidosis<br />

Descriptions <strong>of</strong> the epidemiology <strong>of</strong> melioidosis are hampered by the lack<br />

<strong>of</strong> clinical awareness and labor<strong>at</strong>ory facilities in areas where it is likely to be<br />

endemic. 120,121 Without the ready availability <strong>of</strong> microbiological diagnosis,<br />

melioidosis may go completely unrecognised even in areas where it is highly<br />

endemic. 120 The geographical distribution <strong>of</strong> B. pseudomallei should therefore<br />

be regarded as poorly defined.<br />

The first evidence for melioidosis in Thailand was from a 1930 case report<br />

<strong>of</strong> a Russian man, normally resident in Bangkok, who presented in a delirious<br />

st<strong>at</strong>e to police in Phnom Penh, Kampuchea (now Cambodia). Diagnosis was<br />

made post mortem. 122 The first case <strong>of</strong> melioidosis reported in Thailand itself<br />

was in 1947, in a Dutch soldier who had been held a prisoner-<strong>of</strong>-war by the<br />

Japanese. 123 The first reported case in a n<strong>at</strong>ive Thai had to wait until 1955. 124 It<br />

was not until the expansion <strong>of</strong> microbiological services th<strong>at</strong> occurred in the<br />

1970’s and 80’s th<strong>at</strong> it became clear melioidosis was highly endemic in Thailand<br />

and probably always had been. 125,126<br />

The opposite has occurred in Burma. In 1917, Krishnaswami reported over<br />

a hundred cases <strong>of</strong> melioidosis in Rangoon just five years after first describing<br />

the disease. 127 Yet, no case <strong>of</strong> indigenous melioidosis was reported in Burma<br />

between 1945 40 and 2000 128 despite the fact th<strong>at</strong> Burma continued to export<br />

cases <strong>of</strong> melioidosis throughout th<strong>at</strong> period 129,130 and despite a high<br />

seroprevalence in the n<strong>at</strong>ive popul<strong>at</strong>ion. 131<br />

The global distribution <strong>of</strong> melioidosis has been described in detail by<br />

Currie, Dance and Cheng, 132,133 and their map is reproduced in Figure 4.<br />

12


.<br />

Figure 4. Map <strong>of</strong> the global distribution <strong>of</strong> melioidosis.<br />

Note.—Pink asterisks show the loc<strong>at</strong>ion <strong>of</strong> three outbreaks th<strong>at</strong> occurred in temper<strong>at</strong>e<br />

regions: one in France, and two in Australia. Figure taken from Cheng and Currie Clin<br />

Microbiol Rev 2005;18:383–416.<br />

Melioidosis is a disease <strong>of</strong> the tropics and appears to be confined to a band<br />

roughly 20° north <strong>of</strong> the equ<strong>at</strong>or and 20° south. The endemic area is focused<br />

around southeast Asia and northern Australia; its northernmost extent is<br />

southern China, Hong Kong and Taiwan; its southernmost extent is northern<br />

Australia. Melioidosis is almost certainly endemic to India 134–136 and probably<br />

always has been. There are sporadic cases from Africa and Central<br />

America, 132,133,137,138 but the lack <strong>of</strong> microbiological facilities in much <strong>of</strong> these<br />

areas means the true extent <strong>of</strong> melioidosis is unknown.<br />

1.2.2 Melioidosis as a zoonosis<br />

A zoonosis is a disease where infection occurs by transmission from a<br />

vertebr<strong>at</strong>e animal to human (World Health Organiz<strong>at</strong>ion, Geneva, Switzerland).<br />

In 1925, Stanton and Fletcher described melioidosis as a zoonosis based on<br />

13


observ<strong>at</strong>ions th<strong>at</strong> rodents succumb to the disease. 10 However, in th<strong>at</strong> same<br />

paper, Stanton and Fletcher also noted th<strong>at</strong> melioidosis is f<strong>at</strong>al to rodents,<br />

which makes it very unlikely th<strong>at</strong> rodents could be an efficient reservoir or<br />

vector. In their 1932 monograph, they revised this assertion, st<strong>at</strong>ing, ‘The way in<br />

which man contracts melioidosis is a problem as yet unsolved,’ but continued to<br />

assert th<strong>at</strong> they ‘believe th<strong>at</strong> infection usually occurs…through the consumption<br />

<strong>of</strong> food which has been contamin<strong>at</strong>ed by the excreta <strong>of</strong> infected rodents.’<br />

In 1948, Harries et al. noted th<strong>at</strong> they were unable to find melioidosis in<br />

any <strong>of</strong> >500 r<strong>at</strong>s examined in Rangoon, 129 and in 1969 Strauss et al. performed<br />

a similar survey <strong>of</strong> 422 wild r<strong>at</strong>s (R<strong>at</strong>tus tionamicus jalorensis,<br />

R. argentiventor, R. exulans and R. r<strong>at</strong>tus) in a survey <strong>of</strong> Carey Island,<br />

Selangor, Malaysia, 140 and expressed doubt th<strong>at</strong> r<strong>at</strong>s are a reservoir for the<br />

disease. In the 1955, Chambon et al. showed th<strong>at</strong> B. pseudomallei is primarily<br />

environmental, 141 and transmission from animals to humans has not been<br />

shown to be an important cause <strong>of</strong> infection. 132<br />

The disease is dealt with by the Bacterial Zoonoses Branch <strong>of</strong> the US<br />

Centers for Disease Control and melioidosis continues to be listed with the<br />

zoonoses by textbooks. 142 Some books published as recently as 2002 continue to<br />

assert erroneously th<strong>at</strong> animals are a reservoir for disease. 143<br />

Melioidosis infects a large numbers <strong>of</strong> animals and birds. 144 Sheep and<br />

go<strong>at</strong>s are particularly susceptible, resulting in the absolute requirement for<br />

pasteuris<strong>at</strong>ion <strong>of</strong> tropical commercial go<strong>at</strong>’s milk. 144 Gorillas are also extremely<br />

susceptible, so much so th<strong>at</strong> extraordinary measures are needed to isol<strong>at</strong>e them<br />

from the environment in a melioidosis-endemic area. 145 Four male animals<br />

imported to the Singapore Zoological Gardens died within months <strong>of</strong> arriving<br />

from Rotterdam, and the one surviving animal was returned to Rotterdam for<br />

tre<strong>at</strong>ment. On outbreak <strong>at</strong> the Paris zoo in the 1970’s («L’affaire du jardin des<br />

plantes») was <strong>at</strong>tributed to an imported panda. 146 Horses were initially reported<br />

to be immune, as demonstr<strong>at</strong>ed by <strong>at</strong>tempts <strong>at</strong> experimental inocul<strong>at</strong>ion, 10 but<br />

cases <strong>of</strong> n<strong>at</strong>urally occurring infection have subsequently been reported. 146–149<br />

There appears to be no basis for the <strong>of</strong>t-repe<strong>at</strong>ed 150 claim th<strong>at</strong> w<strong>at</strong>er buffalos are<br />

immune.<br />

R<strong>at</strong>s, mice and hamsters are all susceptible and are important small<br />

animal models <strong>of</strong> melioidosis. 151–153 Of the three, Syrian golden hamsters are the<br />

14


most susceptible. 154,155 In fact, such is the susceptibility <strong>of</strong> hamsters to<br />

B. pseudomallei, th<strong>at</strong> Miller et al. developed a method <strong>of</strong> purifying<br />

B. pseudomallei from mixed cultures by infecting hamsters with the<br />

contamin<strong>at</strong>ed sample and recovering the pure organism from the hearts blood<br />

<strong>of</strong> the animals after they succumbed to the disease. 20<br />

Strauss’ environmental surveys <strong>of</strong> the 1960’s used hundreds <strong>of</strong> hamsters to<br />

purify samples. Filtered samples <strong>of</strong> soil or surface w<strong>at</strong>er were rendered isotonic<br />

with saline then injected intraperitoneally into hamsters to yield pure cultures<br />

<strong>of</strong> B. pseudomallei when they died five days l<strong>at</strong>er <strong>of</strong> melioidosis. 140 Hamsters<br />

are not susceptible to B. thailandensis, 37 and it is interesting to specul<strong>at</strong>e<br />

whether B. thailandensis would have been discovered had hamsters continued<br />

to be used in environmental surveys.<br />

1.2.3 Melioidosis is an environmental organism<br />

In 1955, Chambon demonstr<strong>at</strong>ed th<strong>at</strong> B. pseudomallei could be isol<strong>at</strong>ed<br />

from soil and w<strong>at</strong>er in South Vietnam (including rice fields), th<strong>at</strong> the isol<strong>at</strong>ed<br />

organism was virulent, and th<strong>at</strong> it produced the characteristic histological<br />

fe<strong>at</strong>ures <strong>of</strong> melioidosis in guinea pigs, rabbits and mice. 141 These findings were<br />

confirmed and extended by a series <strong>of</strong> detailed epidemiological studies<br />

published in 1969 by Strauss. 140,156,157 Strauss was able to culture<br />

B. pseudomallei from 14·6% <strong>of</strong> the samples taken from rice paddy fields,<br />

whereas samples taken from land used for all other purposes had isol<strong>at</strong>ion r<strong>at</strong>es<br />


The distribution <strong>of</strong> B. pseudomallei in soil is extremely irregular, and a site<br />

with no detectable bacteria may lie as little as five metres from a site with<br />

>10,000 cfu/g soil. 161 The reasons for this are unknown, but competition with<br />

other Burkholderia species has been suggested as a reason. 162 Kaestli found th<strong>at</strong><br />

in sites undisturbed by human activity, B. pseudomallei was more commonly<br />

found in areas rich in grasses. In environmentally disturbed sites,<br />

B. pseudomallei was associ<strong>at</strong>ed with the presence <strong>of</strong> livestock animals and lower<br />

soil pH. 163 It has been suggested th<strong>at</strong> w<strong>at</strong>er-logged, clay soils may be better <strong>at</strong><br />

harbouring the bacterium than sandy, well-drained soils. 47,164 In common with<br />

other Burkholderia species, 165 B. pseudomallei is able to survive and replic<strong>at</strong>e<br />

intracellularly within Acanthamoeba species in vitro. 118,166<br />

Region <strong>of</strong> Thailand No. <strong>of</strong> positive sites Infection r<strong>at</strong>e per<br />

16<br />

100,000 inp<strong>at</strong>ients<br />

Central 24·5% 13·4<br />

North 13·8% 18<br />

Northeast 50·1% 137·9<br />

South 18·4% 14·4<br />

Table 2. Isol<strong>at</strong>ion r<strong>at</strong>e <strong>of</strong> B. pseudomallei from soil compared to<br />

incidence <strong>of</strong> melioidosis by region <strong>of</strong> Thailand.<br />

Adapted from Vuddhakul et al. Am J Trop Med Hyg 1999;60:458–61.<br />

1.2.4 Melioidosis and rainfall<br />

The associ<strong>at</strong>ion between melioidosis and rainfall was first noted by Strauss<br />

in 1969, who found th<strong>at</strong> he was unable to isol<strong>at</strong>e B. pseudomallei from his<br />

environmental samples when the we<strong>at</strong>her was dry, but th<strong>at</strong> samples became<br />

positive after each rainfall. 140 Studies <strong>of</strong> human melioidosis cases in Australia,<br />

Thailand and Singapore show a clear associ<strong>at</strong>ion with heavy rainfall in the 7<br />

days preceding onset <strong>of</strong> the illness or the 14 days preceding admission to<br />

hospital, and there is a positive correl<strong>at</strong>ion year-by-year between the amount <strong>of</strong><br />

rain and the number <strong>of</strong> cases <strong>of</strong> melioidosis. 167–171 There is certainly a<br />

correl<strong>at</strong>ion with extreme we<strong>at</strong>her events such as hurricanes. 172,173


Figure 5. The rel<strong>at</strong>ionship between rainfall and melioidosis cases in<br />

Ubon R<strong>at</strong>ch<strong>at</strong>hani, Thailand.<br />

Note.—This graph shows the quarterly incidence <strong>of</strong> melioidosis (solid line) over five<br />

years (1987 to 1991), with the rainfall (interrupted line) in each quarter superimposed.<br />

Figure from Suputtamongkol et al. Int J Epidemiol 1994;23:1082–90.<br />

1.2.5 Human factors<br />

B. pseudomallei is an organism <strong>of</strong> soil and surface w<strong>at</strong>er and a history <strong>of</strong><br />

contact with soil or surface w<strong>at</strong>er is therefore common, and a history <strong>of</strong><br />

residence in or travel to an endemic area is almost invariable. 169,174–177 In<br />

Northeast Thailand, rice farming is an important part <strong>of</strong> the local economy. Rice<br />

fields are flooded for much <strong>of</strong> the growing season and farmers spend much time<br />

bare foot in paddy fields. Rice farming is therefore an important risk factor for<br />

melioidosis. 169<br />

P<strong>at</strong>ients with melioidosis are more likely to be male. The r<strong>at</strong>io <strong>of</strong> males to<br />

females is 1·41:1 in Thailand, 170 2·21:1 in Australia, 176 and 2·8–7·2:1 in<br />

Singapore. 168 The st<strong>at</strong>istics in Singapore are skewed by the fact th<strong>at</strong> only males<br />

are called up for military service, which involves high levels <strong>of</strong> exposure to<br />

contamin<strong>at</strong>ed soil, and adjusting for this fact reduces the sex r<strong>at</strong>io to 1·3:1. 174<br />

Harries et al. reported five cases <strong>of</strong> melioidosis in West African troops<br />

(numbering approxim<strong>at</strong>ely 30,000 in total) st<strong>at</strong>ioned in Burma, 129 and<br />

17


marvelled th<strong>at</strong> no cases were reported among Indian and Burmese troops<br />

st<strong>at</strong>ioned <strong>at</strong> the same place. In Australia, aboriginals are overrepresented (24%<br />

<strong>of</strong> the popul<strong>at</strong>ion, but 50% <strong>of</strong> melioidosis cases). 177 In Singapore, Indians and<br />

Malays are <strong>at</strong> gre<strong>at</strong>er risk <strong>of</strong> melioidosis than the Chinese, 174,178 possibly rel<strong>at</strong>ed<br />

to higher r<strong>at</strong>es <strong>of</strong> <strong>diabetes</strong> in those two races. 179<br />

Figure 6. Farming barefoot in northeast Thailand.<br />

Note.—Farmers in Northeast Thailand walk through flooded paddy fields barefoot for<br />

practical reasons. Images courtesy <strong>of</strong> Andrew Taylor © 2008 (left) and Vanaporn<br />

Wuthiekanun © 2006 (right).<br />

Diabetes mellitus is the most frequently identified risk factor in p<strong>at</strong>ients<br />

with melioidosis: 39% <strong>of</strong> p<strong>at</strong>ients in Australia, 176 60% <strong>of</strong> p<strong>at</strong>ients in Thailand 175<br />

and 76% in India have <strong>diabetes</strong>. 135 In Northeast Thailand, p<strong>at</strong>ients with <strong>diabetes</strong><br />

have 21·4-times gre<strong>at</strong>er risk <strong>of</strong> having melioidosis compared to people without<br />

<strong>diabetes</strong>. 170 Heavy alcohol use is a risk factor in 12–39%, renal disease (chronic<br />

renal failure or kidney stones) in 12–20·1%. Glucocorticoids are present in many<br />

herbal prepar<strong>at</strong>ions (called variously ya tom, yam mor or ya chut) which<br />

p<strong>at</strong>ients use to self-medic<strong>at</strong>e, and use <strong>of</strong> herbal medicines is an important cause<br />

<strong>of</strong> immunosuppression in northeast Thailand. Other important risk factors<br />

include thalassaemia and malignancy. 135,170,175,176 P<strong>at</strong>ients with cystic fibrosis<br />

may be particularly susceptibility; fortuitously, the endemic ranges for the two<br />

diseases do not overlap, except in northern Australia. 52,137 HIV does not appear<br />

to be a risk factor. 180<br />

18


1.2.6 Routes <strong>of</strong> acquisition<br />

The route <strong>of</strong> entry into the body is unknown. In Thailand, rice farmers<br />

wade knee-deep in the muddy w<strong>at</strong>er <strong>of</strong> rice paddy fields, and rice farming is an<br />

important risk factor for melioidosis. 175 By contrast, melioidosis is not a large<br />

problem in rice-farming areas <strong>of</strong> Malaysia, where the process <strong>of</strong> farming has<br />

been largely mechanised, and the direct exposure <strong>of</strong> farmers to soil and surface<br />

w<strong>at</strong>er is limited. It has been suggested th<strong>at</strong> the organism may gain entry via<br />

scr<strong>at</strong>ches and small skin-breaks in the feet and legs, and there is one reported<br />

case <strong>of</strong> inocul<strong>at</strong>ion following a snake bite. 40,125 In this hypothetical scenario,<br />

pneumonia is explained by haem<strong>at</strong>ogenous spread. Against this hypothesis is<br />

the fact th<strong>at</strong> the majority <strong>of</strong> cases in Singapore (whose popul<strong>at</strong>ion is entirely<br />

urban) have no history <strong>of</strong> contact with soil or surface w<strong>at</strong>er, despite a clear<br />

associ<strong>at</strong>ion with rainfall. 168<br />

The evidence supporting an inhal<strong>at</strong>ional route for melioidosis is largely<br />

circumstantial. There is a clear rel<strong>at</strong>ionship between rainfall and melioidosis<br />

pneumonia, 167,169,170 and during the Vietnam War, an epidemiological link was<br />

found between the helicopter crewmen and melioidosis infection, 13 <strong>of</strong> whom<br />

many developed melioidosis pneumonia. This led to the conjecture th<strong>at</strong> the<br />

infection may have been due to inhal<strong>at</strong>ion <strong>of</strong> dust gener<strong>at</strong>ed by the helicopter<br />

rotors and th<strong>at</strong> inhal<strong>at</strong>ion <strong>of</strong> aerosolized bacteria may be an important mode <strong>of</strong><br />

infection. 17,181 D<strong>at</strong>a from animal models also appear to support this: the size <strong>of</strong><br />

inoculum needed to produce an equivalent effect in mice is four orders <strong>of</strong><br />

magnitude smaller than th<strong>at</strong> needed to infect the same inbred strains<br />

subcutaneously. 182 There is one case <strong>of</strong> labor<strong>at</strong>ory-acquired melioidosis<br />

reported in the liter<strong>at</strong>ure due to inhal<strong>at</strong>ion <strong>of</strong> aerosolized bacteria, 183 so human<br />

infection by this route is possible and viable bacteria have been found to be<br />

aerosolized by severe we<strong>at</strong>her events such as typhoons. 184<br />

A third possible route <strong>of</strong> infection is via ingestion. Melioidosis has been<br />

transmitted from mother to child via infected breast milk 185 and it is possible to<br />

infect mice by oral gavage, but the doses required are <strong>of</strong> the order <strong>of</strong> 10 8 cfu, 186<br />

which is an order <strong>of</strong> magnitude higher than th<strong>at</strong> required for subcutaneous<br />

infection, and <strong>at</strong> least six orders <strong>of</strong> magnitude higher than th<strong>at</strong> required for<br />

inhal<strong>at</strong>ion. Much <strong>of</strong> the popul<strong>at</strong>ion in Northeast Thailand draw their w<strong>at</strong>er from<br />

wells or other untre<strong>at</strong>ed w<strong>at</strong>er-sources th<strong>at</strong> may become contamin<strong>at</strong>ed with soil<br />

19


during the rainy season. Two outbreaks in Northern Australia were associ<strong>at</strong>ed<br />

with contamin<strong>at</strong>ion <strong>of</strong> drinking w<strong>at</strong>er, 187–189 but this does not necessarily mean<br />

th<strong>at</strong> the main mode <strong>of</strong> transmission in those outbreaks was ingestion, as potable<br />

w<strong>at</strong>er was also used for washing and b<strong>at</strong>hing.<br />

The tsunami <strong>of</strong> Boxing Day, 2004, was associ<strong>at</strong>ed with a spike in the<br />

incidence <strong>of</strong> melioidosis in affected areas. 190–196 Cases <strong>of</strong> human-to-human<br />

transmission have been described, but are exceptionally rare. 52,185,197,198 Vertical<br />

transmission has been described but is extremely rare. 199<br />

1.3 Clinical fe<strong>at</strong>ures <strong>of</strong> melioidosis<br />

A definitive diagnosis <strong>of</strong> melioidosis may only be made on the basis <strong>of</strong><br />

microbiology (please refer to section 0 below), 40,41 and the main limit<strong>at</strong>ion to<br />

diagnosis is the availability <strong>of</strong> adequ<strong>at</strong>e labor<strong>at</strong>ory facilities.<br />

Melioidosis has two main present<strong>at</strong>ions: acute and chronic. Paedi<strong>at</strong>ric<br />

disease is discussed in a separ<strong>at</strong>e section below.<br />

1.3.1 Acute melioidosis<br />

Acute melioidosis has no specific clinical fe<strong>at</strong>ures and should be suspected<br />

in any septic p<strong>at</strong>ient with a history <strong>of</strong> residence in or travel to an endemic area.<br />

The presence <strong>of</strong> a recognised risk factor (particularly <strong>diabetes</strong>) is helpful, but<br />

the absence <strong>of</strong> risk factors does not exclude melioidosis. Where an inocul<strong>at</strong>ing<br />

event has been noted, the mean incub<strong>at</strong>ion period is 9 days. 177<br />

In Northeast Thailand, the median dur<strong>at</strong>ion <strong>of</strong> symptoms prior to<br />

present<strong>at</strong>ion is 10 days. 200 Acute melioidosis is <strong>of</strong>ten dissemin<strong>at</strong>ed, with<br />

multiple sites being involved: 59–62% have bacteraemia and 49–56% have<br />

pneumonia 200,201 (appearances on the chest radiograph range from lobar<br />

pneumonia to widespread cotton wool p<strong>at</strong>ches); 28–52% have abscesses <strong>of</strong> the<br />

spleen and/or liver 200–202 and 23–27% have skin and/or s<strong>of</strong>t tissue infections<br />

(principally wound infections and skin abscesses; cellulitis and erysipelas are<br />

rare). 200,201 Other infections include those <strong>of</strong> the urinary tract (ranging from<br />

pyelonephritis to prost<strong>at</strong>itis to asymptom<strong>at</strong>ic bacteriuria), osteomyelitis, 203<br />

septic arthritis, 203 myositis, 203 ker<strong>at</strong>itis, 204 endophthalmitis, 205,206 orchitis, 207,208<br />

and mycotic aneurysms. 209 Mortality is 42·6%. 170<br />

Melioidosis in Australia presents in a similar manner to Thailand, with<br />

some notable exceptions. Mortality is much lower (14%), which may be rel<strong>at</strong>ed<br />

20


to differences in supportive care. 176 In Australia, 20% <strong>of</strong> male p<strong>at</strong>ients have<br />

prost<strong>at</strong>ic abscesses, 176 whereas this present<strong>at</strong>ion is rare in Thailand. It is not<br />

certain whether this is a true difference or whether it represents differences in<br />

the availability <strong>of</strong> imaging (computed tomography <strong>of</strong> the pelvis is not routinely<br />

performed in northeast Thailand).<br />

There exists in Australia a syndrome <strong>of</strong> encephalomyelitis (2·6% <strong>of</strong> cases),<br />

which manifests as a constell<strong>at</strong>ion <strong>of</strong> cerebellar signs, brainstem fe<strong>at</strong>ures and<br />

cranial nerve palsies. 176 Few abnormalities are visible on CT, but dram<strong>at</strong>ic<br />

changes are visible on MRI. 210 By contrast, neurological melioidosis in<br />

Southeast Asia (1·6% <strong>of</strong> cases in Northeast Thailand 211 ) presents with cerebral<br />

abscesses (which may be multiple). These usually present with seizures and/or<br />

focal neurological deficits and are clearly evident on CT. 212,211,213 In Singapore,<br />

four <strong>of</strong> five cases <strong>of</strong> cerebral melioidosis were linked to sinusitis. 213 Primary<br />

meningitis is extremely rare and there appears to be only one case reported in<br />

the liter<strong>at</strong>ure, 214 although meningitis has been reported to occur secondary to<br />

rupture <strong>of</strong> a cerebral abscess. 40<br />

1.3.2 Chronic melioidosis<br />

Chronic melioidosis (defined as disease with onset ≥2 months prior to<br />

present<strong>at</strong>ion 215 ) comprises 12% <strong>of</strong> all adult melioidosis cases. 215 It usually<br />

presents as localised disease, the majority <strong>of</strong> which are chronic non-healing<br />

localised skin or s<strong>of</strong>t tissue lesions, osteomyelitis, or pulmonary abscesses. It<br />

<strong>of</strong>ten resembles tuberculosis clinically and is well described in the<br />

liter<strong>at</strong>ure. 26,216–220 Survival is the norm: <strong>of</strong> 30 cases <strong>of</strong> chronic melioidosis<br />

reported in Northern Australia, all survived. 221<br />

21


A<br />

C<br />

E<br />

Figure 7. Clinical manifest<strong>at</strong>ions <strong>of</strong> melioidosis.<br />

Note.—Pulmonary melioidosis has a wide range <strong>of</strong> present<strong>at</strong>ions: A. Multiple bil<strong>at</strong>eral<br />

cotton wool p<strong>at</strong>ches. B. Left hilar lung abscess. C. Lobar pneumonia <strong>of</strong> the right upper<br />

lobe. D. Large liver abscess in a 32-year-old female. E. Right renal abscess in a 63-year-<br />

old female. F. Cutaneous abscess on the right arm <strong>of</strong> a 47-year-old male.<br />

All images ©2007–2008 Gavin Koh.<br />

D<br />

22<br />

B<br />

F


The majority <strong>of</strong> early cases reported were acute and fulminant, but it was<br />

recognised early on th<strong>at</strong> in a small number <strong>of</strong> p<strong>at</strong>ients, the present<strong>at</strong>ion could<br />

have an indolent onset and chronic course. The first two cases <strong>of</strong> chronic<br />

melioidosis were reported by Stanton & Fletcher in 1932, both with<br />

osteomyelitis. Both p<strong>at</strong>ients survived to discharge, although one p<strong>at</strong>ient<br />

continued to have discharging sinuses in his feet two years l<strong>at</strong>er. Grant and<br />

Barwell describe a case <strong>of</strong> melioidosis in a 27-year-old soldier who present<br />

initially in 1938 with septic arthritis <strong>of</strong> the right hip and ankle (initially<br />

diagnosed as gonorrhoea), who went on to develop chronic pneumonia and<br />

osteomyelitis <strong>of</strong> the frontal bone over the next five years. Mayer and Finlayson<br />

describe the case <strong>of</strong> a 33-year-old soldier who developed bil<strong>at</strong>eral lumbosacral<br />

abscesses while st<strong>at</strong>ioned in Singapore in 1940. A year l<strong>at</strong>er, he developed a<br />

chronic right lower lobe pneumonia and the lumbosacral abscesses were<br />

recognised to have arisen from osteomyelitis <strong>of</strong> the lower thoracic spine. He was<br />

initially diagnosed with tuberculosis, but the diagnosis was revised two years<br />

after present<strong>at</strong>ion in the light <strong>of</strong> B. pseudomallei being cultured from the pus.<br />

The p<strong>at</strong>ient had been unwell for 4 years <strong>at</strong> the time the report was published. 216<br />

1.3.3 Paedi<strong>at</strong>ric melioidosis<br />

In Thailand, there are two age peaks: one in early childhood (≤10 years,<br />

mean age 6·8 years) and one in middle age (≥45 years). 169,170,222 Paedi<strong>at</strong>ric<br />

melioidosis in Thailand is largely a benign condition. Two-thirds <strong>of</strong> cases<br />

present with localised disease 222 (38–40% <strong>of</strong> paedi<strong>at</strong>ric cases present with a<br />

unil<strong>at</strong>eral parotid abscess) and have a good prognosis. 223,224 A third present with<br />

pneumonia or bacteraemia and have a present<strong>at</strong>ion and prognosis similar to<br />

adult disease. 222 Preliminary reports from Cambodia suggest th<strong>at</strong> the spectrum<br />

<strong>of</strong> paedi<strong>at</strong>ric disease there appears similar to th<strong>at</strong> found in Thailand. 225<br />

23


Figure 8. A 2-year-old child with unil<strong>at</strong>eral parotitis <strong>at</strong><br />

Sappasithiprasong Hospital in Ubon R<strong>at</strong>ch<strong>at</strong>hani, Thailand.<br />

This 2-year-old male child developed swelling <strong>of</strong> his left cheek one week after playing in<br />

a freshw<strong>at</strong>er lake. The abscess was drained surgically and the child was discharged on<br />

oral co-amoxiclav. Image © 2008 Gavin Koh. Signed consent obtained from parents.<br />

In contrast to Thailand, Australia and Malaysia report no paedi<strong>at</strong>ric peak,<br />

and when melioidosis does occur in children, the present<strong>at</strong>ion and prognosis is<br />

similar to when it occurs in adults. 215,226–228,227 Paedi<strong>at</strong>ric melioidosis in<br />

Malaysia is associ<strong>at</strong>ed with immunocompromise (particularly haem<strong>at</strong>ological<br />

malignancy), 226 while paedi<strong>at</strong>ric melioidosis in Australia is associ<strong>at</strong>ed with<br />

cystic fibrosis. 227,229 Cultural differences may play a role: children in Northeast<br />

Thailand are accustomed to playing in flooded paddy fields (splashing around<br />

and c<strong>at</strong>ching the fish and crabs th<strong>at</strong> grow there: both an important part <strong>of</strong> the<br />

diet <strong>of</strong> Northeast Thailand). Their exposure to contamin<strong>at</strong>ed w<strong>at</strong>er is therefore<br />

much gre<strong>at</strong>er than in elsewhere, and the syndrome <strong>of</strong> unil<strong>at</strong>eral parotitis in<br />

paedi<strong>at</strong>ric p<strong>at</strong>ients appears confined to Thailand. 215,226<br />

1.3.4 Incub<strong>at</strong>ion period and l<strong>at</strong>ent melioidosis<br />

The only system<strong>at</strong>ic <strong>at</strong>tempt to measure the incub<strong>at</strong>ion period in<br />

melioidosis was made by Currie et al. in 2000: <strong>of</strong> 52 p<strong>at</strong>ients who reported an<br />

24


inocul<strong>at</strong>ing event, the mean time to onset <strong>of</strong> symptoms was 9 days (range 1 to<br />

21 days). 177<br />

However, the incub<strong>at</strong>ion period for melioidosis may be much longer.<br />

There were fewer than 300 cases <strong>of</strong> melioidosis among American soldiers<br />

during the Vietnam war, but additional cases continued to present many years<br />

after the war’s end, 230–232 earning it the name, ‘Vietnamese time bomb’. 233<br />

Incub<strong>at</strong>ion periods <strong>of</strong> 18 years 234 and 28 years 235 have been reported in a<br />

Vietnam veteran and a World War II veteran respectively. The longest reported<br />

incub<strong>at</strong>ion period is 62 years, in an American man who had been taken prisoner<br />

by the Japanese in 1942, who had worked building railroads in Singapore,<br />

Malaysia, Burma and Thailand. After the war, he returned to Texas and did not<br />

subsequently travel to a melioidosis endemic area. He presented in 2004 with a<br />

non-healing ulcer on his right hand following a dog bite and wound culture grew<br />

B. pseudomallei.<br />

L<strong>at</strong>ent melioidosis describes persistent clinically silent infection th<strong>at</strong> may<br />

activ<strong>at</strong>e many years after initial exposure or infection, and is named by analogy<br />

to l<strong>at</strong>ent tuberculosis. We do not know how to diagnose l<strong>at</strong>ent melioidosis,<br />

except retrospectively after reactiv<strong>at</strong>ion. There is no inform<strong>at</strong>ion as to whether<br />

serology for B. pseudomallei can identify l<strong>at</strong>ent melioidosis, or even whether<br />

neg<strong>at</strong>ive serology for B. pseudomallei excludes l<strong>at</strong>ent melioidosis.<br />

L<strong>at</strong>ent melioidosis seems to be uncommon and Currie et al. estim<strong>at</strong>e th<strong>at</strong><br />

l<strong>at</strong>ent disease accounts for no more than 4% <strong>of</strong> all cases. 177 There has not been<br />

an explosion <strong>of</strong> melioidosis cases in America despite the fact th<strong>at</strong> an estim<strong>at</strong>ed<br />

225,000 soldiers returning from Vietnam were seropositive. 236 The<br />

overwhelming majority <strong>of</strong> melioidosis cases are reported in endemic areas, are<br />

<strong>of</strong> seasonal onset, and occur during the rainy season, all <strong>of</strong> which suggest th<strong>at</strong><br />

recent acquisition and short incub<strong>at</strong>ion periods are the norm. 169,177 The available<br />

evidence supports the conclusion th<strong>at</strong> unlike l<strong>at</strong>ent tuberculosis, the majority <strong>of</strong><br />

p<strong>at</strong>ients with evidence <strong>of</strong> exposure to B. pseudomallei do not go on to develop<br />

clinical melioidosis, even if they do have silent infection. The only appropri<strong>at</strong>e<br />

recommend<strong>at</strong>ion therefore is clinical vigilance.<br />

Asymptom<strong>at</strong>ic carriage <strong>of</strong> B. pseudomallei is rare. Currie et al. describe a<br />

single case who was persistently sputum culture-positive for 12 months after<br />

stopping antimicrobial chemotherapy. 221 A single case <strong>of</strong> asymptom<strong>at</strong>ic thro<strong>at</strong><br />

25


carriage in 58-year-old Vietnamese female rice farmer was reported by Phung et<br />

al., 221,237,238 but Wuthiekanun found no instances <strong>of</strong> thro<strong>at</strong> carriage on screening<br />

3,524 Thai subjects. 239 P<strong>at</strong>ients with cystic fibrosis may harbour<br />

B. pseudomallei in their sputum even after appropri<strong>at</strong>e tre<strong>at</strong>ment. 240,241<br />

For all practical purposes, asymptom<strong>at</strong>ic carriage <strong>of</strong> B. pseudomallei is<br />

very rare. B. pseudomallei cannot be considered part <strong>of</strong> the normal human<br />

flora, and the presence <strong>of</strong> even a single colony should be considered diagnostic<br />

<strong>of</strong> melioidosis.<br />

1.3.5 Seroprevalence<br />

Melioidosis seroprevalence is defined as the prevalence in the general<br />

popul<strong>at</strong>ion <strong>of</strong> people with a serum titre for anti-B. pseudomallei antibodies<br />

within the diagnostic range for melioidosis.<br />

As early as 1932, Dutch and English workers both dismissed serodiagnosis<br />

as useless in the diagnosis <strong>of</strong> melioidosis, because titres in healthy controls were<br />

so high. 11,242 Post World War II, Brygoo working in Vietnam (1953) and Nigg<br />

working in Thailand (1963), both rediscovered the fact th<strong>at</strong> healthy persons may<br />

carry specific antibodies to B. pseudomallei in high titre. While evalu<strong>at</strong>ing<br />

serology as a method for diagnosing melioidosis, Brygoo noted th<strong>at</strong> 9·4% (24 <strong>of</strong><br />

255) Vietnamese controls had titres ≥1:40. 243 Nigg (apparently unaware <strong>of</strong><br />

Brygoo’s work) made her observ<strong>at</strong>ions as part <strong>of</strong> a trial <strong>of</strong> a killed<br />

B. pseudomallei vaccine conducted by the US military in Thailand. She found<br />

th<strong>at</strong> a proportion <strong>of</strong> the healthy Thai volunteers for her <strong>study</strong> had elev<strong>at</strong>ed titres<br />

<strong>of</strong> antibody (as high as 1:5,120) even prior to immunis<strong>at</strong>ion.<br />

B. pseudomallei is ubiquitously present in the soil in endemic areas, but<br />

seroprevalence varies gre<strong>at</strong>ly and survey results are hard to compare because <strong>of</strong><br />

differences in <strong>study</strong> popul<strong>at</strong>ion (hospitalised p<strong>at</strong>ients versus community-based<br />

studies) and in the cut-<strong>of</strong>f titre selected (Table 3). The highest seroprevalence<br />

recorded is in Northeast Thailand (Figure 9), 244 but seroprevalence throughout<br />

Southeast Asia is high (Table 3). Positive serology is therefore extremely<br />

common in otherwise healthy people in endemic areas such as Northeast<br />

Thailand and this severely limits the utility <strong>of</strong> serological tests during the<br />

investig<strong>at</strong>ion <strong>of</strong> suspected melioidosis.<br />

26


Seroprevalence (cut-<strong>of</strong>f) Study popul<strong>at</strong>ion Loc<strong>at</strong>ion Reference<br />

7·3% (1:40) 1,592 adults Malaysia Strauss 1969 157<br />

47·1% (1:40) 227 blood donors Thailand Khupulsup 1986 244<br />

0·73% (1:16) 683 soldiers Singapore Yap 1991 245<br />

83% (1:10), 22% (1:80) 295 children Thailand Charoenwong 1992 246<br />

21% (1:40) 406 adults Vietnam Phung 1993 237<br />

26·5% (1:40) 200 blood donors Malaysia Norazah 1996 247<br />

8·7% (1:40) 160 adults Australia O’Brien 2004 248<br />

38% (1:40), 7% (1:160) 968 adults Burma Wuthiekanun 2006 131<br />

8·2% (1:40) 747 children Papua New Guinea Warner 2007 249<br />

2·5% (1:40) 1,500 blood donors Australia Lazzaroni 2008 250<br />

16·4% (any reaction),<br />

6·5% (1:160)<br />

968 children Cambodia Wuthiekanun 2008 251<br />

Table 3. <strong>Summary</strong> <strong>of</strong> seroprevalence studies conducted using IHA.<br />

Figure 9. Seroprevalence rises with age in Northeast Thailand.<br />

The graph shows the distribution <strong>of</strong> IHA titres by age in 2,214 children from Northeast<br />

Thailand. The proportion <strong>of</strong> children with any detectable titre rises rapidly in the first four<br />

years <strong>of</strong> life then pl<strong>at</strong>eaus <strong>at</strong> 60–71%. By contrast, there is a gradual rise in the proportion<br />

<strong>of</strong> children with a titre <strong>of</strong> ≥1:160, and by age 13, a fifth <strong>of</strong> children have an antibody titre<br />

over 1:160. Figure taken from Wuthiekanun Am J Trop Med Hyg 2006;74:1074–5.<br />

27


There is conflicting evidence whether the high seroprevalence seen in<br />

endemic areas is due only to exposure to B. pseudomallei, or whether there is<br />

cross-reactivity with B. thailandensis. Tiyawisutsri et al. examined 117 Thai<br />

adult p<strong>at</strong>ients with culture-proven melioidosis and found th<strong>at</strong> their sera did not<br />

cross-react with B. thailandensis. 252 Gilmore et al. performed a similar <strong>study</strong> <strong>of</strong><br />

25 Australian p<strong>at</strong>ients with culture-proven melioidosis and found th<strong>at</strong> their sera<br />

did cross-react with B. thailandensis. 253 The methods used were similar except<br />

th<strong>at</strong> different strains were used in each <strong>study</strong>, but it is not clear whether this is<br />

sufficient to explain the difference in results obtained.<br />

1.4 Diagnosis<br />

1.4.1 Microbiology<br />

‘…there are, indeed, no cardinal symptoms upon which a trustworthy<br />

diagnosis can be based, and the true n<strong>at</strong>ure <strong>of</strong> the disease can be determined<br />

only by the cultiv<strong>at</strong>ion <strong>of</strong> the caus<strong>at</strong>ive organism…’<br />

28<br />

— A. T. Stanton & W. Fletcher, 1932<br />

An early complaint (first made in 1932) was th<strong>at</strong> melioidosis has no<br />

cardinal symptoms or signs on which to base a diagnosis. 11 Indeed, the clinical<br />

manifest<strong>at</strong>ions <strong>of</strong> melioidosis are protean and melioidosis most frequently<br />

presents as undifferenti<strong>at</strong>ed sepsis. Infection has been described in almost every<br />

organ in the human body, except th<strong>at</strong> melioidosis seldom, if ever, causes<br />

primary meningitis or endocarditis. 40<br />

A definitive diagnosis <strong>of</strong> melioidosis is made by isol<strong>at</strong>ing B. pseudomallei<br />

from any clinical specimen, because B. pseudomallei is not part <strong>of</strong> the normal<br />

human flora. 40,41 Stanton & Fletcher’s 1932 monograph advised th<strong>at</strong> a medical<br />

<strong>of</strong>ficer suspecting melioidosis in a p<strong>at</strong>ient, but who had no access to a<br />

labor<strong>at</strong>ory, should inocul<strong>at</strong>e guinea pigs with blood or pus, then send the<br />

infected animals to the nearest labor<strong>at</strong>ory for diagnosis. 11<br />

The identific<strong>at</strong>ion <strong>of</strong> even a single colony may clinch the diagnosis. Every<br />

p<strong>at</strong>ient with suspected melioidosis should have a set <strong>of</strong> blood cultures, urine<br />

specimen and a thro<strong>at</strong> swab taken. Sputum, swabs from skin lesions, pus/fluid<br />

from collections, etc. should be collected as indic<strong>at</strong>ed clinically. 41,239 Bone


marrow aspir<strong>at</strong>es <strong>of</strong>fer no benefits over blood culture. 254 Thro<strong>at</strong> swabs may be<br />

culture-positive regardless <strong>of</strong> the presence or absence <strong>of</strong> respir<strong>at</strong>ory<br />

symptoms. 239 Urine may be culture-positive even when there are no urinary<br />

symptoms. Thro<strong>at</strong> swabs and urine should therefore always be collected<br />

regardless <strong>of</strong> symptoms or signs.<br />

1.4.2 Serological diagnosis<br />

Serological diagnosis is the identific<strong>at</strong>ion <strong>of</strong> antibodies directed against<br />

B. pseudomallei in the serum <strong>of</strong> blood from p<strong>at</strong>ients with melioidosis. Antibody<br />

reactions to B. pseudomallei are common following environmental exposure,<br />

are not protective, 250 and high titres may be found in p<strong>at</strong>ients with melioidosis.<br />

Serological tests have therefore been the focus <strong>of</strong> the development <strong>of</strong> rapid<br />

diagnostic tests for melioidosis.<br />

The earliest reports measured the ability <strong>of</strong> p<strong>at</strong>ient serum to agglutin<strong>at</strong>e<br />

suspensions <strong>of</strong> whole bacteria. In 1932, De Moor et al., reporting from B<strong>at</strong>avia,<br />

Dutch East Indies (modern day Jakarta, Indonesia), considered the use <strong>of</strong><br />

serology to diagnose melioidosis, but dismissed it as having little value, 242<br />

because sera from normal controls agglutin<strong>at</strong>ed B. pseudomallei <strong>at</strong> titres<br />

≥1:400. They therefore suggested th<strong>at</strong> in the absence <strong>of</strong> positive cultures, only<br />

titres ≥1:1000 could be considered diagnostic. Harries et al. (1948) suggested<br />

th<strong>at</strong> a titre <strong>of</strong> 1:80 be reported as ‘significant’ and th<strong>at</strong> a titre <strong>of</strong> 1:160 was<br />

‘diagnostic’, based on the observ<strong>at</strong>ion th<strong>at</strong> the majority <strong>of</strong> 56 control sera taken<br />

from p<strong>at</strong>ients with other infections (principally syphilis) had no detectable titre<br />

and none had titres >1:20. 129 The difference between de Moor’s and Harries’<br />

results appears to be accounted for by the fact th<strong>at</strong> the controls used by de Moor<br />

were drawn from the n<strong>at</strong>ive popul<strong>at</strong>ion (who would be expected to have a high<br />

background exposure to B. pseudomallei), whereas the controls Harries used<br />

were mainly British soldiers (who came from a non-endemic area and would<br />

therefore not have had any exposure). Serological diagnosis based on<br />

agglutin<strong>at</strong>ing whole bacteria continued to be reported sporadically until 1958. 25<br />

Complement fix<strong>at</strong>ion tests have also been used. 255,256<br />

The only valid<strong>at</strong>ed serological test for melioidosis is the indirect<br />

haemagglutin<strong>at</strong>ion test (IHA). 257 IHA in its current form was described by<br />

Strauss et al. in 1968 256 (although he was not the first to use IHA in melioidosis:<br />

29


Nigg had described a version using human blood cells 5 years earlier 258 ). Sheep<br />

erythrocytes are ‘sensitised’ with B. pseudomallei antigen derived from broth<br />

cultures (called ‘melioidin’ by analogy to tuberculin) and the result reported is<br />

the maximum dilution <strong>of</strong> p<strong>at</strong>ient serum th<strong>at</strong> causes the sensitised erythrocytes<br />

to agglutin<strong>at</strong>e. The use <strong>of</strong> crude antigen in IHA means th<strong>at</strong> the strain (or mix <strong>of</strong><br />

strains) used may result in differences in performance, and results from studies<br />

performed using different strains may not be comparable.<br />

Strauss collected sera from 1,592 healthy persons resident in Malaysia and<br />

compared them to sera collected from 200 healthy persons resident in the US.<br />

He set a 1:40 cut-<strong>of</strong>f because none <strong>of</strong> the subjects in the US cohort had titres<br />

gre<strong>at</strong>er than 1:20. He then showed th<strong>at</strong> 7·3% <strong>of</strong> subjects in the Malaysian cohort<br />

had titres ≥1:40. Alexander et al. valid<strong>at</strong>ed the 1:40 cut-<strong>of</strong>f for IHA on 169<br />

melioidosis p<strong>at</strong>ients, using as controls, 201 US soldiers serving in Vietnam and<br />

Thailand and 200 control sera collected in the US, 256 and concluded th<strong>at</strong> the<br />

1:40 cut-<strong>of</strong>f was reliably specific for melioidosis.<br />

A limit<strong>at</strong>ion <strong>of</strong> IHA clearly evident in Alexander’s <strong>study</strong> was the high<br />

number <strong>of</strong> false neg<strong>at</strong>ives encountered in the first week <strong>of</strong> disease onset: only<br />

38–45% were positive <strong>at</strong> the 1:40 cut-<strong>of</strong>f during the first seven days. This is a<br />

problem, because around half <strong>of</strong> all the p<strong>at</strong>ients who die <strong>of</strong> acute melioidosis die<br />

within the first 48 hours <strong>of</strong> present<strong>at</strong>ion. 199,200,259 In the <strong>study</strong> performed by<br />

Alexander et al., the number <strong>of</strong> sera with reactions above the cut-<strong>of</strong>f increased<br />

to 88% in the second week, then pl<strong>at</strong>eaued <strong>at</strong> 89–100% in the third week.<br />

Alexander was not the first to make this observ<strong>at</strong>ion: de Moor reported this in<br />

1932, and one <strong>of</strong> his arguments against the use <strong>of</strong> serodiagnosis was th<strong>at</strong><br />

antibodies took too long to appear and serology was therefore useless in the<br />

majority <strong>of</strong> p<strong>at</strong>ients. 242<br />

This low sensitivity <strong>of</strong> IHA in acute melioidosis has been confirmed by<br />

subsequent studies, with studies in Thailand tending to report slightly higher<br />

sensitivities than elsewhere. Teparrugkul, in Ubon R<strong>at</strong>ch<strong>at</strong>hani, reported a<br />

sensitivity <strong>of</strong> 86% when using the 1:40 cut-<strong>of</strong>f and 70% when the cut-<strong>of</strong>f was<br />

1:160. 260 In Australia, only 56% <strong>of</strong> p<strong>at</strong>ients with culture-confirmed melioidosis<br />

had positive IHA results <strong>at</strong> admission (cut-<strong>of</strong>f 1:40), 261 but most p<strong>at</strong>ients with<br />

neg<strong>at</strong>ive titres <strong>at</strong> admission subsequently seroconverted. An applic<strong>at</strong>ion for IHA<br />

may therefore be in the diagnosis <strong>of</strong> p<strong>at</strong>ients with subacute or chronic disease<br />

30


who are culture-neg<strong>at</strong>ive, but in whom seroconversion or a rising titre can be<br />

demonstr<strong>at</strong>ed.<br />

The specificity <strong>of</strong> a test for melioidosis is defined as the percentage <strong>of</strong><br />

healthy people without melioidosis who test neg<strong>at</strong>ive for melioidosis. The<br />

specificity <strong>of</strong> IHA is therefore a function <strong>of</strong> the local seroprevalence for<br />

melioidosis (speaking imprecisely, it is 100%–seroprevalence). Specificity <strong>of</strong><br />

IHA is therefore low in areas <strong>of</strong> high seroprevalence, because the number <strong>of</strong><br />

false positives is high.<br />

Increasing the cut-<strong>of</strong>f used increases the specificity <strong>of</strong> IHA <strong>at</strong> the expense<br />

<strong>of</strong> decreasing the sensitivity. 262 In 1990, Appassakij et al. suggested a cut-<strong>of</strong>f <strong>of</strong><br />

1:160 and evalu<strong>at</strong>ed this in 373 healthy blood donors, 65 cord blood samples<br />

and 30 melioidosis p<strong>at</strong>ients. 263 He found th<strong>at</strong> <strong>at</strong> this cut-<strong>of</strong>f, sensitivity <strong>of</strong> the<br />

test was 77% and specificity was 92%. Consistent with earlier studies, the test<br />

was less likely to be positive in acute, fulminant melioidosis.<br />

Not all studies from Thailand have been able to achieve such high<br />

specificities. In the cohort reported by Teparrugkul (325 p<strong>at</strong>ients and 177<br />

controls), a 1:40 cut-<strong>of</strong>f gave a sensitivity <strong>of</strong> 86% and specificity <strong>of</strong> 38%; raising<br />

the cut-<strong>of</strong>f to 1:160 decreased sensitivity to 70%, but raised the specificity to<br />

only 67%, 260 with similar results obtained from a l<strong>at</strong>er cohort <strong>at</strong> the same<br />

centre. 264 In the cohort reported by Puapermpoonsiri (47 cases, 318 controls), a<br />

1:40 cut-<strong>of</strong>f gave a sensitivity <strong>of</strong> 83% and specificity <strong>of</strong> 90%, but increasing the<br />

cut-<strong>of</strong>f to 1:160 dropped the sensitivity to only 49% (specificity 97%). 265<br />

The performance <strong>of</strong> IHA has been even poorer outside <strong>of</strong> Thailand. In<br />

Malaysia, a cut-<strong>of</strong>f <strong>of</strong> 1:40 for IHA resulted in a sensitivity <strong>of</strong> 36.0% and<br />

specificity <strong>of</strong> 73·5%. 247 Raising the cut-<strong>of</strong>f to 1:80 dropped the sensitivity to<br />

29·0%, but increased the specificity to 80·5%. In Australia, Cheng et al. reported<br />

a sensitivity <strong>of</strong> only 56% in 275 p<strong>at</strong>ients with culture-confirmed melioidosis. 261<br />

An important exception is the island <strong>of</strong> Singapore, where melioidosis is<br />

endemic but the background seroprevalence is low: only 0·73% <strong>of</strong> 683 men in<br />

n<strong>at</strong>ional service had IHA titres ≥1:16, sera from 50 healthy blood donors and 50<br />

sewerage workers were all unreactive. 245 This means th<strong>at</strong> cut-<strong>of</strong>fs as low as 1:16<br />

may be used without sacrificing specificity. The low seroprevalence seen in<br />

Singapore may be explained by the fact th<strong>at</strong> the popul<strong>at</strong>ion <strong>of</strong> Singapore is<br />

31


100% urbanised. 266 Although the organism is present in the environment, the<br />

majority <strong>of</strong> the popul<strong>at</strong>ion have little or no contact with soil or surface w<strong>at</strong>er.<br />

The clinical significance <strong>of</strong> a positive IHA test in someone who is otherwise<br />

well is not certain, but has been regarded as a marker for previous exposure to<br />

B. pseudomallei. Its rel<strong>at</strong>ionship to l<strong>at</strong>ent melioidosis is unknown. The<br />

specificity <strong>of</strong> IHA for B. pseudomallei exposure has been disputed and there is<br />

conflicting evidence whether exposure to the non-virulent bacterium,<br />

B. thailandensis, might also be responsible for high IHA titres. 253,267,252<br />

A number <strong>of</strong> other serological tests have been evalu<strong>at</strong>ed including an<br />

indirect fluorescent antibody test for IgM specific antibody, 244 enzyme-linked<br />

immunosorbant assays (ELISA) for B. pseudomallei lipopolysaccharide (LPS) 269<br />

and for B. pseudomallei glycolipid, 270 as well as a commercial<br />

immunochromogenic cassette (PanBio, Queensland, Australia). 264,248,270–272,262<br />

None have so far supplanted IHA. 257<br />

The role <strong>of</strong> serological methods has been revised in a recent <strong>study</strong><br />

comparing culture against four serological tests. Using Bayesian l<strong>at</strong>ent class<br />

models, which allow for the fact th<strong>at</strong> culture results are an imperfect gold<br />

standard, the sensitivity <strong>of</strong> culture for diagnosing melioidosis has been<br />

estim<strong>at</strong>ed to be only 60·2%. 274 By contrast, LPS-based ELISAs have reasonable<br />

sensitivity (80·2%) and specificity (95·0%), and may be good candid<strong>at</strong>es to take<br />

forward for further development. 262<br />

1.5 Therapy<br />

1.5.1 Historical perspective<br />

The majority <strong>of</strong> reports <strong>of</strong> melioidosis in the pre-antibiotic era were post<br />

mortem. The mainstay <strong>of</strong> tre<strong>at</strong>ment was largely supportive, with drainage <strong>of</strong><br />

clinically evident collections and debridement <strong>of</strong> infected tissue. Non-<br />

chemotherapeutic therapies tried include autogenous vaccin<strong>at</strong>ion (isol<strong>at</strong>ing the<br />

organism, culturing it in a guinea pig, and then repe<strong>at</strong>edly inocul<strong>at</strong>ing the<br />

p<strong>at</strong>ient with the cultured bacterium). 275<br />

The first reported <strong>at</strong>tempt using modern antimicrobial chemotherapy to<br />

tre<strong>at</strong> melioidosis was in 1943, when Grant and Barwell <strong>at</strong>tempted to tre<strong>at</strong><br />

melioidosis osteomyelitis in a soldier with sulphadiazine. Although a good<br />

response was achieved, the p<strong>at</strong>ient relapsed each time the tre<strong>at</strong>ment was<br />

32


stopped. 26 Harries et al. noted th<strong>at</strong> sulphonamide monotherapy was ineffective<br />

in dissemin<strong>at</strong>ed disease. 129<br />

It was discovered early on th<strong>at</strong> penicillin was ineffective against<br />

B. pseudomallei in vitro, 275–277 as was the other wonder drug, streptomycin. 278<br />

However, chloramphenicol 279–281 and the tetracyclines 281,282 were active. In<br />

1952, Dunlop reported the successful tre<strong>at</strong>ment <strong>of</strong> a woman with melioidosis <strong>of</strong><br />

the ovary with surgical drainage and chlortetracycline. 283 However, any initial<br />

enthusiasm for the tetracyclines was tempered by the realis<strong>at</strong>ion th<strong>at</strong> resistance<br />

develops quickly both in vitro and in vivo. 284<br />

B. pseudomallei is intrinsically resistant to a wide variety <strong>of</strong> antimicrobial<br />

agents, including all penicillins (except the anti-pseudomonal penicillins), 280,285<br />

all macrolides, 286 all first and second-gener<strong>at</strong>ion cephalosporins 280 and<br />

polymyxins. 287 It is intrinsically resistant to all aminoglycosides, except th<strong>at</strong><br />

some strains are sensitive to kanamycin in vitro. 288,77,280 However, the<br />

aminoglycosides, as a class, have no intracellular penetr<strong>at</strong>ion 286 and are<br />

therefore ineffective clinically. There is one reported case <strong>of</strong> a woman who was<br />

successfully tre<strong>at</strong>ed with kanamycin, 183 but this was in combin<strong>at</strong>ion with<br />

tetracycline, to which the organism was susceptible.<br />

Until 1989, in Thailand, the conventional tre<strong>at</strong>ment for melioidosis was<br />

combin<strong>at</strong>ion therapy with co-trimoxazole, doxycycline and chloramphenicol. 259<br />

1.5.2 Current recommend<strong>at</strong>ions<br />

In its most serious manifest<strong>at</strong>ion, melioidosis causes severe sepsis<br />

associ<strong>at</strong>ed with hypotension and multiple organ failure, requiring intensive<br />

supportive therapy (fluid management, invasive monitoring and artificial<br />

ventil<strong>at</strong>ion). These measures likely play as gre<strong>at</strong> a role in the tre<strong>at</strong>ment <strong>of</strong><br />

melioidosis as do antibiotics. 289 Human-to-human transmission is very rare and<br />

p<strong>at</strong>ients may be safely accommod<strong>at</strong>ed on the open ward. 102-105<br />

Antimicrobial therapy for melioidosis is divided into two phases: an<br />

intensive phase (parenteral inp<strong>at</strong>ient therapy) and an eradic<strong>at</strong>ion phase (oral<br />

outp<strong>at</strong>ient therapy). 41 Current tre<strong>at</strong>ment recommend<strong>at</strong>ions are summarised in<br />

Table 4.<br />

33


1.5.3 Intensive phase<br />

Antibiotic therapy should be initi<strong>at</strong>ed as soon as possible, as there is<br />

evidence from other causes <strong>of</strong> sepsis th<strong>at</strong> delay in initi<strong>at</strong>ing appropri<strong>at</strong>e<br />

antimicrobial therapy increases mortality. 290,291 Without access to antimicrobial<br />

therapy, mortality from the bacteraemic form <strong>of</strong> melioidosis approaches 100%<br />

and in the pre-antibiotic era, almost all case series reported in the liter<strong>at</strong>ure<br />

were post mortem. 127,9<br />

Ceftazidime tre<strong>at</strong>ment was introduced in 1989, after it was shown th<strong>at</strong> it<br />

halved mortality compared to conventional therapy (co-trimoxazole,<br />

doxycycline and chloramphenicol). 259 The first-line tre<strong>at</strong>ment for melioidosis is<br />

high-dose intravenous ceftazidime 41,259 for ≥10 days, continued until there are<br />

clear signs <strong>of</strong> clinical improvement (principally defervescence). The median<br />

fever clearance time is 10 days despite adequ<strong>at</strong>e antimicrobial chemotherapy. 200<br />

Failure to defervesce is not therefore itself an indic<strong>at</strong>ion to change tre<strong>at</strong>ment<br />

and it is not uncommon for p<strong>at</strong>ients to require over a month <strong>of</strong> intravenous<br />

therapy.<br />

Carbapenems (principally, meropenem and imipenem) are routinely used<br />

in Australia. 132 Carbapenems may be preferred to ceftazidime because the<br />

minimum inhibitory concentr<strong>at</strong>ions (MIC) for imipenem and meropenem<br />

against B. pseudomallei are lower than those for ceftazidime, 288,292,77 and<br />

carbapenem therapy is associ<strong>at</strong>ed with lower levels <strong>of</strong> antibiotic-induced<br />

endotoxin release. 293 However, a head-to-head comparison <strong>of</strong> imipenem versus<br />

ceftazidime found no difference between the regimens, but the trial was stopped<br />

early owing to withdrawal <strong>of</strong> drug company support. 200 A multi-centre double-<br />

blind randomized-controlled trial comparing meropenem against ceftazidime<br />

started recruiting in 2007 (ClinicalTrials.gov NCT00579956).<br />

The addition <strong>of</strong> co-trimoxazole to standard ceftazidime therapy provides<br />

no benefit, 294,295 despite evidence from animal models to support the practice. 296<br />

However, co-trimoxazole has excellent tissue penetr<strong>at</strong>ion into brain and<br />

prost<strong>at</strong>e, so there is a theoretical benefit to adjunctive co-trimoxazole when<br />

tre<strong>at</strong>ing these infections. 41 Co-amoxiclav is an altern<strong>at</strong>ive to ceftazidime if none<br />

<strong>of</strong> the first-line drugs are available: 297 mortality is the same, but the risk <strong>of</strong><br />

tre<strong>at</strong>ment failure is higher. Co-amoxiclav may be useful in resource-poor<br />

settings where first-line drugs are not immedi<strong>at</strong>ely available.<br />

34


High intensive parenteral a Typical dose b Dur<strong>at</strong>ion<br />

ceftazidime 40 mg/kg (max. 2 g) tds, c or<br />

meropenem 25 mg/kg (max. 1 g) tds, or<br />

imipenem 20 mg/kg (max. 1 g) tds<br />

2 g every 8 h c<br />

1 g every 8 h<br />

1 g every 8 h<br />

Altern<strong>at</strong>ively,<br />

co-amoxiclav 20/4 mg/kg (max. 1000/200 mg) qqh e 1000/200 mg every 4 h<br />

Eradic<strong>at</strong>ion oral phase (Thailand)<br />

co-trimoxazole (60kg: 320/1600mg bd) +<br />

doxycycline 2 mg/kg (max. 100 mg) bd<br />

320/1600 mg every 12 h<br />

100 mg every 12 h<br />

35<br />

≥10 days, or until clear clinical<br />

improvement, which ever is longer d<br />

12–20 weeks<br />

Altern<strong>at</strong>ively,<br />

co-amoxiclav 60/15 mg/kg (max. 1500/375) tds f Eradic<strong>at</strong>ion oral phase (Australia)<br />

1500/375 mg every 8 h<br />

co-trimoxazole (60kg: 320/1600mg bd)<br />

320/1600 mg every 12 h 3–6 months<br />

Table 4. <strong>Summary</strong> <strong>of</strong> antimicrobial chemotherapy <strong>of</strong> melioidosis.<br />

Note.— bd = bis die; h = hours; max. = maximum; qds = qu<strong>at</strong>er die sumendus; qqh = quaque quarta hora; tds = ter die sumendus. The regimen<br />

quoted for Thailand is th<strong>at</strong> used <strong>at</strong> Sappasithiprasong Hospital, Ubon R<strong>at</strong>ch<strong>at</strong>hani. The regimen quoted for Australia is th<strong>at</strong> used <strong>at</strong> the Royal<br />

Darwin Hospital, Northern Territory. All doses require adjustment for renal function.<br />

a In Australia, oral co-trimoxazole is routinely added to parenteral therapy for infection <strong>of</strong> the central nervous system and for prost<strong>at</strong>itis, because <strong>of</strong><br />

the excellent penetr<strong>at</strong>ion <strong>of</strong> co-trimoxazole to these sites.<br />

b Typical dose for a 70 kg adult with normal renal function.<br />

c The Royal Darwin Hospital uses 50 mg/kg (maximum 2 g) qds. A typical dose is therefore 2 g every 6 hours.<br />

d Brain abscesses are routinely tre<strong>at</strong>ed with ≥4 weeks <strong>of</strong> parenteral antibiotics. Other deep se<strong>at</strong>ed abscess th<strong>at</strong> are not amenable to drainage may<br />

also require prolonged parenteral therapy.


e There is no parenteral prepar<strong>at</strong>ion <strong>of</strong> co-amoxiclav available in Australia. Ampicillin-sulbactam is available in a parenteral formul<strong>at</strong>ion, but there<br />

is no clinical experience <strong>of</strong> the use <strong>of</strong> this drug in melioidosis.<br />

f If co-amoxiclav prepar<strong>at</strong>ions are only available in a 2:1 r<strong>at</strong>io, then additional amoxicillin should be prescribed to achieve the correct r<strong>at</strong>io <strong>of</strong><br />

amoxicillin to clavulan<strong>at</strong>e. Co-amoxiclav is routinely used in children and pregnant women in Thailand, because doxycycline is rel<strong>at</strong>ively contra-<br />

indic<strong>at</strong>ed.<br />

36


Primary resistant to first-line agents is unusual (Table 5) and there is no<br />

evidence th<strong>at</strong> these r<strong>at</strong>es are changing. B. pseudomallei is an environmental<br />

organism, with no human-to-human transmission, and is largely unaffected<br />

therefore by antibiotic pressure in healthcare settings. Rarely, resistance can arise<br />

during the course <strong>of</strong> tre<strong>at</strong>ment, 298,299 and p<strong>at</strong>ients who remain febrile on tre<strong>at</strong>ment<br />

should have cultures repe<strong>at</strong>ed regularly to look for this. 299<br />

Cefoperazone-sulbactam has been shown to be equivalent to ceftazidime in a<br />

randomised controlled trial. 201 There are no obvious circumstances under which<br />

cefoperazone-sulbactam would be preferred to ceftazidime or a carbapenem, and<br />

the drug has not found a home in current guidelines. There is in vitro evidence for<br />

biapenem, 292 doripenem, 300 piperacillin-tazobactam 184,301 and tigecycline, 302–304<br />

but no clinical experience to support their use.<br />

CAZ IPM MEM AMC Region Reference<br />

99.5% 100% – 100% Thailand Dance 1989<br />

99% 100% 100% 100% Thailand Smith 1996 292<br />

100% 100% 100% 99.4% Australia Jenney 2001<br />

100% 100% 100% 100% Hong Kong Ho 2002 184<br />

98% a 100% a – 98% a Multiple Thibault 2004 77<br />

– – – 100% Singapore Sivalingam 2006 305<br />

– 100% 100% – Malaysia Karunakaran 2007 306<br />

99·4% 99·4% – 97·9% Singapore Tan 2008 285<br />

Table 5. Susceptibility <strong>of</strong> B. pseudomallei to first-line parenteral<br />

agents.<br />

Note.—CAZ = ceftazidime; IPM = imipenem; MEM = meropenem; AMC = co-amoxiclav.<br />

These results are for primary isol<strong>at</strong>es and do not include d<strong>at</strong>a from resistance acquired<br />

during the course <strong>of</strong> tre<strong>at</strong>ment. A dash indic<strong>at</strong>es th<strong>at</strong> th<strong>at</strong> agent was not tested. The<br />

breakpoints used are those defined by the Clinical Labor<strong>at</strong>ory Standards Institute in the US<br />

(CAZ ≤8 mg/l; IMP ≤4; MEM ≤4; AMC ≤8/2).<br />

a Breakpoints defined by Comité de l’Antibiogramme de la Société Française de<br />

Microbiologie, France (CAZ ≤32 mg/l; IMP ≤8; AMC ≤16/2).<br />

37


1.5.4 Eradic<strong>at</strong>ion phase<br />

Thirteen per cent <strong>of</strong> p<strong>at</strong>ients who survive a first episode <strong>of</strong> melioidosis go on<br />

to experience a recurrence <strong>of</strong> their disease: 221,307 75% <strong>of</strong> these are due to relapse<br />

with the same strain and 25% are due to re-infection. 307 The aim <strong>of</strong> eradic<strong>at</strong>ion<br />

therapy is to reduce the risk <strong>of</strong> relapse.<br />

Eradic<strong>at</strong>ion therapy is based on oral medic<strong>at</strong>ion and is usually conducted on<br />

an outp<strong>at</strong>ient basis. P<strong>at</strong>ients are not started on oral eradic<strong>at</strong>ion therapy until they<br />

are clinically well and ready for discharge home. The occasional p<strong>at</strong>ient with a<br />

solitary abscess th<strong>at</strong> is easily drained, who is afebrile, and who has no systemic<br />

signs or symptoms, may avoid the intensive phase and go straight onto oral<br />

eradic<strong>at</strong>ion therapy.<br />

Relapse is more likely in p<strong>at</strong>ients who have multifocal disease or bacteraemia<br />

<strong>at</strong> their first present<strong>at</strong>ion. 307 Regimens containing co-trimoxazole have the lowest<br />

relapse r<strong>at</strong>e. Cipr<strong>of</strong>loxacin monotherapy, cipr<strong>of</strong>loxacin/azithromycin combin<strong>at</strong>ion<br />

therapy and doxycycline monotherapy are associ<strong>at</strong>ed with higher relapse r<strong>at</strong>es and<br />

cannot be recommended. 307–310<br />

Unfortun<strong>at</strong>ely, none <strong>of</strong> the first-line tre<strong>at</strong>ments (ceftazidime, meropenem,<br />

imipenem) may be administered orally as they are not absorbed.<br />

Standard therapy in Thailand is combin<strong>at</strong>ion therapy with trimethoprim-<br />

sulphamethoxazole and doxycycline for 12–20 weeks; 311 standard therapy in<br />

Australia is co-trimoxazole alone. 132 It is not clear th<strong>at</strong> one therapy is superior to<br />

the other, and a double-blind randomised placebo-controlled trial to compare the<br />

two regimens, MERTH (Melioidosis Eradic<strong>at</strong>ion THerapy/THailand) has just been<br />

completed. The <strong>study</strong> finished recruitment in 2009 and completed follow-up in<br />

2010 (trial registr<strong>at</strong>ion ISRCTN86140460). A report is expected <strong>at</strong> the end <strong>of</strong><br />

2011. 312<br />

One potential benefit <strong>of</strong> co-trimoxazole monotherapy is th<strong>at</strong> co-trimoxazole<br />

and doxycycline are antagonistic in vitro. 313 It is also anticip<strong>at</strong>ed th<strong>at</strong> a simplified<br />

regimen would be better toler<strong>at</strong>ed, because those effects due to doxycycline would<br />

be elimin<strong>at</strong>ed (specifically, oesophageal ulcer<strong>at</strong>ion and photosensitivity, but also<br />

non-specific gastrointestinal effects such as nausea and vomiting) and because <strong>of</strong><br />

the smaller pill burden. The dose <strong>of</strong> co-trimoxazole used in Thailand was revised<br />

upwards in 2008 on the basis <strong>of</strong> evidence from pharmacokinetic modelling to be in<br />

line with th<strong>at</strong> used in Australia. 314<br />

38


1.5.5 Vaccin<strong>at</strong>ion<br />

There are currently no licensed vaccines for melioidosis. Currently, the best<br />

vaccine candid<strong>at</strong>es are live <strong>at</strong>tenu<strong>at</strong>ed vaccines, but none <strong>of</strong> these provide<br />

sterilising immunity and there are no vaccines currently in clinical trials. 315,316<br />

1.5.6 Post-exposure prophylaxis<br />

Most cases <strong>of</strong> accidental exposure are likely to occur in a clinical labor<strong>at</strong>ory<br />

processing a specimen not known or suspected to have B. pseudomallei. Given the<br />

lack <strong>of</strong> other evidence, recommend<strong>at</strong>ions for post-exposure prophylaxis are based<br />

on current tre<strong>at</strong>ment recommend<strong>at</strong>ions. Following a thorough risk assessment,<br />

post exposure prophylaxis with three weeks’ co-trimoxazole may be <strong>of</strong>fered. 317<br />

Workers intolerant <strong>of</strong> co-trimoxazole may be <strong>of</strong>fered co-amoxiclav instead.<br />

Workers who seroconvert may be <strong>of</strong>fered an extended course <strong>of</strong> therapy (12 weeks)<br />

and careful monitoring for the development <strong>of</strong> clinical disease.<br />

There are not currently any published recommend<strong>at</strong>ions for travellers with<br />

risk factors such as <strong>diabetes</strong> or cystic fibrosis who travel to endemic areas.<br />

1.5.7 Antisepsis<br />

B. pseudomallei is susceptible to 70% ethanol, 1% hypochlorite, 7% tincture<br />

<strong>of</strong> iodine, 0·05% benzalkonium chloride and 1% potassium permangan<strong>at</strong>e. 20,318 The<br />

commercial agents, Perasafe (DuPont, active ingredient peracetic acid) and<br />

Virkon® (DuPont, active ingredient commercial confidential, but known to<br />

include peracetic acid) are also bactericidal for B. pseudomallei. 318<br />

Five per cent phenol does not reliably disinfect B. pseudomallei. 20 Outbreaks<br />

<strong>of</strong> melioidosis have been associ<strong>at</strong>ed with contamin<strong>at</strong>ed hand wash. 319,320<br />

Chlorin<strong>at</strong>ion effectively tre<strong>at</strong>s drinking w<strong>at</strong>er: free chlorine concentr<strong>at</strong>ions<br />

normally used by w<strong>at</strong>er purific<strong>at</strong>ion plants in the West are ~1 mg/l, which is<br />

sufficient for the majority <strong>of</strong> strains <strong>of</strong> B. pseudomallei, but some Australian<br />

strains require ≥30 mg/l. 166,321–323<br />

1.6 Adjunctive therapies<br />

1.6.1 Granulocyte-colony stimul<strong>at</strong>ing factor<br />

The only adjunctive tre<strong>at</strong>ment ever studied in the specific context <strong>of</strong><br />

melioidosis was granulocyte colony stimul<strong>at</strong>ing factor (GCSF). 324 GCSF is a 20 kDa<br />

glycoprotein growth factor produced principally by endothelium and macrophages,<br />

39


th<strong>at</strong> stimul<strong>at</strong>es the prolifer<strong>at</strong>ion and differenti<strong>at</strong>ion <strong>of</strong> granulocyte precursors in<br />

the bone marrow. 325 Its principal medical applic<strong>at</strong>ion is to reduce the dur<strong>at</strong>ion <strong>of</strong><br />

neutropenia th<strong>at</strong> occurs in cancer chemotherapy and HIV. As a drug, its generic<br />

name is filgrastim, and is sold in the UK under the trade names Neupogen®,<br />

R<strong>at</strong>iograstim® and Zarzio®.<br />

The neutrophil response is critically important in the p<strong>at</strong>hogenesis <strong>of</strong><br />

melioidosis, 326 and the introduction <strong>of</strong> adjunctive therapy with GCSF coincided<br />

with a reduction in melioidosis mortality from 95% to 10% <strong>at</strong> one Australian<br />

centre. 327 Unfortun<strong>at</strong>ely, a single-centre randomised-controlled trial found no<br />

evidence <strong>of</strong> benefit. 324<br />

1.6.2 Intensive glucose management<br />

On the basis th<strong>at</strong> plasma glucose levels are <strong>of</strong>ten high in sepsis and th<strong>at</strong> high<br />

levels correl<strong>at</strong>e with mortality, it has been proposed th<strong>at</strong> intensive insulin therapy<br />

to tightly control glucose levels in the intensive care setting should decrease<br />

mortality in critically ill p<strong>at</strong>ients (not just p<strong>at</strong>ients with sepsis). 328 In a <strong>study</strong> <strong>of</strong><br />

1,548 surgical intensive care p<strong>at</strong>ients in Belgium, intensive insulin therapy (target<br />

range 4·4–6·1 mM) reduced mortality from 8·0% to 4·6%. 221 This is potentially<br />

relevant, because 57% <strong>of</strong> p<strong>at</strong>ients with melioidosis have <strong>diabetes</strong> or present with<br />

hyperglycaemia, 329 and, insulin/ glucose monitoring are routinely available <strong>at</strong><br />

provincial hospitals in Thailand.<br />

The van den Berghe <strong>study</strong> 221 was criticised on a number <strong>of</strong> counts:<br />

principally, th<strong>at</strong> this was a single centre <strong>study</strong>, most <strong>of</strong> the p<strong>at</strong>ients were admitted<br />

post-surgery, the <strong>study</strong> was open label, and the feeding regimen was unusual (all<br />

p<strong>at</strong>ients received a 200–300 g bolus <strong>of</strong> glucose <strong>at</strong> recruitment and total parenteral<br />

nutrition or enteral feeding was started within 24 hour <strong>of</strong> admission). 330 A repe<strong>at</strong><br />

<strong>study</strong> by the same investig<strong>at</strong>ors in the medical intensive care was unable to<br />

replic<strong>at</strong>e this finding. 331 Studies <strong>of</strong> intensive glucose control in the context <strong>of</strong><br />

myocardial infarction 332 and trauma 333 have also found no benefit. Conversely, a<br />

multi-centre trial <strong>of</strong> 6104 p<strong>at</strong>ients by other investig<strong>at</strong>ors found th<strong>at</strong> intensive<br />

insulin therapy (target 4·5–6·0 mM) in critically ill p<strong>at</strong>ients increased mortality. 334<br />

A meta-analysis <strong>of</strong> 26 trials (13,567 p<strong>at</strong>ients, including the d<strong>at</strong>a from NICE-<br />

SUGAR) 335 found th<strong>at</strong> intensive insulin therapy increases the risk <strong>of</strong><br />

hypoglycaemia without conferring any over mortality benefit to critically ill<br />

40


p<strong>at</strong>ients, and the only subgroup <strong>of</strong> p<strong>at</strong>ients found to benefit were surgical p<strong>at</strong>ients<br />

(pooled rel<strong>at</strong>ive risk 0·63, 95%CI 0·44–0·91). 335<br />

1.6.3 Immunosuppressants<br />

A recurring theme in the sepsis liter<strong>at</strong>ure is th<strong>at</strong> the inflamm<strong>at</strong>ory response is<br />

essential, yet high levels <strong>of</strong> inflamm<strong>at</strong>ion correl<strong>at</strong>e with mortality in observ<strong>at</strong>ional<br />

studies <strong>of</strong> human sepsis. 336 The prevailing theory has been th<strong>at</strong> mortality from<br />

sepsis is due to an uncontrolled inflamm<strong>at</strong>ory response: 336 the ‘cytokine storm’. 337<br />

This view has been supported by d<strong>at</strong>a from animal models <strong>of</strong> sepsis, 338–344 and th<strong>at</strong><br />

has in turn driven the clinical development <strong>of</strong> anti-inflamm<strong>at</strong>ory drugs as<br />

adjunctive therapies in sepsis.<br />

Multiple trials looking for a benefit from high-dose corticosteroids in severe<br />

sepsis and septic shock have not found any benefit, with some studies finding a<br />

detrimental effect. 345–348 Evidence for the use <strong>of</strong> low-dose corticosteroids in sepsis<br />

is mixed: a single multi-centre, placebo-controlled, randomised, double-blind trial<br />

<strong>of</strong> 300 intensive care p<strong>at</strong>ients with septic shock and rel<strong>at</strong>ive adrenal insufficiency<br />

(as measured by a cortocotrophin test) found a mortality benefit from low-dose<br />

corticosteroid and fludrocortisone, 349 but this result has not been possible to<br />

replic<strong>at</strong>e: one trial found th<strong>at</strong> low-dose corticosteroid reduced time on<br />

vasopressors but not mortality, 350 another multi-centre randomised placebo-<br />

controlled trial <strong>of</strong> 248 p<strong>at</strong>ients performed by the same investig<strong>at</strong>ors found no<br />

difference in mortality 351 and a further trial in p<strong>at</strong>ients with liver cirrhosis found<br />

th<strong>at</strong> the p<strong>at</strong>ients in the hydrocortisone arm had an increased incidence in relapse<br />

<strong>of</strong> shock. 352<br />

The results for anti-tumour necrosis factor-alpha (TNFα) therapy have been<br />

disappointing. Despite evidence from prim<strong>at</strong>e models th<strong>at</strong> anti-TNFα has a<br />

dram<strong>at</strong>ic effect on survival from Escherichia coli 353,354,338 and Staphylococcus<br />

aureus bacteraemia, 339 the result from multiple clinical trials is th<strong>at</strong> anti-TNFα<br />

therapy provides no benefit in sepsis. 355–359 In any case, results from mouse<br />

models <strong>of</strong> melioidosis would predict TNFα blockade to be detrimental. 360 Trials <strong>of</strong><br />

interleukin-1β beta blockade have been similarly disappointing, 361–363 despite<br />

promising results from animal models. 340–344<br />

41


1.6.4 Activ<strong>at</strong>ed protein C<br />

Activ<strong>at</strong>ed protein C (APC) is a serine protease th<strong>at</strong> is known primarily as an<br />

anticoagulant. Inactive protein C circul<strong>at</strong>es in the plasma and is cleaved to its<br />

active form by activ<strong>at</strong>ed thrombin. As a drug, its generic name is drotrecogin alfa<br />

(activ<strong>at</strong>ed), and its trade name is Xigris®.<br />

APC is the first (and currently, the only) US Food and Drug Administr<strong>at</strong>ion<br />

(FDA)-approved adjunctive tre<strong>at</strong>ment for severe sepsis. 364,365 Its approval was<br />

based on the results <strong>of</strong> a Phase III multi-centre double-blind placebo-controlled<br />

trial involving 1,690 sepsis p<strong>at</strong>ients in 164 centres in 11 countries (the PROWESS<br />

trial). 366 The trial results were published in 2001 and reported a 6% reduction in<br />

the absolute risk <strong>of</strong> de<strong>at</strong>h, accompanied by a 1·5% increase in the risk <strong>of</strong> serious<br />

bleeding events.<br />

Levels <strong>of</strong> protein C are low in melioidosis, 367,368 and we may specul<strong>at</strong>e th<strong>at</strong><br />

melioidosis p<strong>at</strong>ients with severe sepsis may benefit from APC therapy. No trials <strong>of</strong><br />

activ<strong>at</strong>ed protein C therapy are currently planned in melioidosis.<br />

1.6.5 Gamma interferon<br />

Gamma interferon (IFNγ) is necessary for the normal host defence against<br />

B. pseudomallei infection and IFNγ levels are indeed elev<strong>at</strong>ed in acute<br />

melioidosis. 369 Small doses <strong>of</strong> IFNγ gre<strong>at</strong>ly potenti<strong>at</strong>e the effect <strong>of</strong> ceftazidime in<br />

vitro and mouse models. 370 IFNγ supplement<strong>at</strong>ion is already used in the<br />

management <strong>of</strong> multi-drug resistant tuberculosis, and it seems reasonable to<br />

hypothesise th<strong>at</strong> p<strong>at</strong>ients with other infections caused by intracellular bacteria may<br />

benefit. 371 Using a mouse model <strong>of</strong> melioidosis, Propst et al. found th<strong>at</strong> IFNγ<br />

supplement<strong>at</strong>ion reduced 20-day mortality in ceftazidime-tre<strong>at</strong>ed animals from<br />

100% to 30% (p


a model organism do not necessarily transl<strong>at</strong>e to the clinical situ<strong>at</strong>ion, and findings<br />

made in one model may not necessarily correl<strong>at</strong>e with findings made in another<br />

model. Interpret<strong>at</strong>ion <strong>of</strong> the liter<strong>at</strong>ure is therefore an exercise akin to joining dots<br />

to form a picture, except th<strong>at</strong> the dots are unnumbered, some are optional, and<br />

many are not even printed on the same page.<br />

A B<br />

Figure 10. Histological fe<strong>at</strong>ures <strong>of</strong> human melioidosis.<br />

Note.—A Lung section taken post mortem from an 18-year-old female. Tangles <strong>of</strong><br />

extracellular bacteria are indic<strong>at</strong>ed by large arrow heads. Tangles <strong>of</strong> intracellular bacteria<br />

within macrophages and giant cells are indic<strong>at</strong>ed by thin arrows (magnific<strong>at</strong>ion ×1000). B A<br />

splenic granuloma with central necrosis (magnific<strong>at</strong>ion ×100) surrounded by foamy<br />

macrophages and multinucle<strong>at</strong>e giant cells (inset, magnific<strong>at</strong>ion ×400). Figures adapted from<br />

Wong Histop<strong>at</strong>hology 1995;26:51.<br />

1.7.1 Histology<br />

There are few histological descriptions <strong>of</strong> human melioidosis from<br />

Thailand because <strong>of</strong> strong cultural barriers to the collection <strong>of</strong> tissue<br />

specimens. The most recent descriptions come from a series <strong>of</strong> five post mortem<br />

cases and 14 biopsy specimens from Malaysia, 52 although older descriptions<br />

exist from the Vietnam War 17,374,375 and from before World War II. 11<br />

43


In the Malaysian series, Wong et al. describe areas <strong>of</strong> necrotising<br />

inflamm<strong>at</strong>ion containing mixtures <strong>of</strong> neutrophils, lymphocytes, macrophages and<br />

multinucle<strong>at</strong>e giant cells. Numerous bacteria are seen within these lesions and may<br />

occur both intra- and extracellularly (Figure 10). When they occur intracellularly in<br />

macrophages, the bacteria may be so numerous as to form globi. The lesions may<br />

sometimes form granulomas with central necrosis and surrounding foamy<br />

macrophages, which cause them to resemble tuberculosis or c<strong>at</strong>-scr<strong>at</strong>ch fever.<br />

1.7.2 The gamma interferon response in melioidosis<br />

B. pseudomallei is a facult<strong>at</strong>ive intracellular p<strong>at</strong>hogen, 79–81 and the host<br />

cytokine response to melioidosis may be appropri<strong>at</strong>ely summarised as an IFNγ<br />

response to an intracellular p<strong>at</strong>hogen. 369,376,377 While IFNγ elev<strong>at</strong>ion is not a<br />

general fe<strong>at</strong>ure <strong>of</strong> other causes <strong>of</strong> sepsis, 378,379 it is a fe<strong>at</strong>ure <strong>of</strong> infection caused by<br />

other intracellular organisms, such as Brucella species, 380 Mycob<strong>at</strong>erium<br />

tuberculosis, 381,382 Neisseria meningitidis, 383–385 and Salmonella Typhi. 386 This is<br />

to be expected, given th<strong>at</strong> a primary function <strong>of</strong> IFNγ is to stimul<strong>at</strong>e the killing <strong>of</strong><br />

intracellular p<strong>at</strong>hogens. 387–389<br />

The interferons were initially discovered in 1947 by Henle and Henle as a<br />

substance produced in the allantois <strong>of</strong> chick embryos infected with influenza th<strong>at</strong><br />

‘interfered’ with viral replic<strong>at</strong>ion. 390 This substance was given the name interferon<br />

by Isaacs and Lindeman in 1957, 391 but in the mid-1970’s, it was realised th<strong>at</strong><br />

interferon was not one protein but a mixture <strong>of</strong> proteins. 392,393 In 1979, Grob and<br />

Chadha separ<strong>at</strong>ed human ‘interferon’ into three fractions, l<strong>at</strong>er design<strong>at</strong>ed alpha,<br />

beta and gamma. 394 Macrophage activ<strong>at</strong>ing factor was first isol<strong>at</strong>ed in 1973 from<br />

guinea pig lymphocytes and found to activ<strong>at</strong>e the intracellular killing effects <strong>of</strong><br />

macrophages, 395 but it was cloning <strong>of</strong> the IFNγ gene (IFNG) in 1982 396,397 th<strong>at</strong><br />

brought the realis<strong>at</strong>ion th<strong>at</strong> IFNγ and MAF are the same molecule. 398–402<br />

In 1991, Brown et al. studied 65 melioidosis p<strong>at</strong>ients and found th<strong>at</strong> serum<br />

concentr<strong>at</strong>ions <strong>of</strong> IFNγ <strong>at</strong> admission were elev<strong>at</strong>ed in melioidosis, and th<strong>at</strong> the<br />

higher the serum concentr<strong>at</strong>ion <strong>of</strong> IFNγ, the more likely the p<strong>at</strong>ient was to die. 369<br />

There are two possible interpret<strong>at</strong>ions for this finding: the first is th<strong>at</strong> mortality is<br />

due to an inappropri<strong>at</strong>e and excessive inflamm<strong>at</strong>ory response. 403 The second is<br />

th<strong>at</strong> the inflamm<strong>at</strong>ory response is appropri<strong>at</strong>ely high, th<strong>at</strong> it correl<strong>at</strong>es with higher<br />

bacterial loads, disease severity, and hence, mortality. 376 The distinction is an<br />

44


important one: if the first is true, then suppressing IFNγ would be expected to<br />

decrease mortality; if the second is true, then suppressing IFNγ would be expected<br />

to increase mortality. Similar arguments may be made for other cytokines.<br />

Evidence for the first hypothesis comes from murine models <strong>of</strong> endotoxic<br />

shock (a model <strong>of</strong> septic shock induced with intravenous LPS). 404,405 Blocking<br />

antibodies directed against IFNγ prevented mortality from endotoxic shock 404 and<br />

IFNγ receptor knockout mice were also able to toler<strong>at</strong>e 100 to 1000-times more<br />

LPS than wild type mice. 405 However, the clinical relevance <strong>of</strong> d<strong>at</strong>a obtained from<br />

endotoxic shock models has been questioned repe<strong>at</strong>edly. 406–409<br />

Evidence in favour <strong>of</strong> the second hypothesis was obtained by Lauw et al. in<br />

her survey <strong>of</strong> 62 consecutive melioidosis p<strong>at</strong>ients. 376,377 Although she did not<br />

quantify bacterial loads, she found th<strong>at</strong> bacteraemic p<strong>at</strong>ients had higher levels <strong>of</strong><br />

IFNγ. 376 In murine models <strong>of</strong> melioidosis, blocking IFNγ increased susceptibility in<br />

Taylor outbred mice, lowering the intraperitoneal LD50 from 5 × 10 5 cfu to<br />

2 cfu, 373 whereas exogenous IFNγ supplement<strong>at</strong>ion improved survival. 370 Taken<br />

together, the experimental and clinical evidence support the conclusion th<strong>at</strong> IFNγ<br />

levels are appropri<strong>at</strong>ely elev<strong>at</strong>ed in melioidosis in response to the intracellular<br />

n<strong>at</strong>ure <strong>of</strong> the p<strong>at</strong>hogen and the severity <strong>of</strong> the disease.<br />

In mice, the primary source <strong>of</strong> the IFNγ are n<strong>at</strong>ural killer (NK) cells and<br />

memory CD8 + T-lymphocytes, 360,410 and this IFNγ response appears to be<br />

secondary to the synergistic action <strong>of</strong> IL12 and IL18. 360,410 Abl<strong>at</strong>ing either IL12 or<br />

IL18 abl<strong>at</strong>es the IFNγ response and worsens mortality. 360,411,412 This is supported<br />

by the clinical d<strong>at</strong>a, which shows elev<strong>at</strong>ions <strong>of</strong> IL18 in plasma 376 as well as<br />

elev<strong>at</strong>ions <strong>of</strong> IL18 mRNA in blood mononuclear cells 412 in melioidosis p<strong>at</strong>ients.<br />

45


Cytokine Primary source(s) <strong>Summary</strong> <strong>of</strong> functions References<br />

CXCL9 macrophage,<br />

various<br />

CXCL10 macrophage,<br />

various<br />

IFNγ NK, CD8,<br />

(macrophage)<br />

Secreted in response to<br />

IFNγ stimul<strong>at</strong>ion.<br />

Chemo<strong>at</strong>tractant for T cells<br />

and NK cells.<br />

Secreted in response to<br />

IFNγ stimul<strong>at</strong>ion.<br />

Chemo<strong>at</strong>tractant for T cells<br />

and NK cells.<br />

Secreted in response to IL12<br />

and IL18, Stimul<strong>at</strong>e<br />

macrophages and killing <strong>of</strong><br />

intracellular bacteria.<br />

IL6 macrophage Downstream <strong>of</strong> TLR<br />

activ<strong>at</strong>ion. Stimul<strong>at</strong>es<br />

monocyte differenti<strong>at</strong>ion to<br />

macrophage. Inhibits IL1β<br />

IL8 macrophages,<br />

endothelium<br />

IL12 monocytes,<br />

macropha<br />

ges 414,415<br />

IL15 monocytes,<br />

macrophages<br />

IL18 monocytes,<br />

macrophages<br />

and TNFα.<br />

Downstream <strong>of</strong> TLR<br />

activ<strong>at</strong>ion. Recruits<br />

neutrophils.<br />

Downstream <strong>of</strong> TLR<br />

activ<strong>at</strong>ion. Stimul<strong>at</strong>e IFNγ<br />

production. 416<br />

Stimul<strong>at</strong>es prolifer<strong>at</strong>ion <strong>of</strong><br />

NK cells. 416<br />

Produced by inflammasome<br />

activ<strong>at</strong>ion. Stimul<strong>at</strong>e IFNγ<br />

production. 360,411<br />

TNFα macrophages Downstream <strong>of</strong> TLR<br />

p<strong>at</strong>hways. Amplifies IFNγ<br />

production.<br />

46<br />

Lauw 2000 377<br />

Lauw 2000 377<br />

Santinarand 1999, 373<br />

Lauw 1999 376<br />

Friedland 1992 413<br />

Friedland 1992 413<br />

Lertmemongkolchai<br />

2001, 360 Koo 2006 410<br />

Lauw 1999 376<br />

Lertmemongkolchai<br />

2001, 360 Koo 2006 410<br />

Santinarand 1999, 373<br />

West 2008 417<br />

Table 6. Cytokines and chemokines involved in clinical melioidosis.<br />

Note.—CD = cluster <strong>of</strong> differenti<strong>at</strong>ion; CD8 = CD8-positive T-lymphocytes; IFN = interferon;<br />

IL = interleukin; NK = n<strong>at</strong>ural killer cells; TLR = Toll-like receptor; TNF = tumour necrosis<br />

factor. This table is restricted to those cytokines and chemokines th<strong>at</strong> have been measured in<br />

clinical melioidosis. This table is not intended to be a comprehensive list <strong>of</strong> cytokines<br />

known to play a role in the host response to melioidosis.


TNFα levels were measured in a clinical <strong>study</strong> <strong>of</strong> 55 melioidosis p<strong>at</strong>ients,<br />

and the presence <strong>of</strong> detectable plasma TNFα <strong>at</strong> admission correl<strong>at</strong>ed with<br />

mortality. 418 In mice, abl<strong>at</strong>ing TNFα reduces the magnitude <strong>of</strong> the IFNγ<br />

response by up to 30%, but does not abl<strong>at</strong>e it. 360 The rel<strong>at</strong>ionship <strong>of</strong> TNFα to<br />

IFNγ is circular, with TNFα being both upstream 373 as well as downstream <strong>of</strong><br />

IFNγ secretion. 419,420 One interpret<strong>at</strong>ion consistent with these d<strong>at</strong>a is th<strong>at</strong> the<br />

role <strong>of</strong> TNFα in melioidosis is to amplify the IFNγ response, but not to initi<strong>at</strong>e it.<br />

Downstream <strong>of</strong> IFNγ, CXCL9 (formerly called MIG) and CXCL10 (formerly<br />

IP-10) are secreted by a large variety <strong>of</strong> cell types in response to IFNγ<br />

stimul<strong>at</strong>ion. Plasma concentr<strong>at</strong>ions <strong>of</strong> both CXCL9 and CXCL10 are elev<strong>at</strong>ed in<br />

p<strong>at</strong>ients with melioidosis and levels were higher in p<strong>at</strong>ients with bacteraemia. 377<br />

CXCL9 and CXCL10 are T-cell and NK cell chemo<strong>at</strong>tractants 421 and probably<br />

work to amplify the IFNγ response.<br />

In clinical studies <strong>of</strong> melioidosis, plasma concentr<strong>at</strong>ions <strong>of</strong> IL6, IL8 and<br />

IL10 have also been found to be elev<strong>at</strong>ed and to correl<strong>at</strong>e with mortality (Table<br />

6). 413,422<br />

1.7.3 P<strong>at</strong>tern recognition receptors<br />

P<strong>at</strong>tern recognition receptors (PPRs) are a set <strong>of</strong> evolutionarily-conserved<br />

receptors present on leukocytes to identify p<strong>at</strong>hogen-associ<strong>at</strong>ed molecular<br />

p<strong>at</strong>terns (PAMPs), e.g., the lipopolysaccharide <strong>of</strong> Gram-neg<strong>at</strong>ive bacteria,<br />

lipoteichoic acid <strong>of</strong> Gram-positive bacteria and viral RNA. In evolutionary<br />

terms, these receptors pred<strong>at</strong>e the development <strong>of</strong> adaptive immunity and allow<br />

the inn<strong>at</strong>e host response to identify antigens th<strong>at</strong> are not ‘self’.<br />

The best studied <strong>of</strong> the p<strong>at</strong>tern recognition receptors are the Toll-like<br />

receptors (TLRs) and the Nod-like receptors (NLRs).<br />

1.7.4 Toll-like receptors and nuclear factor kappa B<br />

There are 13 human and mouse Toll-like receptors (TLR) described to<br />

d<strong>at</strong>e. 423–425 The TLRs are membrane-bound glycoprotein receptors and are<br />

members <strong>of</strong> the interleukin-1 receptor superfamily. 424 The TLRs are one <strong>of</strong> the<br />

more evolutionarily conserved parts <strong>of</strong> the inn<strong>at</strong>e immune system and may have<br />

origin<strong>at</strong>ed in the common ancestor <strong>of</strong> all bil<strong>at</strong>erian animals. 426,427 TLRs<br />

signalling (with the exception <strong>of</strong> TLR3) proceeds via the adaptor molecule,<br />

47


MyD88, 424 and the importance <strong>of</strong> the TLRs in the host response to<br />

B. pseudomallei infection has been demonstr<strong>at</strong>ed by the fact th<strong>at</strong> Myd88<br />

knockout mice are extremely susceptible to B. pseudomallei infection. 428 Mouse<br />

gene expression studies have also found upregul<strong>at</strong>ion <strong>of</strong> Tlr2, Tlr4 and Tlr7 in<br />

experimental melioidosis. 429<br />

A major downstream effect <strong>of</strong> TLR signalling is nuclear factor kappa B<br />

(NF-κB) activ<strong>at</strong>ion. NF-κB is a family <strong>of</strong> constitutively expressed protein<br />

complexes th<strong>at</strong> function as DNA transcription factors. These complexes are<br />

homo- or heterodimers <strong>of</strong> a family <strong>of</strong> five proteins, RELA (also called p65),<br />

RELB, c-REL, NF-κB1 (also called p50 and p105) and NF-κB2 (also called p52<br />

and p100).<br />

NF-κB is activ<strong>at</strong>ed by a wide range <strong>of</strong> stimuli, including cytokines (notably<br />

TNFα and IL1 430 ), growth factors, mitogens, oxid<strong>at</strong>ive stress, chemical stress,<br />

bacterial and viral antigens. Activ<strong>at</strong>ion <strong>of</strong> NF-κB causes it to move from the<br />

cytoplasm to the nucleus, where it regul<strong>at</strong>es the expression <strong>of</strong> several hundred<br />

genes, including several cytokines and chemokines (e.g., IL2, IL8, IL12, GM-<br />

CSF and CD40 ligand). 431,432 IL8 secretion is <strong>of</strong>ten used as a marker for TLR<br />

activ<strong>at</strong>ion, because it is produced in very large quantities. 152 NF-κB is a rapidly<br />

acting transcription factor, due to the fact th<strong>at</strong> it is constitutively expressed in<br />

the cytoplasm <strong>of</strong> cells and does not require new protein synthesis for its<br />

activ<strong>at</strong>ion.<br />

Aside from cytokine secretion, NF-κB activ<strong>at</strong>ion also promotes cell<br />

survival and prolifer<strong>at</strong>ion. 433,434 Although TLR activ<strong>at</strong>ion was initially believed<br />

to result in a non-specific NF-κB response, it is now known th<strong>at</strong> specific<br />

responses do occur: for example, TLR4 and 9 activ<strong>at</strong>ion produces a Th1-type<br />

response, but TLR2 activ<strong>at</strong>ion results in T regul<strong>at</strong>ory cell activ<strong>at</strong>ion. 435 The<br />

picture is also complic<strong>at</strong>ed by the fact th<strong>at</strong> there also exists extensive crosstalk<br />

both within the TLR family and between TLRs and other PRRs. 436,437<br />

The best described TLRs are members 1 to 9. Of these, TLRs 1, 2, 4, 5 and<br />

6 are loc<strong>at</strong>ed on the cell membrane where they form dimers. TLR2/TLR1 and<br />

TLR2/TLR6 form heterodimers th<strong>at</strong> recognises triacyl lipopeptide and diacyl<br />

lipopeptide respectively, and both will recognise lipoteichoic acid. 427,438 TLR4<br />

and TLR5 form heterodimers th<strong>at</strong> classically recognise lipopolysaccharide and<br />

48


flagellin respectively. 427 TLRs 3, 7, 8 and 9 are found intracellularly on the<br />

endosomal membrane, where they recognise single and double stranded RNA,<br />

and unmethyl<strong>at</strong>ed CpG oligodeoxynucleotides. 427<br />

In clinical melioidosis, Wiersinga et al. found increased expression <strong>of</strong><br />

TLR1, TLR2, TLR4, TLR5, and TLR8 in circul<strong>at</strong>ing blood leukocytes, 152 while<br />

levels <strong>of</strong> TLR3 and TLR7 were no different from controls. The lack <strong>of</strong> differential<br />

expression <strong>of</strong> TLR3 is unsurprising, as this TLR is restricted to dendritic cells,<br />

which do not circul<strong>at</strong>e; this is reflected in the low absolute expression values<br />

reported. 439 TLR7 is constitutively expressed by human plasmacytoid dendritic<br />

cells (PDC) and B lymphocytes: upon stimul<strong>at</strong>ion, expression <strong>of</strong> TLR7 increases<br />

in PDCs but decreases in B lymphocytes. 440 Wiersinga’s <strong>study</strong> did not<br />

distinguish between types <strong>of</strong> mononuclear cells and was therefore not designed<br />

to detect this type <strong>of</strong> differential expression.<br />

The increased expression <strong>of</strong> TLR4 accords with the fact th<strong>at</strong><br />

B. pseudomallei is a Gram-neg<strong>at</strong>ive organism and, as such, expresses the<br />

classical TLR4 ligand, LPS. 99,441,442 Other proteins in the endotoxin receptor<br />

complex, CD14 and LY96 (=MD2), were also upregul<strong>at</strong>ed in melioidosis<br />

p<strong>at</strong>ients 443 and it has also been reported th<strong>at</strong> TLR4 polymorphisms are<br />

associ<strong>at</strong>ed with an increased susceptibility to melioidosis, 444 however, the<br />

evidence for a role <strong>of</strong> TLR4 in melioidosis is contradictory. TLR4 appears to<br />

have no role in the inn<strong>at</strong>e host response to B. pseudomallei as evidenced by the<br />

fact th<strong>at</strong> Tlr4-knockout mice had no phenotype when compared to wild-type<br />

mice on a C57Bl/6 background. 152 Supporting evidence was provided by two<br />

studies using the closely-rel<strong>at</strong>ed organism, B. thailandensis, in Tlr4-knockout<br />

mice as well as the Tlr4-deficient C3H/HeJ mouse strain, both <strong>of</strong> which showed<br />

th<strong>at</strong> TLR4 is not a major player in sepsis caused by B. pseudomallei. 445,446 A<br />

possible explan<strong>at</strong>ion for the lack <strong>of</strong> a TLR4 response may be due to structural<br />

differences in the lipid A moiety <strong>of</strong> B. pseudomallei, which make it less<br />

immunoreactive. 447,99<br />

Although the ability <strong>of</strong> TLR2 to recognise lipoteichoic acid has led to it<br />

being described as a receptor for the recognition <strong>of</strong> Gram-positive organisms, 438<br />

TLR2 will also recognise E. coli LPS when associ<strong>at</strong>ed with lymphocyte<br />

antigen 96 (LY96). 448 Wiersinga reported th<strong>at</strong> TLR2 appears also to recognise<br />

B. pseudomallei LPS in transfected HEK293 cells, 152 but West et al. were unable<br />

49


to replic<strong>at</strong>ed this finding using a similar system. 417 There are no clear reasons to<br />

explain the conflicting results, but possibilities include strain differences in LPS<br />

structure 442 and the way in which NF-κB activ<strong>at</strong>ion was assessed (IL8<br />

production 152 versus a dual-luciferase reporter system 417 ).<br />

Nevertheless, if TLR2 is able to recognise B. pseudomallei LPS, th<strong>at</strong><br />

interaction is not beneficial to the host, because TLR2 knockout mice have<br />

reduced end-organ damage and improved survival, 152,446 which is contrary to<br />

wh<strong>at</strong> would be expected given the results <strong>of</strong> other mouse models <strong>of</strong> Gram-<br />

neg<strong>at</strong>ive infection. 449–452 The reason why Tlr2-knockouts are protected remains<br />

an open question.<br />

1.7.5 Nod-like receptors<br />

The Nod-like receptors (NLR) are cytosolic receptors named for the<br />

nucleotide-binding oligomeriz<strong>at</strong>ion domain (or Nod) th<strong>at</strong> they all possess.<br />

Unlike the TLRs, the NLRs are not membrane-bound: instead, they recognise<br />

antigens present in the cytosol.<br />

The NLRs are divided into two major subfamilies, the NLRCs (NLRC1 to 5)<br />

which possess a caspase recruitment domain and the NLRPs (NLRP1 to 14)<br />

which possess a pyrin domain. 453 A further three genes do not fall into either <strong>of</strong><br />

the two major families (NLRA, NLRB1, NLRX1). 453 Like the TLRs, the NLRs are<br />

evolutionarily conserved and are present in species as distantly rel<strong>at</strong>ed as sea<br />

urchins 454 and zebra fish, 455 although they are not present in insects or<br />

worms. 455<br />

The use <strong>of</strong> animal models to <strong>study</strong> NLRs is complic<strong>at</strong>ed by the fact th<strong>at</strong><br />

there is not a one-to-one correspondence between human and mouse NLRs:<br />

instead, there are 22 named human NLRs but 34 named mouse Nlrs. 453 For<br />

example, the NLRB family has only one human member (NLRB1) but seven<br />

mouse members (Nlrb1a to f). Similar discrepancies occur in all the families: so,<br />

although there is a human NLRP11, there does not exist a corresponding mouse<br />

Nlrp11. Many <strong>of</strong> the NLRs remain to be characterised, but are believed to<br />

function as p<strong>at</strong>tern-recognition receptors.<br />

NOD1 and NOD2 (also called NLRC1 and NLRC2) were the first NLRs to<br />

be described 456 and will activ<strong>at</strong>e NF-κB directly. 457 Stimul<strong>at</strong>ion <strong>of</strong> RAW264.7<br />

cells (transformed mouse monocytes) with B. pseudomallei causes upregul<strong>at</strong>ion<br />

50


<strong>of</strong> both Nod1 and Nod2. 458 However, no clinical or animal studies <strong>of</strong> NOD1 or<br />

NOD2 have been reported to d<strong>at</strong>e, so their role in melioidosis is as yet<br />

undescribed.<br />

1.7.6 NLRs, caspases, and the inflammasome<br />

The inflammasome is a large macromolecular multiprotein complex first<br />

described in 2002 by Martinon et al. in THP-1 cell lys<strong>at</strong>es (a human monocytic<br />

leukaemia line). 459 The inflammasome was named by analogy to the<br />

apoptosome, the multiprotein complex th<strong>at</strong> drives caspase-9 activ<strong>at</strong>ion. 460 The<br />

structure <strong>of</strong> the inflammasome has been confirmed by purifying and assembling<br />

the individual components in vitro. 461<br />

The inflammasome is a complex <strong>of</strong> three proteins: an NLR receptor, an<br />

adaptor protein, ASC, and caspase-1. Three NLRs are known to initi<strong>at</strong>e<br />

inflammasome assembly: NLRP1, NLRP3 and NLRC4, 460 and all three NLRs<br />

associ<strong>at</strong>e with caspase-1 via ASC. 459,462–467<br />

NLRP1 (also known as NALP1 and CARD7) was the first caspase-1<br />

activ<strong>at</strong>ing receptor identified. NLRP1 recognises muramyl dipeptide (MDP),<br />

which causes a conform<strong>at</strong>ional change in NLRP1 th<strong>at</strong> allows it to bind<br />

nucleotides and form oligomers, thus initi<strong>at</strong>ing inflammasome assembly. 460<br />

However, the mechanism by which it does so is unknown, because NLRP1 does<br />

not bind MDP. 460 NLRP3 (also known as cryopyrin and NALP3) is stimul<strong>at</strong>ed by<br />

LPS, MDP, and bacterial RNA, but assembly <strong>of</strong> the NALP3 inflammasome<br />

requires a second signal, such as extracellular ATP acting on the P2X7<br />

potassium channel 460 (other second signals include bacterial pore-forming<br />

toxins, silica and asbestos 460 ). NLRP3 will also recognise silica, asbestos and<br />

ur<strong>at</strong>e. 460 Neither NLRP1 nor NLRP3 have been studied in the context <strong>of</strong><br />

melioidosis.<br />

NLRC4 (also called IPAF and CARD12) will recognise flagellin as well as<br />

the basal body rod component <strong>of</strong> the B. pseudomallei type 3 secretion system. 468<br />

Salmonella enterica serovar Typhimurium, Legionella pneumophila and<br />

Pseudomonas aeruginosa appear to induce assembly <strong>of</strong> the NLRC4<br />

inflammasome via the cytosolic delivery <strong>of</strong> flagellin, which may explain why a<br />

functioning type III or type IV secretion system is necessary for NLRC4<br />

activ<strong>at</strong>ion. 466,467,469–471<br />

51


Nlrc4-knockout mice have an increased susceptibility to B. pseudomallei<br />

(F. Re, unpublished d<strong>at</strong>a 472 ). Unlike NLRP1 and NLRP3 activ<strong>at</strong>ion, NLRC4<br />

activ<strong>at</strong>ion is associ<strong>at</strong>ed with a special type <strong>of</strong> cell de<strong>at</strong>h called pyroptosis, and<br />

pyroptosis is a fe<strong>at</strong>ure <strong>of</strong> B. pseudomallei infection <strong>of</strong> macrophages. 473,474 Taken<br />

together, these d<strong>at</strong>a suggest th<strong>at</strong> the NLRC4 inflammasome may be more<br />

important than the NLRP1 or NLRP3 inflammasomes in melioidosis, but this<br />

hypothesis has not yet been addressed experimentally. Pyroptosis is discussed<br />

in more detail below.<br />

Caspase-1 was identified in the l<strong>at</strong>e 1980’s and early 1990’s as a cysteine<br />

protease expressed only in monocytes and macrophages, 475–480 and was initially<br />

given the name interleukin 1 converting enzyme or ICE. When the enzyme was<br />

cloned and sequenced in 1992, 480 it was found to be unrel<strong>at</strong>ed to any other<br />

known protein, but by 1996, a further nine human and mouse homologues had<br />

been found. 481 In 1996, ICE was renamed caspase-1 482 in recognition <strong>of</strong> the fact<br />

th<strong>at</strong> it was the first member <strong>of</strong> this new family to be discovered. There are<br />

currently 12 caspases recognised in humans and mice, 483 but caspase-12 is<br />

inactive in 64% <strong>of</strong> humans. 484<br />

The caspases were first studied in rel<strong>at</strong>ion to their role in apoptosis, 481 but<br />

three caspases (human caspase-1, -4, and -5; mouse caspase-1, -11 and -12) 485<br />

have roles in the processing and secretion <strong>of</strong> pro-inflamm<strong>at</strong>ory molecules. The<br />

only caspase for which we have detailed inform<strong>at</strong>ion in melioidosis is<br />

caspase-1. 473,474<br />

Caspase-1 is constitutively present in the cytosol as inactive<br />

pro-caspase-1. 479,480 Activ<strong>at</strong>ed caspase-1 is responsible for converting<br />

pro-IL1β 480 and pro-IL18 486–489 to their active forms, and will also cleave<br />

pro-caspase-7. 490 It is also responsible for a type <strong>of</strong> programmed cell de<strong>at</strong>h<br />

called pyroptosis, which occurs only in the context <strong>of</strong> inflamm<strong>at</strong>ion. 491,492<br />

Breitbach et al. studied experimental B. pseudomallei infection (100 cfu <strong>of</strong><br />

intranasal B. pseudomallei) in Casp1-knockout mice on a C57Bl/6<br />

background. 474 In this model, all Casp1-knockouts died ≤72 h after inocul<strong>at</strong>ion,<br />

whereas wild-type mice survived ≥6 days. Bacterial loads in lung, liver and<br />

spleen were also higher <strong>at</strong> 48 h in Casp1-knockouts compared to wild-type<br />

controls. This was confirmed by in vitro experiments, which showed th<strong>at</strong><br />

intracellular burdens <strong>of</strong> B. pseudomallei were 10-times higher in Casp1-<br />

52


knockout macrophages. Serum concentr<strong>at</strong>ions <strong>of</strong> IL18 and IFNγ were both<br />

reduced in Casp1-knockout mice.<br />

It has recently been discovered th<strong>at</strong> the most commonly used strain <strong>of</strong><br />

Casp1-knockout mouse is also caspase-11 deficient, 492 implying th<strong>at</strong> work done<br />

to d<strong>at</strong>e with this mouse may require re-evalu<strong>at</strong>ion.<br />

Caspase-3 is the only other caspase th<strong>at</strong> has been studied in melioidosis.<br />

Breitbach reported th<strong>at</strong> caspase-3 was activ<strong>at</strong>ed only when Casp1 was knocked<br />

out. 474 This is consistent with wh<strong>at</strong> we already know: i.e., B. pseudomallei-<br />

infected macrophages die by pyroptosis and not by apoptosis, and the function<br />

<strong>of</strong> caspase-3 is primarily the induction <strong>of</strong> apoptosis. 494–496 Nothing further is<br />

known <strong>of</strong> the role <strong>of</strong> caspase-3 in melioidosis. Other caspases (caspase-2, -4,<br />

and -8) have also been reported to be upregul<strong>at</strong>ed in a BALB/c murine model <strong>of</strong><br />

melioidosis, 429 but have not otherwise been studied.<br />

1.7.7 Caspase-1 substr<strong>at</strong>es: IL1β, IL18 and caspase-7<br />

Interleukin 1 was first identified by Gery in 1972 as a soluble factor<br />

produced by mouse peritoneal exud<strong>at</strong>e cells th<strong>at</strong> was capable <strong>of</strong> stimul<strong>at</strong>ing T<br />

lymphocyte prolifer<strong>at</strong>ion. 497–499 Based on this property, Gery proposed the<br />

name lymphocyte-activ<strong>at</strong>ing factor or LAF. Dinarello rediscovered the same<br />

cytokine in 1977 and called it leukocytic pyrogen. LAF and leukocytic pyrogen<br />

were shown to be the same in 1979, and renamed interleukin 1. 500 Interleukin 1<br />

was successfully cloned in 1985, which led to the realis<strong>at</strong>ion th<strong>at</strong> the IL1<br />

consisted <strong>of</strong> two distinct but closely rel<strong>at</strong>ed proteins, IL1α and IL1β. 501<br />

IL1β is secreted primarily by monocytes and macrophages and has myriad<br />

functions. 502 Its systemic effects are fever, headache, nausea, myalgia and<br />

f<strong>at</strong>igue. It has endocrine effects (up-regul<strong>at</strong>ion <strong>of</strong> cortisol and ACTH secretion,<br />

but depression <strong>of</strong> insulin secretion) and inflamm<strong>at</strong>ory effects, including the up-<br />

regul<strong>at</strong>ion <strong>of</strong> chemokines and cytokines (TNFα, IL6, IL8, G-CSF and GM-CSF),<br />

adhesion molecules (e.g., ICAM-1) and the activ<strong>at</strong>ion <strong>of</strong> CD4 + T lymphocytes, B<br />

lymphocytes and NK cells. 502<br />

Secretion <strong>of</strong> IL1β is a two-step process. 460 Pro-IL1β is not present in the<br />

cell in significant quantities, so pro-IL1β must first be transcribed and<br />

transl<strong>at</strong>ed. Pro-IL1β induction is medi<strong>at</strong>ed by NF- κB, and therefore requires<br />

either TLR or NOD2 activ<strong>at</strong>ion. 465 The second step is inflammasome assembly<br />

53


and cleavage <strong>of</strong> pro-caspase-1 to its active form, which in turn leads to the<br />

conversion <strong>of</strong> pro-IL1β to m<strong>at</strong>ure IL1β.<br />

In contrast to IL1β, preformed pro-IL18 is present in the cell in significant<br />

quantities, so secretion <strong>of</strong> IL18 is essentially a one-step process: viz., the<br />

cleavage <strong>of</strong> pro-IL18 to m<strong>at</strong>ure IL18 by caspase-1. 503 This means th<strong>at</strong> the IL18<br />

response always precedes the IL1β responses. Although pro-IL18 is expressed by<br />

a wide variety <strong>of</strong> cell types, the caspase-1 inflammasome is only assembled in<br />

monocytes or macrophages, 477,486,487 which are therefore the only source <strong>of</strong><br />

m<strong>at</strong>ure IL18.<br />

Caspase-7 has been called an executioner or effector caspase, 494 because it<br />

cleaves a large set <strong>of</strong> substr<strong>at</strong>es th<strong>at</strong> ultim<strong>at</strong>ely result in the hallmarks <strong>of</strong><br />

apopotosis, which are DNA fragment<strong>at</strong>ion and mitochondrial damage. 495,496<br />

Caspase-7 is upregul<strong>at</strong>ed in murine melioidosis, 429 but there is currently no<br />

published clinical d<strong>at</strong>a on caspase-7 in melioidosis. It seems unlikely th<strong>at</strong> the<br />

primary role <strong>of</strong> caspase-7 in melioidosis should be apoptosis-rel<strong>at</strong>ed since Sun<br />

et al. have already shown th<strong>at</strong> in the context <strong>of</strong> B. pseudomallei infection, the<br />

predominant mode <strong>of</strong> cell de<strong>at</strong>h is pyroptosis. In Legionella pneumophila<br />

infection, 504 caspase-7 has been shown to have a role in delivering endocytosed<br />

bacteria to the lysosome. Future studies on caspase-7 using B. pseudomallei<br />

may prove equally illumin<strong>at</strong>ing.<br />

1.7.8 Caspase-1, pyroptosis, and cytokine-independent killing<br />

Caspase-1 is responsible for inflamm<strong>at</strong>ion-rel<strong>at</strong>ed programmed cell de<strong>at</strong>h<br />

called pyroptosis, 491,492 which is distinct from apoptosis. Apoptosis is an energy-<br />

dependent process involving the orderly dismantling <strong>of</strong> a cell by DNA<br />

fragment<strong>at</strong>ion and blebbing, with minimal inflamm<strong>at</strong>ion. By contrast,<br />

pyroptosis is not energy-dependent: instead, it involves perfor<strong>at</strong>ion <strong>of</strong> the cell<br />

membrane, osmotic cell lysis and an accompanying burst <strong>of</strong> pro-inflamm<strong>at</strong>ory<br />

cytokines. 491 Pyroptosis is medi<strong>at</strong>ed by a macromolecular complex called the<br />

pyroptosome, which is similar to, but distinct from, the inflammasome. The<br />

pyroptosome is an oligomer, composed <strong>of</strong> multiple ASC dimers th<strong>at</strong> rapidly<br />

recruit and activ<strong>at</strong>e caspase-1. 492,505 A cell only ever assembles a single<br />

pyroptosome.<br />

54


Pyroptosis was originally described in S. Typhimurium infections <strong>of</strong> mouse<br />

macrophages. 491,492 Miao et al. found th<strong>at</strong> although pyroptosis destroys the<br />

macrophage, this causes the intracellular organisms to spill out into the<br />

extracellular milieu where they are killed. Although Miao’s primary<br />

observ<strong>at</strong>ions were <strong>of</strong> S. Typhimurium, he also studied B. thailandensis (which is<br />

closely rel<strong>at</strong>ed to B. pseudomallei) and found th<strong>at</strong> IL1β/IL18 double knockouts<br />

were still capable <strong>of</strong> controlling infection, but th<strong>at</strong> caspase-1 knockouts were<br />

not. This lead him to conclude th<strong>at</strong> caspase-1 is able to kill intracellular<br />

p<strong>at</strong>hogens by a cytokine-independent mechanism, most likely pyroptosis. 506<br />

Sun et al. showed th<strong>at</strong> B. pseudomallei induces caspase-1-dependent<br />

macrophage de<strong>at</strong>h, which is then accompanied by the release <strong>of</strong> IL1β and<br />

IL18. 473 Although the <strong>study</strong> pred<strong>at</strong>es the first description <strong>of</strong> the pyroptosome by<br />

two years, Sun found th<strong>at</strong> the process was dependent on the presence <strong>of</strong> a<br />

functional type 3 secretion system and membrane pore form<strong>at</strong>ion, before<br />

proceeding to cell swelling and lysis. 473 These are all characteristic <strong>of</strong> pyroptosis,<br />

even though Sun was not able to apply th<strong>at</strong> term to his observ<strong>at</strong>ions. It should<br />

be noted th<strong>at</strong> the precise mechanism by which pyroptosis destroys intracellular<br />

bacteria is unclear: Miao presented d<strong>at</strong>a suggesting th<strong>at</strong> the bacteria are<br />

subsequently destroyed by neutrophils, but Breitbach’s in vitro system still<br />

demonstr<strong>at</strong>ed an effect despite containing no neutrophils.<br />

The d<strong>at</strong>a from cytokine and p<strong>at</strong>tern recognition studies may be<br />

summarised thus: the story begins with B. pseudomallei infecting an imm<strong>at</strong>ure<br />

monocyte. The infected monocyte is not able to kill the intracellular bacteria<br />

using reactive oxygen species (ROS) or reactive nitrogen species (RNS) because<br />

it has not been stimul<strong>at</strong>ed by IFNγ. The monocyte is, however, able to assemble<br />

inflammasomes (and a pyroptosome) under NLRC4 stimul<strong>at</strong>ion. The infected<br />

monocyte sends out a cytokine distress signal (TLR-medi<strong>at</strong>ed IL12 and NLR-<br />

medi<strong>at</strong>ed IL18) before destroying itself and the bacteria by pyroptosis. The<br />

distress signal is picked up by NK and CD8 + cells, which gener<strong>at</strong>e and amplify<br />

the critical IFNγ signal. The IFNγ signal then activ<strong>at</strong>es intracellular killing<br />

mechanisms in other cells.<br />

55


1.7.9 Monocytes and macrophages<br />

Circul<strong>at</strong>ing monocytes may be stimul<strong>at</strong>ed to differenti<strong>at</strong>e into any one <strong>of</strong><br />

three cells types: dendritic cells, Langerhans cells, or macrophages. 507 Monocyte<br />

differenti<strong>at</strong>ion is directed by exposure to different environmental factors<br />

encountered as the monocyte progresses from the peripheral circul<strong>at</strong>ion to the<br />

tissues. Exposure to IL4 and granulocyte-macrophage colony stimul<strong>at</strong>ing factor<br />

(GM-CSF) causes monocytes to become dendritic cells; 508–510 exposure to IL15<br />

plus GM-CSF causes monocytes to become Langerhans cells; 511 while exposure<br />

to IL6, 512,513 IL10 514 and macrophage colony stimul<strong>at</strong>ing factor (M-CSF) 513<br />

causes them to m<strong>at</strong>ure into macrophages. Concentr<strong>at</strong>ions <strong>of</strong> M-CSF have never<br />

been measured in acute melioidosis, but plasma levels <strong>of</strong> IL6 and IL10 are<br />

high, 413,422 which supports a role for macrophages in melioidosis. IFNγ levels are<br />

also high in acute melioidosis, 369,376 and IFNγ is able to direct monocytes to<br />

differenti<strong>at</strong>e into macrophages by stimul<strong>at</strong>ing autocrine IL6 and M-CSF<br />

production. 507<br />

In melioidosis, macrophages are the principal orchestr<strong>at</strong>ors <strong>of</strong> the host<br />

cytokine response. They are the generals and neutrophils are the foot soldiers.<br />

Although capable <strong>of</strong> killing B. pseudomallei, their primary function is not to kill,<br />

but to initi<strong>at</strong>e the host cytokine response (by secreting IL12, IL18 and<br />

TNFα), 360,373,411 in inflammasome activ<strong>at</strong>ion, 474 and in recruiting neutrophils to<br />

the site <strong>of</strong> inflamm<strong>at</strong>ion (by secreting IL1β 515,516* and chemo<strong>at</strong>tractants such as<br />

IL8).<br />

B. pseudomallei is a facult<strong>at</strong>ive intracellular p<strong>at</strong>hogen, and monocytes are<br />

an important target. 52,79,80 Macrophages are susceptible to being parasitized by<br />

B. pseudomallei and may be subverted to become incub<strong>at</strong>ors for bacterial<br />

replic<strong>at</strong>ion in human tissues. 52 The effective host response therefore depends on<br />

IFNγ stimul<strong>at</strong>ion. Macrophages stimul<strong>at</strong>ed by IFNγ are thought to kill<br />

intracellular p<strong>at</strong>hogens by producing a burst <strong>of</strong> reactive nitrogen intermedi<strong>at</strong>es<br />

(RNI) (principally the production <strong>of</strong> nitric oxide from L-arginine, but also<br />

nitrogen dioxide and nitrous acid) and reactive oxygen species (ROI) (e.g.,<br />

superoxide anion, peroxide, hydroxyl radical and singlet oxygen). 517–520 RNIs<br />

* IL1β is not chemo<strong>at</strong>tractant per se, but it induces the secretion <strong>of</strong> chemo<strong>at</strong>tractants and the<br />

expression <strong>of</strong> cell adhesion molecules on the endothelium.<br />

56


and ROIs both appear to have a role in killing B. pseudomallei, 521,522 with the<br />

role <strong>of</strong> RNIs possible more important than th<strong>at</strong> <strong>of</strong> ROIs, 521 but they are not the<br />

only mechanism by which stimul<strong>at</strong>ed macrophages are able to kill<br />

B. pseudomallei 519,523 and lysosomal killing is probably important. 524<br />

1.7.10 Lymphocytes<br />

Host defences to melioidosis are dependent on macrophage-lymphocyte<br />

interactions, 525 but, unusually, T cell help does not predomin<strong>at</strong>e in this<br />

rel<strong>at</strong>ionship.<br />

In mouse models <strong>of</strong> melioidosis, the primary source <strong>of</strong> IFNγ is n<strong>at</strong>ural<br />

killer (NK) cells and CD8 + T lymphocytes (<strong>at</strong> least in the earliest stages <strong>of</strong> the<br />

host response). 360,373,411 This stands in marked contrast to other p<strong>at</strong>hogens such<br />

as Leishmania major 526,527 and Mycobacterium tuberculosis, 528,529 where IFNγ<br />

is produced primarily by CD4 + T lymphocytes. The lack <strong>of</strong> a role for helper T<br />

cells in the initial host response to melioidosis means th<strong>at</strong> it lies outside the<br />

Th1/Th2 paradigm within which host responses are usually defined. 530 This may<br />

also explain why clinical epidemiological studies have not found HIV infection<br />

to be a risk factor for melioidosis 180 (unlike other intracellular infections like<br />

leishmaniasis 531,532 and tuberculosis 533,534 ), because HIV depletes CD4 + cells<br />

without depleting NK or CD8 + cells. 535<br />

A role has been found for CD4 + cells in l<strong>at</strong>er stages <strong>of</strong> melioidosis in mouse<br />

models, 411 which leads one to specul<strong>at</strong>e th<strong>at</strong> melioidosis p<strong>at</strong>ients co-infected<br />

with HIV may have an increased risk <strong>of</strong> recurrence, but the small number <strong>of</strong><br />

p<strong>at</strong>ients co-infected with HIV and melioidosis makes it difficult to collect<br />

enough epidemiological d<strong>at</strong>a to examine this question adequ<strong>at</strong>ely. 180,307,536<br />

1.7.11 Neutrophils<br />

The neutrophil chemo<strong>at</strong>tractant, IL8 (also called CXCL8), is present in<br />

elev<strong>at</strong>ed concentr<strong>at</strong>ions in clinical melioidosis. 413 Mice do not have IL8, but do<br />

express the rel<strong>at</strong>ed chemokines, CXCL1, CXCL2, and CXCL5, all <strong>of</strong> which are<br />

elev<strong>at</strong>ed in experimental melioidosis. 242 Unsurprisingly, leukocytosis is a<br />

fe<strong>at</strong>ure <strong>of</strong> acute clinical melioidosis and this leucocytosis is predominantly a<br />

neutrophilia. 242<br />

The role <strong>of</strong> neutrophils in experimental B. pseudomallei infection has been<br />

demonstr<strong>at</strong>ed convincingly in two mouse studies. 326,537 Bacteria were detectable<br />

57


y flow cytometry ≥24 hours after infection, and the only cell type with which<br />

bacteria were measurably associ<strong>at</strong>ed were neutrophils, not monocytes or<br />

macrophages. The bacteria were confirmed to be intracellular by confocal<br />

microscopy, but the viability <strong>of</strong> these bacteria was not confirmed. 537 The ability<br />

<strong>of</strong> B. pseudomallei to invade and replic<strong>at</strong>e within neutrophils has been<br />

confirmed by multiple independent teams, 79,80,538,539 but the question <strong>of</strong><br />

whether neutrophils are a site for B. pseudomallei survival and replic<strong>at</strong>ion in<br />

vivo remains to be answered.<br />

Neutrophils are an important part <strong>of</strong> the host defence against melioidosis,<br />

and animals in whom neutrophil function is compromised do worse <strong>at</strong><br />

controlling the infection. Easton et al. abl<strong>at</strong>ed neutrophils using a monoclonal<br />

antibody against Ly6g (formerly called Gr1) and found th<strong>at</strong> bacterial loads were<br />

much higher after four days than in untre<strong>at</strong>ed mice. 326 Secreted<br />

phosphoprotein 1 (SPP1, formerly called osteopontin) is a 33 kDa extracellular<br />

m<strong>at</strong>rix protein th<strong>at</strong> is cleaved by thrombin during inflamm<strong>at</strong>ion to reveal a<br />

cryptic sequence th<strong>at</strong> is recognised by integrin receptors present on<br />

neutrophils. 540 SPP1 therefore plays a role in the neutrophil recruitment during<br />

melioidosis. In agreement with Easton’s results, van der Windt et al. found th<strong>at</strong><br />

Spp1-knockout mice had fewer neutrophils <strong>at</strong> the site <strong>of</strong> infection, had higher<br />

bacterial loads and worse survival. 242 Plasminogen activ<strong>at</strong>or, urokinase receptor<br />

(Plaur, formerly called uPAR or CD87) is expressed by neutrophils and has also<br />

been shown to be necessary for neutrophil recruitment, probably via an effect<br />

on integrin expression. 242 Again, Plaur-knockout mice had a reduced ability to<br />

recruit neutrophils to an area <strong>of</strong> infection and had a reduced ability to clear<br />

B. pseudomallei, although this time, survival was marginally better in Plaur<br />

knockout mice. 541 This apparent contradiction might be explained by the fact<br />

th<strong>at</strong> Plaur also promotes phagocytosis 541 and B. pseudomallei is capable <strong>of</strong><br />

subverting leukocyte endocytosis to further its own survival.<br />

Part <strong>of</strong> the difficulty with <strong>study</strong>ing neutrophils has been th<strong>at</strong> freshly<br />

isol<strong>at</strong>ed neutrophils die within hours <strong>of</strong> stimul<strong>at</strong>ion with live bacteria. It now<br />

appears th<strong>at</strong> this self-destruction is due to a newly described form <strong>of</strong><br />

neutrophil-medi<strong>at</strong>ed killing, in which neutrophils expel their own chrom<strong>at</strong>in to<br />

form extracellular traps (NET). 542 The role <strong>of</strong> NETs in the host response to<br />

58


B. pseudomallei remains to be explored, but seem likely to be an important part<br />

<strong>of</strong> the host response to melioidosis.<br />

1.8 Diabetes and infection<br />

Diabetes mellitus is a heterogenous group <strong>of</strong> disorders characterized by<br />

chronic elev<strong>at</strong>ion <strong>of</strong> serum glucose levels. The majority <strong>of</strong> <strong>diabetes</strong> cases are<br />

primary and idiop<strong>at</strong>hic, but a minority <strong>of</strong> cases occur secondary to other<br />

conditions. Primary <strong>diabetes</strong> is divided into types 1 and 2, with type 1 <strong>diabetes</strong><br />

being primarily a disease <strong>of</strong> insulin-deficiency with onset in childhood, resulting<br />

from the loss <strong>of</strong> insulin-producing beta-islet cells <strong>of</strong> the pancreas. Type 2<br />

<strong>diabetes</strong> is associ<strong>at</strong>ed with obesity, 543,544 increasing age 544–546 and family<br />

history. 547 The primary lesion is not insulin deficiency, but insulin resistance,<br />

with the tissues requiring ever higher concentr<strong>at</strong>ions <strong>of</strong> insulin to achieve the<br />

same effect. Diabetes may also occur secondary to pregnancy, 548 corticosteroid<br />

use, 549–552 Cushing’s disease, 553 pancre<strong>at</strong>itis, 554 pancre<strong>at</strong>ic resection, 554 cystic<br />

fibrosis, 555 haemochrom<strong>at</strong>osis (both primary 556 and secondary 557 ) and<br />

acromegaly. 558,559<br />

The majority <strong>of</strong> cases th<strong>at</strong> occur worldwide are due to type 2 <strong>diabetes</strong> and<br />

there is a problem <strong>of</strong> under diagnosis, even in developed countries, 560 because<br />

p<strong>at</strong>ients <strong>of</strong>ten feel well in the early stages <strong>of</strong> type 2 <strong>diabetes</strong> and because<br />

screening programmes are not <strong>of</strong>ten in place. In 2010, there were an estim<strong>at</strong>ed<br />

347 million adults worldwide with <strong>diabetes</strong> and th<strong>at</strong> number is projected to<br />

increase. 546 Although age standardised r<strong>at</strong>es <strong>of</strong> <strong>diabetes</strong> are not increasing in<br />

Southeast Asia, the number <strong>of</strong> p<strong>at</strong>ients with <strong>diabetes</strong> is increasing due to<br />

popul<strong>at</strong>ion growth and aging. 546 However, the epidemiology <strong>of</strong> <strong>diabetes</strong> in<br />

Thailand is complic<strong>at</strong>ed by the fact th<strong>at</strong> <strong>diabetes</strong> in Thailand is associ<strong>at</strong>ed with<br />

rel<strong>at</strong>ive insulin deficiency, not just insulin resistance. 775 The reasons for this are<br />

not known.<br />

1.8.1 Diabetes and infection<br />

P<strong>at</strong>ients with <strong>diabetes</strong> mellitus have an increased risk <strong>of</strong> developing<br />

infections and sepsis, 561,562 and constitute 20·1–22·7% <strong>of</strong> all sepsis<br />

p<strong>at</strong>ients. 334,563 This associ<strong>at</strong>ion was first observed a thousand years ago by<br />

Avicenna (980–1027 CE), who noted th<strong>at</strong> <strong>diabetes</strong> was frequently complic<strong>at</strong>ed<br />

by tuberculosis. 564 In the pre-insulin era, Joslin noted in a series <strong>of</strong> 1000 cases<br />

59


th<strong>at</strong> diabetic coma was usually precipit<strong>at</strong>ed by infection. 565 Even today,<br />

infection remains an important cause <strong>of</strong> de<strong>at</strong>h in diabetics. 566 Much <strong>of</strong> the<br />

liter<strong>at</strong>ure does not distinguish between types <strong>of</strong> <strong>diabetes</strong> and regards all<br />

complic<strong>at</strong>ions as secondary to hyperglycaemia and as independent <strong>of</strong> <strong>diabetes</strong><br />

aetiology.<br />

A small number <strong>of</strong> conditions are strongly associ<strong>at</strong>ed with <strong>diabetes</strong>,<br />

including malignant otitis externa, 567–569 emphysem<strong>at</strong>ous pyelonephritis, 570–573<br />

emphysem<strong>at</strong>ous cholecystitis, 574,575 Klebsiella liver abscesses, 576 and<br />

rhinocerebral mucormycosis, 577,578 so much so, th<strong>at</strong> when the diagnosis is made<br />

in someone who is not known to have <strong>diabetes</strong>, the clinician should consider<br />

testing for <strong>diabetes</strong>.<br />

Most <strong>of</strong> the aforementioned infections are unusual. Instead, most<br />

infections in p<strong>at</strong>ients with <strong>diabetes</strong> are those th<strong>at</strong> occur also in the general<br />

popul<strong>at</strong>ion. Two popul<strong>at</strong>ion-based studies have proved pivotal to our<br />

understanding <strong>of</strong> the susceptibilities <strong>of</strong> p<strong>at</strong>ients with <strong>diabetes</strong>: 561,562 a <strong>study</strong> <strong>of</strong><br />

523,749 Canadians with <strong>diabetes</strong> and an equal number <strong>of</strong> m<strong>at</strong>ched controls 562<br />

found <strong>diabetes</strong> increased the risk for cystitis (risk r<strong>at</strong>io 1·39–1·43), pneumonia<br />

(1·46–1·48), cellulitis (1·81–1·85) and tuberculosis (1·12–1·21). A <strong>study</strong> <strong>of</strong> 7,417<br />

Dutch p<strong>at</strong>ients with <strong>diabetes</strong> found a higher incidence <strong>of</strong> lower respir<strong>at</strong>ory tract<br />

infection (adjusted odds r<strong>at</strong>ios 1·42 for type 1 <strong>diabetes</strong> and 1·32 for type 2),<br />

urinary tract infection (1·96 and 1·24), and skin and mucous membrane<br />

infection (1·59 and 1·33). 561 The associ<strong>at</strong>ion between <strong>diabetes</strong> and tuberculosis<br />

was re-confirmed by a recent meta-analysis <strong>of</strong> 16 studies spanning a 50-year<br />

period. 579<br />

Although <strong>diabetes</strong> mellitus is implic<strong>at</strong>ed in susceptibility to infection, its<br />

influence on the subsequent clinical course and outcome is less clear. Some<br />

studies have shown an associ<strong>at</strong>ion with increased mortality, 580–583 others found<br />

no effect, 563,584–592 while still others found improved survival. 574,575,593 The<br />

largest <strong>of</strong> these (12·5 million sepsis cases) 574 found th<strong>at</strong> p<strong>at</strong>ients with <strong>diabetes</strong><br />

were less likely to develop acute respir<strong>at</strong>ory failure and linked this to two<br />

previous studies th<strong>at</strong> found diabetics seem protected from acute lung<br />

injury. 594,595 The largest single <strong>study</strong> to show an adverse effect <strong>of</strong> <strong>diabetes</strong> on<br />

mortality in sepsis was conducted in 29,900 Danish p<strong>at</strong>ients with community-<br />

60


acquired pneumonia and found th<strong>at</strong> p<strong>at</strong>ients with <strong>diabetes</strong> had a higher risk <strong>of</strong><br />

mortality (OR 1·2). 582<br />

The reasons for different outcomes between these studies are unclear, but<br />

may rel<strong>at</strong>e to differences in <strong>study</strong> popul<strong>at</strong>ion, varying outcome measures,<br />

differences in st<strong>at</strong>istical analysis and in <strong>diabetes</strong> drug prescription habits<br />

between countries. 329 Popul<strong>at</strong>ion-based studies are less prone to selection bias<br />

compared to hospital-based studies, but more detailed clinical inform<strong>at</strong>ion is<br />

usually available in hospital-based studies. In terms <strong>of</strong> outcome measures,<br />

studies with outcomes <strong>at</strong> longer time points (e.g., 6 months versus 28-day<br />

mortality) are more likely to find inform<strong>at</strong>ive differences, but are much more<br />

difficult to conduct. 596 Observ<strong>at</strong>ional studies <strong>of</strong>ten make use <strong>of</strong> multivariable<br />

regression techniques to correct for confounders (a common, but incorrect,<br />

approach to model-building is to include all measured parameters and then<br />

remove parameters on the basis <strong>of</strong> p-value). Overadjustment or unnecessary<br />

adjustment for variables th<strong>at</strong> are not confounders can produce biased or<br />

spurious results (these issues are further discussed in Chapter 2). 597 P<strong>at</strong>ients<br />

with <strong>diabetes</strong> also have multiple co-morbidities th<strong>at</strong> may worsen outcomes: it is<br />

deb<strong>at</strong>able whether these co-morbidities should be adjusted for, since many are<br />

caused by <strong>diabetes</strong> itself and therefore, by definition, are not confounders. 598<br />

Nevertheless, a number <strong>of</strong> studies have adjusted their results for these<br />

comorbidities, regardless <strong>of</strong> the validity <strong>of</strong> these adjustments. 581,582,584<br />

1.8.2 Diabetes and the host response<br />

In 1904, Lassar suggested th<strong>at</strong> high levels <strong>of</strong> glucose may drive infection by<br />

serving as a nutrient source for bacteria, 599 but in 1911 Handmann showed th<strong>at</strong><br />

glucose supplement<strong>at</strong>ion did not enhance bacterial growth, 600 and proposed<br />

instead a defect in immune function, which Da Costa and Beardsley<br />

demonstr<strong>at</strong>ed in 1907. 601 The subsequent liter<strong>at</strong>ure on this topic is complic<strong>at</strong>ed<br />

by the fact th<strong>at</strong> different techniques have been used over the years, and gaps <strong>of</strong> a<br />

decade or more may separ<strong>at</strong>e experiments, making it difficult to compare<br />

results. Most studies have shown defects in neutrophil function, with good<br />

evidence for abnormalities in adhesion, chemotaxis and intracellular killing, but<br />

evidence for a phagocytosis defect are contradictory. The evidence th<strong>at</strong><br />

neutrophil defects are solely responsible for the increased susceptibility <strong>of</strong><br />

61


diabetics to infection is equivocal. 602 There is good evidence th<strong>at</strong> humoral<br />

responses in diabetics are poorer, and may play a larger role than previously<br />

recognized.<br />

1.8.3 Diabetes and general markers <strong>of</strong> inflamm<strong>at</strong>ion<br />

Diabetes is associ<strong>at</strong>ed with elev<strong>at</strong>ions in CRP, 603 TNFα, 604 IL6 603 and<br />

IL8, 605 but no differences are seen in circul<strong>at</strong>ing cell surface markers or<br />

coagul<strong>at</strong>ion markers between p<strong>at</strong>ients with and without <strong>diabetes</strong> in the context<br />

<strong>of</strong> sepsis.<br />

In a cohort <strong>of</strong> 1,799 p<strong>at</strong>ients with community-acquired pneumonia<br />

(CAP), 606 concentr<strong>at</strong>ions <strong>of</strong> pro-inflamm<strong>at</strong>ory cytokines (TNFα, IL6 and IL10),<br />

coagul<strong>at</strong>ion (antithrombin, Factor IX and thrombin-antithrombin complexes)<br />

and fibrinolysis (PAI-1 and D-dimer) biomarkers were similar in subjects with<br />

and without <strong>diabetes</strong> <strong>at</strong> present<strong>at</strong>ion and in the first week <strong>of</strong> hospitaliz<strong>at</strong>ion. 606<br />

In addition, monocyte expression <strong>of</strong> CD120a, CD120b, HLA-DR, TLR4 and<br />

TLR2 on monocytes was not different between the groups. 606 These results are<br />

consistent with a cohort <strong>study</strong> <strong>of</strong> 830 sepsis p<strong>at</strong>ients, in whom plasma<br />

concentr<strong>at</strong>ions <strong>of</strong> IL6 and TNFα were elev<strong>at</strong>ed to the same extent in p<strong>at</strong>ients<br />

with and without <strong>diabetes</strong>, both <strong>at</strong> admission and <strong>at</strong> follow-up. 563 In this second<br />

<strong>study</strong>, <strong>diabetes</strong> was not found to exacerb<strong>at</strong>e the known procoagulant response<br />

seen in sepsis. 563 Since sepsis and <strong>diabetes</strong> both induce a proinflamm<strong>at</strong>ory and<br />

procoagulant st<strong>at</strong>e and since both interfere with the host response, the lack <strong>of</strong> a<br />

strong influence <strong>of</strong> <strong>diabetes</strong> on the proinflamm<strong>at</strong>ory and coagul<strong>at</strong>ion p<strong>at</strong>hways<br />

during sepsis is remarkable. Preclinical studies in healthy volunteers have<br />

shown th<strong>at</strong> acute hyperglycæmia and insulin resistance may both directly<br />

influence inflamm<strong>at</strong>ion and coagul<strong>at</strong>ion, 607,608 but these changes may not be<br />

detectable on the background <strong>of</strong> the much larger abnormalities <strong>at</strong>tributable to<br />

sepsis. There is also evidence th<strong>at</strong> local responses may be impaired in <strong>diabetes</strong>:<br />

e.g., levels <strong>of</strong> urinary IL6 and IL8 are lower in diabetic women with<br />

bacteriuria. 609 Endothelial activ<strong>at</strong>ion has been implic<strong>at</strong>ed in the p<strong>at</strong>hogenesis <strong>of</strong><br />

sepsis 610 and <strong>diabetes</strong> is itself known to activ<strong>at</strong>e endothelium. A recent <strong>study</strong> <strong>of</strong><br />

207 sepsis p<strong>at</strong>ients (<strong>of</strong> whom 30% had <strong>diabetes</strong>) showed th<strong>at</strong> markers <strong>of</strong><br />

endothelial cell activ<strong>at</strong>ion (plasma E-selectin and sFLT-1) were higher in<br />

<strong>diabetes</strong>. 611<br />

62


1.8.4 Diabetes and neutrophil adhesion<br />

Recruitment <strong>of</strong> neutrophils to a site <strong>of</strong> inflamm<strong>at</strong>ion requires endothelial<br />

adhesion followed by transmigr<strong>at</strong>ion and exit from the circul<strong>at</strong>ion, a process<br />

requiring the expression by neutrophils <strong>of</strong> integrins (e.g., CD11a/CD18 and<br />

CD11b/CD18), 612,613 which then bind to endothelial cell adhesion molecules<br />

(e.g., intercellular adhesion molecule 1, or ICAM-1 614–616 ).<br />

A <strong>study</strong> in which neutrophils were harvested from 26 p<strong>at</strong>ients with<br />

<strong>diabetes</strong> and an equal number <strong>of</strong> controls demonstr<strong>at</strong>ed th<strong>at</strong> adhesion to bovine<br />

aortic endothelium was increased for neutrophils from diabetics, but only if the<br />

endothelium was also incub<strong>at</strong>ed with plasma from p<strong>at</strong>ients with <strong>diabetes</strong>. 617<br />

Increased adhesion appears to be due to both an increase in expression <strong>of</strong><br />

integrins by diabetic neutrophils and <strong>of</strong> adhesion molecules by endothelium.<br />

Diabetic neutrophils have increased expression <strong>of</strong> CD11b and CD11c, 618 and<br />

glucose itself appears able to stimul<strong>at</strong>e the expression <strong>of</strong> ICAM-1 by endothelial<br />

cells, 614–616,619–621 possibly via an osmotic effect. 620,621<br />

1.8.5 Diabetes and neutrophil chemotaxis<br />

Chemotaxis is the ability <strong>of</strong> neutrophils to detect and move towards a<br />

chemical stimulus. Studies <strong>of</strong> chemotaxis may be divided by technique: those<br />

using the two-chamber Boyden technique 622 have produced conflicting<br />

results, 623,624 but the subagarose technique 625 (which includes a neg<strong>at</strong>ive<br />

control, which Boyden’s technique lacks) have reproducibly shown a defect in<br />

<strong>diabetes</strong>. 618,626<br />

1.8.6 Diabetes and neutrophil phagocytosis<br />

Phagocytosis is the engulfment and ingestion <strong>of</strong> foreign bodies by a cell,<br />

allowing neutrophils to remove and destroy p<strong>at</strong>hogens.<br />

The evidence for a defect in phagocytosis in <strong>diabetes</strong> is contradictory, with<br />

some reporting a defect, 627–630 but others not. 618,631 These inconsistencies may<br />

be <strong>at</strong>tributed to differences in methodology: neutrophils will not phagocytose<br />

unopsonised particles, so bacteria and cells need first to be incub<strong>at</strong>ed with<br />

serum containing C3b or IgG. Many studies have used autologous serum, 627–630<br />

but those th<strong>at</strong> have used a standard serum or opsonin have found no<br />

defect. 618,631 In 1976, Bagdade found th<strong>at</strong> phagocytosis <strong>of</strong> Streptococcus<br />

pneumoniae was reduced in neutrophils recovered from eight p<strong>at</strong>ients with<br />

63


poorly-controlled <strong>diabetes</strong>, but this defect improved with <strong>diabetes</strong> tre<strong>at</strong>ment. 629<br />

Notably, control neutrophils incub<strong>at</strong>ed with serum taken from p<strong>at</strong>ients with<br />

<strong>diabetes</strong> also demonstr<strong>at</strong>ed a defect in phagocytosis, implying th<strong>at</strong> the defect is<br />

in fact due to defective opsonis<strong>at</strong>ion and not to a deficit in neutrophil<br />

phagocytosis per se: in other words, the defect is humoral. In 1984, Davidson et<br />

al. studied ingestion <strong>of</strong> Candida guilliermondii by neutrophils from 11 p<strong>at</strong>ients<br />

with <strong>diabetes</strong> and found th<strong>at</strong> phagocytosis was reduced. However, if pre-<br />

opsonized yeast cells were used, then phagocytosis was no different from<br />

controls, again suggesting th<strong>at</strong> a humoral defect must exist. 631 Delamaire et al.<br />

used a single control serum for all samples to remove the possibility <strong>of</strong> a<br />

difference in opsonis<strong>at</strong>ion, 618 convincingly demonstr<strong>at</strong>ing th<strong>at</strong> no phagocytosis<br />

defect exists in diabetic neutrophils.<br />

1.8.7 Diabetes and neutrophil-medi<strong>at</strong>ed killing<br />

Neutrophils have two distinct mechanisms for killing bacteria,<br />

intracellular and extracellular. Phagocytozed bacteria are killed by superoxide<br />

anions and other oxygen-derived species. Culture-based methods have<br />

demonstr<strong>at</strong>ed a defect in intracellular killing <strong>of</strong> Staphylococcus aureus, 626,632,633<br />

Streptococcus pneumoniæ, 628,634 and Candida albicans. 635 More recent studies<br />

have confirmed this finding used chemiluminescence methods, 636–639 a superior<br />

method compared to culture, because it separ<strong>at</strong>es the effect <strong>of</strong> phagocytosis<br />

from th<strong>at</strong> <strong>of</strong> intracellular killing. The killing defect cannot be corrected by<br />

incub<strong>at</strong>ion with normal serum, 633 suggesting th<strong>at</strong> it is cellular in origin. The<br />

defect improves with glycaemic control. 638<br />

Neutrophils are also able to kill bacteria extracellularly by expelling<br />

chrom<strong>at</strong>in, which combines with granule proteins to form NETs. 542<br />

Interestingly, β-hydroxybutyr<strong>at</strong>e (a ketone body present in diabetic<br />

ketoacidosis) has been shown to inhibit the form<strong>at</strong>ion <strong>of</strong> NETs, 640 but the<br />

relevance <strong>of</strong> this finding to p<strong>at</strong>ients remains to be demonstr<strong>at</strong>ed.<br />

1.8.8 Diabetes and monocyte function<br />

Monocytes in <strong>diabetes</strong> have been less well studied than neutrophils, but<br />

also appear to have defects <strong>of</strong> chemotaxis 641 and phagocytosis. 642,643 Adhesion to<br />

endothelium is also enhanced. 644,645 In contrast to neutrophils, intracellular<br />

killing seems to be enhanced. 646 Monocytes obtained from 24 diabetic p<strong>at</strong>ients<br />

64


produced similar amounts <strong>of</strong> TNF-α when compared to healthy controls when<br />

stimul<strong>at</strong>ed with lipopolysaccharide (LPS), but IL-6 levels were higher in<br />

p<strong>at</strong>ients with type 1 <strong>diabetes</strong>. 647<br />

1.8.9 Diabetes and lymphocyte function<br />

Few studies have looked <strong>at</strong> the effect <strong>of</strong> <strong>diabetes</strong> on lymphocyte function.<br />

One measure <strong>of</strong> lymphocyte function is transform<strong>at</strong>ion in response to a mitogen<br />

or bacterial antigen. Studies containing acidotic p<strong>at</strong>ients appear to find th<strong>at</strong><br />

responses are diminished 648,649 and th<strong>at</strong> correction <strong>of</strong> the acidosis leads to<br />

prompt resolution <strong>of</strong> the defect, 649 but more recent studies have found deficient<br />

prolifer<strong>at</strong>ive T-cell responses even in tre<strong>at</strong>ed p<strong>at</strong>ients. 639,650 Diabetic T-cells<br />

express higher levels <strong>of</strong> CD152, a down regul<strong>at</strong>or <strong>of</strong> the immune response. 651<br />

Three other studies failed to find a defect in lymphocyte function. 624,652,653<br />

1.8.10 Humoral defects<br />

In 1907, Da Costa and Beardsley found th<strong>at</strong> sera from <strong>diabetes</strong> p<strong>at</strong>ients<br />

were less able to opsonize S. aureus compared to sera from controls. 601,654 In<br />

1973, Farid and Anderson surveyed 46 p<strong>at</strong>ients and found th<strong>at</strong> IgG levels were<br />

lower in insulin-tre<strong>at</strong>ed diabetics, but not in p<strong>at</strong>ients on oral tre<strong>at</strong>ments or diet<br />

alone. More recently, a <strong>study</strong> <strong>of</strong> 66 p<strong>at</strong>ients with type 1 <strong>diabetes</strong> demonstr<strong>at</strong>ed<br />

th<strong>at</strong> total IgG levels were lower in p<strong>at</strong>ients with uncontrolled <strong>diabetes</strong> as<br />

measured by HbA1c. 655 Also, the apparent defect in neutrophil phagocytosis<br />

appear to be humoral and not cellular in origin (see above).<br />

The best evidence for a humoral defect in diabetic p<strong>at</strong>ients comes from<br />

vaccine studies. It was described as early as 1930 th<strong>at</strong> deficient agglutinin<br />

responses are seen in diabetic p<strong>at</strong>ients after subcutaneous typhoid<br />

vaccin<strong>at</strong>ion. 656,657 Multiple studies have shown th<strong>at</strong> p<strong>at</strong>ients with <strong>diabetes</strong> are<br />

less likely to mount a protective antibody response to hep<strong>at</strong>itis B<br />

vaccin<strong>at</strong>ion, 658–661 leading some authorities to recommend routinely adding a<br />

booster dose to the standard regimen for p<strong>at</strong>ients with <strong>diabetes</strong>. 658,662 The<br />

liter<strong>at</strong>ure on influenza vaccin<strong>at</strong>ion is more mixed (reviewed by Brydak and<br />

Machala 663 ). Pozzilli et al. looked <strong>at</strong> 52 diabetic p<strong>at</strong>ients and found fewer<br />

activ<strong>at</strong>ed lymphocytes in p<strong>at</strong>ients with type 2 <strong>diabetes</strong> following influenza<br />

vaccin<strong>at</strong>ion, but no differences in antibody responses. 664 Muszk<strong>at</strong> et al.,<br />

65


<strong>study</strong>ing a more elderly popul<strong>at</strong>ion, found lower antibody responses in p<strong>at</strong>ients<br />

with type 2 <strong>diabetes</strong>. 665<br />

Diabetes is also associ<strong>at</strong>ed with a waning in the dur<strong>at</strong>ion <strong>of</strong> protection<br />

afforded by tetanus vaccin<strong>at</strong>ion although the initial response appears to be<br />

normal. 666,667 P<strong>at</strong>ients with <strong>diabetes</strong> appear to respond well to pneumococcal<br />

polysaccharide vaccine, 668 although there are no studies <strong>study</strong>ing dur<strong>at</strong>ion <strong>of</strong><br />

protection in diabetic p<strong>at</strong>ients. There are also no studies specifically linking<br />

humoral responses in sepsis to <strong>diabetes</strong>.<br />

1.8.11 Complement abnormalities<br />

Inherited deficiencies <strong>of</strong> component 4 (C4) have been implic<strong>at</strong>ed in the<br />

p<strong>at</strong>hogenesis <strong>of</strong> type 1 <strong>diabetes</strong>, 669–671 but whether this contributes to<br />

susceptibility to infection in type 1 diabetics is not known. By contrast, obesity<br />

and elev<strong>at</strong>ed insulin levels (as occur in type 2 <strong>diabetes</strong>) appear to be associ<strong>at</strong>ed<br />

with elev<strong>at</strong>ions in C3. 672 Karlsson et al., looking for biomarkers for m<strong>at</strong>urity-<br />

onset <strong>diabetes</strong> <strong>of</strong> the young (MODY), found th<strong>at</strong> complement C5 and C8 are<br />

both elev<strong>at</strong>ed in <strong>diabetes</strong> regardless <strong>of</strong> etiology, 673 a possible mechanism for<br />

these abnormalities being th<strong>at</strong> complement activ<strong>at</strong>ion can be driven by glyc<strong>at</strong>ed<br />

immunoglobulins. 674 One explan<strong>at</strong>ion for why diabetic sera are less able to<br />

opsonize bacteria may be th<strong>at</strong> glucose <strong>at</strong>tacks the thiolester bond <strong>of</strong><br />

complement C3, thus preventing it from binding to the bacterial surface. 675<br />

1.9 Diabetes and melioidosis<br />

1.9.1 B. pseudomallei and the diabetic neutrophil<br />

Diabetes is the most important risk factor for melioidosis, and the<br />

epidemiological evidence for this has been reviewed above. We also know th<strong>at</strong><br />

the host response to melioidosis is critically dependent on neutrophils, 326 and<br />

<strong>diabetes</strong> is known to cause defects in neutrophil function, as reviewed above.<br />

The effect <strong>of</strong> <strong>diabetes</strong> on the neutrophil response to B. pseudomallei<br />

infection has been explored by Chanchamroen et al. 539 Neutrophils were<br />

collected from 56 p<strong>at</strong>ients with <strong>diabetes</strong> who were otherwise healthy and<br />

compared to 36 healthy controls. Cells were then infected with B. pseudomallei<br />

K96243. All <strong>study</strong> subjects were from Northeast Thailand.<br />

66


Chanchamroen demonstr<strong>at</strong>ed th<strong>at</strong> B. pseudomallei is able to persist<br />

intracellularly in neutrophils. She also reported impairment <strong>of</strong> phagocytosis,<br />

chemotaxis and an increased r<strong>at</strong>e <strong>of</strong> neutrophil apoptosis. Her results are<br />

difficult to interpret due to a number <strong>of</strong> limit<strong>at</strong>ions in the <strong>study</strong> design as<br />

follows:–<br />

Chemotaxis was studied using the two-chamber method, 622 which is<br />

inferior to the subagarose technique 625 because it has no neg<strong>at</strong>ive control and<br />

cannot distinguish between specific and non-specific migr<strong>at</strong>ion. Despite this,<br />

she was still able to show a chemotactic defect in diabetic neutrophils.<br />

Phagocytosis was measured using autologous serum, a method which we<br />

now know to be severely confounded by humoral effects. The <strong>study</strong> appeared to<br />

show increased intracellular killing by diabetic neutrophils, which is a totally<br />

unexpected finding. The intracellular killing assay is severely confounded by the<br />

fact th<strong>at</strong> phagocytosis was poorer in diabetic neutrophils, which means the<br />

initial number <strong>of</strong> intracellular bacteria was smaller in the diabetic neutrophils.<br />

This was not corrected for in the analysis, which in turns means th<strong>at</strong> no<br />

meaningful comparison between diabetic and non-diabetic neutrophils was<br />

possible. The same <strong>study</strong> demonstr<strong>at</strong>ed th<strong>at</strong> B. pseudomallei appeared to delay<br />

apoptosis in healthy neutrophils but not in diabetic neutrophils: however,<br />

interpret<strong>at</strong>ion <strong>of</strong> this result is also problem<strong>at</strong>ic due to the same confounding<br />

factors.<br />

1.9.2 B. pseudomallei and the diabetic macrophage<br />

Williams et al. studied peritoneal macrophages and bone marrow-derived<br />

dendritic cells harvested from C57Bl/6 mice made hyperglycaemic by tre<strong>at</strong>ment<br />

with low-dose streptozocin (STZ). 676 In this model, mice were tre<strong>at</strong>ed with<br />

55 mg/kg STZ intraperitoneally for six days; control mice were tre<strong>at</strong>ed with<br />

buffer only. Mice were considered diabetic if their blood glucose levels were<br />

≥13 mM for 9 days. Mice in the ‘acute <strong>diabetes</strong>’ group were sacrificed 19 days<br />

after the first STZ injection, while mice in the ‘chronic <strong>diabetes</strong>’ group were<br />

sacrificed 70 days after the first infection.<br />

Dentritic cells were harvested by culturing bone marrow for 10 days with<br />

GM-CSF. Peritoneal macrophages were harvested after injection <strong>of</strong> the<br />

inflamm<strong>at</strong>ory agent, Brewer’s thioglycoll<strong>at</strong>e. Phagocytosis was measured using<br />

67


the ability to internalise fluorescent beads. Intracellular killing was measured by<br />

lysing the cells with 0·1% Triton-X, then culturing the lys<strong>at</strong>e on Ashdown’s agar.<br />

Colony counts <strong>at</strong> 18 hours were expressed as r<strong>at</strong>ios <strong>of</strong> the number <strong>of</strong> bacteria<br />

internalised <strong>at</strong> 4 hours, thus adjusting for differences in phagocytosis. Cytokine<br />

expression was measured by quantit<strong>at</strong>ive PCR.<br />

Williams found no differences in cells collected from the acute <strong>diabetes</strong><br />

group when compared to the controls, but in cells collected from the chronic<br />

<strong>diabetes</strong> group, intracellular survival <strong>of</strong> B. pseudomallei was gre<strong>at</strong>er than in<br />

controls. She also found th<strong>at</strong> expression <strong>of</strong> IL11β, IL12, IL18 and TNFα were<br />

depressed in the chronic <strong>diabetes</strong> group compared to the control group.<br />

1.9.3 Melioidosis in murine models <strong>of</strong> <strong>diabetes</strong><br />

Hodgson has published a murine model <strong>of</strong> melioidosis in type 2 <strong>diabetes</strong>,<br />

using the BKS.Cg-Dock7 m +/+ Lepr db /J mouse (also called the db/db mouse). 677<br />

This inbred strain was originally cre<strong>at</strong>ed in 1966 from a C57Bl/KsJ<br />

background. 678 Homozygotes for the spontaneous leptin receptor mut<strong>at</strong>ion,<br />

Lepr db , become hyperinsulinaemic <strong>at</strong> 10–14 days <strong>of</strong> age, obese <strong>at</strong> 3–4 weeks,<br />

hyperglycaemic <strong>at</strong> 4–8 weeks and die <strong>at</strong> around 10 months. 679 Non-diabetic<br />

litter m<strong>at</strong>es heterozygous for the Lepr db mut<strong>at</strong>ion were used as controls.<br />

Diabetic mice were more susceptible to B. pseudomallei infection than age<br />

and sex-m<strong>at</strong>ched controls: following a subcutaneous challenge <strong>of</strong> 4·6 × 10 6 cfu,<br />

all mice in the diabetic group were dead by day 4, whereas the control mice all<br />

survived until day 11. In this <strong>study</strong>, no differences in neutrophil oxid<strong>at</strong>ive burst<br />

were found between diabetics and controls, but no other test <strong>of</strong> neutrophil<br />

function was performed. This is in contrast to another <strong>study</strong> by a different group<br />

using S. aureus th<strong>at</strong> showed impaired oxid<strong>at</strong>ive burst in db/db neutrophils. 680<br />

Hodgson found no differences in bacterial loads in liver or spleen, but did<br />

find higher loads in subcutaneous tissue. Concentr<strong>at</strong>ions <strong>of</strong> TNFα and IL1β<br />

mRNA in the spleens <strong>of</strong> db/db mice were higher than controls. In vitro studies<br />

<strong>of</strong> peritoneal macrophages harvested from db/db mice showed th<strong>at</strong><br />

B. pseudomallei was better able to survive in db/db macrophages and th<strong>at</strong><br />

db/db macrophages produced lower levels <strong>of</strong> nitric oxide. Hodgson therefore<br />

<strong>at</strong>tributed the increased susceptibility <strong>of</strong> diabetic mice to a defect in<br />

macrophage responses.<br />

68


1.9.4 Melioidosis and <strong>diabetes</strong> in the clinic<br />

It has been recognised th<strong>at</strong> once melioidosis has been acquired, p<strong>at</strong>ients<br />

with <strong>diabetes</strong> paradoxically seem to do better. In a prospective observ<strong>at</strong>ional<br />

<strong>study</strong> <strong>of</strong> 755 melioidosis p<strong>at</strong>ients, <strong>diabetes</strong> was independently associ<strong>at</strong>ed with<br />

survival (adjusted odds r<strong>at</strong>io for mortality 0·36, 95% confidence interval 0·25–<br />

0·50). 681 This is <strong>at</strong> odds with wh<strong>at</strong> we know about the effect <strong>of</strong> <strong>diabetes</strong> on the<br />

host response, which would lead us to predict th<strong>at</strong> outcomes should be poorer in<br />

<strong>diabetes</strong>. This finding is not unique to melioidosis, and the conflicting d<strong>at</strong>a in<br />

the liter<strong>at</strong>ure on the influence <strong>of</strong> <strong>diabetes</strong> on sepsis outcomes has been<br />

discussed above.<br />

1.10 Outline <strong>of</strong> the work<br />

In this dissert<strong>at</strong>ion, the link between <strong>diabetes</strong> and melioidosis is explored<br />

using classical epidemiological techniques (Chapter 2), and it is shown th<strong>at</strong> this<br />

link is <strong>at</strong>tributable to the use <strong>of</strong> glibenclamide prior to hospital admission for<br />

melioidosis and not to <strong>diabetes</strong> per se. The host response to melioidosis is<br />

explored by <strong>study</strong>ing gene expression in peripheral blood leukocytes<br />

(Chapter 3), and glibenclamide is shown to have an anti-inflamm<strong>at</strong>ory effect in<br />

p<strong>at</strong>ients with melioidosis. The effect <strong>of</strong> glibenclamide is then described in a<br />

mouse model <strong>of</strong> melioidosis (Chapter 4), in which it is shown th<strong>at</strong> glibenclamide<br />

reduces interleukin-1β secretion.<br />

69


2 Glibenclamide, not <strong>diabetes</strong>, protects<br />

from mortality in melioidosis<br />

2.1 Introduction<br />

2.1.1 The melioidosis cohort <strong>at</strong> Sappasithiprasong Hospital<br />

The Wellcome Trust was founded in 1936 under the will <strong>of</strong> Sir Henry<br />

Wellcome, co-founder <strong>of</strong> the pharmaceutical firm, Borroughs-Wellcome, who<br />

established tropical medicine research labor<strong>at</strong>ories in London and Khartoum<br />

following visits to Ecuador and The Sudan. The Wellcome Trust Unit in<br />

Bangkok was started in 1979 as a long term collabor<strong>at</strong>ion between Oxford<br />

<strong>University</strong> and Mahidol <strong>University</strong> by Pr<strong>of</strong>essor Sir David We<strong>at</strong>herall, Pr<strong>of</strong>essor<br />

David Warrell, Pr<strong>of</strong>essor Emeritus Chamlong Harinasuta and Pr<strong>of</strong>essor<br />

Emeritus Khunying Tranakchit Harinasuta with support from the then director<br />

<strong>of</strong> the Wellcome Trust, Dr Peter Williams.<br />

The Unit’s involvement in melioidosis research began when the then<br />

director <strong>of</strong> the Wellcome Trust Unit, Pr<strong>of</strong>essor Nicholas White, was approached<br />

by a physician from Ubon R<strong>at</strong>ch<strong>at</strong>hani, Pr<strong>of</strong>essor Wipada Chaowagul, who had<br />

noticed increasing numbers <strong>of</strong> melioidosis cases in her practice. The labor<strong>at</strong>ory<br />

<strong>at</strong> Sappasithiprasong Hospital (Figure 11) was established by David Dance and<br />

Nicholas White in 1986.<br />

Ubon R<strong>at</strong>ch<strong>at</strong>hani is a province in Northeast Thailand (Figure 12),<br />

629 km to the east <strong>of</strong> Bangkok. It is bordered by Laos to the east (from which it<br />

is separ<strong>at</strong>ed by the Mekong River) and Cambodia to the South. Ubon<br />

R<strong>at</strong>ch<strong>at</strong>hani was founded in 1786 as a vassal st<strong>at</strong>e <strong>of</strong> Siam and became a<br />

province <strong>of</strong> Thailand in 1882. It was the largest province in Thailand until<br />

Yasothon (1972) and Amn<strong>at</strong> Charoen (1993) gained st<strong>at</strong>us as independent<br />

provinces.<br />

70


Figure 11. Sappasithiprasong Hospital, Ubon R<strong>at</strong>ch<strong>at</strong>hani.<br />

Note.—The front façade <strong>of</strong> Sappasithiprasong Hospital, Ubon R<strong>at</strong>ch<strong>at</strong>hani.<br />

Sappasithiprasong is a 1000-bedded tertiary referral centre for the province <strong>of</strong> Ubon<br />

R<strong>at</strong>ch<strong>at</strong>hani. ©2008 GCKW Koh.<br />

Ubon R<strong>at</strong>ch<strong>at</strong>hani province has an area <strong>of</strong> 16,112 square kilometres and a<br />

popul<strong>at</strong>ion <strong>of</strong> 1·8 million (2009 d<strong>at</strong>a). It is subdivided into 25 districts (called<br />

amphoe) and is further subdivided into 219 subdistricts (thambon). The largest<br />

city is Ubon R<strong>at</strong>ch<strong>at</strong>hani city (popul<strong>at</strong>ion 85,000), followed by Warin Chamrap<br />

(popul<strong>at</strong>ion 31,000). The main industry is rice farming. The clim<strong>at</strong>e is tropical,<br />

with a rainy season th<strong>at</strong> runs roughly from June to October, and a dry season<br />

th<strong>at</strong> runs roughly from November to May.<br />

Sappasithiprasong Hospital is a 1000-bedded provincial hospital. It is the<br />

largest hospital in the region and a tertiary referral centre for 25 community<br />

hospitals. D<strong>at</strong>a from all p<strong>at</strong>ients who were culture-positive for B. pseudomallei<br />

have been collected prospectively from the establishment <strong>of</strong> the Wellcome Trust<br />

labor<strong>at</strong>ory <strong>at</strong> Sappasithiprasong until 2007. The d<strong>at</strong>a from this cohort has been<br />

an important source <strong>of</strong> inform<strong>at</strong>ion on the epidemiology <strong>of</strong> melioidosis. 125,169,170<br />

71


Figure 12. Ubon R<strong>at</strong>ch<strong>at</strong>hani province.<br />

Note.—Ubon R<strong>at</strong>ch<strong>at</strong>hai province is marked in red. The province is bordered by the<br />

Mekong River to the east, which separ<strong>at</strong>es it from Laos, and Cambodia to the south. Its<br />

internal boundaries are formed by the provinces <strong>of</strong> Yasothon and Amn<strong>at</strong> Charoen to the<br />

north and Srisaket to the west. ©2009 NordNordWest, Wikimedia Commons.<br />

It has previously been observed in Ubon R<strong>at</strong>ch<strong>at</strong>hani, th<strong>at</strong> although<br />

p<strong>at</strong>ients with <strong>diabetes</strong> are more likely to develop melioidosis, they are also less<br />

likely to die from it. 681 This finding was made incidentally in a <strong>study</strong> <strong>of</strong> the<br />

prognostic value <strong>of</strong> semi-quantit<strong>at</strong>ive urine cultures in melioidosis and <strong>diabetes</strong><br />

was not the primary exposure <strong>of</strong> interest. We sought to confirm this associ<strong>at</strong>ion<br />

between <strong>diabetes</strong> and survival in a separ<strong>at</strong>e cohort <strong>of</strong> p<strong>at</strong>ients from the same<br />

hospital using causal reasoning to identify possible confounders, and then to<br />

adjust for these confounders using multivariable logistic regression models. We<br />

hoped our methods would be rigorous enough either to confirm convincingly<br />

the effect <strong>of</strong> <strong>diabetes</strong>, or else to identify altern<strong>at</strong>ive explan<strong>at</strong>ions for the<br />

observed effect.<br />

72


2.1.2 Logistic regression<br />

Logistic regression has two common uses. The first is to estim<strong>at</strong>e the<br />

probability <strong>of</strong> a particular outcome given some set <strong>of</strong> risk factors. An example <strong>of</strong><br />

this first use is the APACHE score, which combines multiple clinical and<br />

labor<strong>at</strong>ory parameters to provide an estim<strong>at</strong>e for ICU mortality. A second use is<br />

to adjust for confounding in an estim<strong>at</strong>e <strong>of</strong> the effect <strong>of</strong> an exposure on<br />

outcome. It is for this second use th<strong>at</strong> we employed logistic regression in the<br />

cohort <strong>study</strong>.<br />

Figure 13. The logistic function.<br />

Note.—The logistic function can take any value as its input, but its output is<br />

constrained to lie between 0 and 1. More formally, the domain <strong>of</strong> the logistic function is<br />

(–∞, +∞), and its co-domain is (0, 1). ©2008 Qef, WikiMedia Commons.<br />

The logistic equ<strong>at</strong>ion may be defined as,<br />

! = !<br />

!!! !!,<br />

where<br />

73<br />

Equ<strong>at</strong>ion 1<br />

! = ! ! + ! !! ! + ! !! ! + ⋯ + ! !! !. Equ<strong>at</strong>ion 2<br />

The main value <strong>of</strong> the logistic function is th<strong>at</strong> it may take as its input, !,<br />

any value for ! from −∞ to +∞, but its output, !, is constrained to lie between 0<br />

and 1 (Figure 13). This is why the function is given the name, ‘logistic’: it is<br />

useful for circumstances where the outcome may take only two values, e.g.,<br />

1/0, yes/no, true/false. The value <strong>of</strong> ! may then be interpreted as the probability<br />

<strong>of</strong> the outcome being ‘yes’ or ‘true’, given a particular value for !.


The logistic function may take any number <strong>of</strong> inputs, !, (in the equ<strong>at</strong>ion<br />

above, these inputs are numbered, ! !, ! !, …, ! !), however, there can be only one<br />

output, ! . The variables, ! and ! , may be called by a variety <strong>of</strong> names,<br />

depending on the context (Table 7).<br />

x y<br />

input output<br />

abscissa ordin<strong>at</strong>e<br />

independent variable dependent variable<br />

co-vari<strong>at</strong>e outcome<br />

exposure disease<br />

risk factor<br />

Table 7. Altern<strong>at</strong>ive names for x and y in multivariable regression<br />

models.<br />

Note.—The variables ! and ! can take a gre<strong>at</strong> many names depending on the context.<br />

The terms input/output and abscissa/ordin<strong>at</strong>e are used mainly be m<strong>at</strong>hem<strong>at</strong>icians.<br />

St<strong>at</strong>isticians tend to speak <strong>of</strong> independent/dependent variables, while epidemiologists talk<br />

<strong>of</strong> exposure/outcome or risk factor/disease. The term ‘disease’ is very inexact, because<br />

depending on the context, different diseases may appear as x or y variables.<br />

The logistic equ<strong>at</strong>ion has been presented here in a form th<strong>at</strong> emphasises<br />

its link to linear regression. Equ<strong>at</strong>ion 2 is in fact the linear regression model. In<br />

Nelder and Wedderburn’s method <strong>of</strong> generalised linear models, 682 logistic<br />

regression is rel<strong>at</strong>ed to linear regression via equ<strong>at</strong>ion 1, which is the link<br />

function.<br />

The logistic function, in its simplest form, was first described by a Belgian<br />

m<strong>at</strong>hem<strong>at</strong>ician, Pierre-François Verhulst, in 1838, 683 as the exact solution to the<br />

first order differential equ<strong>at</strong>ion, † ! !"<br />

!"<br />

= !!"(1 − !).<br />

† !<br />

!"<br />

Here is a simple demonstr<strong>at</strong>ion th<strong>at</strong> ! =<br />

!!! !! is a solution for = !(1 − !).<br />

!"<br />

Note th<strong>at</strong> ! may be any constant, so for the purposes <strong>of</strong> this analysis we may set it to 1 without<br />

affecting the validity <strong>of</strong> the results.<br />

74


The paper <strong>of</strong> 1838 was brief, but a fuller account was given in 1845, 684 in<br />

which, for the first time, Verhulst calls the solution, la courbe logistique or ‘the<br />

logistic curve’. Verhulst applied the equ<strong>at</strong>ion to model popul<strong>at</strong>ion growth, in the<br />

situ<strong>at</strong>ion where th<strong>at</strong> growth is initially exponential, but then encounters<br />

resistance (th<strong>at</strong> is, the exhaustion <strong>of</strong> resources). Berkson was the first to<br />

advoc<strong>at</strong>e its use in bioassays 685 (a vari<strong>at</strong>ion <strong>of</strong> this curve is commonly used to<br />

analyse ELISA results) and other c<strong>at</strong>alytic processes. 686 Berkson also introduced<br />

the term ‘logit’ (by analogy to ‘probit’). 686 The logistic function is therefore also a<br />

good model for the market penetr<strong>at</strong>ion <strong>of</strong> iPhones, which are also a c<strong>at</strong>alytic<br />

process: growth is initially exponential, but then slows as the market becomes<br />

s<strong>at</strong>ur<strong>at</strong>ed. 686<br />

The use <strong>of</strong> the logistic function in case-control studies arose n<strong>at</strong>urally. If ! !<br />

is defined as the odds, then ! is the log odds, and the linking function<br />

(Equ<strong>at</strong>ion 1) is then m<strong>at</strong>hem<strong>at</strong>ically identical to the risk. The applic<strong>at</strong>ion <strong>of</strong> the<br />

logistic function to binary d<strong>at</strong>a may be <strong>at</strong>tributed to Cox, who published a series<br />

<strong>of</strong> papers in the 1960’s, culmin<strong>at</strong>ing in an influential textbook on the subject in<br />

1969. 687 Two events allowed the expansion <strong>of</strong> logistic regression in<br />

epidemiological research during the 1990’s: the first was the availability <strong>of</strong><br />

computer s<strong>of</strong>tware packages th<strong>at</strong> could fit the models autom<strong>at</strong>ically (fitting<br />

curves by hand is laborious and takes weeks <strong>of</strong> tedious calcul<strong>at</strong>ion). The second<br />

was the public<strong>at</strong>ion <strong>of</strong> a textbook by Hosmer and Lemeshow in 1989, 688 which<br />

provided guidance on building models while omitting m<strong>at</strong>hem<strong>at</strong>ical details th<strong>at</strong><br />

could be left to the computer.<br />

M<strong>at</strong>hem<strong>at</strong>ically, the minimum number <strong>of</strong> precisely specified d<strong>at</strong>a points<br />

needed to fit a logit model is one plus the number <strong>of</strong> inputs to be estim<strong>at</strong>ed. In<br />

Verhulst’s original 1838 paper, he fit curves for the popul<strong>at</strong>ions France, England<br />

and Russia based on three points only each. The n<strong>at</strong>urally occurring vari<strong>at</strong>ion in<br />

clinical d<strong>at</strong>a means this is never possible in practice. Instead, the number <strong>of</strong><br />

inputs th<strong>at</strong> may be included in a model is limited by the amount <strong>of</strong> d<strong>at</strong>a<br />

available to fit the model.<br />

There is no consensus on how much d<strong>at</strong>a is ‘enough’. Computer<br />

simul<strong>at</strong>ions suggest th<strong>at</strong> for ! variables, a minimum <strong>of</strong> 10n d<strong>at</strong>a points are<br />

Starting with ! = ! !!<br />

!!! !! =<br />

!!! ! , multiplying out the fractions yields ! + !!! = ! ! .<br />

Differenti<strong>at</strong>ing, gives us , !"<br />

!"<br />

!"<br />

+ !!<br />

!" + !!! = ! ! . Re-arranging, !"<br />

!"<br />

75<br />

= !!<br />

!!! !<br />

1 − ! = !(1 − !).


needed for each input variable. 689 Some authorities have suggested th<strong>at</strong> is too<br />

stringent; 690 but some have suggested instead much larger numbers, <strong>of</strong> the<br />

order <strong>of</strong> 4 n . 691 If the figure <strong>of</strong> 10n is right, then a model with ten variables only<br />

needs a <strong>study</strong> <strong>of</strong> 50 p<strong>at</strong>ients; using a figure <strong>of</strong> 4 n , the same <strong>study</strong> needs 1024<br />

p<strong>at</strong>ients. These uncertainties mean th<strong>at</strong> sample size calcul<strong>at</strong>ions for<br />

multivariable models are <strong>of</strong>ten done simply for the univariable analysis rel<strong>at</strong>ing<br />

exposure and outcome, and not for the multivariable analysis.<br />

2.1.3 Adjusting for confounding<br />

Logistic regression provides a powerful method for adjusting for<br />

confounding. In a cohort <strong>study</strong>, where the n<strong>at</strong>ural metric for risk is the risk<br />

r<strong>at</strong>io, odds r<strong>at</strong>ios are still frequently reported, because these can be adjusted for<br />

confounders using logistic regression.<br />

The classical method <strong>of</strong> adjusting for confounding is the Mantel-Haenszel<br />

method. Briefly, one str<strong>at</strong>ifies the d<strong>at</strong>a by each confounder, calcul<strong>at</strong>es the<br />

estim<strong>at</strong>e for each str<strong>at</strong>um, then combines the str<strong>at</strong>ified estim<strong>at</strong>es into a single<br />

summary estim<strong>at</strong>e.<br />

The method is best illustr<strong>at</strong>ed using a hypothetical example. Consider the<br />

effect <strong>of</strong> <strong>diabetes</strong> on mortality (Figure 14). A worked example <strong>of</strong> str<strong>at</strong>ific<strong>at</strong>ion<br />

using invented d<strong>at</strong>a is presented in Table 8.<br />

The Mantel-Haenszel method has two major problems: the first is th<strong>at</strong> it is<br />

not good <strong>at</strong> handling adjustment for several confounders. The second is th<strong>at</strong> the<br />

method will only allow c<strong>at</strong>egorical confounders, so continuous d<strong>at</strong>a first needs<br />

to be transformed into c<strong>at</strong>egorical d<strong>at</strong>a before it can be used, which in turns<br />

leads to inefficiencies (in th<strong>at</strong> one has to discard inform<strong>at</strong>ion before performing<br />

the analysis). Using a logistic regression model to adjust for confounding<br />

addresses many <strong>of</strong> these concerns. The model easily accepts continuous<br />

variables as inputs and is more forgiving <strong>of</strong> sparse d<strong>at</strong>a.<br />

76


Figure 14. The influence <strong>of</strong> <strong>diabetes</strong> on mortality is confounded by<br />

gender.<br />

Gender Diabetes<br />

Mortality<br />

Flow <strong>of</strong> time<br />

Note.—The effect <strong>of</strong> <strong>diabetes</strong> on mortality is confounded by the effect <strong>of</strong> gender, because<br />

gender is associ<strong>at</strong>ed with both <strong>diabetes</strong> and with mortality and does not lie on the causal<br />

p<strong>at</strong>hway between <strong>diabetes</strong> and mortality.<br />

The thick arrows in the graph indic<strong>at</strong>e the flow <strong>of</strong> caus<strong>at</strong>ion and must always follow the<br />

direction <strong>of</strong> time, because effect always follows cause. Confounding occurs when one is<br />

able to follow a p<strong>at</strong>h from exposure to outcome th<strong>at</strong> goes against the direction <strong>of</strong><br />

caus<strong>at</strong>ion <strong>at</strong> some point (i.e., against the flow <strong>of</strong> time). This is known as a backdoor p<strong>at</strong>h.<br />

In this example, the effect <strong>of</strong> interest is the effect <strong>of</strong> <strong>diabetes</strong> on mortality (black arrow);<br />

there is however, a backdoor p<strong>at</strong>h linking <strong>diabetes</strong> and mortality th<strong>at</strong> runs through gender<br />

(blue arrows). Gender is therefore a confounder for the effect <strong>of</strong> <strong>diabetes</strong> on mortality.<br />

One cannot infer caus<strong>at</strong>ion from d<strong>at</strong>a alone, in part, because the d<strong>at</strong>a contain no<br />

inform<strong>at</strong>ion about time sequence. Inform<strong>at</strong>ion about time ordering must be added to the<br />

analysis by the investig<strong>at</strong>or. In epidemiological studies, the person with this inform<strong>at</strong>ion<br />

is the epidemiologist, not the st<strong>at</strong>istician. It is therefore never the st<strong>at</strong>istician’s<br />

responsibility to identify confounding.<br />

77


A. Fictional popul<strong>at</strong>ion<br />

Male Female<br />

Diabetic Not diabetic Diabetic Not diabetic<br />

Died 450 10 200 360<br />

Total 900,000 100,000 100,000 900,000<br />

B1. M<strong>at</strong>ched case control <strong>study</strong>: unstr<strong>at</strong>ified<br />

Diabetic Not diabetic<br />

Died 650 370<br />

Alive 470 550<br />

B2. M<strong>at</strong>ched case-control <strong>study</strong>: str<strong>at</strong>ified by gender<br />

Male Female<br />

Diabetic Not diabetic Diabetic Not diabetic<br />

Died 450 10 200 360<br />

Alive 414 46 56 504<br />

Table 8. A hypothetical <strong>study</strong> popul<strong>at</strong>ion.<br />

Note.—Table A presents d<strong>at</strong>a from a purely hypothetical popul<strong>at</strong>ion c<strong>at</strong>egorised by three<br />

parameters: gender (male/female), diabetic (yes/no) and mortality (died/survived). Table B<br />

shows d<strong>at</strong>a from a case-control <strong>study</strong> drawn from th<strong>at</strong> hypothetical popul<strong>at</strong>ion. The <strong>study</strong><br />

investig<strong>at</strong>ors in our idealised <strong>study</strong> were able to recruit every p<strong>at</strong>ient who died, and the<br />

controls are perfectly frequency m<strong>at</strong>ched by gender.<br />

A: the odds r<strong>at</strong>io for a person dying if he or she has <strong>diabetes</strong> is 5.0<br />

= (450×100,000)/(10×900,000) = (200×900,000)/(360×100,000).<br />

B: In B1, the odds r<strong>at</strong>io as estim<strong>at</strong>ed from the unstr<strong>at</strong>ified d<strong>at</strong>a is (650×550)/(370×470) =<br />

2·1. This value is clearly incorrect, because in this hypothetical example, we know th<strong>at</strong><br />

the true popul<strong>at</strong>ion odds r<strong>at</strong>io is 5·0, because th<strong>at</strong> is wh<strong>at</strong> we set it to be. In this case, we<br />

know th<strong>at</strong> the estim<strong>at</strong>e is confounded by gender. In B2, the same d<strong>at</strong>a has been divided<br />

into two str<strong>at</strong>a, Male or Female. This removes the effect <strong>of</strong> confounding, because every<br />

person in each str<strong>at</strong>um has the same gender (either Male or Female). In the Male str<strong>at</strong>um,<br />

the odds r<strong>at</strong>io is (450×46)/(414×10) = 5·0; In the Female str<strong>at</strong>um, the odds r<strong>at</strong>io is<br />

(200×504)/(56×360) = 5·0. Combining the odds r<strong>at</strong>ios in this simple example yields a<br />

summary odds r<strong>at</strong>io <strong>of</strong> 5·0, which is the correct value.<br />

78


Aside from demonstr<strong>at</strong>ing how to adjust for confounding, this example demonstr<strong>at</strong>es th<strong>at</strong><br />

m<strong>at</strong>ching on a confounder in a case-control <strong>study</strong> is not sufficient to remove the<br />

confounding. The final estim<strong>at</strong>es from a m<strong>at</strong>ched case-control <strong>study</strong> must still be adjusted<br />

for all confounders th<strong>at</strong> were m<strong>at</strong>ched, and failure to do so will produce erroneous<br />

results. It is even possible to demonstr<strong>at</strong>e th<strong>at</strong> m<strong>at</strong>ching for a variable th<strong>at</strong> is not a<br />

confounder in a case-control <strong>study</strong> is capable <strong>of</strong> introducing confounding into the results.<br />

Many authors have therefore argued against m<strong>at</strong>ching in case-control studies, and many<br />

case-control <strong>study</strong> designs are now unm<strong>at</strong>ched. This example is adapted from Rothman<br />

1986. 692<br />

To adjust for more confounders, the d<strong>at</strong>a must be divided into str<strong>at</strong>a for<br />

every possible combin<strong>at</strong>ion <strong>of</strong> variables. For example, to adjust for the effect <strong>of</strong><br />

obesity as well as a the effect <strong>of</strong> gender, a minimum <strong>of</strong> four str<strong>at</strong>a would be<br />

needed: obese/male, obese/female, non-obese/male, non-obese/female. The<br />

number <strong>of</strong> str<strong>at</strong>a required therefore increases exponentially with the number <strong>of</strong><br />

confounders. If there are too many confounders to adjust for, there will not be<br />

enough d<strong>at</strong>a to fill every str<strong>at</strong>um and some str<strong>at</strong>a will be empty or partly empty.<br />

The calcul<strong>at</strong>ion becomes impossible for empty str<strong>at</strong>a, because the estim<strong>at</strong>ed<br />

odds r<strong>at</strong>ios will be either zero or undefined (division by zero).<br />

The st<strong>at</strong>istical package, St<strong>at</strong>a (St<strong>at</strong>aCorp, College St<strong>at</strong>ion, Texas), fits<br />

logistic regression models using maximum likelihood estim<strong>at</strong>ion, which is<br />

better able to cope with sparse d<strong>at</strong>a. The command logistic reports odds<br />

r<strong>at</strong>ios, while logit reports log odds r<strong>at</strong>ios: the models produced by both<br />

commands are identical.<br />

Logistic regression can be extended to accommod<strong>at</strong>e outputs with more<br />

than two levels (multinomial or multivari<strong>at</strong>e logit modelling), or situ<strong>at</strong>ions<br />

where the inputs are not independent (conditional random field modelling).<br />

These are implemented in St<strong>at</strong>a as blogit and glogit, respectively.<br />

2.1.4 Identific<strong>at</strong>ion <strong>of</strong> confounders and causal reasoning<br />

Informally, a confounder is one th<strong>at</strong> accounts for all or part <strong>of</strong> an apparent<br />

associ<strong>at</strong>ion between the exposure and the outcome and is not itself affected by<br />

the exposure. One definition <strong>of</strong> a confounder is th<strong>at</strong> a confounder is any<br />

parameter associ<strong>at</strong>ed with both exposure and mortality, but which does not lie<br />

79


on the causal p<strong>at</strong>hway between exposure and mortality. 598 The identific<strong>at</strong>ion <strong>of</strong><br />

confounders is the business <strong>of</strong> the epidemiologist and not the st<strong>at</strong>istician,<br />

because it requires knowledge about the d<strong>at</strong>a th<strong>at</strong> cannot be inferred from the<br />

d<strong>at</strong>a itself. 693 There is no st<strong>at</strong>istical test for confounding, so any method based<br />

solely on p-values is incorrect. 694<br />

The gre<strong>at</strong>est challenge facing the model-builder is the correct<br />

identific<strong>at</strong>ion <strong>of</strong> confounders to include in the model. There exists a popular<br />

misconception th<strong>at</strong> adjusting for more variables is a good thing. Few d<strong>at</strong>a sets<br />

are large enough to allow adjustment for every possible confounder and<br />

unnecessary adjustment wastes power: in other words, a true effect can be made<br />

to spuriously disappear by adjusting unnecessarily for something th<strong>at</strong> is not a<br />

confounder. 597,688,695<br />

There is an even more serious problem with unnecessary adjustment.<br />

Adjusting for a parameter which is not a confounder may introduce<br />

confounding and hence produce biased results. 597,693,696<br />

When logistic regression models were first introduced into clinical<br />

research in the 1970’s and 80’s, model fitting had to be performed by hand.<br />

Starting in the early 1990’s, computer s<strong>of</strong>tware packages became available th<strong>at</strong><br />

would fit logistic regression models in milliseconds, which has led to an over-<br />

dependence on computer-led methods <strong>of</strong> model building, principally, the step-<br />

wise selection <strong>of</strong> variables.<br />

Generally speaking, step-up procedures add variables one by one on the<br />

basis <strong>of</strong> p-value (smallest p-value first), while step-down procedures throw all<br />

the variables into the model and then remove them one by one according to p-<br />

value (largest p-value first). 697 The <strong>at</strong>traction <strong>of</strong> these d<strong>at</strong>a-driven approaches is<br />

th<strong>at</strong> they remove the necessity for careful thought and will invariably produce<br />

models with excellent fit. Unfortun<strong>at</strong>ely, it has been repe<strong>at</strong>edly shown th<strong>at</strong><br />

models produced in this way give overoptimistic estim<strong>at</strong>es for p-values and<br />

seldom give reproducible results 688,695 (a problem known as ‘over-fitting’).<br />

A more serious problem with stepwise methods is their validity. The p-<br />

value reported (whether calcul<strong>at</strong>ed by the Wald test or by the likelihood r<strong>at</strong>io<br />

test) measures the value <strong>of</strong> th<strong>at</strong> risk factor in predicting the outcome. Stepwise<br />

methods are therefore only valid (if they are ever valid) for the purpose <strong>of</strong><br />

building a predictive model. When models are built to adjust for confounding,<br />

80


the p-values are irrelevant, because the hypothesis they test is unrel<strong>at</strong>ed to<br />

whether the variable is or is not a confounder. 698<br />

The selection <strong>of</strong> variables for inclusion in a model is always dependent on<br />

external inform<strong>at</strong>ion, 693,699 and is only weakly dependent on inform<strong>at</strong>ion<br />

contained in the d<strong>at</strong>a itself. An important example <strong>of</strong> this external inform<strong>at</strong>ion<br />

is a knowledge <strong>of</strong> the temporal rel<strong>at</strong>ionship between variables. In fact, this is<br />

probably the single most important piece <strong>of</strong> inform<strong>at</strong>ion available to the<br />

investig<strong>at</strong>or, for the single reason th<strong>at</strong> effect must always follow cause. If<br />

variable A follows variable B in time, then variable A can never be a confounder<br />

for variable B, because confounders must always precede in time, or <strong>at</strong> least be<br />

roughly contemporaneous with the variables they confound (thus allowing for<br />

the possibility th<strong>at</strong> variable A might precede variable B).<br />

The simplest tool for identifying confounders is the conceptual<br />

hierarchy 700 (Figure 15). In the hierarchical conceptual framework th<strong>at</strong> we built<br />

for this cohort <strong>study</strong>, time flows from the top <strong>of</strong> the chart to the bottom. In our<br />

cohort <strong>study</strong>, the exposure <strong>of</strong> interest was <strong>diabetes</strong> (Figure 15, level 2) and the<br />

outcome <strong>of</strong> interest was de<strong>at</strong>h (Figure 15, level 6). Any one factor can be<br />

confounded only by other factors in the same level or in the levels above.<br />

Factors in lower levels must be either in the causal p<strong>at</strong>hway or be common<br />

effects: they cannot be confounders.<br />

The question then arises: Wh<strong>at</strong> is the effect <strong>of</strong> adjusting for variables on<br />

the causal p<strong>at</strong>hway? All <strong>diabetes</strong> drugs must lie on the causal p<strong>at</strong>hway between<br />

<strong>diabetes</strong> and de<strong>at</strong>h, the reason being th<strong>at</strong> they are only prescribed after the a<br />

diagnosis <strong>of</strong> <strong>diabetes</strong> is made and are only prescribed in the context <strong>of</strong> <strong>diabetes</strong>.<br />

However, the choice <strong>of</strong> drug may be manipul<strong>at</strong>ed by the clinician. Adjusting for<br />

drug therapy allows us to ask the question, “wh<strong>at</strong> if we did not prescribe this<br />

drug?” It provides an elabor<strong>at</strong>ion <strong>of</strong> wh<strong>at</strong> is going on and it permits us to look<br />

for possible mechanisms. It is important to note th<strong>at</strong> while this oper<strong>at</strong>ion is<br />

m<strong>at</strong>hem<strong>at</strong>ically identical to adjustment for confounding, the interpret<strong>at</strong>ion <strong>of</strong><br />

the result is completely different from adjusting for a confounder.<br />

81


1 gender age access to healthcare<br />

2 <strong>diabetes</strong> mellitus chronic kidney disease corticosteroid use<br />

3 glibenclamide metformin insulin admission<br />

antimicrobials<br />

4 Melioidosis<br />

5 bacteraemia respir<strong>at</strong>ory failure hypotension<br />

6 De<strong>at</strong>h<br />

Figure 15. Conceptual hierarchical framework <strong>of</strong> risk factors for<br />

melioidosis mortality.<br />

Note.—Gender, age and access to healthcare occupy the highest level in the hierarchy<br />

because they are not dependent on any other factors. Factors in each level are dependent<br />

on factors in the level above and factors in lower levels cannot confound the effect <strong>of</strong><br />

factors in higher levels because they occur l<strong>at</strong>er in time. Factors in level 5 are immedi<strong>at</strong>e<br />

proxim<strong>at</strong>e causes <strong>of</strong> de<strong>at</strong>h. Other pre-existing medical conditions were omitted from<br />

level 2 (e.g., malignancy, thalassaemia, etc.) because they do not confound <strong>diabetes</strong> or its<br />

tre<strong>at</strong>ment. We used occup<strong>at</strong>ion (rice farming) as a proxy for access to healthcare.<br />

Measures <strong>of</strong> disease severity must also lie on the causal p<strong>at</strong>hway. Why<br />

then is it possible to adjust for drug therapy and not disease severity, when both<br />

must lie on the causal p<strong>at</strong>hway? The answer is th<strong>at</strong> any exposure which changes<br />

mortality must autom<strong>at</strong>ically change severity. It is implausible th<strong>at</strong> any effective<br />

intervention might reduce mortality while having no effect on clinical severity.<br />

To adjust for severity in the analysis is an uninterpretable exercise, because the<br />

clinician cannot modify severity independent <strong>of</strong> mortality.<br />

2.2 Methods<br />

We prospectively identified all p<strong>at</strong>ients aged 15 years or more presenting<br />

to Sappasithiprasong Hospital, Ubon R<strong>at</strong>ch<strong>at</strong>hani, northeast Thailand with<br />

culture-confirmed melioidosis between 1 st January 2002 and 31 st December<br />

2006. P<strong>at</strong>ients on their first admission for culture-confirmed melioidosis were<br />

82<br />

Flow <strong>of</strong> time


eligible, but p<strong>at</strong>ients under the age <strong>of</strong> 15 were excluded because paedi<strong>at</strong>ric cases<br />

have a different clinical present<strong>at</strong>ion and prognosis. There were no other<br />

exclusion criteria.<br />

P<strong>at</strong>ients were classified into three groups according to <strong>diabetes</strong> st<strong>at</strong>us <strong>at</strong><br />

present<strong>at</strong>ion: known <strong>diabetes</strong>, hyperglycaemia or no <strong>diabetes</strong>. P<strong>at</strong>ients with a<br />

pre-existing diagnosis <strong>of</strong> <strong>diabetes</strong> mellitus were classified as having known<br />

<strong>diabetes</strong>. The hyperglycaemia group were p<strong>at</strong>ients not previously known to have<br />

<strong>diabetes</strong>, who had either a blood glucose >200 mg/dl (11·1 mmol/l) <strong>at</strong> any point<br />

during the admission or new <strong>diabetes</strong> diagnosed after recovery as defined by<br />

WHO criteria. We did not sub-classify this group further for the following<br />

reasons: melioidosis is a common first present<strong>at</strong>ion <strong>of</strong> type 2 <strong>diabetes</strong> in this<br />

region 175 and an associ<strong>at</strong>ed mortality <strong>of</strong> 50% (half <strong>of</strong> which occurs in the first 48<br />

hours) means th<strong>at</strong> a new diagnosis <strong>of</strong> <strong>diabetes</strong> cannot be made for a significant<br />

proportion <strong>of</strong> cases, and hyperglycaemic p<strong>at</strong>ients who die are more likely to be<br />

classed as having sepsis-induced hyperglycaemia while cases who survive are<br />

more likely to be classed as having a new diagnosis <strong>of</strong> <strong>diabetes</strong>. P<strong>at</strong>ients who did<br />

not fall into the known <strong>diabetes</strong> or hyperglycaemia groups were classified as<br />

having no <strong>diabetes</strong>. Hb A1c values were not available for p<strong>at</strong>ients in this cohort.<br />

A full history and clinical examin<strong>at</strong>ion were recorded from culture-<br />

confirmed cases <strong>of</strong> melioidosis, and each p<strong>at</strong>ient was seen daily until discharge<br />

or de<strong>at</strong>h. Blood samples were taken on admission for a complete blood count,<br />

capillary glucose, blood urea nitrogen, cre<strong>at</strong>inine, electrolytes and liver function<br />

tests. Intravenous ceftazidime, imipenem or meropenem was started as soon as<br />

melioidosis was suspected and continued for a minimum <strong>of</strong> 10–14 days. Clinical<br />

d<strong>at</strong>a were recorded on a password-protected computer d<strong>at</strong>abase.<br />

Details <strong>of</strong> pre-admission drug tre<strong>at</strong>ment for <strong>diabetes</strong> (glibenclamide,<br />

metformin and insulin) and dur<strong>at</strong>ion <strong>of</strong> infection-rel<strong>at</strong>ed symptoms prior to<br />

admission were obtained by questioning the p<strong>at</strong>ient or nearest rel<strong>at</strong>ive. We<br />

recorded whether effective admission antimicrobial therapy (parenteral<br />

ceftazidime, imipenem, meropenem, co-amoxiclav, or cefoperazone-sulbactam)<br />

was given within 24 hours <strong>of</strong> admission.<br />

Sepsis was defined, using a simplified version <strong>of</strong> the 1992 joint American<br />

College <strong>of</strong> Chest Physicians and Society <strong>of</strong> Critical Care Medicine Consensus<br />

Conference Committee definition, as two or more <strong>of</strong> (1) temper<strong>at</strong>ure


38°C; (2) heart r<strong>at</strong>e >90 be<strong>at</strong>s per minute; (3) respir<strong>at</strong>ory r<strong>at</strong>e >20 bre<strong>at</strong>hs per<br />

minute; or (4) total white cell count >12 × 10 9 cells/l. Bacteraemia was defined<br />

as one or more blood cultures positive for B. pseudomallei. The extent <strong>of</strong><br />

infection was based on the number <strong>of</strong> organs or an<strong>at</strong>omical sites involved in the<br />

infective process: Single organ disease meant involvement <strong>of</strong> a single site, and<br />

multiorgan disease meant infection <strong>of</strong> more than one site. Blood culture and<br />

thro<strong>at</strong> swab positivity were excluded from the organ count. Pneumonia was<br />

defined as the presence <strong>of</strong> clinical fe<strong>at</strong>ures consistent with pneumonia, plus<br />

radiographic changes or sputum culture positive for B. pseudomallei. Dur<strong>at</strong>ion<br />

<strong>of</strong> symptoms prior to admission was recorded in days (but entered into the<br />

analysis as fractions <strong>of</strong> weeks). A history was taken for chronic kidney disease,<br />

thalassemia, malignancy and chronic liver disease (chronic hep<strong>at</strong>itis B or C<br />

infection, or chronic alcoholic liver disease). P<strong>at</strong>ients with nephrolithiasis were<br />

identified from either the history or calculi visible on a plain abdominal<br />

radiograph or ultrasonography.<br />

The primary <strong>study</strong> outcome was in-hospital mortality, but we also pre-<br />

defined two secondary outcomes: hypotension (a systolic blood pressure <strong>of</strong> less<br />

than 90 mmHg <strong>at</strong> any point during admission), and respir<strong>at</strong>ory failure (hypoxia<br />

judged clinically to require mechanical ventil<strong>at</strong>ion; arterial blood gases are not<br />

taken routinely in our setting).<br />

2.2.1 St<strong>at</strong>istical analysis<br />

Analyses were performed using St<strong>at</strong>a/SE 9 (St<strong>at</strong>aCorp, College St<strong>at</strong>ion,<br />

Texas). Differences between the three p<strong>at</strong>ient groups were compared using the<br />

Fisher’s exact test for c<strong>at</strong>egorical variables and the Mann-Whitney U test for<br />

continuous variables. Time to de<strong>at</strong>h (to a maximum <strong>of</strong> 28 days) was analysed<br />

using the Kaplan-Meier method; p<strong>at</strong>ients discharged alive from hospital within<br />

28 days were assumed to have survived, but p<strong>at</strong>ients who self-discharged<br />

against medical advice were censored on the day <strong>of</strong> discharge.<br />

To inform the selection <strong>of</strong> parameters used in the logistic regression<br />

models, we cre<strong>at</strong>ed a conceptual hierarchical framework 700 <strong>of</strong> risk factors to<br />

explore interactions between a number <strong>of</strong> variables (Figure 15). Parameters<br />

were chosen on the basis <strong>of</strong> whether they were possible confounders for the<br />

84


effect <strong>of</strong> <strong>diabetes</strong> on mortality (Model A, Table 10); 90 p-values reported are for<br />

the likelihood-r<strong>at</strong>io test, but were not used to inform parameter selection.<br />

In Model A (Table 10), we adjusted for age and sex as possible<br />

confounders. We also adjusted for corticosteroid use because corticosteroids are<br />

available without a prescription in northeast Thailand, are commonly abused,<br />

and may cause <strong>diabetes</strong>. It is possible th<strong>at</strong> p<strong>at</strong>ients in the known <strong>diabetes</strong> group<br />

had increased access to healthcare, so we adjusted for this by using the<br />

occup<strong>at</strong>ion <strong>of</strong> rice farmer as a proxy since this is associ<strong>at</strong>ed with poverty,<br />

increased physical distance from hospitals and clinics and poorer transport<br />

links. It is impossible for parameters occurring below <strong>diabetes</strong> in the framework<br />

to confound the effect <strong>of</strong> <strong>diabetes</strong> (e.g., tre<strong>at</strong>ment, pneumonia, severity, organ<br />

failure). 700<br />

A second regression model was developed to explore explan<strong>at</strong>ions for the<br />

survival advantage in known diabetics (Model B, Table 10) by examining<br />

modifiable parameters lying on the causal p<strong>at</strong>hway between <strong>diabetes</strong> and<br />

mortality. This included analysis <strong>of</strong> tre<strong>at</strong>ment for <strong>diabetes</strong> prior to admission,<br />

and administr<strong>at</strong>ion <strong>of</strong> appropri<strong>at</strong>e admission antimicrobial therapy within 24<br />

hours <strong>of</strong> admission. We adjusted for chronic kidney disease in this model<br />

because metformin is contra-indic<strong>at</strong>ed in renal failure, and renal failure is<br />

associ<strong>at</strong>ed with mortality. Additional models were developed to evalu<strong>at</strong>e the<br />

effect <strong>of</strong> <strong>diabetes</strong> on our secondary outcomes (hypotension and respir<strong>at</strong>ory<br />

failure: Table 11, Models C & E), and to explore factors th<strong>at</strong> could explain the<br />

difference in outcomes observed in p<strong>at</strong>ients with <strong>diabetes</strong> (Table 11, Models D<br />

& F).<br />

The result <strong>of</strong> the Hosmer-Lemeshow test for goodness-<strong>of</strong>-fit for Model A<br />

was p=0·41, B was p=0·53; C was p=0·22; D was p=0·28; E was p=0·51; and F<br />

was p=0·47.<br />

2.2.2 Glibenclamide inhibition <strong>study</strong><br />

Pl<strong>at</strong>es <strong>of</strong> Müller-Hinton agar were inocul<strong>at</strong>ed with a lawn <strong>of</strong><br />

B. pseudomallei (0·5 MacFarland standard). A single glibenclamide tablet was<br />

crushed and dissolved in 1 ml DMSO, with 100 µl <strong>of</strong> the solution (~100 µg <strong>of</strong><br />

glibenclamide) dropped onto the centre <strong>of</strong> the agar pl<strong>at</strong>e. The same volume <strong>of</strong><br />

85


DMSO was used for control pl<strong>at</strong>es. The pl<strong>at</strong>es were incub<strong>at</strong>ed <strong>at</strong> 37°C for<br />

48 hours and the pl<strong>at</strong>es examined for a zone <strong>of</strong> inhibition.<br />

2.3 Results<br />

2.3.1 Diabetes and mortality<br />

We identified 1384 p<strong>at</strong>ients with culture-positive melioidosis, <strong>of</strong> whom<br />

224 were removed from the final analysis for reasons shown in Figure 16. Of the<br />

remaining 1160 p<strong>at</strong>ients, 410 (35%) had known <strong>diabetes</strong>, 250 (22%) had<br />

hyperglycaemia and 500 (43%) had no <strong>diabetes</strong>. P<strong>at</strong>ient characteristics, clinical<br />

fe<strong>at</strong>ures <strong>of</strong> melioidosis and primary and secondary outcomes were compared<br />

between the three groups, using the no <strong>diabetes</strong> group as the compar<strong>at</strong>or for the<br />

two other groups (Table 9). In-hospital mortality was lower in p<strong>at</strong>ients with<br />

known <strong>diabetes</strong> compared with non-diabetics (p=0·04), with no difference<br />

observed between non-diabetics and p<strong>at</strong>ients with hyperglycaemia. These<br />

findings were reproduced in the survival analysis (Figure 17A).<br />

500 (43%)<br />

No <strong>diabetes</strong><br />

1384 culture-positive<br />

1182 eligible<br />

1160 <strong>study</strong> p<strong>at</strong>ients<br />

410 (35%)<br />

Known <strong>diabetes</strong><br />

Figure 16. <strong>Summary</strong> <strong>of</strong> p<strong>at</strong>ient recruitment for cohort <strong>study</strong>.<br />

86<br />

202 excluded<br />

• 129 age


No <strong>diabetes</strong> Known <strong>diabetes</strong><br />

Hyperglycaemia<br />

Total<br />

(n=500) (n=410)<br />

(n=250)<br />

(n=1160)<br />

number (%) number (%) p-value a number (%) p-value a row total (%)<br />

Female 165 (33) 219 (53) – 114 (46) – 498 (43)<br />

Male 335 (67) 191 (47)


Distribution <strong>of</strong> disease<br />

Bacteraemia 274 (55) 238 (58) 0.35 164 (66) 0.005 676 (58)<br />

Single organ disease 291 (58) 240 (59) 0.95 146 (58) 1.00 677 (58)<br />

Multiorgan disease<br />

Complic<strong>at</strong>ions<br />

110 (22) 102 (25) 0.31 58 (23) 0.71 270 (23)<br />

Hypotension 187 (37) 135 (33) 0.16 99 (39) 0.58 421 (36)<br />

Respir<strong>at</strong>ory failure 179 (36) 117 (29) 0.02 101 (40) 0.23 397 (34)<br />

Sepsis d 392 (78) 334 (81) 0.28 209 (84) 0.10 935 (81)<br />

Antibiotic tre<strong>at</strong>ment and in-hospital mortality<br />

Effective antibiotic tre<strong>at</strong>ment<br />

within 24 hours <strong>of</strong> admission<br />

367 (73) 359 (88) 20 bre<strong>at</strong>hs per minute, or total leucocyte count<br />

>12 × 10 9 cells/L.<br />

f P<strong>at</strong>ients who took their own discharge were counted as alive.<br />

88


Figure 17A<br />

Survival<br />

0.00 0.20 0.40 0.60 0.80 1.00<br />

0 7 14 21 28<br />

Survival time in days<br />

Numbers <strong>at</strong> risk on day 0 day 7 day 14 day 21 day 28<br />

No <strong>diabetes</strong> 500 304 281 271 265<br />

Known <strong>diabetes</strong> 410 279 259 252 251<br />

Hyperglycaemia 250 154 138 130 130<br />

—— No <strong>diabetes</strong> —— Known <strong>diabetes</strong> —— Hyperglycaemia<br />

Known <strong>diabetes</strong> v. No <strong>diabetes</strong> (p = 0·03)<br />

Hyperglycaemia v. No <strong>diabetes</strong> (p = 0·91)<br />

Known <strong>diabetes</strong> v. Hyperglycaemia (p = 0·05)<br />

89


Figure 17B<br />

Survival<br />

0.00 0.20 0.40 0.60 0.80 1.00<br />

Numbers <strong>at</strong> risk on day 0 day 7 day 14 day 21 day 28<br />

No <strong>diabetes</strong> 500 304 281 271 265<br />

Known diabetics on glibenclamide 209 158 153 153 149<br />

Known diabetics not on glibenclamide 201 121 106 103 102<br />

Hyperglycaemia 250 154 138 130 130<br />

—— No <strong>diabetes</strong> group —— Known <strong>diabetes</strong> on glibenclamide<br />

—— Known <strong>diabetes</strong> not on glibenclamide —— Hyperglycaemia group<br />

Known <strong>diabetes</strong> on glibenclamide v. No <strong>diabetes</strong> (p


A previous <strong>study</strong> conducted <strong>at</strong> the same hospital but in a different (earlier)<br />

p<strong>at</strong>ient cohort reported an inverse associ<strong>at</strong>ion between <strong>diabetes</strong> and<br />

mortality (unadjusted odds r<strong>at</strong>io [OR] 0·49). 681 We confirmed this<br />

observ<strong>at</strong>ion in our independent cohort (OR 0·76; adjusted odds r<strong>at</strong>io<br />

[AOR] 0·78, 95% confidence interval [CI] 0·59 to 1·0, p=0·07), and<br />

extended previous observ<strong>at</strong>ions th<strong>at</strong> p<strong>at</strong>ients in the hyperglycaemia group<br />

had no survival advantage (Model A, Table 10).<br />

2.3.2 Glibenclamide and mortality<br />

We hypothesised th<strong>at</strong> the associ<strong>at</strong>ion between <strong>diabetes</strong> and a reduced<br />

risk <strong>of</strong> de<strong>at</strong>h was due to the tre<strong>at</strong>ment received for <strong>diabetes</strong> and/or<br />

melioidosis. This was tested in a second logistic regression model (Table<br />

10, Model B). We considered drugs prescribed for <strong>diabetes</strong> (glibenclamide,<br />

metformin, insulin) prior to admission, noting th<strong>at</strong> more than half <strong>of</strong><br />

known diabetics were receiving glibenclamide (Table 9). We adjusted for<br />

chronic renal failure, because metformin is avoided in renal failure,<br />

because <strong>of</strong> the risk <strong>of</strong> lactic acidosis, and because renal failure is associ<strong>at</strong>ed<br />

with mortality. We included the administr<strong>at</strong>ion <strong>of</strong> appropri<strong>at</strong>e admission<br />

antimicrobial therapy because the associ<strong>at</strong>ion between <strong>diabetes</strong> and<br />

melioidosis is well-described and could lead clinicians to prescribe these <strong>at</strong><br />

an earlier stage in diabetic p<strong>at</strong>ients.<br />

The adjusted odds r<strong>at</strong>io for de<strong>at</strong>h was lower for p<strong>at</strong>ients who received<br />

glibenclamide therapy prior to admission (AOR 0·47, 95%CI 0·28–0·74,<br />

p=0·005) and for those receiving effective antimicrobial chemotherapy <strong>at</strong><br />

admission (AOR 0·23, 95%CI 0·17–0·34, p


univariable analysis logistic regression<br />

model A<br />

92<br />

(n = 1160)<br />

logistic regression<br />

model B<br />

(n = 1109) c<br />

OR (95% CI) AOR (95% CI) AOR (95% CI)<br />

No <strong>diabetes</strong> a 1·0 — 1·0 — 1·0 —<br />

Known <strong>diabetes</strong> 0·76 (0·58–0·99) 0·78 (0·59–1·0) 1·4 (0·89–2·3)<br />

Hyperglycaemia 1·1 (0·79–1·5) 1·1 (0·81–1·5) 1·4 (0·98–1·9)<br />

Age b 1·1 (1·0–1·2) 1·1 (1·0–1·2) 1·1 (0·99–1·2)<br />

Male sex 1·2 (0·94–1·5) 1·1 (0·89–1·5) 1·0 (0·78–1·3)<br />

Rice farming 0·97 (0·74–1·3) 1·0 (0·75–1·3) 1·2 (0·86–1·6)<br />

Corticosteroid use 1·5 (0·86–2·7) 1·6 (0·87–2·8) 1·0 (0·62–2·2)<br />

Chronic kidney disease 2·8 (1·8–4·3) 2·2 (1·6–4·0)<br />

Glibenclamide tre<strong>at</strong>ment c 0·48 (0·35–0·67) 0·47 (0·28–0·74)<br />

Metformin tre<strong>at</strong>ment c 0·61 (0·33–1·1) 1·1 (0·62–2·4)<br />

Insulin tre<strong>at</strong>ment c 0·79 (0·49–1·3) 0·65 (0·37–1·2)<br />

Effective admission antibiotic<br />

tre<strong>at</strong>ment c<br />

0·22 (0·16–0·31) 0·23 (0·17–0·34)<br />

Table 10. The effect <strong>of</strong> <strong>diabetes</strong> on mortality.<br />

Note.—OR = odds r<strong>at</strong>io (not adjusted); AOR = adjusted odds r<strong>at</strong>io; CI = confidence interval. An odds r<strong>at</strong>io below 1 indic<strong>at</strong>es associ<strong>at</strong>ion with<br />

survival, whereas an odds r<strong>at</strong>io above 1 indic<strong>at</strong>es associ<strong>at</strong>ion with mortality. The first column describes the contribution <strong>of</strong> each factor in isol<strong>at</strong>ion.<br />

The second column (model A) <strong>at</strong>tempts to explain the effect <strong>of</strong> <strong>diabetes</strong> by adjusting for several possible confounders for <strong>diabetes</strong> simultaneously;<br />

the third column (model B) adjusts additionally for the effect <strong>of</strong> <strong>diabetes</strong> tre<strong>at</strong>ment and post-admission antibiotics.<br />

When considered in isol<strong>at</strong>ion, <strong>diabetes</strong> (OR 0·76), glibenclamide tre<strong>at</strong>ment (OR 0·48) and effective admission antibiotic tre<strong>at</strong>ment (OR 0.22) were<br />

associ<strong>at</strong>ed with survival. The effect <strong>of</strong> <strong>diabetes</strong> persisted after correcting for confounders for <strong>diabetes</strong> (AOR 0·78, model A). When the effect <strong>of</strong><br />

glibenclamide tre<strong>at</strong>ment and effective admission antibiotic were taken into account, <strong>diabetes</strong> was no longer associ<strong>at</strong>ed with survival (AOR 1·4,<br />

model B). Sensitivity analysis. We conducted a sensitivity analysis to examine the impact <strong>of</strong> the missing d<strong>at</strong>a. Model A was constructed by


assigning the p<strong>at</strong>ients who self-discharged as “alive”; but if these p<strong>at</strong>ients were instead assigned as “dead”, then the AOR for known <strong>diabetes</strong> in<br />

model A became 0·71 (0·54–0·93, p = 0·01). In model B, assigning the p<strong>at</strong>ients who self-discharged to “dead”, caused the AOR for known <strong>diabetes</strong><br />

to become 1·3 (0·79–2·1, p = 0·31), glibenclamide tre<strong>at</strong>ment AOR 0·48 (0·28–0·83, p = 0·008), and effective admission antibiotic tre<strong>at</strong>ment AOR<br />

0·18 (0·13–0·27, p


Table 11<br />

Hypotension<br />

univariable analysis logistic regression<br />

Model C<br />

(n = 1160)<br />

94<br />

logistic regression<br />

Model D<br />

(n = 1109) a<br />

OR b (95% CI c ) AOR d (95% CI c ) AOR d (95% CI c )<br />

No <strong>diabetes</strong> e 1·0 — 1·0 — 1·0 —<br />

Known <strong>diabetes</strong> 0·80 (0·62–1·0) 0·84 (0·63–1·1) 1·3 (0·79–2·0)<br />

Hyperglycaemia 1·2 (0·90–1·6) 1·1 (0·83–1·6) 1.3 (0·91–1·7)<br />

Age f 1·2 (1·1–1·3) 1·1 (1·0–1·3) 1·1 (1·0–1·2)<br />

Male sex 1·1 (0·87–1·4) 1·1 (0·87–1·4) 1·0 (0·77–1·3)<br />

Rice farming 1·0 (0·75–1·4) 1·0 (0·76–1·4) 1·1 (0·78–1·5)<br />

Corticosteroid use 2·9 (1·6–5·2) 3·0 (1·6–5·4) 2·4 (1·3–4·5)<br />

Chronic kidney disease 2·0 (1·3–3·0) 1·8 (0·92–3·5)<br />

Glibenclamide tre<strong>at</strong>ment a 0·56 (0·40–0·78) 0·48 (0·30–0·78)<br />

Metformin tre<strong>at</strong>ment a 1·1 (0·60–1·9) 1·8 (0·92–3·5)<br />

Insulin tre<strong>at</strong>ment a 0·69 (0·42–1·2) 0·60 (0·33–1·1)<br />

Effective admission<br />

antimicrobial therapy a<br />

0·46 (0·34–0·62) 0·51 (0·37–0·70)


Respir<strong>at</strong>ory failure<br />

univariable analysis logistic regression<br />

Model E<br />

(n = 1160)<br />

95<br />

logistic regression<br />

Model F<br />

(n = 1109) a<br />

OR b (95% CI c ) AOR d (95% CI c ) AOR d (95% CI c )<br />

No <strong>diabetes</strong> e 1·0 — 1·0 — 1·0 —<br />

Known <strong>diabetes</strong> 0·72 (0·54–0·95) 0·73 (0·54–0·97) 1·2 (0·74–1·9)<br />

Hyperglycaemia 1·2 (0·89–1·7) 1·2 (0·90–1·7) 1·4 (1·0–2·0)<br />

Age f 1·0 (0·94–1·1) 1·0 (0·93–1·1) 0·99 (0·92–1·1)<br />

Male sex 1·2 (0·94–1·5) 1·2 (0·91–1·5) 1·1 (0·82–1·4)<br />

Rice farming 0·98 (0·73–1·3) 0·99 (0·73–1·3) 1·0 (0·76–1·4)<br />

Corticosteroid use 1·6 (0·90–2·8) 1·7 (0·92–3·0) 1·2 (0·62–2·2)<br />

Chronic kidney disease 2·2 (1·5–3·3) 2·0 (1·2–3·1)<br />

Glibenclamide tre<strong>at</strong>ment a 0·44 (0·31–0·64) 0·50 (0·28–0·86)<br />

Metformin tre<strong>at</strong>ment a 0·52 (0·26–1·0) 1·0 (0·48–2·1)<br />

Insulin tre<strong>at</strong>ment a 0·80 (0·49–1·3) 0·75 (0·39–1·4)<br />

Effective admission<br />

antimicrobial therapy a<br />

0·40 (0·29–0·54) 0·42 (0·31–0·58)<br />

Table 11. Effect <strong>of</strong> <strong>diabetes</strong> on hypotension and respir<strong>at</strong>ory failure.<br />

Note.—<br />

a P<strong>at</strong>ients on unknown oral <strong>diabetes</strong> medic<strong>at</strong>ion were omitted (n = 1109) in Models D & F and in the unadjusted OR for tre<strong>at</strong>ment variables.<br />

b Odds r<strong>at</strong>io (unadjusted).<br />

c Confidence interval.<br />

d Adjusted odds r<strong>at</strong>io.<br />

e Compar<strong>at</strong>or group.<br />

f Number <strong>of</strong> decades above age 15 years.


P<strong>at</strong>ients in the known <strong>diabetes</strong> group were more likely to receive effective<br />

antimicrobial therapy on admission compared to p<strong>at</strong>ients without <strong>diabetes</strong><br />

(88% versus 73%, p


these two factors, but none <strong>of</strong> the previously-cited studies 574,594,595 looked for an<br />

effect <strong>of</strong> <strong>diabetes</strong> tre<strong>at</strong>ment.<br />

The effect <strong>of</strong> antimicrobial chemotherapy is unsurprising, and is consistent<br />

with wh<strong>at</strong> we know from other causes <strong>of</strong> sepsis. 701 The effect <strong>of</strong> glibenclamide<br />

was unexpected and has not previously been described.<br />

2.4.1 Glibenclamide<br />

Glibenclamide rINN (=glyburide USAN, Figure 18) is a second-gener<strong>at</strong>ion<br />

sulphonylurea widely used to tre<strong>at</strong> type 2 <strong>diabetes</strong> and acts by inhibiting ATP-<br />

sensitive 699 (KATP-channels) in pancre<strong>at</strong>ic β-cells, 95 leading to stimul<strong>at</strong>ion <strong>of</strong><br />

insulin secretion.<br />

Figure 18. Glibenclamide rINN or glyburide USAN.<br />

Note.— IUPAC name, N-[2-[4-(cyclohexylcarbamoylsulfamoyl)phenyl]ethyl]-2-<br />

methoxybenzamide. Molecular weight 494·0 g/mol. Daonil® (formerly Hoechst, now<br />

Aventis); Eugluclon® (Roussel); Sigma-Aldrich c<strong>at</strong>alogue no. G0639.<br />

A B<br />

Figure 19. General structure <strong>of</strong> sulphonylureas and sulphonamides.<br />

Note.—H = hydrogen; N = nitrogen; O = oxygen; R = general alkyl group, S = sulphur.<br />

The generalised structure on the left is a sulphonylurea (A); the structure on the right is a<br />

sulphonamide (B). The part <strong>of</strong> the structure highlighted in red is the sulphonamide<br />

moiety, which is clearly present in the sulphonylurea structure as well.<br />

97


The sulphonylureas were first described in the 1942 by Janbon et al. while<br />

searching for novel antimicrobials. From a chemical point <strong>of</strong> view, the<br />

sulphonylureas are also sulphonamides (Figure 19) and we initially<br />

hypothesised th<strong>at</strong> glibenclamide was acting via an antimicrobial action on<br />

B. pseudomallei. However, we were unable to show th<strong>at</strong> glibenclamide inhibits<br />

growth <strong>of</strong> B. pseudomallei, thus excluding an antimicrobial effect <strong>of</strong><br />

glibenclamide on B. pseudomallei.<br />

2.4.2 Glibenclamide and vascular smooth muscle<br />

KATP-channels are also expressed in the heart and on vascular smooth<br />

muscle, and excessive opening <strong>of</strong> vascular KATP-channels in sepsis (due to a fall<br />

in the ATP/ADP r<strong>at</strong>io, pH or oxygen tension, or a rise in intracellular lact<strong>at</strong>e)<br />

leads to hyperpolariz<strong>at</strong>ion <strong>of</strong> the cell membrane, a blocking <strong>of</strong> the calcium influx<br />

and loss <strong>of</strong> vascular tone (contributing to the ‘vascular paresis’ <strong>of</strong> septic shock).<br />

By blocking vascular smooth muscle KATP-channels, glibenclamide is able to<br />

protect from shock in animal models <strong>of</strong> sepsis, 702 although this did not transl<strong>at</strong>e<br />

into a detectable effect on cardiovascular parameters in two small clinical trials<br />

in which glibenclamide was given <strong>at</strong> doses normally used to tre<strong>at</strong> <strong>diabetes</strong>. 703,704<br />

Neither <strong>study</strong> was designed to find an effect on mortality, and neither looked <strong>at</strong><br />

end points such as respir<strong>at</strong>ory failure or inflamm<strong>at</strong>ion.<br />

2.4.3 Limit<strong>at</strong>ions <strong>of</strong> this <strong>study</strong><br />

In seeking confounders for our <strong>study</strong>, we considered whether<br />

glibenclamide tre<strong>at</strong>ment was simply a marker for less advanced <strong>diabetes</strong> and<br />

th<strong>at</strong> this was associ<strong>at</strong>ed with a survival benefit compared with p<strong>at</strong>ients on<br />

insulin which is reserved for p<strong>at</strong>ients who fail to achieve adequ<strong>at</strong>e diabetic<br />

control on oral medic<strong>at</strong>ion. However, only glibenclamide tre<strong>at</strong>ment and not<br />

metformin was associ<strong>at</strong>ed with an improvement in mortality. We also<br />

considered whether thiazolidinediones and st<strong>at</strong>ins (which are anti-<br />

inflamm<strong>at</strong>ory and may be required more commonly in diabetics) was a<br />

confounder, but found th<strong>at</strong> although available, these are very rarely used in our<br />

setting. This is an observ<strong>at</strong>ional <strong>study</strong> in which glibenclamide was given for a<br />

specific indic<strong>at</strong>ion, namely, the tre<strong>at</strong>ment <strong>of</strong> type 2 <strong>diabetes</strong> and it is not<br />

possible to exclude unequivocally the possibility <strong>of</strong> confounding. 705<br />

98


3 Glibenclamide is associ<strong>at</strong>ed with<br />

reduced inflamm<strong>at</strong>ion in melioidosis<br />

3.1 Introduction<br />

Having observed an associ<strong>at</strong>ion between glibenclamide and survival, we<br />

initially postul<strong>at</strong>ed th<strong>at</strong> glibenclamide was acting as an antimicrobial drug based<br />

on its structural homology with the sulphonamides (to which B. pseudomallei is<br />

susceptible). However, a solution <strong>of</strong> glibenclamide in DMSO has no inhibitory<br />

effect B. pseudomallei grown in LB or on tryptic soy agar. We therefore<br />

hypothesized th<strong>at</strong> glibenclamide was having an effect on the host response to<br />

melioidosis.<br />

Glibenclamide is a broad-spectrum ABC transporter inhibitor th<strong>at</strong> alters<br />

responses <strong>of</strong> macrophages to a range <strong>of</strong> stimuli in vitro and in vivo. 706–708 We<br />

used peripheral leukocyte gene expression as a screening tool to identify global<br />

trends in gene function th<strong>at</strong> might be ascribed to the action <strong>of</strong> glibenclamide.<br />

We compared gene expression pr<strong>of</strong>iles in 10 diabetic p<strong>at</strong>ients who were taking<br />

glibenclamide <strong>at</strong> the time <strong>of</strong> present<strong>at</strong>ion with melioidosis against 10 diabetic<br />

melioidosis p<strong>at</strong>ients who were not taking this or another sulfonylurea, and<br />

repe<strong>at</strong>ed the comparison in healthy controls.<br />

3.1.1 DNA microarrays<br />

DNA microarrays are a multiplex assay, consisting <strong>of</strong> two-dimensional<br />

arrays <strong>of</strong> DNA fragments immobilized on a solid substr<strong>at</strong>e. The first DNA<br />

microarray had 378 probes, but current commercial arrays may contain tens <strong>of</strong><br />

thousands <strong>of</strong> probes and are able to interrog<strong>at</strong>e across an entire eukaryotic<br />

genome. When investig<strong>at</strong>ing gene expression, messenger RNA is first purified<br />

from lysed white blood cells and then converted to cDNA. The cDNA is then<br />

amplified by transcription to RNA by an RNA polymerase, which is preferable to<br />

PCR amplific<strong>at</strong>ion because the amplific<strong>at</strong>ion proceeds in a linear fashion th<strong>at</strong><br />

preserves the rel<strong>at</strong>ive proportions <strong>of</strong> each mRNA transcript. A fluorescent label<br />

is <strong>at</strong>tached to the RNA, and the RNA is then hybridised with a DNA microarray,<br />

where each RNA fragment will bind to m<strong>at</strong>ching DNA probes on the chip. The<br />

99


fluorescence read out gives an estim<strong>at</strong>e <strong>of</strong> the amount <strong>of</strong> RNA bound to each<br />

probe.<br />

Microarrays are a refinement <strong>of</strong> the Southern blot. DNA blotting was first<br />

described by Edwin Southern in 1975 <strong>at</strong> the <strong>University</strong> <strong>of</strong> Edinburgh. 709<br />

Southern described a method for identifying specific sequences by separ<strong>at</strong>ing<br />

DNA fragments electrophoretically by size on an agarose gel, blotting the DNA<br />

onto nitrocellulose filters, then detecting the sequences <strong>of</strong> interest using<br />

complementary radiolabelled or fluorescent-labelled DNA probes. 709<br />

Microarrays arose from the need for an assay th<strong>at</strong> was able to<br />

simultaneously detect the presence or absence <strong>of</strong> multiple sequences. In 1982,<br />

<strong>at</strong> the Sloan-Kettering Institute in New York, Augenlicht and Kobrin realised<br />

th<strong>at</strong> it was not necessary to separ<strong>at</strong>e the DNA fragments in the sample, but th<strong>at</strong><br />

similar results could be obtained by sp<strong>at</strong>ially separ<strong>at</strong>ing and immobilising the<br />

probes in an array instead. Their first array consisted <strong>of</strong> 378 probes immobilised<br />

on nitrocellulose membranes, on which they were able to semi-quantit<strong>at</strong>ively<br />

describe differences in gene expression in a mouse tumour. 710 Five years l<strong>at</strong>er,<br />

the same team published a protocol for computerised scanning and image<br />

processing th<strong>at</strong> allowed quantit<strong>at</strong>ive analysis <strong>of</strong> 4000 human sequences<br />

simultaneously. 711<br />

Affymetrix was founded by Stephen Fodor in 1992 and has its<br />

headquarters in Santa Clara, California. Affymetrix began marketing the first<br />

commercially viable DNA microarrays (under the trademark, GeneChip®) in<br />

1994, produced using semiconductor manufacturing techniques, and this made<br />

microarray technology widely available to researchers.<br />

3.1.2 Illumina BeadChip<br />

Illumina was founded in 1998 to develop and manufacture integr<strong>at</strong>ed<br />

systems for the analysis <strong>of</strong> genetic vari<strong>at</strong>ion <strong>of</strong> function. The company was<br />

founded to exploit the BeadArray technology developed <strong>at</strong> Tufts <strong>University</strong> and<br />

has its headquarters in San Diego, California. The first BeadArray applic<strong>at</strong>ion<br />

was to genotype single-nucleotide polymorphisms, but has expanded to include<br />

copy number vari<strong>at</strong>ion analyses, DNA methyl<strong>at</strong>ion and gene expression<br />

pr<strong>of</strong>iling.<br />

100


In a BeadArray, each microarray consists <strong>of</strong> hundreds <strong>of</strong> thousands <strong>of</strong><br />

3 µm silica beads randomly assembled in 3 µm microwells on silica glass slides,<br />

and each silica bead is co<strong>at</strong>ed with hundreds <strong>of</strong> thousands <strong>of</strong> copies <strong>of</strong> a single<br />

complementary DNA (cDNA) probe. The arrays are self-assembling, with each<br />

bead bound to its well by van der Waals forces alone.<br />

A B<br />

Figure 20. Illumina BeadArray.<br />

Notes.—A Illumina BeadArrays are distinguished from other microarrays principally by<br />

their method <strong>of</strong> manufacture. Conventional microarrays are cre<strong>at</strong>ed by printing spots<br />

onto slides or membranes: BeadArrays are cre<strong>at</strong>ed from randomly self-assembling beads.<br />

First, 3 µm microwells are etched into glass slides, then a mixture <strong>of</strong> glass beads, each<br />

co<strong>at</strong>ed with hundreds <strong>of</strong> copies <strong>of</strong> a single probe are poured onto the slide. The 3 µm<br />

beads slot randomly into wells and are held there by van der Waals forces. Excess beads<br />

are then washed <strong>of</strong>f. Each probe is represented by ~30 beads distributed randomly across<br />

the array. B The glass slide on the right is the Illumina HumanWG-6 v.3 BeadChip used<br />

for this project. Each BeadChip contains twelve strips (two strips per array, one sample<br />

per array). In contrast, Affymetrix GeneChips will only take a single sample per chip.<br />

Images taken from Illumina product liter<strong>at</strong>ure.<br />

Each probe is replic<strong>at</strong>ed by ~30 beads per strip (the actual number <strong>of</strong><br />

beads varies randomly from ~15 to ~60) and the final position <strong>of</strong> each bead is<br />

completely random. Each probe consists <strong>of</strong> a 50-mer probe sequence and a 29-<br />

mer address sequence. The address sequence is decoded <strong>at</strong> the factory to reveal<br />

101


the probe sequence <strong>at</strong> each position. Each chip is shipped with this inform<strong>at</strong>ion<br />

and this inform<strong>at</strong>ion is unique for each chip. The sequence <strong>of</strong> these address tags<br />

is commercial confidential.<br />

This method <strong>of</strong> manufacture has a number <strong>of</strong> advantages. Conventional<br />

arrays are printed onto slides or membranes using pins. Small defects in<br />

individual pins result in system<strong>at</strong>ic errors th<strong>at</strong> propag<strong>at</strong>e across the entire array,<br />

because every spots printed by the same pin will carry the same defect. The<br />

BeadArray technology relies on random self-assembly <strong>of</strong> the array, which means<br />

th<strong>at</strong> this kind <strong>of</strong> system<strong>at</strong>ic error cannot occur. A further advantage <strong>of</strong> the<br />

BeadArray is the high degree <strong>of</strong> replic<strong>at</strong>ion, which means th<strong>at</strong> Illumina<br />

BeadArrays are robust to sp<strong>at</strong>ial defects. As much as three-quarters <strong>of</strong> each strip<br />

could be destroyed with only minimal loss <strong>of</strong> inform<strong>at</strong>ion. By contrast,<br />

Affymetrix GeneChips each contain only one copy <strong>of</strong> each probe <strong>at</strong> a constant<br />

loc<strong>at</strong>ion on every chip: GeneChips are therefore extremely susceptible to sp<strong>at</strong>ial<br />

artefacts, with no way <strong>of</strong> recovering from these defects. A final advantage is th<strong>at</strong><br />

BeadArrays are cheaper to manufacture than conventional spotted arrays and<br />

cheaper to use. At the time the project was planned. Affymetrix GeneChips<br />

would only take a single sample per GeneChip, whereas a BeadChip could take 6<br />

or 8 samples per chip.<br />

The microarray used in this project was the HumanWG-6 v3.0, 712 which<br />

contains 12 strips per glass slide, or six samples (two strips per array, one array<br />

per sample). The array covers 48,804 probes or 25,440 manually cur<strong>at</strong>ed genes<br />

from the NCBI RefSeq 713 (build 36.2, release 22) and UniGene 714 d<strong>at</strong>abases<br />

(build 199). The genes included cover the whole human genome and are not<br />

restricted to well-characterised genes, but also includes gene candid<strong>at</strong>es and<br />

splice variants. 712 The pl<strong>at</strong>form is single colour (Cy3, which fluoresces green),<br />

which avoids the problems associ<strong>at</strong>ed with ozone degrad<strong>at</strong>ion from which two-<br />

colour pl<strong>at</strong>forms suffer, 715 and the need for complic<strong>at</strong>ed experimental designs<br />

involving dye swaps.<br />

3.1.3 Analysis <strong>of</strong> microarray d<strong>at</strong>a<br />

The output <strong>of</strong> a microarray experiment consists <strong>of</strong> a fluorescence value per<br />

probe per sample. Fluorescence values are proportional to absolute expression<br />

values, but are measured in arbitrary units. They therefore gain meaning only in<br />

102


comparisons between groups (tre<strong>at</strong>ed versus untre<strong>at</strong>ed, wild-type versus<br />

knockout, etc.). This also means th<strong>at</strong> it is very hard to compare raw d<strong>at</strong>a<br />

acquired by different scanners. The most commonly used st<strong>at</strong>istical test is the<br />

Student t-test (or a modified version there<strong>of</strong>, such as a moder<strong>at</strong>ed t-test or B-<br />

st<strong>at</strong>istic).<br />

The primary difficulty in the st<strong>at</strong>istical analysis <strong>of</strong> microarray results is the<br />

large number <strong>of</strong> st<strong>at</strong>istical tests th<strong>at</strong> are carried out, <strong>of</strong>ten with small sample<br />

sizes. Should one set a p-value cut-<strong>of</strong>f <strong>of</strong> 5% then one expects 5% <strong>of</strong> the tests to<br />

have a p-value


conserv<strong>at</strong>ive method than family-wise error correction methods (which are the<br />

Bonferroni method and its rel<strong>at</strong>ives), but in essence, the method also works by<br />

changing the p-value threshold to achieve the desired false discovery r<strong>at</strong>e.<br />

The major criticism <strong>of</strong> these methods this is th<strong>at</strong> they all simultaneously<br />

increase the type 2 error r<strong>at</strong>e while reducing the type 1 error r<strong>at</strong>e. 720 A type 2<br />

error occurs when a true difference is missed by a st<strong>at</strong>istical test (i.e., a false<br />

neg<strong>at</strong>ive) and it has been argued th<strong>at</strong> type 2 errors are as important as type 1<br />

errors. 720 The assumptions underlying these methods have also been<br />

questioned: if each test is independent, then why should the result <strong>of</strong> each test<br />

be corrected for the number <strong>of</strong> tests performed? The number <strong>of</strong> tests performed<br />

depends on the investig<strong>at</strong>or and is not a characteristic <strong>of</strong> the test, so it seem<br />

irr<strong>at</strong>ional to address the problem by modifying the test 720 (in slightly more<br />

technical terms: these are m<strong>at</strong>hem<strong>at</strong>ically rigorous methods for maintaining the<br />

family-wise error r<strong>at</strong>e, but there are no strong arguments why maintaining the<br />

family-wise error r<strong>at</strong>e should be desirable in the first place). It should also be<br />

noted th<strong>at</strong> all p-value cut-<strong>of</strong>fs are arbitrary (including the ‘conventional’<br />

threshold <strong>of</strong> 0·05), because all p-values exist on a continuum from 0 to 1, and<br />

therefore the decision to set any threshold (whether 0·001 or 0·1) may be<br />

criticised. 721 It is also worth mentioning th<strong>at</strong> even in classical significance<br />

testing, the decision is not merely to accept or reject the null hypothesis. Keppel<br />

has pointed out th<strong>at</strong> under certain circumstances, a third option may be more<br />

appropri<strong>at</strong>e, which is to suspend judgement. 722<br />

The strongest single argument against adjusting for multiple comparisons<br />

is th<strong>at</strong> blind reliance on stringent st<strong>at</strong>istical criteria gives results th<strong>at</strong> cannot be<br />

reproduced. 723 The MicroArray Quality Control project (MAQC) is an initi<strong>at</strong>ive<br />

<strong>of</strong> the US Food & Drug Administr<strong>at</strong>ion, the aim <strong>of</strong> which is to assess the<br />

reproducibility <strong>of</strong> microarray experiments and the comparability <strong>of</strong> results<br />

across different pl<strong>at</strong>forms. In a <strong>study</strong> published in 2006, two distinct, high-<br />

quality RNA samples were assayed <strong>at</strong> 137 different sites on seven different<br />

microarray pl<strong>at</strong>forms across the continental USA. A major finding <strong>of</strong> th<strong>at</strong> <strong>study</strong><br />

was th<strong>at</strong> reproducibility falls as st<strong>at</strong>istical stringency increases, leading the<br />

investig<strong>at</strong>ors to recommend th<strong>at</strong> non-stringent p-value cut<strong>of</strong>fs be used for<br />

microarray experiments. 723<br />

104


A second (complementary) method <strong>of</strong> dealing with the gene lists gener<strong>at</strong>ed<br />

by microarray experiments is to group them by function. The r<strong>at</strong>ionale behind<br />

this is th<strong>at</strong> genes th<strong>at</strong> are truly differentially regul<strong>at</strong>ed are likely to share the<br />

same function. In contrast, the false positives in the gene list are likely to come<br />

from any part <strong>of</strong> the genome and are less likely to form functional groupings. 724–<br />

726 This group <strong>of</strong> methods is commonly known as gene set enrichment and is a<br />

necessary part <strong>of</strong> the interpret<strong>at</strong>ion <strong>of</strong> any gene set.<br />

Broadly speaking, there are two main functional groupings: the first is<br />

p<strong>at</strong>hway and the second is ontology.<br />

P<strong>at</strong>hways may be defined most generally as a sequence <strong>of</strong> biochemical<br />

interactions within a cell. Metabolic p<strong>at</strong>hways are easy to define and<br />

circumscribe, because they follow the serial modific<strong>at</strong>ions <strong>of</strong> a single molecule,<br />

where the product <strong>of</strong> one reaction is the substr<strong>at</strong>e for another. For example, in<br />

glycolysis (the first metabolic p<strong>at</strong>hway to be described), glucose (substr<strong>at</strong>e) is<br />

phosphoryl<strong>at</strong>ed to glucose-6-phosph<strong>at</strong>e (product) by the enzyme, hexokinase.<br />

Glucose-6-phosph<strong>at</strong>e is the substr<strong>at</strong>e for phosphoglucose isomerase, and so<br />

forth down the p<strong>at</strong>hway, ending with pyruv<strong>at</strong>e or acetyl-CoA. In signal<br />

transduction, there is not usually a single molecule th<strong>at</strong> can be followed, but<br />

instead the trail follows a notional ‘signal’ th<strong>at</strong> is passed from protein to protein.<br />

The first signalling p<strong>at</strong>hway to be described was glucagon signalling by Martin<br />

Rodbell (who first described G-proteins, for which he won the 1994 Nobel Prize<br />

for Medicine). 727,728 Signalling p<strong>at</strong>hways follow a series <strong>of</strong> activ<strong>at</strong>ion steps and<br />

secondary messengers. Unlike metabolic p<strong>at</strong>hways, there is usually no single<br />

molecule th<strong>at</strong> follows the course <strong>of</strong> the entire p<strong>at</strong>hway. Although signalling<br />

p<strong>at</strong>hways are usually defined as the events downstream <strong>of</strong> an initi<strong>at</strong>ing signal<br />

molecule (e.g., insulin or adrenalin), th<strong>at</strong> molecule seldom progresses along the<br />

entire p<strong>at</strong>hway. P<strong>at</strong>hways <strong>of</strong>ten interact, multiple signalling molecules may<br />

initi<strong>at</strong>e identical events in the same p<strong>at</strong>hway, and some p<strong>at</strong>hways may require<br />

multiple signals. The ‘canonical’ or textbook description <strong>of</strong> any signalling<br />

p<strong>at</strong>hway is therefore a subjective construct, its boundaries defined by ease <strong>of</strong><br />

interpret<strong>at</strong>ion and not by biological function. The descriptions <strong>of</strong> many<br />

p<strong>at</strong>hways will therefore vary from textbook to textbook and from d<strong>at</strong>abase to<br />

d<strong>at</strong>abase, with no clear reasons why some proteins are included and some<br />

omitted. The p<strong>at</strong>hways for coagul<strong>at</strong>ion and inflamm<strong>at</strong>ion have multiple<br />

105


initi<strong>at</strong>ors and are even harder to describe clearly or consistently because <strong>of</strong><br />

multiple overlaps and interactions, with some molecules having apparently<br />

contradictory roles (for example, IL10 is said to be both pro-inflamm<strong>at</strong>ory and<br />

anti-inflamm<strong>at</strong>ory). There are two currently two large system<strong>at</strong>ic efforts to<br />

develop canonical d<strong>at</strong>abases <strong>of</strong> known p<strong>at</strong>hways: Reactome 729 and KEGG (the<br />

Kyoto Encyclopedia <strong>of</strong> Genes and Genomes). 730<br />

Gene ontology is an even more nebulous concept and the dictionary<br />

definition is ‘the branch <strong>of</strong> metaphysics dealing with the n<strong>at</strong>ure <strong>of</strong> being’. A<br />

more helpful definition is th<strong>at</strong> gene ontology is accur<strong>at</strong>e and succinct<br />

description <strong>of</strong> genes. There are a number <strong>of</strong> projects th<strong>at</strong> do this, the largest <strong>of</strong><br />

which is the Gene Ontology project. 731 The GO project is developing and<br />

maintains three separ<strong>at</strong>e ontologies (controlled, structured vocabularies) for the<br />

description <strong>of</strong> gene products. These are (i) cellular component (e.g., nucleus or<br />

membrane or organelle), (ii) biological process (e.g., inflamm<strong>at</strong>ion or small<br />

molecule transport or DNA replic<strong>at</strong>ion), and (iii) molecular function (e.g.,<br />

protein kinase or transmembrane transporter or oxidoreductase).<br />

We elected to use Inn<strong>at</strong>e DB for our analysis because <strong>of</strong> its focus on<br />

manually cur<strong>at</strong>ing p<strong>at</strong>hways rel<strong>at</strong>ed to inn<strong>at</strong>e immunity. 725 It is also linked to<br />

other protein interaction d<strong>at</strong>abases and uses standard nomencl<strong>at</strong>ure such as<br />

those developed by HUGO and GO. The d<strong>at</strong>abase takes lists <strong>of</strong> genes and<br />

clusters them by p<strong>at</strong>hway or by ontology, the st<strong>at</strong>istical test being the<br />

hypergeometric test.<br />

The techniques for analysing microarray d<strong>at</strong>a (and high throughput d<strong>at</strong>a<br />

generally) are still an active area for research. There is therefore no definitive<br />

‘best practice’ defined, but the liter<strong>at</strong>ure support an approach th<strong>at</strong> uses a<br />

rel<strong>at</strong>ively lax st<strong>at</strong>istical criteria, so th<strong>at</strong> both type 1 and type 2 error r<strong>at</strong>es are<br />

reasonably controlled, then use functional analysis to elimin<strong>at</strong>e false positives<br />

and aid interpret<strong>at</strong>ion.<br />

The main barrier to exchanging microarray d<strong>at</strong>a and to reproducing<br />

microarray experiments is the complete lack <strong>of</strong> standardis<strong>at</strong>ion <strong>of</strong> fabric<strong>at</strong>ion,<br />

assay protocols or analysis methods. Many <strong>of</strong> these details <strong>of</strong> fabric<strong>at</strong>ion are<br />

commercial confidential, and assay protocols are usually specific to pl<strong>at</strong>form.<br />

However, in theory, analyses should be reproducible. The MIAME checklist<br />

(minimum inform<strong>at</strong>ion about a microarray experiment) defines the minimum<br />

106


level <strong>of</strong> detail th<strong>at</strong> should be reported for all microarray experiments, and has<br />

been adopted by many journals as a requirement for the submission <strong>of</strong> papers<br />

th<strong>at</strong> incorpor<strong>at</strong>e microarray results, 732 with the aim <strong>of</strong> improving the<br />

reproducibility <strong>of</strong> microarray experiments. 733<br />

3.2 Methods<br />

3.2.1 Study subjects<br />

We compared peripheral white blood cell gene expression in (i) diabetics<br />

who were taking glibenclamide (case) or were not taking this or another<br />

sulfonylurea (control) <strong>at</strong> the time <strong>of</strong> admission to Sappasithiprasong Hospital<br />

with culture-confirmed melioidosis and sepsis, and (ii) otherwise healthy<br />

diabetics <strong>at</strong>tending a routine out-p<strong>at</strong>ient clinic who were taking glibenclamide<br />

(case) or were not taking this or another sulfonylurea (control). Eligible cases<br />

for both studies were persons aged between 18 and 75 years. A total <strong>of</strong> 40<br />

p<strong>at</strong>ients (10 in each group) were recruited in the period 31 Jan 2008 to 31 Oct<br />

2008. Diabetes was defined as an abnormal Hb A1c <strong>at</strong> enrolment (7.8% or<br />

gre<strong>at</strong>er, 734 Bio-Rad® D-10 fully-autom<strong>at</strong>ed Hb A1c system, Bio-Rad<br />

Labor<strong>at</strong>ories) or a previous diagnosis <strong>of</strong> <strong>diabetes</strong>. The Hb A1c concentr<strong>at</strong>ion<br />

allowed us to identify p<strong>at</strong>ients with previously unrecognized <strong>diabetes</strong> who went<br />

on to die before we could make a diagnosis <strong>of</strong> <strong>diabetes</strong> by WHO criteria.<br />

We obtained approval from the Oxford Tropical Research Ethics<br />

Committee and the Ethics Committee <strong>of</strong> the Faculty <strong>of</strong> Tropical Medicine,<br />

Mahidol <strong>University</strong> for the gene expression <strong>study</strong>. Written informed consent<br />

was obtained from all subjects by a n<strong>at</strong>ive Thai speaker. All procedures<br />

performed were in accordance with the Helsinki Declar<strong>at</strong>ion <strong>of</strong> 1975 (revised<br />

1983).<br />

3.2.2 RNA extraction and microarray analysis<br />

A 3 ml blood sample was collected from each subject in a PaxGene TM Blood<br />

RNA tube (PreAnalytiX) and stored <strong>at</strong> –70°C prior to mRNA extraction<br />

according to the manufacturer’s instructions. At <strong>study</strong> completion, blood<br />

samples collected in PaxGene TM Blood RNA tubes were transported in one<br />

shipment on dry ice to the Wellcome Trust Sanger Institute, <strong>Cambridge</strong>, where<br />

107


RNA was extracted using the PaxGene TM Blood RNA Purific<strong>at</strong>ion Kit<br />

(PreAnalytix, GmbH) according to the manufacturer’s instructions.<br />

RNA purity was measured using the r<strong>at</strong>io <strong>of</strong> absorbance <strong>at</strong> 260 and 280<br />

nm and all samples had r<strong>at</strong>ios between 1·7 and 2·1. RNA integrity was evalu<strong>at</strong>ed<br />

using the Bioanalyzer (Agilent) and all samples had RNA integrity numbers<br />

gre<strong>at</strong>er than 6. The RNA was amplified using the Illumina® TotalPrep RNA<br />

Amplific<strong>at</strong>ion Kit (Applied Biosystems, Carlsbad, California) and assayed using<br />

the Illumina® HumanWG-6 v3.0 Expression BeadChip (Illumina, <strong>Cambridge</strong>,<br />

UK), which probes 48,804 transcripts from across the human genome. We<br />

examined all genes with ≥1·5-fold difference in expression with the false-<br />

discovery r<strong>at</strong>e set to 10% (Student’s t-test with Benjamini-Hochberg<br />

correction; 719 GeneSpring GX version 10.0, Agilent Technologies, California).<br />

3.2.3 Quantit<strong>at</strong>ive reverse-transcriptase polymerase chain reaction<br />

Results were confirmed by quantit<strong>at</strong>ive reverse-transcriptase polymerase<br />

chain reaction (qPCR): 500 ng <strong>of</strong> sample RNA was reverse transcribed using the<br />

QuantiTect Reverse Transcription kit (Qiagen 205313) according to the<br />

manufacturer’s instructions. Primers were ordered from Qiagen gene globe, as<br />

follows: IL18R1 c<strong>at</strong>alogue number QT00082922; IL8, QT00000322; TNF,<br />

QT01079561; IFNG, QT00000525; ACTB1, QT00095431. Real time PCR was<br />

performed in triplic<strong>at</strong>e using the QuantiTect SYBR Green PCR kit (Qiagen<br />

204145) according to the manufacturer’s instructions on a StepOne Plus<br />

(Applied Biosystems) for 40 cycles. Melting curve analyses were performed for<br />

all PCR products. The β-actin housekeeping gene was selected as loading<br />

control because <strong>of</strong> the stability <strong>of</strong> its expression in the microarray analysis. Fold<br />

change was calcul<strong>at</strong>ed using the compar<strong>at</strong>ive Ct method.<br />

Gene ontology over-represent<strong>at</strong>ion analysis was performed using<br />

Inn<strong>at</strong>eDB 725 (http://www.inn<strong>at</strong>edb.ca/) and the p-values reported are for the<br />

hypergeometric test. Gene lists were supplemented by manual liter<strong>at</strong>ure<br />

searches for genes not cur<strong>at</strong>ed by Inn<strong>at</strong>eDB. Microarray d<strong>at</strong>a have been<br />

deposited <strong>at</strong> ArrayExpress, EMBL-EBI (accession number E-TABM-852-n).<br />

3.2.4 Neutrophil stimul<strong>at</strong>ion <strong>study</strong><br />

Neutrophils from three healthy male caucasian volunteers were isol<strong>at</strong>ed<br />

using Polymorphprep (Axis-Shield, Oslo, Norway) according to the<br />

108


manufacturer’s instructions, then resuspended (final concentr<strong>at</strong>ion 1·0 × 10 6<br />

cells/ml) in RPMI 1640 (Gibco, Invitrogen, Paisley, UK) + L-glutamine + 15%<br />

he<strong>at</strong>-inactiv<strong>at</strong>ed fetal bovine serum (Lonza BioWhittaker, Verviers, Belgium).<br />

Purity was >99% by flow cytometry (Becton Dickinson FACSCalibur; monocytes<br />

and neutrophils identified by their characteristic sc<strong>at</strong>ter pr<strong>of</strong>ile and CD14<br />

staining). Cells were incub<strong>at</strong>ed with medium or 1.0 mM glibenclamide<br />

(comparable to the peak human plasma concentr<strong>at</strong>ion achieved following a<br />

20 mg oral dose) for 60 minutes in a 96-well pl<strong>at</strong>e, then stimul<strong>at</strong>ed with<br />

medium or he<strong>at</strong>-killed B. pseudomallei 1026b (5 × 10 7 cfu/ml) for 4 hours <strong>at</strong><br />

37°C in 5% carbon dioxide. The cells were centrifuged (300 × g, 5 minutes) and<br />

the supern<strong>at</strong>ant removed. The pellet was resuspended (5% bovine serum<br />

albumin w/v, 350 µM EDTA, 0·01% sodium azide w/v in phosph<strong>at</strong>e-buffered<br />

saline) and stained for CD14 and CD11b (BD Pharmingen, Erembodegem-Aalst,<br />

Belgium). IL1β (Invitrogen, Camarillo, California), IL8 (Arcus Biologicals,<br />

Modena, Italy) and TNFα (Arcus) were measured by enzyme-linked<br />

immunosorbent assay according to the manufacturers’ instructions. Paired<br />

t-tests were performed using Prism 5.0c for Mac (GraphPad S<strong>of</strong>tware, San<br />

Diego, California).<br />

3.3 Results<br />

There were no significant differences in any <strong>of</strong> the clinical parameters<br />

recorded for the two p<strong>at</strong>ient groups (Table 12). The expression <strong>of</strong> 205 probes<br />

(representing 186 distinct genes), were significantly different in p<strong>at</strong>ients taking<br />

glibenclamide compared to those who were not (Figure 21). Sixty-three<br />

immune-rel<strong>at</strong>ed genes were differentially expressed in melioidosis p<strong>at</strong>ients on<br />

glibenclamide (p=0·001), the net effect <strong>of</strong> which would be postul<strong>at</strong>ed to be anti-<br />

inflamm<strong>at</strong>ory (Appendix A). Prominent among the immune-rel<strong>at</strong>ed genes<br />

include those implic<strong>at</strong>ed in neutrophil activ<strong>at</strong>ion, endothelial adhesion and<br />

transmigr<strong>at</strong>ion. There was no st<strong>at</strong>istical difference in neutrophil, lymphocyte or<br />

monocytes counts between the two groups (Table 12), indic<strong>at</strong>ing th<strong>at</strong> this was<br />

not merely an effect <strong>of</strong> differences in cellular blood constituents. In the<br />

microarray analysis, tumor necrosis factor (TNF)-α, interleukin (IL)-18R1 and<br />

IL-8 expression were all down-regul<strong>at</strong>ed in glibenclamide-tre<strong>at</strong>ed p<strong>at</strong>ients;<br />

interferon (IFN)-γ showed a modest trend to down-regul<strong>at</strong>ion. Quantit<strong>at</strong>ive<br />

109


everse-transcriptase PCR corrobor<strong>at</strong>ed the TNFα and IL18R1 results; IFNγ was<br />

down-regul<strong>at</strong>ed by this methodology, but the IL8 results were not confirmed<br />

(Table 13).<br />

We sought further evidence for an effect <strong>of</strong> glibenclamide on gene<br />

expression pr<strong>of</strong>iles in otherwise healthy diabetics who were taking<br />

glibenclamide (n=10) or who were not taking a sulfonylurea drug (n=10). There<br />

were no significant differences in baseline parameters between the two groups<br />

(Table 12). We found th<strong>at</strong> 31 probes (29 distinct genes) were significantly<br />

different in p<strong>at</strong>ients taking glibenclamide compared to those not, 13 <strong>of</strong> which<br />

were immune rel<strong>at</strong>ed (Appendix A), again suggesting an anti-inflamm<strong>at</strong>ory<br />

effect. Of note, genes associ<strong>at</strong>ed with neutrophil function were down-regul<strong>at</strong>ed<br />

in the glibenclamide group (p


Diabetes p<strong>at</strong>ients with melioidosis<br />

Parameter Taking glibenclamide Not taking<br />

glibenclamide<br />

p-value<br />

Male gender 6 <strong>of</strong> 10 5 <strong>of</strong> 10 1·00 a<br />

Age (years) 60±7 51±9 0·02 b<br />

Glucose (mg dL –1 ) 218±64 256±111 0·37 b<br />

Hb A1c (%) 10·8±3.2 11·1±3.3 0·83 c<br />

Neutrophils (×10 9 L –1 ) 10·8±8·5 8·8±4.6 0·52 b<br />

Lymphocytes (×10 9 L –1 ) 1·6±0.9 1·5±1.4 0·93 b<br />

Monocytes (×10 9 L –1 ) 0·8±0·3 0·5±0·4 0·05 b<br />

Eosinophils (×10 9 L –1 ) 0·1±0·1 0·1±0·1 0·82 c<br />

Mortality 2 <strong>of</strong> 10 5 <strong>of</strong> 10§ 0·41 a<br />

Diabetes p<strong>at</strong>ients who were otherwise healthy<br />

Parameter Taking glibenclamide Not taking<br />

glibenclamide<br />

p-value<br />

Male gender 3 <strong>of</strong> 10 5 <strong>of</strong> 10 0·65 a<br />

Age (years) 54±11 56±11 0·66 b<br />

Glucose (mg dL –1 ) 126±31 124±48 0·93 b<br />

Hb A1c (%) 9·0±2·1 9·0±2·2 0·98 c<br />

Neutrophils (×10 9 L –1 ) 4·7±1·3 5·1±2·1 0·63 c<br />

Lymphocytes (×10 9 L –1 ) 4·4±1·4 5·1±2·1 0·40 b<br />

Monocytes (×10 9 L –1 ) 0·4±0·2 0·6±0·3 0·19 b<br />

Eosinophils (×10 9 L –1 ) 0·7±0·4 0·8±1·3 0·22 c<br />

Table 12. Comparison <strong>of</strong> gene expression <strong>study</strong> p<strong>at</strong>ient<br />

characteristics.<br />

Note.—Values are reported as means, except where st<strong>at</strong>ed. Errors reported are standard<br />

devi<strong>at</strong>ions.<br />

a Fisher exact test.<br />

b Welch t-test.<br />

c Student t-test.<br />

d One p<strong>at</strong>ient in this group was lost to follow-up following discharge from hospital, and<br />

was counted as having survived to discharge.<br />

111


Figure 21. Differential expression <strong>of</strong> inflamm<strong>at</strong>ion-associ<strong>at</strong>ed genes<br />

in diabetic p<strong>at</strong>ients with acute melioidosis with or without<br />

glibenclamide.<br />

Note.—Gb = glibenclamide. Genes th<strong>at</strong> are up-regul<strong>at</strong>ed are shown in red, down-<br />

regul<strong>at</strong>ed in green; genes in black are not differentially expressed. The gene symbols used<br />

are those assigned by the HUGO gene nomencl<strong>at</strong>ure committee.<br />

112


Gene Fold change <strong>at</strong>tributable to<br />

glibenclamide therapy in melioidosis<br />

p<strong>at</strong>ients<br />

IFNγ –2·32<br />

IL8 +4·23<br />

IL18R1 –1·39<br />

TNFα –15·2<br />

Table 13. Results <strong>of</strong> quantit<strong>at</strong>ive reverse-transcriptase polymerase<br />

chain reaction.<br />

Note.— IFNγ= gamma interferon; IL8 = interleukin 8; IL18R1 = interleukin 18 receptor 1;<br />

TNFα = tumour necrosis factor alpha.<br />

Figure 22. Effect <strong>of</strong> glibenclamide pre-tre<strong>at</strong>ment on neutrophil<br />

stimul<strong>at</strong>ion<br />

Note.—Bps = he<strong>at</strong>-killed Burkholderia pseudomallei; Gb = glibenclamide,<br />

IL = interleukin. The interrupted line marks the limit <strong>of</strong> detection. Black dots represent<br />

control samples; open circles are samples pre-tre<strong>at</strong>ed with glibenclamide. Isol<strong>at</strong>ed human<br />

neutrophils (1·0 × 10 6 cells/ml, >99% purity) were tre<strong>at</strong>ed for 60 minutes with 1·0 mM<br />

glibenclamide then stimul<strong>at</strong>ed with he<strong>at</strong>-killed B. pseudomallei (5 × 10 7 cfu/ml). The cells<br />

were incub<strong>at</strong>ed <strong>at</strong> 37°C for four hours in 5% carbon dioxide, then CD11b expression was<br />

measured by flow cytometry. IL8 concentr<strong>at</strong>ions were measured in supern<strong>at</strong>ant by<br />

enzyme-linked immunosorbent assay. IL1β and TNFα concentr<strong>at</strong>ions were below the<br />

limit <strong>of</strong> detection. The p-values reported are for paired t-tests.<br />

113


3.4 Discussion<br />

Glibenclamide is known to have a wide-range <strong>of</strong> anti-inflamm<strong>at</strong>ory effects,<br />

one <strong>of</strong> which is an inhibitory effect on inflammasome assembly. 735 The<br />

inflammasome is an intracellular protein complex present in macrophages th<strong>at</strong><br />

activ<strong>at</strong>es caspase 1 and converts pre-formed IL1β and IL18 to their active forms<br />

when presented with an appropri<strong>at</strong>e inflamm<strong>at</strong>ory stimulus. 459 IL1β and IL18<br />

levels are high in bronchoalveolar lavage fluid from p<strong>at</strong>ients with acute lung<br />

injury/acute respir<strong>at</strong>ory distress syndrome (ALI/ARDS) and correl<strong>at</strong>e with<br />

mortality, 736,737 which leads us to hypothesize th<strong>at</strong> inhibition <strong>of</strong> inflammasome<br />

assembly may be a mechanism for our finding th<strong>at</strong> glibenclamide therapy and<br />

respir<strong>at</strong>ory failure are inversely associ<strong>at</strong>ed. It is also unsurprising th<strong>at</strong> fewer<br />

genes were found to be differentially expressed in the otherwise healthy diabetic<br />

controls than in the p<strong>at</strong>ients with melioidosis, as the inflammasome is only<br />

assembled as part <strong>of</strong> the acute inflamm<strong>at</strong>ory response and so we expect to see<br />

little effect <strong>of</strong> glibenclamide when there is no active inflamm<strong>at</strong>ion.<br />

Neutrophil recruitment to an area <strong>of</strong> tissue inflamm<strong>at</strong>ion or infection can<br />

also be linked to the inflammasome through the action <strong>of</strong> IL1β. While IL1β is<br />

not itself a chemo<strong>at</strong>tractant for neutrophils, 738 IL1β up-regul<strong>at</strong>es the expression<br />

<strong>of</strong> endothelial intercellular adhesion molecules essential for the recruit <strong>of</strong><br />

neutrophils to an area <strong>of</strong> inflamm<strong>at</strong>ion. 515,516 Neutrophils are a critical<br />

component <strong>of</strong> the host response to B. pseudomallei in vivo, 326 but may also<br />

drive tissue injury and organ damage. 739–741 The bronchoalveolar fluid <strong>of</strong><br />

p<strong>at</strong>ients with ALI/ARDS is neutrophil-rich and some animal models <strong>of</strong> ARDS<br />

are neutrophil-dependent. 739 Glibenclamide has been shown to prevent<br />

neutrophil extravas<strong>at</strong>ion and accumul<strong>at</strong>ion in animal models, 740,741 and this may<br />

represent indirect evidence th<strong>at</strong> glibenclamide was responsible for reducing the<br />

incidence <strong>of</strong> respir<strong>at</strong>ory failure in <strong>study</strong> p<strong>at</strong>ients taking this drug. We specul<strong>at</strong>e<br />

th<strong>at</strong> conflicting evidence from previous observ<strong>at</strong>ional studies <strong>of</strong> the impact <strong>of</strong><br />

<strong>diabetes</strong> on outcomes from bacterial sepsis may be explained in part by<br />

differences in the management <strong>of</strong> type 2 <strong>diabetes</strong> between Europe (metformin<br />

has been available in Britain since 1958 and has traditionally been used first-<br />

line) and the US (where sulfonylureas have <strong>of</strong>ten been used first-line 742 and<br />

metformin has only been available since 1995).<br />

114


Glibenclamide has been said to inhibit the inflammasome by blocking<br />

KATP-channels, 743 but this seems unlikely, since the KATP-channel blockers<br />

glipizide and tolbutamide do not have this effect. 744 The two KATP-channels<br />

known to be targeted by the sulphonylureas, ABCC8 (formerly SUR1) and<br />

ABCC9 (formerly SUR2). Neither <strong>of</strong> these proteins are expressed by<br />

macrophages. 744 The actual target therefore remains to be elucid<strong>at</strong>ed. 735,745<br />

The P2X7 receptor has been suggested as a possible target, 746,747 but the<br />

target appears to be downstream <strong>of</strong> P2X7 735 and there is no sequence or<br />

structural homology between P2X7 and any <strong>of</strong> the known targets for<br />

glibenclamide. The development <strong>of</strong> inflammasome-inhibitors th<strong>at</strong> do not have<br />

the hypoglycaemic effects <strong>of</strong> glibenclamide may depend on unravelling this<br />

p<strong>at</strong>hway. However, enthusiasm for this approach should be tempered by the<br />

finding <strong>of</strong> one multi-centre trial th<strong>at</strong> direct IL1β blockade does not improve<br />

survival in all-cause sepsis. 363 Our <strong>study</strong> is also unable to provide guidance on<br />

whether any benefit would be seen were glibenclamide started following the<br />

onset <strong>of</strong> infection in non-diabetic p<strong>at</strong>ients.<br />

Inflammasome function is not restricted to IL1β activ<strong>at</strong>ion and<br />

inflammasome inhibition is not the only action <strong>of</strong> glibenclamide. Glibenclamide<br />

is a broad-spectrum inhibitor <strong>of</strong> ABC-transporters 706–708 and many members <strong>of</strong><br />

this family have been implic<strong>at</strong>ed in regul<strong>at</strong>ing immune function. Glibenclamide<br />

also has a direct effect on neutrophils chemotaxis when administered <strong>at</strong> a dose<br />

100-times the concentr<strong>at</strong>ion achievable in humans, 748 although we found no<br />

direct effect <strong>of</strong> glibenclamide on neutrophils in vitro.<br />

115


4 Glibenclamide reduces interleukin 1β<br />

secretion in a mouse model <strong>of</strong><br />

melioidosis<br />

4.1 Introduction<br />

Having found an anti-inflamm<strong>at</strong>ory effect <strong>of</strong> glibenclamide in p<strong>at</strong>ients<br />

with melioidosis, we sought to replic<strong>at</strong>e this finding in an experimental model.<br />

The effect we found in the clinic was a general effect on inflamm<strong>at</strong>ion, but<br />

without one p<strong>at</strong>hway predomin<strong>at</strong>ing. We therefore hoped than an experimental<br />

model might provide insight into mechanisms underlying the effect <strong>of</strong><br />

glibenclamide.<br />

4.1.1 Animal models <strong>of</strong> melioidosis<br />

The model organism most commonly used to <strong>study</strong> melioidosis is the<br />

mouse (Mus musculus). The first report <strong>of</strong> experimental B. pseudomallei<br />

infection in mice was by de Moor et al. in 1932, using a strain described only as<br />

weiss or ‘white’. 242 An important advantage <strong>of</strong> using a mouse model is the wide<br />

range <strong>of</strong> tools and reagents available commercially (monoclonal antibodies,<br />

cytokine assays, bioinform<strong>at</strong>ics, and so forth). Indeed, the largest library <strong>of</strong> gene<br />

knockouts available is in mice, 749,750 and a decision not to use mice means to<br />

forego access to these tools. European legisl<strong>at</strong>ion requires th<strong>at</strong> the model used<br />

be the least sentient model possible, and there exist established models <strong>of</strong> both<br />

melioidosis and <strong>diabetes</strong> in the mouse: this was therefore a consider<strong>at</strong>ion in the<br />

selection <strong>of</strong> a suitable model for this part <strong>of</strong> the project.<br />

A number <strong>of</strong> mouse models <strong>of</strong> melioidosis have been described, but<br />

current published work uses only one <strong>of</strong> two inbred strains: BALB/c and<br />

C57Bl/6. 751,752 Other strains th<strong>at</strong> have been used include the C3H mouse, 752 the<br />

DBA/2 mouse 752 and the Taylor outbred mouse. 373 Older mouse studies refer to<br />

no specific mouse strain and refer only to colour (white, black or agouti), if <strong>at</strong><br />

all.<br />

BALB/c and C57Bl/6 inbred mouse strains form contrasting models <strong>of</strong><br />

melioidosis. In 1999, Hoppe et al. surveyed four mouse species (C57Bl/6N,<br />

116


BALB/c, C3H/HeN and DBA/2). 752 He found th<strong>at</strong> BALB/c mice were rel<strong>at</strong>ively<br />

susceptible to B. pseudomallei infection, while C57Bl/6N mice were rel<strong>at</strong>ively<br />

resistant. Susceptibility <strong>of</strong> the C3H/HeN and DBA/2 strains were intermedi<strong>at</strong>e.<br />

The contrasting susceptibilities <strong>of</strong> BALB/c and C57Bl/6 has been independently<br />

replic<strong>at</strong>ed by other groups. 751,182 The BALB/c mouse is more susceptible to<br />

B. pseudomallei infection, with an LD50 <strong>of</strong> ~5 cfu. By comparison, the LD50 for<br />

C57Bl/6 mice is consistently two to four orders <strong>of</strong> magnitude higher, depending<br />

on route <strong>of</strong> infection. 751,752,182 In C57Bl/6 mice, smaller inocula (e.g., 100 cfu <strong>of</strong><br />

B. pseudomallei 576) produce a chronic version <strong>of</strong> melioidosis. 753<br />

Hoppe found th<strong>at</strong> in BALB/c mice, bacterial loads increased faster in the<br />

first 24 hours than in C57Bl/6 mice. Hoppe also found a higher IgG2a:IgG1 r<strong>at</strong>io<br />

in C57Bl/6 mice compared to BALB/c mice, which is suggestive <strong>of</strong> a Th1-type<br />

immune response, 752 because IFNγ promotes IgG2a isotype switching.<br />

This dichotomy between BALB/c and C57Bl/6 has been found in other<br />

infections, e.g., Leishmania major, 754 Mycobacterium tuberculosis, 755 and<br />

Yersinia enterocolitica, 756 where in each instance, BALB/c mice are rel<strong>at</strong>ively<br />

susceptible, but C57Bl/6 mice are resistant. * The susceptibility <strong>of</strong> BALB/c mice<br />

to Leishmania major 526,527 and Y. enterocolitica 756 correl<strong>at</strong>es with a deficiency<br />

in the IFNγ response (traditionally considered a Th1 cytokine). Indeed, it was<br />

initially thought th<strong>at</strong> the contrasting BALB/c and C57Bl/6 models <strong>of</strong> melioidosis<br />

paralleled the Th1/Th2 paradigm developed for Leishmania. 751<br />

Ullett et al. found th<strong>at</strong> contrary to there being an inadequ<strong>at</strong>e IFNγ-<br />

response in BALB/c mice compared to C57Bl/6 mice, IFNγ mRNA levels in liver<br />

and spleen were higher in BALB/c mice than in C57Bl/6 mice. 759 This finding<br />

was confirmed by Koo and Gan using direct measurements <strong>of</strong> IFNγ as well as<br />

measurements <strong>of</strong> IFNγ mRNA. 410 Koo and Gan found th<strong>at</strong> splenocytes from<br />

BALB/c mice produced higher concentr<strong>at</strong>ions <strong>of</strong> IL18 and TNFα compared to<br />

splenocytes from C57Bl/6 mice (IL12 concentr<strong>at</strong>ions were not different), which<br />

in turn resulted in high concentr<strong>at</strong>ions <strong>of</strong> IFNγ. They hypothesised th<strong>at</strong> the<br />

elev<strong>at</strong>ed cytokine response in BALB/c mice is explained by a reduced<br />

responsiveness <strong>of</strong> phagocytes to IFNγ. This hyporesponsiveness manifested as a<br />

* There exist infections where the converse is true. The C57Bl/6 mouse is more<br />

susceptible to Helicobacter felis 757 and Pseudomonas aeruginosa 758 compared to the<br />

BALB/c mouse.<br />

117


failure <strong>of</strong> BALB/c phagocytes to kill intracellular bacteria despite adequ<strong>at</strong>e IFNγ<br />

stimul<strong>at</strong>ion. They felt th<strong>at</strong> the continued presence <strong>of</strong> intracellular bacteria in<br />

macrophages was responsible for the continued secretion <strong>of</strong> IL18 and TNFα by<br />

macrophages, which in turn was driving IFNγ secretion. Th<strong>at</strong> there is no defect<br />

in the cytokine response was confirmed by Barnes et al., who found th<strong>at</strong><br />

cytokines downstream <strong>of</strong> IFNγ, such as CXCL9 (formerly called Mig) and<br />

CXCL10 (formerly called IP-10), were expressed earlier and <strong>at</strong> higher levels in<br />

BALB/c mice compared to C57Bl/6 mice. 760 Recruitment <strong>of</strong> neutrophils to sites<br />

<strong>of</strong> infection in the liver and spleen also occur earlier and in gre<strong>at</strong>er numbers in<br />

BALB/c mice compared to C57Bl/6 mice, again consistent with an inability <strong>of</strong><br />

BALB/c mice to kill the bacteria, despite apparently adequ<strong>at</strong>e cytokine and<br />

cellular responses.<br />

The mechanism underlying the reduced ability <strong>of</strong> BALB/c mice to kill<br />

intracellular B. pseudomallei is as yet unknown. Miyagi et al. showed th<strong>at</strong> RNS,<br />

and to a lesser extent, ROS were important for intracellular killing in the J774.1<br />

macrophage-like cell line 521 (which is BALB/c derived 761 ). However, subsequent<br />

studies have found th<strong>at</strong> differences in intracellular killing between BALB/c and<br />

C57Bl/6 strains are not explained by differences in RNS and ROS<br />

gener<strong>at</strong>ion. 519,523<br />

W<strong>at</strong>anabe et al. have reported th<strong>at</strong> BALB/c macrophages expressed lower<br />

levels <strong>of</strong> the lysosomal enzyme, β-glucuronidase, in response to macrophage-<br />

activ<strong>at</strong>ing lipopeptide-2 (a synthetic TLR2 ligand) and to E. coli LPS when<br />

compared to C57Bl/6 macrophages. 762 This is an <strong>at</strong>tractive explan<strong>at</strong>ion for the<br />

susceptibility <strong>of</strong> BALB/c mouse, but the role <strong>of</strong> lysozymal enzymes has not been<br />

explored in the context <strong>of</strong> the host response to melioidosis. In humans,<br />

β-glucuronidase deficiency manifests as Sly syndrome, or<br />

mucopolysaccharidosis type VII. The potential associ<strong>at</strong>ion <strong>of</strong> the BALB/c mouse<br />

with an inherited human disease might prompt caution in the interpret<strong>at</strong>ion <strong>of</strong><br />

experiments conducted using this strain.<br />

One final comment on the Th1/Th2 balance in melioidosis may be made.<br />

In the context <strong>of</strong> melioidosis, IFNγ is produced predominantly by NK cells and<br />

CD8 + T lymphocytes, not by CD4 + T helper cells. 360,411 In fact, T helper cells<br />

seem to play little or no role in the initial host response to melioidosis, although<br />

118


they do have a role <strong>at</strong> l<strong>at</strong>er stages in the infection. 411 This picture does not fit<br />

ne<strong>at</strong>ly into the conventional Th1/Th2 paradigm, 763 in which T helper cells (Th)<br />

are the primary orchestr<strong>at</strong>ors <strong>of</strong> the cytokine response, even though the<br />

cytokine pr<strong>of</strong>ile in melioidosis is consistent with the classical Th1 response.<br />

A variety <strong>of</strong> B. pseudomallei strains are used in animal models, which<br />

hinders the comparison <strong>of</strong> results from different groups, since different strains<br />

likely have different virulence. Ivo Steinmetz’s group in Greifswald uses the E8<br />

environmental strain <strong>of</strong> B. pseudomallei collected from Northeast Thailand in<br />

1996 by Andrew Simpson. 32,83,519,752 Despite being an environmental strain, E8<br />

is more virulent than NCTC 7431, which is a clinical isol<strong>at</strong>e. 752 Work published<br />

by Greg Bancr<strong>of</strong>t’s group in London uses the 708a strain, 360,373 which is a<br />

clinical isol<strong>at</strong>e from Thailand. Rick Titball’s group <strong>at</strong> the Defence Science and<br />

Technology Labor<strong>at</strong>ory (now <strong>at</strong> Exeter <strong>University</strong>) uses the 576 764 and<br />

K96243 107 strains. We are not aware <strong>of</strong> any published studies directly<br />

comparing the virulence <strong>of</strong> these strains.<br />

The work described here uses the C57Bl/6 model <strong>of</strong> melioidosis first<br />

described by Wiersinga et al. in 2007. 152,412,765 In this model, 10–14 week-old<br />

animals are inocul<strong>at</strong>ed with 500 cfu <strong>of</strong> B. pseudomallei intranasally. Animals<br />

develop a severe pneumonia, bacteraemia and microabscesses in the liver and<br />

spleen, and median survival is four days. 152 The strain used was B. pseudomallei<br />

1026b, which was originally collected by David Dance in 1993 from a 29-year-<br />

old Thai female rice farmer with bacteraemia, s<strong>of</strong>t tissue, cutaneous lesions,<br />

septic arthritis and splenic abscesses. 93 The strain was don<strong>at</strong>ed to Don Woods’<br />

group in Calgary, Canada, in 1996 93 and subsequently transferred from Canada<br />

to Tom van der Poll’s group in Amsterdam, The Netherlands, in 2006, where it<br />

has since been maintained by serial passage in mice.<br />

A variety <strong>of</strong> other animals have been used to model human melioidosis. In<br />

Whitmore’s 1912 description <strong>of</strong> the disease, Koch’s postul<strong>at</strong>es were established<br />

using guinea pigs, 8 while Stanton & Fletcher and de Moor et al. both described<br />

r<strong>at</strong> models <strong>of</strong> melioidosis. R<strong>at</strong>s are rel<strong>at</strong>ively resistant when inocul<strong>at</strong>ed<br />

intraperitoneally (LD50 >10 8 cfu), unless made susceptible by inducing <strong>diabetes</strong><br />

with streptozocin (LD50 10 3 –10 4 cfu). 151 Like mice, susceptibility is also<br />

increased by administering the inoculum directly into the respir<strong>at</strong>ory tract (


to B. pseudomallei infection, 35,155 which has led to their use in the <strong>study</strong> <strong>of</strong><br />

bacterial virulence factors 86,88,91 and for the purific<strong>at</strong>ion <strong>of</strong> mixed cultures. 140,156<br />

However, some bacterial mutants th<strong>at</strong> are <strong>at</strong>tenu<strong>at</strong>ed in mice are not <strong>at</strong>tenu<strong>at</strong>ed<br />

in hamsters, 86,88,93,94,767 and it is unclear which model better identifies virulence<br />

factors important to clinical melioidosis.<br />

The first prim<strong>at</strong>e model <strong>of</strong> melioidosis was reported by Miller in 1948<br />

using macaques. 155 More recently, a marmoset model <strong>of</strong> melioidosis has become<br />

available <strong>at</strong> the UK Defence Science and Technology Labor<strong>at</strong>ory. 768 An NIH<br />

grant has also been awarded to Don Estes <strong>at</strong> the <strong>University</strong> <strong>of</strong> Texas, Galveston,<br />

to develop a marmoset model <strong>of</strong> melioidosis (grant no. 5U01AI082103-02 d<strong>at</strong>ed<br />

29 Jul 2010). Other models reported in the liter<strong>at</strong>ure include baboons (Simia<br />

hamadryas) 769 ferrets (Mustela putorius furo), 155 go<strong>at</strong>s (Capra aegagrus<br />

hircus), 770 guinea pigs (Cavia porcellus), 769 pigs (Sus scr<strong>of</strong>a domestica<br />

Landrace), 771 and roundworms (Caenorhabditis elegans). 772,773<br />

The development <strong>of</strong> large animal models <strong>of</strong> melioidosis is critical, because<br />

in the evalu<strong>at</strong>ion <strong>of</strong> a new drug, both the US Food and Drug Administr<strong>at</strong>ion and<br />

the European Medicines Agency require d<strong>at</strong>a from <strong>at</strong> least two animal models<br />

(small and large) as a pre-condition for the commencement <strong>of</strong> phase I clinical<br />

trials.<br />

4.1.2 Mouse models <strong>of</strong> <strong>diabetes</strong><br />

Animals have had a prominent role in <strong>diabetes</strong> research for over a hundred<br />

years. In 1889, Oskar Minkowski removed the pancreas from a dog and found<br />

th<strong>at</strong> it became diabetic, 774 leading the way to Banting and Best’s discovery <strong>of</strong><br />

insulin in 1922. 775<br />

We hypothesized th<strong>at</strong> the effect <strong>of</strong> glibenclamide was independent <strong>of</strong> its<br />

effect on glucose control. Although the majority <strong>of</strong> cases <strong>of</strong> <strong>diabetes</strong> in Thailand<br />

have type 2 <strong>diabetes</strong>, we elected to use a model <strong>of</strong> <strong>diabetes</strong> in which glucose<br />

concentr<strong>at</strong>ions were not responsive to glibenclamide, because alter<strong>at</strong>ions to<br />

plasma glucose and insulin concentr<strong>at</strong>ions are themselves associ<strong>at</strong>ed with<br />

changes to the immune response (as reviewed in Chapter 1 <strong>of</strong> this dissert<strong>at</strong>ion).<br />

This review is therefore confined to mouse models <strong>of</strong> type 1 <strong>diabetes</strong>.<br />

The best-characterised and most widely-used mouse model <strong>of</strong><br />

spontaneous type 1 <strong>diabetes</strong> is the inbred non-obese diabetic (NOD) mouse,<br />

120


developed in 1974 by Makino <strong>at</strong> Shionogi Research Labor<strong>at</strong>ories, Japan, from<br />

outbred Swiss mice. 776,777 Most mice <strong>of</strong> this strain develop some degree <strong>of</strong><br />

insulitis (inflamm<strong>at</strong>ion and destruction <strong>of</strong> β-islet cells), but progression to<br />

<strong>diabetes</strong> takes up to 24 weeks and depends on sex and environmental factors.<br />

Under specific p<strong>at</strong>hogen-free (SPF) conditions, 778 80–90% <strong>of</strong> females are<br />

diabetic by 24 weeks <strong>of</strong> age; by contrast, only 40% <strong>of</strong> males are <strong>diabetes</strong> by 30<br />

weeks <strong>of</strong> age. The development <strong>of</strong> <strong>diabetes</strong> in this strain may be synchronised by<br />

a single dose <strong>of</strong> intraperitoneal cyclophosphamide 200 mg/kg, 779 which makes<br />

the mice easier to use.<br />

The selection <strong>of</strong> an appropri<strong>at</strong>e control for the NOD mouse is difficult<br />

because the NOD mouse was developed from an outbred strain, not an inbred<br />

strain, and because the defect is polygenic in origin and poorly defined. 780,781<br />

Both C57Bl/6 mice and BALB/c mice have been used as control strains despite<br />

the fact th<strong>at</strong> neither strain is Swiss-derived. Multiple Swiss-derived control<br />

strains have been developed for the NOD mouse, including the non-obese non-<br />

diabetic (NON) mouse (also developed by Makino), SJL/J, outcrosses <strong>of</strong> NOD<br />

with <strong>diabetes</strong>-resistant strains and various NOD congenic strains. The NON<br />

mouse is a particularly troublesome control, because despite its name, it is<br />

prone to obesity and develops impaired glucose tolerance.<br />

Two other mouse models are worth mentioning briefly: the C57Bl/6NJCL-<br />

Insulin2 Akita and the C57BLKS/J-Cpe f<strong>at</strong> mice.<br />

C57Bl/6NJCL-Insulin2 Akita heterozygous males develop <strong>diabetes</strong> <strong>at</strong><br />

weaning (four weeks <strong>of</strong> age) and the mouse was described in 1997 as a model for<br />

m<strong>at</strong>urity onset <strong>diabetes</strong> <strong>of</strong> the young. 782 Histological examin<strong>at</strong>ion showed th<strong>at</strong><br />

the mice had <strong>at</strong>rophic pancre<strong>at</strong>ic islets deficient in β-cells and the mouse is<br />

therefore a model <strong>of</strong> type 1 <strong>diabetes</strong>. The defect is a missense mut<strong>at</strong>ion in the<br />

insulin 2 gene (Ins2) on chromosome 7, th<strong>at</strong> renders it non-functional. Note<br />

th<strong>at</strong> Mus musculus possesses two equally-expressed insulin genes: Ins1 is<br />

loc<strong>at</strong>ed on chromosome 19. 783 These mice are insulin-responsive, and non-<br />

diabetic litterm<strong>at</strong>es may be used as controls. This mouse model has been<br />

proposed as a replacement for the STZ model. 784<br />

The C57BLKS/J-Cpe f<strong>at</strong> mouse homozygous males are severely obese by 8<br />

weeks <strong>of</strong> age, and this is associ<strong>at</strong>ed with very high circul<strong>at</strong>ing insulin levels and<br />

hyperglycaemia, but not severe <strong>diabetes</strong>. 785 The model was therefore initially<br />

121


described as a model for type 2 <strong>diabetes</strong>. The defect is a point mut<strong>at</strong>ion in<br />

carboxypeptidase E (Cpe) on chromosome 8, which results in abnormal<br />

proinsulin processing. The mouse is therefore insulin-responsive and not<br />

insulin-resistant. The C57BLKS/J background has problems with dental<br />

malocclusion and polycystic kidney lesions which the Jackson Labor<strong>at</strong>ories<br />

solved in 2005 by moving the Cpe f<strong>at</strong> mut<strong>at</strong>ion to a C57Bl/6 background.<br />

A B<br />

Figure 23. A. D-Glucose. B. Streptozocin.<br />

Note.—H = hydrogen; N = nitrogen; O = oxygen. The glucose and streptozocin (STZ)<br />

molecules are oriented to emphasise their structural similarity.<br />

Streptozocin (STZ) was first identified in the l<strong>at</strong>e 1950’s by scientists <strong>at</strong><br />

Upjohn (U.S. p<strong>at</strong>ent 3,027,300 granted 1961) and is a true antibiotic produced<br />

by Streptomyces achromogenes (an actinomycete isol<strong>at</strong>ed from soil collected in<br />

Blue Rapids, Kansas). 786<br />

STZ is a glucosamine-nitrosourea compound and, like other nitrosoureas,<br />

it exerts its cytotoxic effects by alkyl<strong>at</strong>ing DNA. 787 The glucose transporter,<br />

SLC2A2 (previously called GLUT2), is highly expressed by β-cells. The<br />

structural homology between glucose and the glucosamine moiety <strong>of</strong> STZ<br />

(Figure 23) allows STZ to be preferentially taken up by the β-cell, 788 which then<br />

induces a cytotoxic inflamm<strong>at</strong>ory response th<strong>at</strong> destroys the cell. 789 This<br />

explains the specificity <strong>of</strong> STZ for pancre<strong>at</strong>ic β-cells and STZ therefore has a<br />

clinical applic<strong>at</strong>ion as tre<strong>at</strong>ment for β-islet-cell tumours. 790<br />

STZ-tre<strong>at</strong>ed animals were first described in 1963 by Rakieten et al. 791 as a<br />

model for <strong>diabetes</strong> and the model is similar to the older alloxan model <strong>of</strong><br />

122


<strong>diabetes</strong> (first described 1943). 792 Both STZ and alloxan are taken up by<br />

SLC2A2, but alloxan kills the cell by producing reactive oxygen species instead<br />

<strong>of</strong> by DNA alkyl<strong>at</strong>ion. The main advantage <strong>of</strong> STZ over alloxan is its (rel<strong>at</strong>ive)<br />

chemical stability, which makes it easier to use. 788 The main disadvantage <strong>of</strong><br />

both chemical models <strong>of</strong> <strong>diabetes</strong> is th<strong>at</strong> SLC2A2 is also expressed in the renal<br />

tubule, which means both STZ and alloxan are potentially nephrotoxic. This<br />

nephrotoxicity may be avoided by using multiple smaller doses <strong>of</strong> STZ (e.g.,<br />

60 mg/kg over five days) instead <strong>of</strong> fewer large doses (e.g., two doses <strong>of</strong><br />

150 mg/kg). 793 In the STZ model <strong>of</strong> <strong>diabetes</strong>, glucose levels start to rise a week<br />

after initi<strong>at</strong>ing STZ tre<strong>at</strong>ment and pl<strong>at</strong>eau roughly two weeks after the last dose<br />

<strong>of</strong> STZ. Only male mice are susceptible to the effect <strong>of</strong> STZ, which may seem<br />

unusual, but in fact, all mouse models <strong>of</strong> <strong>diabetes</strong> exhibit some sexual<br />

dichotomy. The reason for this is not known.<br />

Figure 24. Development <strong>of</strong> hyperglycaemia in mice tre<strong>at</strong>ed with STZ.<br />

Sixty mice were injected with STZ 60 mg/kg daily for five days (marked by arrows on<br />

horizontal axis) and compared to 60 controls (tre<strong>at</strong>ed with citr<strong>at</strong>e buffer pH 4). STZ-<br />

tre<strong>at</strong>ed mice are shown in red, control mice are shown in black. The horizontal<br />

interrupted line is the 16·7 mM cut<strong>of</strong>f we used to define <strong>diabetes</strong> in mice. This number <strong>of</strong><br />

mice was chosen to allow for losses due to mice not becoming diabetic or mice dying<br />

from hyperglycaemia prior to inocul<strong>at</strong>ion.<br />

An STZ model <strong>of</strong> melioidosis has previously been described by Woods et<br />

al., who used an infant r<strong>at</strong> model <strong>of</strong> melioidosis. 151 In Woods’ report, STZ-<br />

tre<strong>at</strong>ed infant r<strong>at</strong>s were more susceptible to B. pseudomallei infection than<br />

untre<strong>at</strong>ed animals (LD50 ~10 3 –10 4 cfu compared to >10 8 cfu).<br />

123


STZ is stable in solution <strong>at</strong> pH 4 and rapidly degrades <strong>at</strong> higher or lower<br />

pH. 791 STZ solutions are therefore made up with cold sodium citr<strong>at</strong>e buffer 50–<br />

100 mM. 793,794 Higher concentr<strong>at</strong>ions <strong>of</strong> sodium citr<strong>at</strong>e are more irritant.<br />

Solutions are not stable for longer than 12 h and must be made up freshly each<br />

day. Woods’ model uses intraperitoneal streptozotocin 80 mg/kg on two<br />

consecutive days, 151 with controls given phosph<strong>at</strong>e buffered saline. It might be<br />

argued th<strong>at</strong> Woods should have used citr<strong>at</strong>e buffer for controls instead <strong>of</strong><br />

phosph<strong>at</strong>e-buffered saline in his experiments. Another idiosyncracy <strong>of</strong> Woods’<br />

report is th<strong>at</strong> the STZ dose he used is not <strong>at</strong>tested elsewhere in the liter<strong>at</strong>ure: he<br />

references the STZ r<strong>at</strong> model <strong>of</strong> Tancrède et al., but Tancrède does not describe<br />

a 80 mg/kg dose. 795<br />

Since starting this project, we have become aware <strong>of</strong> two other groups<br />

working on STZ-models <strong>of</strong> melioidosis. The first group is based in Townsville,<br />

Australia, and used a BKS.Cg-Dock7 m+/+ Lepr db /J mouse model <strong>of</strong> <strong>diabetes</strong>. 677<br />

This model has a spontaneously arising autosomal recessive mut<strong>at</strong>ion in the<br />

leptin receptor (Lepr db ) th<strong>at</strong> arose in the C57BLKS/J (BKS) colony <strong>at</strong> The<br />

Jackson Labor<strong>at</strong>ories in 1966 and is considered a model <strong>of</strong> type 2 <strong>diabetes</strong>. 796<br />

This model is characterized by obesity, hyperglycaemia and insulin insensitivity.<br />

Using this model, Hodgson et al. found th<strong>at</strong> diabetic mice had decreased<br />

survival following subcutaneous B. pseudomallei infection, with 100%<br />

succumbing to the disease in the first four days post-infection, compared to<br />

non-diabetic mice, all <strong>of</strong> which survived ≥10 days. The group found no defect <strong>of</strong><br />

neutrophil or dendritic cell function. The second group is in Kuala Lumpur and<br />

is run by Sheila N<strong>at</strong>han <strong>at</strong> the Universiti Kebangsaan Malaysia; their d<strong>at</strong>a is<br />

awaiting public<strong>at</strong>ion and was not available <strong>at</strong> time <strong>of</strong> writing.<br />

Of the available models for type 1 <strong>diabetes</strong>, we elected to use the STZ<br />

model <strong>of</strong> <strong>diabetes</strong> for practical reasons. The model is easy to use: the phenotype<br />

may be induced on any background, <strong>at</strong> any time, to produce a cohort <strong>of</strong> mice<br />

th<strong>at</strong> become diabetic synchronously. At the time the experiments were<br />

designed, we considered the possibility th<strong>at</strong> we might need to use knockout<br />

mice to elucid<strong>at</strong>e mechanisms and the knockouts available to us were all on a<br />

C57Bl/6 background. Furthermore, the murine melioidosis model in<br />

Amsterdam was already established in C57Bl/6 mice.<br />

124


The C57Bl/6 inbred strain separ<strong>at</strong>ed from the parent C57Bl outbred strain<br />

in 1937 and the colony was moved to the Jackson Labor<strong>at</strong>ories in 1948. The<br />

C57Bl/6J substrain male mouse (Jackson Labor<strong>at</strong>ories) is a model for diet-<br />

induced type 2 <strong>diabetes</strong>. This is due to a spontaneous 17·8 kb deletion in the<br />

nicotinamide nucleotide transhydrogenase gene, Nnt, th<strong>at</strong> appeared in the<br />

Jackson Labor<strong>at</strong>ories colony some time between 1951 and 1970. 797,798 The<br />

C57Bl/6N substrain (N<strong>at</strong>ional Institutes <strong>of</strong> Health, Bethesda, Maryland)<br />

separ<strong>at</strong>ed from the Jackson Labor<strong>at</strong>ories colony in 1951 and was distributed to<br />

Charles River (Wilmington, Massachusetts) in 1974 (design<strong>at</strong>ed C57Bl/6NCrl).<br />

The C57Bl/6N substrain has an intact Nnt gene 799 and is the substrain used for<br />

all mouse experiments described here. The C57Bl/6N substrain is also the<br />

background used by the Knockout Mouse Project. 749,750 This is important,<br />

because there are published studies th<strong>at</strong> have inadvertently used wild-type<br />

C57Bl/6J mice as non-diabetic controls, not realising th<strong>at</strong> this substrain is a<br />

model for <strong>diabetes</strong>.<br />

4.2 Methods<br />

4.2.1 Mouse experiments<br />

Specified p<strong>at</strong>hogen-free 10-week-old C57Bl/6NCrl mice (Charles River)<br />

were given STZ 60 mg/kg daily for five days. 793 We chose to use a low-dose<br />

regimen because <strong>at</strong> this dose, STZ does not have a direct toxic effect on the<br />

kidneys, 793 which might otherwise confound our results. STZ 6 mg/ml (Sigma-<br />

Aldrich, Zwijndrecht, The Netherlands) was prepared fresh every day in citr<strong>at</strong>e<br />

buffer (pH 4), then passed through a 0·2 µm polyethersulphone filter (VWR<br />

514-0073) and administered intraperitoneally within 60 minutes <strong>of</strong><br />

prepar<strong>at</strong>ion. Losses were around 20% with this regimen, either from<br />

complic<strong>at</strong>ions <strong>of</strong> the hyperglycaemia or because the animals failed to become<br />

diabetic and had to be sacrificed.<br />

Animals were allowed ad libitum access to food (801733 CRM, Tecnilab-<br />

BMI) and w<strong>at</strong>er, and were group-housed in polycarbon<strong>at</strong>e cages with 12-hour<br />

light/dark cycles, temper<strong>at</strong>ure 18–22°C, humidity 40–65%. Plasma glucose was<br />

checked weekly by cheek puncture 800 (Bayer Contour meter). For 10-week-old<br />

mice not tre<strong>at</strong>ed with STZ, glucose was 8·75±1·52 mM (mean±standard<br />

125


devi<strong>at</strong>ion) and for 16-week-old mice, 9·30±1·64 mM. We defined <strong>diabetes</strong> as a<br />

plasma glucose ≥16·7 mM. 793<br />

Mice were infected with ~6×10 2 Burkholderia pseudomallei intranasally<br />

4–5 weeks after STZ tre<strong>at</strong>ment. In order to mimic the clinical situ<strong>at</strong>ion seen in<br />

our cohort <strong>study</strong>, we tre<strong>at</strong>ed all animals with full-dose antibiotics. Ceftazidime<br />

600 mg/kg (GlaxoSmithKline, Brentford, England) was administered<br />

intraperitoneally starting 24h after inocul<strong>at</strong>ion and continued twice daily until<br />

sacrifice. 296<br />

For glibenclamide experiments, glibenclamide 50 mg/kg (Sigma-Aldrich)<br />

in 20% dimethylsulphoxide (DMSO) was administered intraperitoneally<br />

starting 7 days before inocul<strong>at</strong>ion and continued until sacrifice; control mice<br />

were given 20% DMSO. This dose <strong>of</strong> glibenclamide was chosen because it is<br />

equivalent to the highest human dose (20 mg daily to a 50 kg Thai male) after<br />

taking into account differences in pharmacokinetics (human t½ ≈ 8 hours,<br />

mouse t½ ≈ 1 hour).<br />

Eight animals from each group were sacrificed 48, 72 and 96 hours after<br />

inocul<strong>at</strong>ion. Mice were sed<strong>at</strong>ed with ketamine/medetomidine intraperitoneally<br />

(12·5 mg/20 µg per 100 g weight), then exsanguin<strong>at</strong>ed by cardiac puncture.<br />

De<strong>at</strong>h was confirmed by cutting the diaphragm. Glucose measurements were<br />

obtained prior to sed<strong>at</strong>ion as medetomidine itself elev<strong>at</strong>es glucose<br />

concentr<strong>at</strong>ions.<br />

The lungs were lavaged with three 300 µl aliquots <strong>of</strong> sterile 0·9% saline<br />

then collected for culture. Lung, liver and spleen were homogenized in four<br />

volumes <strong>of</strong> sterile saline. Organ homogen<strong>at</strong>es, blood and bronchoalveolar lavage<br />

fluid (BALF) were pl<strong>at</strong>ed onto blood agar in serial dilutions to quantify bacterial<br />

burdens. The remaining lung homogen<strong>at</strong>e was incub<strong>at</strong>ed for 30 minutes with<br />

Greenberger lysis buffer then centrifuged <strong>at</strong> 650 × g for 10 minutes. The<br />

supern<strong>at</strong>ant was passed through a 0·2 µm filter to remove viable bacteria, then<br />

stored <strong>at</strong> –20°C for cytokine measurements. Heparinized blood was centrifuged<br />

<strong>at</strong> 700 × g for 10 minutes; the plasma was filtered and stored <strong>at</strong> –20°C pending<br />

analysis.<br />

In lung homogen<strong>at</strong>es and BALF, interleukin(IL) 1β, IL6, IL10, CXCL5<br />

(LIX) and tumor necrosis factor-α (TNFα) were measured by sandwich ELISA<br />

(R&D Systems, Oxford, England). Cytokine levels in plasma were measured by<br />

126


particle immunoassay (mouse inflamm<strong>at</strong>ion cytometric bead array, BD<br />

Biosciences, San Jose, California) because <strong>of</strong> limited sample quantity. Protein<br />

concentr<strong>at</strong>ions were measured using the DC protein assay (Bio-Rad,<br />

Hercules, California).<br />

St<strong>at</strong>istical analyses were performed on St<strong>at</strong>a 11 (St<strong>at</strong>aCorp, College St<strong>at</strong>ion,<br />

Texas). Bacterial loads and cytokine concentr<strong>at</strong>ions were log-normal. Linear<br />

regression was used in preference to ANOVA because it reports not just a p-<br />

value for each group, but also estim<strong>at</strong>es size <strong>of</strong> difference and permits<br />

interaction testing. Models were fit by the method <strong>of</strong> variance-weighted least-<br />

squares, because the method does not assume homoscedasticity and because all<br />

explan<strong>at</strong>ory variables could be tre<strong>at</strong>ed as c<strong>at</strong>egorical. Responses were not<br />

assumed to vary linearly with time. Separ<strong>at</strong>e p-values were reported for each<br />

time point only when justified by a test for interaction.<br />

Mouse experiments were performed <strong>at</strong> the Academic Medical Center,<br />

<strong>University</strong> <strong>of</strong> Amsterdam and were approved by the animal experiment<strong>at</strong>ion<br />

committee there (DIX101725).<br />

4.3 Results<br />

4.3.1 Glibenclamide does not reduce glucose concentr<strong>at</strong>ions in the STZ model<br />

<strong>of</strong> <strong>diabetes</strong><br />

The host response is altered by changes in glucose concentr<strong>at</strong>ion. The<br />

primary action <strong>of</strong> glibenclamide in <strong>diabetes</strong> is to reduce blood glucose<br />

concentr<strong>at</strong>ions by stimul<strong>at</strong>ing insulin secretion by the β-islet cells <strong>of</strong> the<br />

pancreas. STZ tre<strong>at</strong>ment destroys the β-cells <strong>of</strong> the pancreas, making the<br />

animals hyperglycaemic and unresponsive to the action <strong>of</strong> glibenclamide. This<br />

allows us to dissect out the separ<strong>at</strong>e effects <strong>of</strong> glibenclamide on glucose and on<br />

the inflamm<strong>at</strong>ory response. Blood glucose measurements taken <strong>at</strong> sacrifice<br />

confirmed th<strong>at</strong> in the STZ model <strong>of</strong> <strong>diabetes</strong>, blood glucose concentr<strong>at</strong>ions are<br />

not altered by glibenclamide tre<strong>at</strong>ment (Figure 25).<br />

127


Figure 25. Glucose concentr<strong>at</strong>ions do not fall with glibenclamide<br />

tre<strong>at</strong>ment in strepztozocin-tre<strong>at</strong>ed mice.<br />

The graph shows plasma glucose <strong>at</strong> sacrifice in mice with STZ-induced <strong>diabetes</strong> and<br />

compares mice tre<strong>at</strong>ed with glibenclamide against control mice tre<strong>at</strong>ed with vehicle<br />

alone. Glibenclamide 50 mg/kg once daily was started 7 days prior to inocul<strong>at</strong>ion and<br />

continued until sacrifice; controls were given vehicle alone. All mice were infected with<br />

B. pseudomallei 48, 72 or 96 hours prior to sacrifice.<br />

4.3.2 Glibenclamide does not alter bacterial loads in the lungs<br />

Glibenclamide is structurally rel<strong>at</strong>ed to the sulphonamides, which are<br />

active against B. pseudomallei. If glibenclamide inhibits the growth <strong>of</strong><br />

B. pseudomallei, then any differences in the inflamm<strong>at</strong>ory response might be<br />

explained by a direct effect on the bacterium and not by an effect on the host<br />

response.<br />

In this model <strong>of</strong> melioidosis pneumonia, the primary site <strong>of</strong> infection is the<br />

lungs. We found no effect <strong>of</strong> glibenclamide on bacterial loads in either lung<br />

tissue or in bronchoalveolar lavage fluid <strong>at</strong> any <strong>of</strong> the three time points<br />

measured.<br />

128


Figure 26. Bacterial loads in the lungs and BALF are unaffected by<br />

glibenclamide therapy.<br />

Note.— BALF = bronchoalveolar lavage fluid.<br />

Mice were tre<strong>at</strong>ed with glibenclamide or vehicle for 7 days prior to inocul<strong>at</strong>ion with<br />

650 cfu B. pseudomallei. All mice were tre<strong>at</strong>ed with ceftazidime 600 mg/kg twice daily<br />

started 24 h after inocul<strong>at</strong>ion and continued until sacrifice <strong>at</strong> 48, 72 or 96 h (n = 8 per<br />

group per time point). Results for glibenclamide-tre<strong>at</strong>ed animals are indic<strong>at</strong>ed in blue,<br />

while results from control animals are indic<strong>at</strong>ed in black. Error bars indic<strong>at</strong>e standard<br />

devi<strong>at</strong>ions. Bacterial loads were determined by serial dilution on horse blood agar. The<br />

horizontal interrupted line marks the limit <strong>of</strong> detection for the assay.<br />

4.3.3 Glibenclamide is associ<strong>at</strong>ed with lower IL1β concentr<strong>at</strong>ions<br />

Glibenclamide has previously been reported to inhibit inflammasome<br />

assembly 735 and one <strong>of</strong> the roles <strong>of</strong> the NLRP3 inflammasome is the activ<strong>at</strong>ion<br />

and secretion <strong>of</strong> interleukin(IL)-1β. We found th<strong>at</strong> in glibenclamide-tre<strong>at</strong>ed<br />

animals, concentr<strong>at</strong>ions <strong>of</strong> IL1β were 73·3% lower in lung tissue 48 hours after<br />

inocul<strong>at</strong>ion compared to controls (p < 0·001, Figure 27).<br />

In lung tissue, IL1β is present in both its m<strong>at</strong>ure and imm<strong>at</strong>ure forms.<br />

Only m<strong>at</strong>ure IL1β is secreted into the alveolar space, and IL1β in<br />

bronchoalveolar lavage fluid (BALF) should therefore be a better measure <strong>of</strong><br />

inflammasome activ<strong>at</strong>ion than lung tissue. We found th<strong>at</strong> IL1β concentr<strong>at</strong>ions<br />

in BALF were 81·7% lower than controls (p < 0·001) <strong>at</strong> 48 hours.<br />

129


Figure 27. Cytokine levels in glibenclamide-tre<strong>at</strong>ed mice<br />

(inflammasome rel<strong>at</strong>ed).<br />

Note.— BALF = bronchoalveolar lavage fluid; IL = interleukin; IFNγ = interferon γ.<br />

Mice were tre<strong>at</strong>ed with glibenclamide or vehicle for 7 days prior to inocul<strong>at</strong>ion with<br />

650 cfu B. pseudomallei. All mice were tre<strong>at</strong>ed with ceftazidime 600 mg/kg twice daily<br />

started 24 h after inocul<strong>at</strong>ion and continued until sacrifice <strong>at</strong> 48, 72 or 96 h (n = 8 per<br />

group per time point). Results for glibenclamide-tre<strong>at</strong>ed animals are indic<strong>at</strong>ed in blue,<br />

while results from control animals are indic<strong>at</strong>ed in black. Error bars indic<strong>at</strong>e standard<br />

devi<strong>at</strong>ions. A single p-value is reported for each cytokine unless there is evidence from a<br />

test <strong>of</strong> interaction th<strong>at</strong> effects <strong>at</strong> each time point are different. The horizontal interrupted<br />

line marks the limit <strong>of</strong> detection for the assay.<br />

4.3.4 Glibenclamide is associ<strong>at</strong>ed with a reduced cellular influx into the lungs<br />

Melioidosis pneumonia is characterised by a florid influx <strong>of</strong> cells into the<br />

lungs, and these cells are predominantly neutrophils. 765 Although neutrophils<br />

form a critical part <strong>of</strong> the inn<strong>at</strong>e host response to melioidosis, 326 neutrophils<br />

may also contribute to mortality by causing damage to the respir<strong>at</strong>ory tract and<br />

have been implic<strong>at</strong>ed in the p<strong>at</strong>hogenesis <strong>of</strong> the acute respir<strong>at</strong>ory distress<br />

syndrome. 739 IL1β has been implic<strong>at</strong>ed in the recruitment <strong>of</strong> neutrophils to the<br />

inflamed lung, and we hypothesised th<strong>at</strong> glibenclamide might function by<br />

limiting this influx <strong>of</strong> cells. 515,738<br />

In this <strong>study</strong>, we found th<strong>at</strong> glibenclamide did not influence the wet weight<br />

<strong>of</strong> the inflamed lungs or the amount <strong>of</strong> protein in BALF (both are markers for<br />

capillary leakage) (Figure 28). We did however find th<strong>at</strong> the total number <strong>of</strong><br />

130


cells was reduced in glibenclamide-tre<strong>at</strong>ed animals compared to controls. The<br />

majority <strong>of</strong> cells in this inflamm<strong>at</strong>ory infiltr<strong>at</strong>e were neutrophils, but<br />

macrophages were also present in significant numbers. This difference in cell<br />

counts was most apparent <strong>at</strong> the 48 h time point (Figure 28).<br />

Figure 28. Lung infiltr<strong>at</strong>ion in glibenclamide-tre<strong>at</strong>ed mice.<br />

Note.—BALF = bronchoalveolar lavage fluid. Mice were tre<strong>at</strong>ed with glibenclamide or<br />

vehicle for 7 days prior to inocul<strong>at</strong>ion with 650 cfu B. pseudomallei. All mice were<br />

tre<strong>at</strong>ed with ceftazidime 600 mg/kg twice daily started 24 h after inocul<strong>at</strong>ion and<br />

continued until sacrifice <strong>at</strong> 48, 72 or 96 h (n = 8 per group per time point). Results for<br />

glibenclamide-tre<strong>at</strong>ed animals are indic<strong>at</strong>ed in blue, while results from control animals<br />

are indic<strong>at</strong>ed in black. Error bars indic<strong>at</strong>e standard devi<strong>at</strong>ions. A single p-value is<br />

reported for each cytokine unless there is evidence from a test <strong>of</strong> interaction th<strong>at</strong> effects <strong>at</strong><br />

each time point are different.<br />

4.3.5 Glibenclamide is associ<strong>at</strong>ed with reduced dissemin<strong>at</strong>ion <strong>of</strong><br />

B. pseudomallei from the lungs<br />

Melioidosis is characterised by haem<strong>at</strong>ogenous spread from the primary<br />

site <strong>of</strong> infection to distant organs such as a liver and spleen. 765 B. pseudomallei<br />

is a facult<strong>at</strong>ive intracellular organism with an ability to parasitise leukocytes.<br />

We hypothesised th<strong>at</strong> a reduction in leukocyte recruitment to the site <strong>of</strong> primary<br />

131


infection might therefore hinder the spread <strong>of</strong> infection to distant organs. We<br />

therefore measured bacterial loads in liver and spleen and found th<strong>at</strong> bacterial<br />

loads were lower <strong>at</strong> all three time points measured (Figure 29). Consistent with<br />

this, bacterial burdens were also lower in blood, but this is less easy to interpret<br />

st<strong>at</strong>istically, as a large proportion <strong>of</strong> points were below the limit <strong>of</strong> detection.<br />

Figure 29. Bacterial loads in blood, liver and spleen are lower in<br />

glibenclamide-tre<strong>at</strong>ed mice.<br />

Note.—Mice were tre<strong>at</strong>ed with glibenclamide or vehicle for 7 days prior to inocul<strong>at</strong>ion<br />

with 650 cfu B. pseudomallei. All mice were tre<strong>at</strong>ed with ceftazidime 600 mg/kg twice<br />

daily started 24 h after inocul<strong>at</strong>ion and continued until sacrifice <strong>at</strong> 48, 72 or 96 h (n = 8<br />

per group per time point). Results for glibenclamide-tre<strong>at</strong>ed animals are indic<strong>at</strong>ed in blue,<br />

while results from control animals are indic<strong>at</strong>ed in black. P-values reported are for<br />

variance-weight least squares regression. Error bars indic<strong>at</strong>e standard devi<strong>at</strong>ions. Bacterial<br />

loads were determined by serial dilution on horse blood agar. The horizontal interrupted<br />

line marks the limit <strong>of</strong> detection for the assay, which is 3 cfu/50 µl <strong>of</strong> sample (corrected<br />

for dilution), which is the smallest concentr<strong>at</strong>ion <strong>of</strong> bacteria th<strong>at</strong> may be distinguished<br />

from zero with 95% confidence. It was not possible to report a p-value for blood as<br />

>50% <strong>of</strong> d<strong>at</strong>a points were below the limit <strong>of</strong> detection.<br />

4.3.6 Glibenclamide is not associ<strong>at</strong>ed with differences in other cytokines<br />

Another role <strong>of</strong> the NLRP3 inflammasome is the activ<strong>at</strong>ion and secretion<br />

<strong>of</strong> IL18. IL18 then stimul<strong>at</strong>es n<strong>at</strong>ural killer and CD8 + cells to secrete interferon γ<br />

(IFNγ). Inflammasome inhibition would be expected to inhibit the secretion <strong>of</strong><br />

m<strong>at</strong>ure IL18, and in turn reduce IFNγ secretion.<br />

Imm<strong>at</strong>ure IL18 is constitutively expressed <strong>at</strong> high concentr<strong>at</strong>ions in<br />

unstimul<strong>at</strong>ed cells. 503 We therefore did not measure IL18 in lung tissue. Instead,<br />

IL18 was measured in BALF, which should represent the m<strong>at</strong>ure secreted form<br />

132


<strong>of</strong> the cytokine only. At the 48-hour timepoint, we found th<strong>at</strong> IL18<br />

concentr<strong>at</strong>ions were lower in glibenclamide-tre<strong>at</strong>ed mice when compared to<br />

controls, however, this difference was not st<strong>at</strong>istically significant (Figure 30).<br />

We found no difference in IFNγ concentr<strong>at</strong>ions in lung. IFNγ<br />

concentr<strong>at</strong>ions in blood were lower <strong>at</strong> 48 hours, but this difference was also not<br />

st<strong>at</strong>istically significant (Figure 30). IFNγ was not measured in BALF because<br />

previous experiments have shown it to be <strong>at</strong> or below the limit <strong>of</strong> detection in<br />

this model.<br />

Figure 30. IL18 and IFNγ levels in glibenclamide-tre<strong>at</strong>ed mice.<br />

Note.—BALF = bronchoalveolar lavage fluid; IL = interleukin; IFN = interferon.<br />

Mice were tre<strong>at</strong>ed with glibenclamide or vehicle for 7 days prior to inocul<strong>at</strong>ion with<br />

650 cfu B. pseudomallei. All mice were tre<strong>at</strong>ed with ceftazidime 600 mg/kg twice daily<br />

started 24 h after inocul<strong>at</strong>ion and continued until sacrifice <strong>at</strong> 48, 72 or 96 h (n = 8 per<br />

group per time point). Results for glibenclamide-tre<strong>at</strong>ed animals are indic<strong>at</strong>ed in blue,<br />

while results from control animals are indic<strong>at</strong>ed in black. Error bars indic<strong>at</strong>e standard<br />

devi<strong>at</strong>ions. The horizontal interrupted line marks the limit <strong>of</strong> detection for the assay.<br />

4.3.7 Glibenclamide has no effect on cytokines unrel<strong>at</strong>ed to the<br />

inflammasome<br />

In order to determine if the effect <strong>of</strong> glibenclamide was isol<strong>at</strong>ed to IL1β, or<br />

whether it was a general anti-inflamm<strong>at</strong>ory effect, we assayed the pro-<br />

inflamm<strong>at</strong>ory cytokines, IL6, TNFα and CXCL5. The secretion <strong>of</strong> these three<br />

cytokines is unrel<strong>at</strong>ed to the inflammasome. We also considered the possibility<br />

th<strong>at</strong> glibenclamide might be acting to promote secretion <strong>of</strong> the anti-<br />

inflamm<strong>at</strong>ory cytokine, IL10.<br />

133


Although there were differences in IL6 and TNFα <strong>at</strong> the 48 h time point,<br />

these differences were small and did not reach st<strong>at</strong>istical significance. Overall,<br />

we found no evidence <strong>of</strong> an effect <strong>of</strong> glibenclamide on the secretion <strong>of</strong> CXCL5,<br />

IL6, IL10 or TNFα (Figure 31).<br />

Figure 31. Levels <strong>of</strong> cytokine unrel<strong>at</strong>ed to the inflammasome in<br />

glibenclamide-tre<strong>at</strong>ed mice.<br />

Note.—IL = interleukin; TNF = tumour necrosis factor; CXCL5 = chemokine (CXC-motif)<br />

ligand 5. Mice were tre<strong>at</strong>ed with glibenclamide or vehicle for 7 days prior to inocul<strong>at</strong>ion<br />

with 650 cfu B. pseudomallei. All mice were tre<strong>at</strong>ed with ceftazidime 600 mg/kg twice<br />

daily started 24 h after inocul<strong>at</strong>ion and continued until sacrifice <strong>at</strong> 48, 72 or 96 h (n = 8<br />

per group per time point). Results for glibenclamide-tre<strong>at</strong>ed animals are indic<strong>at</strong>ed in blue,<br />

while results from control animals are indic<strong>at</strong>ed in black. Error bars indic<strong>at</strong>e standard<br />

devi<strong>at</strong>ions. A single p-value is reported for each cytokine unless there is evidence from a<br />

test <strong>of</strong> interaction th<strong>at</strong> effects <strong>at</strong> each time point are different. The horizontal interrupted<br />

line marks the limit <strong>of</strong> detection for the assay. In blood, concentr<strong>at</strong>ions <strong>of</strong> IL1β, IL10 and<br />

IL12p70 were all below the limit <strong>of</strong> detection (d<strong>at</strong>a not shown).<br />

134


4.4 Discussion<br />

We have presented evidence for an anti-inflamm<strong>at</strong>ory effect <strong>of</strong><br />

glibenclamide in a diabetic mouse model <strong>of</strong> melioidosis and this anti-<br />

inflamm<strong>at</strong>ory effect appears specific to IL1β. This is consistent with the results<br />

<strong>of</strong> previous in vitro and in vivo reports. 735,801,802 To the best <strong>of</strong> our knowledge,<br />

this is the first time an inhibitory effect <strong>of</strong> glibenclamide on IL1β secretion has<br />

been described in any sepsis model.<br />

A limit<strong>at</strong>ion <strong>of</strong> clinical studies <strong>of</strong> infection has always been th<strong>at</strong> the<br />

interplay between the burden <strong>of</strong> infection and the inflamm<strong>at</strong>ory response has<br />

been difficult to tease out. Cytokine levels may be higher because bacterial<br />

burdens are higher, or bacterial burdens may be higher because <strong>of</strong> an ineffective<br />

inn<strong>at</strong>e host response. 376 Animal studies allow us to control the size <strong>of</strong> the initial<br />

inoculum and therefore the initial burden <strong>of</strong> infection. In this <strong>study</strong>, we found<br />

th<strong>at</strong> bacterial loads in the lungs (the primary site <strong>of</strong> infection in our model) were<br />

not different between glibenclamide-tre<strong>at</strong>ed and untre<strong>at</strong>ed mice. This excludes<br />

the possibility th<strong>at</strong> the differences in IL1β levels in the lungs are due to an effect<br />

<strong>of</strong> glibenclamide on the burden <strong>of</strong> infection in the lungs.<br />

We found th<strong>at</strong> glibenclamide limits the cellular influx into the lungs, with<br />

effects on both neutrophil and monocyte numbers. Neutrophils are a crucial<br />

part <strong>of</strong> the host response to melioidosis, 326 but neutrophils have also been<br />

implic<strong>at</strong>ed in the p<strong>at</strong>hogenesis <strong>of</strong> the acute respir<strong>at</strong>ory distress syndrome. 739<br />

Glibenclamide was not associ<strong>at</strong>ed with a complete abl<strong>at</strong>ion <strong>of</strong> the neutrophil<br />

response (neutrophils are not a normal constituent <strong>of</strong> BALF taken from the<br />

healthy lung). Glibenclamide was only associ<strong>at</strong>ed with a reduction in the<br />

magnitude <strong>of</strong> the neutrophil response and not its complete abl<strong>at</strong>ion. This<br />

balance between ‘enough’ and ‘too much’ is a common theme in the<br />

p<strong>at</strong>hogenesis <strong>of</strong> sepsis and its complic<strong>at</strong>ions. 803 A reduction in neutrophil influx<br />

into the lungs is consistent with our finding th<strong>at</strong> glibenclamide is associ<strong>at</strong>ed<br />

with a lower incidence <strong>of</strong> respir<strong>at</strong>ory failure in p<strong>at</strong>ients with melioidosis<br />

(Chapter 2).<br />

It is also worth noting th<strong>at</strong> B. pseudomallei is a facult<strong>at</strong>ive intracellular<br />

p<strong>at</strong>hogen and th<strong>at</strong> it is capable <strong>of</strong> parasitizing macrophages. 79–81 Bacterial<br />

135


urdens in blood, liver and spleen were lower in our model, suggesting th<strong>at</strong><br />

glibenclamide reduces bacterial dissemin<strong>at</strong>ion. The role <strong>of</strong> neutrophils and<br />

macrophages in the dissemin<strong>at</strong>ion <strong>of</strong> B. pseudomallei is not known, but it is<br />

possible to specul<strong>at</strong>e th<strong>at</strong> the reduced influx <strong>of</strong> leukocytes into the lungs reduces<br />

the number <strong>of</strong> cells parasitized by the bacterium and therefore impairs the<br />

ability <strong>of</strong> B. pseudomallei to dissemin<strong>at</strong>e.<br />

We found no effect on cytokines unrel<strong>at</strong>ed to the inflammasome.<br />

Specifically, there was no effect on CXCL5, IL6, IL10 or TNFα secretion, which<br />

is again consistent with previous reports in the liter<strong>at</strong>ure 735,804 and rules out a<br />

more general anti-inflamm<strong>at</strong>ory effect. In this model, all animals were tre<strong>at</strong>ed<br />

with full-dose ceftazidime in order to simul<strong>at</strong>e the clinical <strong>study</strong> th<strong>at</strong> motiv<strong>at</strong>ed<br />

this experiment. 329 Under this regimen, all animals showed signs <strong>of</strong> recovery by<br />

96 hours and the fact th<strong>at</strong> no differences were seen in cytokine responses <strong>at</strong><br />

l<strong>at</strong>er time points is therefore not surprising.<br />

The mechanism by which glibenclamide is able to inhibit IL1β secretion is<br />

not known. Lamkanfi et al. demonstr<strong>at</strong>ed th<strong>at</strong> glibenclamide is able to inhibit<br />

assembly <strong>of</strong> the NLRP3 inflammasome in response to stimul<strong>at</strong>ion with<br />

lipopolysaccharide (LPS) and adenoside triphosph<strong>at</strong>e (ATP). However, when<br />

S. Typhimurium was used as a stimulus, glibenclamide was not able to prevent<br />

inflammasome assembly, as measured by caspase 1 cleavage (caspase 1 being a<br />

critical component <strong>of</strong> the NLRP3 inflammasome). This suggests th<strong>at</strong> there are<br />

altern<strong>at</strong>ive p<strong>at</strong>hways which permit the assembly <strong>of</strong> the NLRP3 inflammasome,<br />

and the specific p<strong>at</strong>hway th<strong>at</strong> glibenclamide blocks is bypassed when<br />

macrophages are confronted by a complex stimulus such as a whole bacterium.<br />

In our model, glibenclamide-tre<strong>at</strong>ment reduced IL1β secretion in BALF,<br />

but did not block it completely. This means th<strong>at</strong> there must have been some<br />

inflammasome assembly despite glibenclamide tre<strong>at</strong>ment, because only m<strong>at</strong>ure<br />

IL1β is secreted into BALF. Imm<strong>at</strong>ure IL18 is also cleaved by the<br />

inflammasome, so our finding th<strong>at</strong> inflammasome assembly is not completely<br />

blocked by glibenclamide in melioidosis is supported by the fact th<strong>at</strong> we<br />

observed only a modest reduction in IL18 th<strong>at</strong> was not st<strong>at</strong>istically significant.<br />

Our <strong>study</strong> does not exclude other mechanisms for the action <strong>of</strong><br />

glibenclamide. Aside from an effect on the inflammasome, Hamon et al. have<br />

presented evidence th<strong>at</strong> glibenclamide may block the secretion <strong>of</strong> m<strong>at</strong>ure<br />

136


IL1β. 804 Glibenclamide has also been shown to have other anti-inflamm<strong>at</strong>ory<br />

effects, including the prevention <strong>of</strong> ischaemic reperfusion injury, 740,741 and an<br />

enhancement <strong>of</strong> intracellular killing <strong>of</strong> Leishmania parasites. 805<br />

In conclusion, we have replic<strong>at</strong>ed our clinical finding th<strong>at</strong> glibenclamide is<br />

associ<strong>at</strong>ed with reduced inflamm<strong>at</strong>ion in melioidosis. Specifically, we found<br />

reductions in IL1β secretion, cellular infiltr<strong>at</strong>ion into the lungs and<br />

dissemin<strong>at</strong>ion to distant organs. Glibenclamide has previously been shown to<br />

prevent IL1β m<strong>at</strong>ur<strong>at</strong>ion and secretion by inhibiting inflammasome assembly,<br />

but the presence <strong>of</strong> detectable IL1β in BALF coupled with smaller-than-expected<br />

effects on IL18 and IFNγ means inflammasome inhibition is incomplete, or th<strong>at</strong><br />

this may not be the mechanism by which glibenclamide acts to reduce IL1β in<br />

the context <strong>of</strong> melioidosis.<br />

137


5 Final discussion and conclusion<br />

We have shown th<strong>at</strong> p<strong>at</strong>ients with a pre-existing diagnosis <strong>of</strong> <strong>diabetes</strong> have<br />

a lower mortality than p<strong>at</strong>ients without <strong>diabetes</strong> and p<strong>at</strong>ients with<br />

hyperglycaemia or undiagnosed <strong>diabetes</strong>. There is no protective effect <strong>of</strong><br />

<strong>diabetes</strong> per se: instead, the mortality benefit seen is associ<strong>at</strong>ed specifically with<br />

glibenclamide therapy. There was no evidence for an effect <strong>of</strong> <strong>diabetes</strong> on<br />

mortality after adjusting for the effect <strong>of</strong> glibenclamide. We also found th<strong>at</strong><br />

glibenclamide appears to protect from respir<strong>at</strong>ory failure.<br />

In a gene expression <strong>study</strong> <strong>of</strong> total peripheral blood leukocytes in<br />

melioidosis p<strong>at</strong>ients, glibenclamide was associ<strong>at</strong>ed with a broad decrease in<br />

inflamm<strong>at</strong>ion, with no one p<strong>at</strong>hway predomin<strong>at</strong>ing. We therefore used a mouse<br />

model to dissect out the effect <strong>of</strong> glibenclamide on the host response and found<br />

th<strong>at</strong> glibenclamide reduces IL1β secretion in melioidosis with no effects on other<br />

cytokines. The reduction in IL1β secretion is also associ<strong>at</strong>ed with a reduced<br />

cellular influx into the lungs, which may help explain the clinical associ<strong>at</strong>ion<br />

with a reduced incidence <strong>of</strong> respir<strong>at</strong>ory failure, because neutrophils have been<br />

implic<strong>at</strong>ed in the p<strong>at</strong>hogenesis <strong>of</strong> the acute respir<strong>at</strong>ory distress syndrome. There<br />

was also an associ<strong>at</strong>ion with decreased bacterial dissemin<strong>at</strong>ion to distant sites,<br />

which we specul<strong>at</strong>e is rel<strong>at</strong>ed to the reduced cellular influx.<br />

The mechanism by which glibenclamide reduces IL1β production by<br />

monocytes is not known. In the context <strong>of</strong> LPS stimul<strong>at</strong>ion, glibenclamide has<br />

been shown to block inflammasome assembly in isol<strong>at</strong>ed macrophages,<br />

however, we have only equivocal evidence for an effect <strong>of</strong> glibenclamide on the<br />

inflammasome in the context <strong>of</strong> melioidosis.<br />

It may be argued th<strong>at</strong> a knowledge <strong>of</strong> mechanism is not required for a drug<br />

to enter therapeutic use. The primary indic<strong>at</strong>ion for glibenclamide is the<br />

tre<strong>at</strong>ment <strong>of</strong> <strong>diabetes</strong> and glibenclamide stimul<strong>at</strong>es insulin production<br />

regardless <strong>of</strong> plasma glucose concentr<strong>at</strong>ions. The administr<strong>at</strong>ion <strong>of</strong><br />

glibenclamide to the critically ill but euglycaemic p<strong>at</strong>ient may therefore induce<br />

potentially f<strong>at</strong>al hypoglycaemia. While hypoglycaemia is managed with rel<strong>at</strong>ive<br />

ease in the setting <strong>of</strong> the Western intensive care unit, the use <strong>of</strong> glibenclamide is<br />

138


dangerous in a resource poor setting where close monitoring is not so readily<br />

available.<br />

5.1 Cardiac effects <strong>of</strong> glibenclamide<br />

A further problem with the use <strong>of</strong> glibenclamide is its effect on the heart.<br />

In 1970, the <strong>University</strong> Group Diabetes Program (UGDP) reported th<strong>at</strong><br />

cardiovascular mortality was 2½-times higher in p<strong>at</strong>ients tre<strong>at</strong>ed with the<br />

sulphonylureas (principally, tolbutamide) compared to p<strong>at</strong>ients tre<strong>at</strong>ed with<br />

placebo and th<strong>at</strong> limb <strong>of</strong> the trial was termin<strong>at</strong>ed early. 2 These findings cre<strong>at</strong>ed<br />

controversy for a number <strong>of</strong> reasons: first, because they were unexpected and,<br />

second, because the excess mortality was seen <strong>at</strong> only three centres. These<br />

findings were not unchallenged 806,807 and the criticism surrounding their report<br />

was he<strong>at</strong>ed. The subsequent deb<strong>at</strong>e was governed in part by emotion, 808 but also<br />

by commercial interests centred around tolbutamide (Orinase®, then<br />

manufactured by Upjohn). Subsequent studies have reported mixed<br />

conclusions, with some supporting the effect <strong>of</strong> sulphonylureas on<br />

cardiovascular mortality and some not. The interested reader is referred to the<br />

fully referenced record <strong>of</strong> th<strong>at</strong> deb<strong>at</strong>e which has been published elsewhere. 808<br />

The response to the UGDP results was mixed. Phenformin (the only<br />

biguanide then available in the US, and also the only oral altern<strong>at</strong>ive <strong>at</strong> th<strong>at</strong><br />

time) was withdrawn in the mid-1970’s, on the back <strong>of</strong> evidence th<strong>at</strong> it caused<br />

f<strong>at</strong>al lactic acidosis (also from the UGDP). The lack <strong>of</strong> oral altern<strong>at</strong>ives and<br />

mixed evidence from subsequent trials meant a partial return <strong>of</strong> confidence in<br />

the use <strong>of</strong> sulphonylureas. 809 Doubts have lingered and the FDA mand<strong>at</strong>ed<br />

package insert for all sulphonylureas sold in the US still contains a bold-print<br />

warning about cardiovascular risks. 742<br />

Follow up studies looking <strong>at</strong> the effect <strong>of</strong> sulphonylureas <strong>of</strong> cardiovascular<br />

mortality have found th<strong>at</strong> it is not a class effect, and th<strong>at</strong> in addition to<br />

tolbutamide, glibenclamide is a prime <strong>of</strong>fender. 810–812 Other members <strong>of</strong> the<br />

class, such as gliclazide do not appear to have this problem.<br />

Glibenclamide is thought to increase the risk <strong>of</strong> cardiovascular disease by<br />

blocking ischaemic pre-conditioning. 813 Ischaemic pre-conditioning is a<br />

phenomenon in heart muscle where brief episodes <strong>of</strong> ischaemia render the heart<br />

more resistant to subsequent ischaemia. Diabetics <strong>of</strong>ten have diffuse coronary<br />

139


disease which means diabetic p<strong>at</strong>ients who have a heart <strong>at</strong>tack are likely to have<br />

had smaller ischaemic insults th<strong>at</strong> presage the heart <strong>at</strong>tack and l<strong>at</strong>er partially<br />

protect it from the effect <strong>of</strong> the larger, more serious event through ischaemic<br />

pre-conditioning. Abl<strong>at</strong>ion <strong>of</strong> the ischaemic pre-conditioning response removes<br />

this acquired resistance to ischaemia. There is indeed evidence from the warm-<br />

up phenomenon (p<strong>at</strong>ients with coronary artery disease are given two<br />

consecutive exercise tests, the relevant outcomes being symptom<strong>at</strong>ic angina and<br />

electrocardiographic changes on the second test) 814,815 and from human<br />

angioplasty studies th<strong>at</strong> glibenclamide is able to block ischaemic pre-<br />

conditioning. 816–818 The experimental evidence therefore supports the<br />

observ<strong>at</strong>ional evidence th<strong>at</strong> glibenclamide predisposes to cardiovascular<br />

mortality.<br />

The effect on ischaemic preconditioning is not seen across the whole<br />

family <strong>of</strong> sulphonylureas. The second-gener<strong>at</strong>ion sulphonylurea, glipizide, did<br />

not block ischaemic preconditioning in rabbits, 819 and the meglitinide analogues<br />

(“glinides”) were originally marketed on the basis th<strong>at</strong> they have a lower affinity<br />

for cardiac receptors (however, the post-marketing evidence for th<strong>at</strong> is mixed:<br />

glimepiride appears not to block ischaemic pre-conditioning, 817,818,820 but<br />

repaglinide does 821 ).<br />

There is a second mechanism by which sulphonylureas might increase<br />

cardiovacular mortality, which is through their effects on smooth muscle. The<br />

second-gener<strong>at</strong>ion sulphonylureas, glibenclamide and gliclazide, and (to a lesser<br />

extent) the glinide, glimepiride, all reduce coronary artery blood-flow, increase<br />

coronary resistance, depress the mechanical activity <strong>of</strong> the heart and increase<br />

myocardial oxygen extraction. 822 It may be noted th<strong>at</strong> this vasopressor effect is<br />

precisely th<strong>at</strong> which made glibenclamide an <strong>at</strong>tractive candid<strong>at</strong>e for the<br />

adjunctive tre<strong>at</strong>ment <strong>of</strong> sepsis in the 1990’s.<br />

These d<strong>at</strong>a should give us pause when considering the possibility <strong>of</strong> using<br />

glibenclamide to prevent infection-rel<strong>at</strong>ed mortality in p<strong>at</strong>ients with <strong>diabetes</strong>,<br />

because any gain from preventing infection-rel<strong>at</strong>ed mortality might be wiped<br />

out by an increase in cardiovascular mortality.<br />

140


5.2 Separ<strong>at</strong>ing the anti-inflamm<strong>at</strong>ory effects <strong>of</strong> glibenclamide<br />

from its effects on insulin secretion<br />

Purely chemical consider<strong>at</strong>ions mean th<strong>at</strong> separ<strong>at</strong>ing the anti-<br />

inflamm<strong>at</strong>ory effect <strong>of</strong> glibenclamide from its hypoglycaemic effect may not be<br />

possible. To explain why this is so requires elabor<strong>at</strong>ing on the chemical<br />

structure <strong>of</strong> glibenclamide, its metabolites, and the pharmacological properties<br />

<strong>of</strong> the rel<strong>at</strong>ed compound, meglitinide.<br />

The two major metabolites <strong>of</strong> glibenclamide are 4-trans-hydrocyclohexyl<br />

glibenclamide (M1) and 3-cis-hydrocyclohexyl glibenclamide (M2 or M2b) 823<br />

and account for 36% and 15% <strong>of</strong> the total, respectively (Figure 32). Experiments<br />

in rabbits suggested th<strong>at</strong> these two compounds are biologically inactive (they<br />

are 1/400th and 1/40th as active, respectively, and d<strong>at</strong>a from r<strong>at</strong>s show th<strong>at</strong> 4-<br />

trans-hydrocyclohexyl glibenclamide is only 1/6·5 as potent as<br />

glibenclamide). 824 However, Rydberg et al. reported th<strong>at</strong> in healthy human<br />

volunteers, glibenclamide, M1 or M2, all have equivalent biological activity. 823<br />

Indeed, glibenclamide is much more likely to cause hypoglycaemia than its half-<br />

life would suggest (particularly in p<strong>at</strong>ients aged 70 years and older), 825<br />

presumably because <strong>of</strong> its active metabolites.<br />

Glibenclamide metabolites are excreted 50% in urine and 50% in bile. This<br />

is qualit<strong>at</strong>ively different from th<strong>at</strong> <strong>of</strong> other sulphonylureas, which are excreted<br />

primarily in the urine. Other metabolites th<strong>at</strong> have been described are 4-cis-<br />

(M2a), 3-trans- (M3), 2-trans-hydrocyclohexylglibenclamide (M4), and ethyl-<br />

hydroxyglibenclamide (M5) (Figure 32). 826 Although the procedure for<br />

synthesising these metabolites has been described, 827 these compounds are not<br />

available commercially and their pharmacological and pharmacokinetic<br />

properties have not been studied clinically.<br />

141


General<br />

structure:<br />

Glibenclamide: R1 =<br />

M1: R1 =<br />

M2a: R1 =<br />

M2b: R1 =<br />

M3: R1 =<br />

M4: R1 =<br />

M5: R1 =<br />

142<br />

R2 = –H<br />

R2 = –H<br />

R2 = –H<br />

R2 = –H<br />

R2 = –H<br />

R2 = –H<br />

R2 = –OH<br />

Figure 32. Structure <strong>of</strong> glibenclamide and its metabolites.


Figure 33. Structure <strong>of</strong> meglitinide.<br />

The molecule is oriented to emphasise its homology with glibenclamide (above). IUPAC<br />

name: 4-[2-[(5-chloro-2-methoxy–benzoyl)amino]ethyl]benzoic acid (molecular weight,<br />

333·8 g/mol). At present, meglitinide is not available commercially or clinically, but the<br />

compound was previously available as a gift from Hoechst (now part <strong>of</strong> San<strong>of</strong>i-Aventis).<br />

The p<strong>at</strong>ent on meglitinide is still in force, so it is not possible to <strong>study</strong> this compound<br />

without the cooper<strong>at</strong>ion <strong>of</strong> San<strong>of</strong>i-Aventis.<br />

Nevertheless, certain properties may be deduced from the chemical<br />

structure <strong>of</strong> these compounds. Lamkanfi et al. have found th<strong>at</strong> inflammasome<br />

inhibition by glibenclamide is not dependent on the cyclohexyl ring <strong>of</strong><br />

glibenclamide. 735 Metabolites M1, M2a, M2b, M3 and M4 (M1–4) only differ<br />

from glibenclamide in th<strong>at</strong> the cyclohexyl ring has been hydroxyl<strong>at</strong>ed. If<br />

Lamkani is right, then the five compounds, M1–4, would all be predicted to<br />

inhibit inflammasome assembly. M5 differs from glibenclamide in th<strong>at</strong> one <strong>of</strong><br />

the carbons between the two arom<strong>at</strong>ic rings p<strong>at</strong>ients has been hydroxyl<strong>at</strong>ed and<br />

the effect <strong>of</strong> this modific<strong>at</strong>ion is unknown.<br />

Meglitinide is an insulin secretagogue th<strong>at</strong> is not a sulphonylurea, but like<br />

the sulphonylureas, meglitinide will stimul<strong>at</strong>e pancre<strong>at</strong>ic β-islet cells to secrete<br />

insulin (Figure 33). 828 Comparison <strong>of</strong> the meglitinide with M1–4 reveals th<strong>at</strong> the<br />

half <strong>of</strong> the glibenclamide molecule containing the two arom<strong>at</strong>ic rings is almost<br />

identical to meglitinide. This means th<strong>at</strong> metabolites M1–4 should all possess<br />

insulin secretagogue properties also, because the meglitinide moiety is<br />

unaltered. Evidence th<strong>at</strong> this is true in humans is provided by Rydberg’s clinical<br />

<strong>study</strong>, cited above. 823 This means th<strong>at</strong> the anti-inflamm<strong>at</strong>ory part <strong>of</strong> the<br />

glibenclamide molecule is probably also responsible for <strong>at</strong> least part <strong>of</strong> its<br />

hypoglycaemic effect.<br />

143


5.3 Suggestions for future research<br />

The unwanted effects <strong>of</strong> glibenclamide (hypoglycaemia and adverse<br />

cardiovascular effects) mean th<strong>at</strong> glibenclamide is an un<strong>at</strong>tractive candid<strong>at</strong>e<br />

drug for the prevention <strong>of</strong> melioidosis-rel<strong>at</strong>ed mortality. Further advances will<br />

only occur when the precise mechanism underlying the action <strong>of</strong> glibenclamide<br />

has been elucid<strong>at</strong>ed, because only then may r<strong>at</strong>ional therapies be designed.<br />

IL1β is a product <strong>of</strong> the macrophage inflammasome and the<br />

inflammasome has already been studied in bone marrow-derived macrophage<br />

models <strong>of</strong> B. pseudomallei infection. 473,474 Future studies using these systems<br />

may help either to confirm or refute the role <strong>of</strong> the inflammasome in the effect<br />

<strong>of</strong> glibenclamide on the host response to melioidosis.<br />

144


A Appendix. Microarray results<br />

Appendix Table 1. List <strong>of</strong> genes differentially expressed in p<strong>at</strong>ients with melioidosis on glibenclamide <strong>at</strong> the time <strong>of</strong><br />

admission<br />

ProbeID Symbol Gene RefSeq ID Absolute Corrected Comment<br />

fold change p-value<br />

Immune-rel<strong>at</strong>ed<br />

5860377 ABCG1 ATP-binding cassette protein G1 NM_016818.2 +1·55 0·03 Regul<strong>at</strong>ion <strong>of</strong> Toll-like receptor expression<br />

5420440 ABP1 Amiloride-sensitive amine oxidase NM_001091.2 –2·80 0·07 Postul<strong>at</strong>ed to be involved in endocytosis<br />

6220195 BATF Basic leucine zipper transcription factor, NM_006399.2 –1·54 0·05 Transcription factor elev<strong>at</strong>ed in B-cells following EBV<br />

ATF-like<br />

infection<br />

3140487 BMX BMX non-receptor tyrosine kinase NM_001721.4 –1·60 0·07 Regul<strong>at</strong>es TLR-4-medi<strong>at</strong>ed IL-6 production.<br />

6270681 BST1 Bone marrow stromal cell antigen 1; CD157 NM_004334.1 –1·56 0·05 ?Regul<strong>at</strong>ion <strong>of</strong> B-cell m<strong>at</strong>ur<strong>at</strong>ion<br />

1070367 C19orf59 or Mast cell expressed membrane protein 1; NM_174918.2 –2·95 0·04 Hypothesized to be involved in mast cell function or<br />

MCEMP1 chromosome 19 open reading frame 59<br />

differenti<strong>at</strong>ion<br />

840068 C3AR1 C3a anaphyl<strong>at</strong>oxin chemotactic receptor NM_004054.2 –2·30 0·03 Inflamm<strong>at</strong>ory response and cell motility<br />

2000128 C4BPA Complement component 4 binding protein,<br />

α subunit<br />

NM_000715.3 –2·42 0·03 Classical p<strong>at</strong>hway <strong>of</strong> complement cascade<br />

6590682 CCL3 or Chemokine (C-C motif) ligand 3; or<br />

NM_002983.1 –1·67 0·03 Neutrophil recruitment and activ<strong>at</strong>ion<br />

MIP1A<br />

macrophage inflamm<strong>at</strong>ory protein 1A<br />

1300465 CD177 Neutrophil-specific antigen 1 NM_020406.2 –2·42 0·07 Neutrophil development and differenti<strong>at</strong>ion<br />

1240450 CD27 CD27 NM_001242.4 +1·62 0·04 Gener<strong>at</strong>ion and long-term T-cell immunity. Regul<strong>at</strong>es<br />

B-cell activ<strong>at</strong>ion and immunoglobulin synthesis<br />

4610110 CD300LB CD300 molecule-like family member B,<br />

TREM5<br />

NM_174892.2 +1·57 0·04 Activ<strong>at</strong>ing receptor expressed on myeloid cells<br />

4290097 CD99 CD99 protein NM_002414.3 +1·61 0·03 Cell surface glycoprotein: leukocyte migr<strong>at</strong>ion, T-cell<br />

145<br />

adhesion & apoptosis<br />

5700753 CEACAM1 Carcinoembryonic antigen-rel<strong>at</strong>ed cell NM_00102491 –2·03 0·05 Myeloid cell adhesion to endothelium and<br />

adhesion molecule 1 (=biliary glycoprotein) 2.1<br />

angiogenesis<br />

1260228 CLEC5A C-type lectin domain family 5, member A NM_013252.2 –1·85 0·06 Myeloid cell activ<strong>at</strong>ion<br />

4260484 COMMD6 COMM domain containing 6 NM_203497.2 –1·58 0·04 Inhibits NFκB


1050025 CR1 Complement receptor 1 NM_000573.3 –1·67 0·04 C3b and C4b binding<br />

6450543 CST3 Cyst<strong>at</strong>in C NM_000099.2 +1·84 0·03 Inhibits lysosomal cysteine proteases<br />

4150189 CTSL1 C<strong>at</strong>hepsin L1 NM_001912.3 –1·73 0·04 Controls neutrophil elastase activity<br />

6270553 CXCL10 Chemokine (C-X-C motif) ligand 10 NM_001565.2 –2·08 0·08 Monocyte, T-cell and NK cell activ<strong>at</strong>ion<br />

2340220 CD55 Complement decay acceler<strong>at</strong>ing factor NM_000574.2 –1·52 0·07 Complement regul<strong>at</strong>ion<br />

3360279 CFH Complement factor H NM_00101497<br />

5.1<br />

–1·55 0·07 Complement cascade regul<strong>at</strong>ion<br />

2810767 EBI3 Epstein-Barr virus induced 3 NM_005755.2 –2·33 0·05 Positive regul<strong>at</strong>ion <strong>of</strong> IFN-γ response<br />

5560471 FCAR Receptor for Fc fragment <strong>of</strong> IgA NM_133280.1 –1·58 0·04 IgA receptor<br />

6620209 FCGR1B or Receptor for Fc fragment <strong>of</strong> IgG, high affinity NM_00100434 –1·81 0·08 IgG receptor<br />

CD64<br />

Ib<br />

0.1<br />

2350066 HLA-A Human leukocyte antigen-A NM_002116.5 +1·61 0·03 MHC class I molecule<br />

4250364 HPGD 15-hydroxy prostaglandin dehydrogenase NM_000860.3 –1·53 0·06 Prostaglandin metabolism<br />

6040647 HSH2D Hem<strong>at</strong>opoietic SH2 domain containing NM_032855.2 +1·61 0·03 Target <strong>of</strong> T-cell receptor and CD28 activ<strong>at</strong>ion.<br />

Function unknown.<br />

2000148 IFIT1 Interferon-induced protein with<br />

NM_001548.3 +2·48 0·08 Interferon-medi<strong>at</strong>ed inn<strong>at</strong>e immune response<br />

tetr<strong>at</strong>ricopeptide repe<strong>at</strong>s 1<br />

4730747 IGLL1 Immunoglobulin lambda-like polypeptide 1 NM_020070.2 +1·74 0·04 Pre-B cell receptor, controls B-cell prolifer<strong>at</strong>ion and<br />

differenti<strong>at</strong>ion<br />

3370326 IL18R1 Interleukin-18 receptor 1 NM_003855.2 –2·17 0·08 IFN-γ medi<strong>at</strong>ed immune responses<br />

1340743 IL8 Interleukin-8 NM_000584.2 –2·10 0·03 Neutrophil chemotaxis<br />

2360719 IRAK3 Interleukin-1 receptor-associ<strong>at</strong>ed kinase 3 NM_007199.1 –2·13 0·04 Monocyte tolerance to endotoxin<br />

2490411 ITGB5 Integrin β5 NM_002213.3 +1·52 0·04 Cell adhesion<br />

4150184 LAIR1 or Leukocyte-associ<strong>at</strong>ed immunoglobulin-like NM_021706.2 –1·78 0·04 Inhibits NK cells, T-cells and B-cells<br />

CD305 receptor 1<br />

6110037 LILRA3 Leukocyte immunoglobulin-like receptor,<br />

subfamily A (without TM domain), member 3<br />

NM_006865.2 –1·65 0·04 ?Inhibits monocyte and B-cell function<br />

5890095 LILRA5 Leukocyte immunoglobulin-like receptor, NM_021250.2 –1·59 0·06 Monocyte activ<strong>at</strong>ion<br />

subfamily A (with TM domain), member 5<br />

6420450 LIME1 Lck-interacting transmembrane adaptor 1 NM_017806.1 +1·55 0·09 Expressed on T-cell membranes, and downmodul<strong>at</strong>ed<br />

on activ<strong>at</strong>ion<br />

6840408 LY86 Lymphocyte antigen 86 NM_004271.3 +1·55 0·07 Humoral immune response<br />

70167 LY96 Lymphocyte antigen 96 NM_015364.2 –1·92 0·03 Associ<strong>at</strong>ed with TLR4<br />

5130767 MAPK14 Mitogen-activ<strong>at</strong>ed protein kinase 14 NM_001315.1 –1·52 0·08 Activ<strong>at</strong>ed by pro-inflamm<strong>at</strong>ory cytokines<br />

7550066 MERTK c-mer proto-oncogene tyrosine kinase NM_006343.2 –1·58 0·08 Medi<strong>at</strong>es macrophage phagocytosis <strong>of</strong> apoptotic cells<br />

5670674 MME Membrane metallo-endopeptidase NM_000902.3 +3·33 0·03 Lymphocyte activ<strong>at</strong>ion; Inactiv<strong>at</strong>es peptide hormones<br />

146


1240228 PAG1 Phosphoprotein associ<strong>at</strong>ed with<br />

glycosphingolipid microdomains 1<br />

NM_018440.3 –1·53 0·03 ?regul<strong>at</strong>ion <strong>of</strong> T-cell activ<strong>at</strong>ion<br />

2230563 PPBP Pl<strong>at</strong>elet basic protein NM_002704.2 +1·68 0·05 CXC chemokine. Neutrophil chemo<strong>at</strong>tractant and<br />

activ<strong>at</strong>or.<br />

7040470 PSMA6 Proteasome (prosome, macropain) subunit,<br />

α type, 6<br />

NM_002791.1 –1·52 0·04 Processing <strong>of</strong> MHA class I peptides<br />

4890707 PVRL2 or Poliovirus receptor-rel<strong>at</strong>ed 2 (herpesvirus NM_002856.2 –1·56 0·04 Enhances NK cell-medi<strong>at</strong>ed lysis<br />

CD112 entry medi<strong>at</strong>or B)<br />

130681 RNASE6 Ribonuclease, RNase A family, k6 NM_005615.4 +1·56 0·05 Expressed in neutrophils and monocytes<br />

6220438 RPS6KA5 Ribosomal protein S6 kinase, 90kDa,<br />

polypeptide 5<br />

NM_004755.2 +1·65 0·04 MAP kinase signaling p<strong>at</strong>hway<br />

2490195 S100A10 S100 calcium binding protein A10 NM_002966.1 +1·66 0·03 Cell cycle progression and differenti<strong>at</strong>ion<br />

1410221 S100A12 S100 calcium binding protein A12 NM_005621.1 –2·62 0·05 Myeloid-rel<strong>at</strong>ed protein<br />

1510424 S100P S100 calcium binding protein P NM_005980.2 –2·27 0·09 RAGE ligand<br />

1410181 SAMSN1 SAM domain, SH3 domain and nuclear<br />

localiz<strong>at</strong>ion signals 1<br />

NM_022136.3 –1·97 0·07 B-cell activ<strong>at</strong>ion<br />

6040577 SLAMF8 SLAM family member 8 NM_020125.2 –1·50 0·07 Lymphocyte activ<strong>at</strong>ion<br />

3120543 SLC39A8 Solute carrier family 39 (zinc transporter),<br />

member 8<br />

NM_022154.5 –1·69 0·06 Cellular zinc import <strong>at</strong> onset <strong>of</strong> inflamm<strong>at</strong>ion<br />

1990300 SOCS1 Suppressor <strong>of</strong> cytokine signaling 1 NM_003745.1 –1·67 0·07 Regul<strong>at</strong>ion <strong>of</strong> IFNγ response<br />

160019 SORT1 Sortilin 1 NM_002959.4 –1·62 0·07 Trans-Golgi network transmembrane protein, antiapoptotic<br />

and B-cell survival<br />

3390612 TLR8 Toll-like receptor 8 NM_016610.2 –1·60 0·03 P<strong>at</strong>hogen recognition<br />

2640301 TNF Tumor necrosis factor (TNF superfamily,<br />

member 2)<br />

NM_000594.2 –1·53 0·03 Proinflamm<strong>at</strong>ory cytokine<br />

6350632 TSC22D3 TSC22 domain family, member 3 NM_198057.2 +1·53 0·03 Stimul<strong>at</strong>ed by glucocorticoids and IL-10. Antiinflamm<strong>at</strong>ory<br />

5910113 VCAN Versican core protein NM_004385.2 +1·62 0·03 Leukocyte aggreg<strong>at</strong>ion and pro-coagulant<br />

5310754 VNN1 Vanin 1 NM_004666.1 –2·19 0·07 Hem<strong>at</strong>opoeitic cell trafficking<br />

7100161 VNN2 Vanin 2 NM_004665.2 –1·54 0·04 Transendothelial migr<strong>at</strong>ion, monocyte activ<strong>at</strong>ion<br />

Coagul<strong>at</strong>ion<br />

2230241 F13A1 Coagul<strong>at</strong>ion factor XIII, subunit A NM_000129.3 +1·89 0·04 Clotting cascade<br />

2340220 CD55 Complement decay acceler<strong>at</strong>ing factor NM_000574.2 –1·52 0·07 Complement regul<strong>at</strong>ion<br />

3360279 CFH Complement factor H NM_00101497<br />

5.1<br />

–1·55 0·07 Complement cascade regul<strong>at</strong>ion<br />

147


Carbohydr<strong>at</strong>e metabolism<br />

4810438 MAN2B2 Mannosidase α, class 2B, member 2 NM_015274.1 +1·54 0·006 Carbohydr<strong>at</strong>e metabolism<br />

290348 POFUT1 GDP-fucose protein O-fucosyltransferase 1 NM_015352.1 +1·55 0·03 Carbohydr<strong>at</strong>e metabolism<br />

3390129 C9orf103 Chromosome 9 open reading frame 103 NM_00100155 –1·67 0·05 Probable glucokinase<br />

940274 GK Glycerol kinase NM_000167.3 –1·62 0·05 Glycerol phosphoryl<strong>at</strong>ion<br />

670528 GYG1 Glycogenin 1 NM_004130.2 –1·62 0·08 Regul<strong>at</strong>es glycogen synthesis<br />

3060612 HK3 Hexokinase 3 (white cell) NM_002115.1 –1·93 0·04 Glucose phosphoryl<strong>at</strong>ion<br />

6620689 MTHFD2 Methylenetetrahydr<strong>of</strong>ol<strong>at</strong>e dehydrogenase<br />

(NADP+ dependent) 2,<br />

methenyltetrahydr<strong>of</strong>ol<strong>at</strong>e cyclohydrolase<br />

7040181 PFKFB2 6-phosph<strong>of</strong>ructo-2-kinase/fructose-2,6biphosph<strong>at</strong>ase<br />

2<br />

1470601 PFKFB3 6-phosph<strong>of</strong>ructo-2-kinase/fructose-2,6biphosph<strong>at</strong>ase<br />

3<br />

1.1<br />

NM_00104040<br />

9.1<br />

148<br />

–1·52 0·04 Mitochondrial bifunctional enzyme<br />

NM_00101805<br />

3.1<br />

–2·30 0·05 Glycolysis/gluconeogenesis<br />

NM_004566.2 –1·76 0·04 Glycolysis/gluconeogenesis<br />

4830504 PGM2 Phosphoglucomutase 2 NM_018290.2 –1·52 0·04 Glucose and glycogen metabolism<br />

6180465 SLC2A6 Solute carrier family 2 (facilit<strong>at</strong>ed glucose<br />

transporter), member 6<br />

NM_017585.2 –1·77 0·03 Hexose transport across cell membrane<br />

3420332 SLC37A3 Solute carrier family 37 (glycerol-3phosph<strong>at</strong>e<br />

transporter), member 3<br />

NM_032295.2 –1·50 0·05 Transmembrane sugar transport<br />

Oxid<strong>at</strong>ive stress and DNA damage<br />

130181 ANKRD22 Ankyrin repe<strong>at</strong> domain 22 NM_144590.2 –2·93 0·06 Medi<strong>at</strong>es protein-protein interactions<br />

4880673 GADD45A Growth arrest and DNA-damage-inducible,<br />

alpha<br />

NM_001924.2 –2·02 0·05 Stress response<br />

2600382 GPX4 Glut<strong>at</strong>hione peroxidase 4 NM_00103984<br />

7.1<br />

+1·57 0·02 Reduces peroxide<br />

6400392 GSTM1 Glut<strong>at</strong>hione S-transferase µ1 NM_000561.2 +2·35 0·03 Deals with oxid<strong>at</strong>ive stress<br />

6130168 GSTM2 Glut<strong>at</strong>hione S-transferase µ2 NM_000848.2 +2·38 0·03 Deals with oxid<strong>at</strong>ive stress<br />

150400 LBA1 Lupus brain antigen 1 NM_014831.1 +1·52 0·04 DNA repair<br />

5050537 OPLAH 5-oxoprolinase (ATP-hydrolyzing) NM_017570.2 –1·75 0·04 Glut<strong>at</strong>hione metabolism<br />

2510551 STK3 Serine/threonine kinase 3 (STE20 homolog,<br />

yeast)<br />

NM_006281.2 –1·60 0·03 Stress response


DNA replic<strong>at</strong>ion, cell cycle regul<strong>at</strong>ion, cell differenti<strong>at</strong>ion and prolifer<strong>at</strong>ion<br />

940288 BAZ1A Bromodomain adjacent to zinc finger<br />

domain, 1A<br />

NM_182648.1 –1·60 0·03 DNA replic<strong>at</strong>ion<br />

7400279 CCNA1 Cyclin-A1 NM_003914.2 –1·84 0·05 Cell cycle regul<strong>at</strong>ion<br />

6220674 CCPG1 Cell cycle progression 1 NM_020739.2 –1·54 0·03 Cell cycle regul<strong>at</strong>ion<br />

1780564 CDC42 Cell division cycle 42 NM_00103980<br />

2.1<br />

–1·59 0·03 Regul<strong>at</strong>ion <strong>of</strong> cell cycle progression<br />

6200064 CECR1 C<strong>at</strong> eye syndrome chromosome region,<br />

candid<strong>at</strong>e 1<br />

NM_177405.1 +1·79 0·06 Adenosine deaminase; put<strong>at</strong>ive growth factor<br />

4490528 CKAP4 Cytoskeleton-associ<strong>at</strong>ed protein 4 NM_006825.2 –1·79 0·05 Cell cycle regul<strong>at</strong>ion<br />

6510554 DACH1 Dachshund homolog 1 (Drosophila) NM_080760.3 –1·76 0·03 Cell f<strong>at</strong>e in eye development<br />

7560288 DCUN1D3 DCN1, defective in cullin neddyl<strong>at</strong>ion 1,<br />

domain containing 3 (S. cerevisiae)<br />

NM_173475.1 –1·51 0·03 Cell cycle regul<strong>at</strong>ion<br />

4220605 ETS2 v-ets erythroblastosis virus E26 oncogene<br />

homolog 2 (avian)<br />

NM_005239.4 –1·68 0·07 Stem cell development<br />

610164 FYN FYN oncogene NM_153047.1 +1·50 0·05 Tyrosine kinase oncogene<br />

6180427 G0S2 G0/G1switch 2 NM_015714.2 –1·53 0·06 Cell cycle regul<strong>at</strong>ion<br />

6130136 GPR177 G-protein coupled receptor 177 NM_00100229<br />

2.1<br />

+1·57 0·04 Required for WNT3A expression (cell f<strong>at</strong>e regul<strong>at</strong>ion)<br />

5490768 GPR56 G protein-coupled receptor 56 NM_201525.1 +1·61 0·10 Cell f<strong>at</strong>e regul<strong>at</strong>ion and neurogenesis<br />

4120750 OBFC1 Oligonucleotide/oligosaccharide-binding<br />

fold containing 1<br />

NM_024928.3 –1·56 0·04 Increases DNA-polymerase-templ<strong>at</strong>e affinity<br />

4260253 OBFC2A Oligonucleotide/oligosaccharide-binding NM_00103171 –1·51 0·03 ?DNA metabolism<br />

fold containing 2A<br />

6.1<br />

2470520 RBMS1 RNA binding motif, single stranded<br />

interacting protein 1<br />

NM_002897.3 –1·83 0·03 DNA/RNA processing<br />

6960022 SEPT5 Septin 5 NM_002688.4 +1·58 0·08 Cell cycle regul<strong>at</strong>ion<br />

3830735 UPB1 Ureidopropionase β NM_016327.2 –1·59 0·07 Pyrimidine degrad<strong>at</strong>ion<br />

7570673 UPP1 Uridine phosphorylase 1 NM_003364.2 –1·61 0·08 Uridine phosphoryl<strong>at</strong>ion<br />

149


Appendix Table 2. List <strong>of</strong> genes differentially expressed in glibenclamide-tre<strong>at</strong>ed diabetic p<strong>at</strong>ients who are<br />

otherwise healthy<br />

ProbeID Symbol Gene RefSeq ID Absolute<br />

fold<br />

change<br />

150<br />

Corrected<br />

p-value<br />

Comment<br />

Inflamm<strong>at</strong>ion-rel<strong>at</strong>ed<br />

2030142 CLC Charco-Leyden crystal protein NM_001828.4 +2·01 0·05 Lysophospholipase expressed by eosinophils and<br />

basophils<br />

2260731 ERAP2 Endoplasmic reticulum aminopeptidase 2 NM_022350.2 +1·58 0·05 Trimming peptides for MHC class I present<strong>at</strong>ion<br />

940519 GPR44 G protein-coupled receptor 44 NM_004778.2 +1·57 0·05 Chemo<strong>at</strong>tractant receptor expressed on Th2 cells<br />

510079 HLA-DRB4 HLA-DRB1 MHC class II antigen NM_021983.4 –1·58 0·05 Antigen present<strong>at</strong>ion<br />

620544 HLA-DRB6 HLA-DRB6 MHC class II antigen NR_001298.1 –2·50 0·05 Antigen present<strong>at</strong>ion<br />

4210458 KIR2DL1 N<strong>at</strong>ural killer cell immunoglobulin-like<br />

receptor, 2 domains, long cytoplasmic chain, 1<br />

NM_014218.2 –1·54 0·06 NK cell modul<strong>at</strong>ion<br />

Neutrophil function<br />

1500735 CTSG C<strong>at</strong>hepsin G NM_001911.2 –1·84 0·05 Neutrophil azurophil granule protease<br />

4540239 DEFA1 Neutrophil defensin 1 NM_004084.2 –2·49 0·05 Neutrophil microbicidal peptide<br />

2970747 DEFA3 Neutrophil defensin 3 NM_005217.2 –2·49 0·06 Neutrophil microbicidal peptide<br />

6550164 DEFA4 Neutrophil defensin 4 NM_001925.1 –2·20 0·05 Neutrophil microbicidal peptide<br />

7650497 ELA2 Neutrophil elastase 2 NM_001972.2 –1·93 0·05 Neutrophil azurophil granule protease<br />

7150170 LOC728358 Neutrophil defensin 1 precursor NM_001042500.1 –2·58 0·05 Neutrophil microbicidal peptide<br />

2470364 PRSS33 Serine protease 33 NM_152891.2 +1·85 0·05 Serine protease expressed in neutrophils and<br />

macrophages<br />

Note.—All genes in this table have a fold change in expression gre<strong>at</strong>er than 1·5 and a corrected p-value less than 0·10 (Benjamini-Hochberg);<br />

when more than one probe for the same gene was positive, only the probe with the most significant corrected p-value is displayed. Only ontologies<br />

with a significance level


References<br />

1. The effect <strong>of</strong> intensive tre<strong>at</strong>ment <strong>of</strong> <strong>diabetes</strong> on the development and<br />

progression <strong>of</strong> long-term complic<strong>at</strong>ions in insulin-dependent <strong>diabetes</strong><br />

mellitus. The Diabetes Control and Complic<strong>at</strong>ions Trial Research Group. N.<br />

Engl. J. Med 329, 977-986 (1993).<br />

2. Meinert, C.L., Kn<strong>at</strong>terud, G.L., Prout, T.E. & Klimt, C.R. A <strong>study</strong> <strong>of</strong> the<br />

effects <strong>of</strong> hypoglycemic agents on vascular complic<strong>at</strong>ions in p<strong>at</strong>ients with<br />

adult-onset <strong>diabetes</strong>. II. Mortality results. Diabetes 19, Suppl:789-830<br />

(1970).<br />

3. Kn<strong>at</strong>terud, G.L., Meinert, C.L., Klimt, C.R., Osborne, R.K. & Martin, D.B.<br />

Effects <strong>of</strong> hypoglycemic agents on vascular complic<strong>at</strong>ions in p<strong>at</strong>ients with<br />

adult-onset <strong>diabetes</strong>. IV. A preliminary report on phen<strong>of</strong>ormin results.<br />

JAMA 217, 777-784 (1971).<br />

4. Intensive blood-glucose control with sulphonylureas or insulin compared<br />

with conventional tre<strong>at</strong>ment and risk <strong>of</strong> complic<strong>at</strong>ions in p<strong>at</strong>ients with type<br />

2 <strong>diabetes</strong> (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group.<br />

Lancet 352, 837-853 (1998).<br />

5. Peacock, S.J. Melioidosis. Curr Opin Infect Dis 19, 421–8 (2006).<br />

6. Whitmore, A. An account <strong>of</strong> a glanders-like disease occurring in Rangoon. J<br />

Hyg 13, 1–34 (1913).<br />

7. Whitmore, A. & Krishnaswamy, C.S. An account <strong>of</strong> the discovery <strong>of</strong> a<br />

hitherto undescribed infective disease occurring among the popul<strong>at</strong>ion <strong>of</strong><br />

Rangoon. Ind. Med. Gaz. 92, 262-7 (1912).<br />

8. Whitmore, A. The bacteriology <strong>of</strong> an infective disease in Rangoon. Br Med<br />

J 2, 1306–8 (1912).<br />

9. Stanton, A.T. & Fletcher, W. Melioidosis, a new disease <strong>of</strong> the tropics. Far<br />

Eastern Associ<strong>at</strong>ion <strong>of</strong> Tropical Medicine: Transactions <strong>of</strong> the Fourth<br />

Congress (1921).<br />

10. Stanton, A.T. & Fletcher, W. Melioidosis: A disease <strong>of</strong> rodents<br />

communicable to man. Lancet 205, 10–13 (1925).<br />

11. Stanton, A.T. & Fletcher, W. Melioidosis. (John Bale, Sons & Danielsson:<br />

London, England, 1932).<br />

151


12. Rubin, H.L., Alexander, A.D. & Yager, R.H. Melioidosis--a military medical<br />

problem? Mil Med 128, 538–542 (1963).<br />

13. Howe, C., Samp<strong>at</strong>h, A. & Spotnitz, M. The pseudomallei group: a review. J.<br />

Infect. Dis 124, 598-606 (1971).<br />

14. Cooper, E.B. Melioidosis. JAMA 200, 452-453 (1967).<br />

15. Ognibene, A.J. Medical and infectious diseases in the the<strong>at</strong>er <strong>of</strong> oper<strong>at</strong>ions.<br />

Mil Med 152, 14-18 (1987).<br />

16. Weber, D.R., Douglass, L.E., Brundage, W.G. & Stallkamp, T.C. Acute<br />

varieties <strong>of</strong> melioidosis occurring in U. S. soldiers in Vietnam. Am. J. Med<br />

46, 234-244 (1969).<br />

17. Brundage, W.G., Thuss, C.J. & Walden, D.C. Four f<strong>at</strong>al cases <strong>of</strong> melioidosis<br />

in U. S. soldiers in Vietnam. Bacteriologic and p<strong>at</strong>hologic characteristics.<br />

Am. J. Trop. Med. Hyg 17, 183-191 (1968).<br />

18. P<strong>at</strong>terson, M.C., Darling, C.L. & Blumenthal, J.B. Acute melioidosis in a<br />

soldier home from South Vietnam. JAMA 200, 447-451 (1967).<br />

19. Haynes, W.C. Bergey’s Manual <strong>of</strong> Determin<strong>at</strong>ive Bacteriology. 100 (1957).<br />

20. Miller, W.R., Pannell, L., Cravitz, L., Tanner, W.A. & Ingalls, M.S. Studies<br />

on certain biological characteristics <strong>of</strong> Malleomyces mallei and<br />

Malleomyces pseudomallei: I. Morphology, cultiv<strong>at</strong>ion, viability, and<br />

isol<strong>at</strong>ion from contamin<strong>at</strong>ed specimens. J. Bacteriol 55, 115-126 (1948).<br />

21. Yabuuchi, E. et al. Proposal <strong>of</strong> Burkholderia gen. nov. and transfer <strong>of</strong> seven<br />

species <strong>of</strong> the genus Pseudomonas homology group II to the new genus,<br />

with the type species Burkholderia cepacia (Palleroni and Holmes 1981)<br />

comb. nov. Microbiol. Immunol 36, 1251-1275 (1992).<br />

22. Aubry, P. Mélioïdose. Medecine Tropicale: Diplôme de Médecine Tropicale<br />

des Pays de l’Océan Indien (2010).<strong>at</strong><br />

<br />

23. Bergey’s Manual <strong>of</strong> Determin<strong>at</strong>ive Bacteriology. (Williams & Wilkins:<br />

Baltimore, Maryland, 1939).<br />

24. Pribram, E. Klassifik<strong>at</strong>ion der Schizomyceten (Bakterien): Versuch einer<br />

wissenschaftlichen Klassifik<strong>at</strong>ion der Bakterien auf botanischer<br />

Grundlage. (Franz Deuticke: Leipzig und Wien, 1933).<br />

25. Fournier, J. & Chambon, L. La melioidose. Maladie d’actualite et le bacille<br />

de Whitmore. (Editions Medicales Flammarion: Paris, France, 1958).<br />

152


26. Grant, A. & Barwell, C. Chronic melioidosis: a case diagnosed in England.<br />

The Lancet 241, 199–201 (1943).<br />

27. Brindle, C.S. & Cowan, S.T. Flagell<strong>at</strong>ion and toxonomy <strong>of</strong> Whitmore’s<br />

bacillus. J P<strong>at</strong>hol Bacteriol 63, 571-575 (1951).<br />

28. Redfearn, M.S., Palleroni, N.J. & Stanier, R.Y. A compar<strong>at</strong>ive <strong>study</strong> <strong>of</strong><br />

Pseudomonas pseudomallei and Bacillus mallei. J. Gen. Microbiol 43, 293-<br />

313 (1966).<br />

29. Song, H. et al. The early stage <strong>of</strong> bacterial genome-reductive evolution in<br />

the host. PLoS P<strong>at</strong>hog 6, e1000922 (2010).<br />

30. Godoy, D. et al. Multilocus sequence typing and evolutionary rel<strong>at</strong>ionships<br />

among the caus<strong>at</strong>ive agents <strong>of</strong> melioidosis and glanders, Burkholderia<br />

pseudomallei and Burkholderia mallei. J. Clin. Microbiol 41, 2068-2079<br />

(2003).<br />

31. Smith, M.D., Wuthiekanun, V., Walsh, A.L. & White, N.J. Quantit<strong>at</strong>ive<br />

recovery <strong>of</strong> Burkholderia pseudomallei from soil in Thailand. Trans. R.<br />

Soc. Trop. Med. Hyg 89, 488-490 (1995).<br />

32. Wuthiekanun, V. et al. Biochemical characteristics <strong>of</strong> clinical and<br />

environmental isol<strong>at</strong>es <strong>of</strong> Burkholderia pseudomallei. J. Med. Microbiol<br />

45, 408-412 (1996).<br />

33. Trakulsomboon, S. et al. Epidemiology <strong>of</strong> arabinose assimil<strong>at</strong>ion in<br />

Burkholderia pseudomallei isol<strong>at</strong>ed from p<strong>at</strong>ients and soil in Thailand.<br />

Southeast Asian J. Trop. Med. Public Health 30, 756-759 (1999).<br />

34. Smith, M.D., Angus, B.J., Wuthiekanun, V. & White, N.J. Arabinose<br />

assimil<strong>at</strong>ion defines a nonvirulent biotype <strong>of</strong> Burkholderia pseudomallei.<br />

Infect. Immun 65, 4319-4321 (1997).<br />

35. Brett, P.J., Deshazer, D. & Woods, D.E. Characteriz<strong>at</strong>ion <strong>of</strong> Burkholderia<br />

pseudomallei and Burkholderia pseudomallei-like strains. Epidemiol.<br />

Infect 118, 137-148 (1997).<br />

36. Ashdown, L.R. Identific<strong>at</strong>ion <strong>of</strong> Pseudomonas pseudomallei in the clinical<br />

labor<strong>at</strong>ory. J. Clin. P<strong>at</strong>hol 32, 500-504 (1979).<br />

37. DeShazer, D. Virulence <strong>of</strong> clinical and environmental isol<strong>at</strong>es <strong>of</strong><br />

Burkholderia oklahomensis and Burkholderia thailandensis in hamsters<br />

and mice. FEMS Microbiol. Lett 277, 64-69 (2007).<br />

153


38. Brett, P.J., DeShazer, D. & Woods, D.E. Burkholderia thailandensis sp.<br />

nov., a Burkholderia pseudomallei-like species. Int J Syst Bacteriol 48 Pt<br />

1, 317–20 (1998).<br />

39. Pearson, T. et al. Phylogeographic reconstruction <strong>of</strong> a bacterial species with<br />

high levels <strong>of</strong> l<strong>at</strong>eral gene transfer. BMC Biol 7, 78 (2009).<br />

40. White, N.J. Melioidosis. Lancet 361, 1715-22 (2003).<br />

41. Wuthiekanun, V. & Peacock, S.J. Management <strong>of</strong> melioidosis. Expert Rev.<br />

Anti Infect. Ther. 4, 445-455 (2006).<br />

42. Centers for Disease Control and Prevention Biosafety in Microbiological<br />

and Biomedical Labor<strong>at</strong>ories. (N<strong>at</strong>ional Institutes <strong>of</strong> Health: Atlanta,<br />

Georgia, 2009).<br />

43. Ashdown, L.R. Melioidosis and safety in the clinical labor<strong>at</strong>ory. J Hosp<br />

Infect 21, 301–6 (1992).<br />

44. Dance, D.A.B., Smith, M.D., Wuthiekanun, V., Walsh, M. & White, N.J.<br />

Melioidosis and labor<strong>at</strong>ory safety. J Hosp Infect 22, 333–334 (1992).<br />

45. Yabuuchi, E. & Arakawa, M. Burkholderia pseudomallei and melioidosis:<br />

be aware in temper<strong>at</strong>e area. Microbiol. Immunol 37, 823-836 (1993).<br />

46. Hamad, M.A. et al. Adapt<strong>at</strong>ion and antibiotic tolerance <strong>of</strong> anaerobic<br />

Burkholderia pseudomallei. Antimicrob Agents Chemother<br />

(2011).doi:10.1128/AAC.00953-10<br />

47. Tong, S., Yang, S., Lu, Z. & He, W. Labor<strong>at</strong>ory investig<strong>at</strong>ion <strong>of</strong> ecological<br />

factors influencing the environmental presence <strong>of</strong> Burkholderia<br />

pseudomallei. Microbiol. Immunol 40, 451-453 (1996).<br />

48. Wuthiekanun, V., Smith, M.D. & White, N.J. Survival <strong>of</strong> Burkholderia<br />

pseudomallei in the absence <strong>of</strong> nutrients. Trans. R. Soc. Trop. Med. Hyg<br />

89, 491 (1995).<br />

49. Moore, R.A., Tuanyok, A. & Woods, D.E. Survival <strong>of</strong> Burkholderia<br />

pseudomallei in w<strong>at</strong>er. BMC Res Notes 1, 11 (2008).<br />

50. Pumpuang, A. et al. Survival <strong>of</strong> Burkholderia pseudomallei in distilled<br />

w<strong>at</strong>er for 16 years. Trans R Soc Trop Med Hyg<br />

(2011).doi:10.1016/j.trstmh.2011.06.004<br />

51. Sheridan, E.A. et al. Evalu<strong>at</strong>ion <strong>of</strong> the Wayson stain for the rapid diagnosis<br />

<strong>of</strong> melioidosis. J. Clin. Microbiol 45, 1669-1670 (2007).<br />

154


52. Wong, K.T., Puthucheary, S.D. & Vadivelu, J. The histop<strong>at</strong>hology <strong>of</strong> human<br />

melioidosis. Histop<strong>at</strong>hology 26, 51-55 (1995).<br />

53. Ashdown, L. An improved screening technique for isol<strong>at</strong>ion <strong>of</strong><br />

Pseudomonas pseudomallei from clinical specimens. P<strong>at</strong>hology 11, 293-97<br />

(1979).<br />

54. Chantr<strong>at</strong>ita, N. et al. Biological relevance <strong>of</strong> colony morphology and<br />

phenotypic switching by Burkholderia pseudomallei. J. Bacteriol 189, 807-<br />

817 (2007).<br />

55. Peacock, S.J. et al. Comparison <strong>of</strong> Ashdown’s medium, Burkholderia<br />

cepacia medium, and Burkholderia pseudomallei selective agar for clinical<br />

isol<strong>at</strong>ion <strong>of</strong> Burkholderia pseudomallei. J. Clin. Microbiol 43, 5359-5361<br />

(2005).<br />

56. Glass, M.B., Beesley, C.A., Wilkins, P.P. & H<strong>of</strong>fmaster, A.R. Comparison <strong>of</strong><br />

four selective media for the isol<strong>at</strong>ion <strong>of</strong> Burkholderia mallei and<br />

Burkholderia pseudomallei. Am. J. Trop. Med. Hyg 80, 1023-1028 (2009).<br />

57. Amornchai, P. et al. Accuracy <strong>of</strong> Burkholderia pseudomallei identific<strong>at</strong>ion<br />

using the API 20NE system and a l<strong>at</strong>ex agglutin<strong>at</strong>ion test. J. Clin. Microbiol<br />

45, 3774-3776 (2007).<br />

58. Lowe, P., Engler, C. & Norton, R. Comparison <strong>of</strong> autom<strong>at</strong>ed and<br />

nonautom<strong>at</strong>ed systems for identific<strong>at</strong>ion <strong>of</strong> Burkholderia pseudomallei. J.<br />

Clin. Microbiol 40, 4625-4627 (2002).<br />

59. Lowe, P., Haswell, H. & Lewis, K. Use <strong>of</strong> various common isol<strong>at</strong>ion media<br />

to evalu<strong>at</strong>e the new VITEK 2 colorimetric GN Card for identific<strong>at</strong>ion <strong>of</strong><br />

Burkholderia pseudomallei. J. Clin. Microbiol 44, 854-856 (2006).<br />

60. Walsh, A.L. & Wuthiekanun, V. The labor<strong>at</strong>ory diagnosis <strong>of</strong> melioidosis. Br.<br />

J. Biomed. Sci 53, 249-253 (1996).<br />

61. Wuthiekanun, V., Anuntagool, N., White, N.J. & Sirisinha, S. Short report:<br />

a rapid method for the differenti<strong>at</strong>ion <strong>of</strong> Burkholderia pseudomallei and<br />

Burkholderia thailandensis. Am. J. Trop. Med. Hyg 66, 759-761 (2002).<br />

62. Wuthiekanun, V. et al. Quantit<strong>at</strong>ion <strong>of</strong> B. pseudomallei in clinical samples.<br />

Am. J. Trop. Med. Hyg 77, 812-813 (2007).<br />

63. Walsh, A.L. et al. Immun<strong>of</strong>luorescence microscopy for the rapid diagnosis<br />

<strong>of</strong> melioidosis. J. Clin. P<strong>at</strong>hol 47, 377-379 (1994).<br />

155


64. Wuthiekanun, V. et al. Rapid immun<strong>of</strong>luorescence microscopy for<br />

diagnosis <strong>of</strong> melioidosis. Clin. Diagn. Lab. Immunol 12, 555-556 (2005).<br />

65. Walsh, A.L. et al. Prognostic significance <strong>of</strong> quantit<strong>at</strong>ive bacteremia in<br />

septicemic melioidosis. Clin. Infect. Dis 21, 1498-1500 (1995).<br />

66. Ruppitsch, W. et al. Suitability <strong>of</strong> partial 16S ribosomal RNA gene sequence<br />

analysis for the identific<strong>at</strong>ion <strong>of</strong> dangerous bacterial p<strong>at</strong>hogens. J. Appl.<br />

Microbiol 102, 852-859 (2007).<br />

67. Tomaso, H. et al. Development <strong>of</strong> 5’ nuclease real-time PCR assays for the<br />

rapid identific<strong>at</strong>ion <strong>of</strong> the Burkholderia mallei/Burkholderia pseudomallei<br />

complex. Diagn. Mol. P<strong>at</strong>hol 13, 247-253 (2004).<br />

68. W<strong>at</strong>tiau, P. et al. Identific<strong>at</strong>ion <strong>of</strong> Burkholderia pseudomallei and rel<strong>at</strong>ed<br />

bacteria by multiple-locus sequence typing-derived PCR and real-time<br />

PCR. J. Clin. Microbiol 45, 1045-1048 (2007).<br />

69. Thibault, F.M., Valade, E. & Vidal, D.R. Identific<strong>at</strong>ion and discrimin<strong>at</strong>ion<br />

<strong>of</strong> Burkholderia pseudomallei, B. mallei, and B. thailandensis by real-time<br />

PCR targeting type III secretion system genes. J. Clin. Microbiol 42, 5871-<br />

5874 (2004).<br />

70. Lee, M.-A., Wang, D. & Yap, E.H. Detection and differenti<strong>at</strong>ion <strong>of</strong><br />

Burkholderia pseudomallei, Burkholderia mallei and Burkholderia<br />

thailandensis by multiplex PCR. FEMS Immunol. Med. Microbiol 43, 413-<br />

417 (2005).<br />

71. Antonov, V.A. et al. Molecular identific<strong>at</strong>ion and typing <strong>of</strong> Burkholderia<br />

pseudomallei and Burkholderia mallei: when is enough enough? Trans. R.<br />

Soc. Trop. Med. Hyg 102 Suppl 1, S134-139 (2008).<br />

72. Chantr<strong>at</strong>ita, N. et al. Loop-medi<strong>at</strong>ed isothermal amplific<strong>at</strong>ion method<br />

targeting the TTS1 gene cluster for detection <strong>of</strong> Burkholderia pseudomallei<br />

and diagnosis <strong>of</strong> melioidosis. J Clin Microbiol 46, 568-73 (2008).<br />

73. Lertp<strong>at</strong>anasuwan, N. et al. Arabinose-positive Burkholderia pseudomallei<br />

infection in humans: case report. Clin. Infect. Dis 28, 927-928 (1999).<br />

74. Glass, M.B. et al. Pneumonia and septicemia caused by Burkholderia<br />

thailandensis in the United St<strong>at</strong>es. J. Clin. Microbiol 44, 4601-4604<br />

(2006).<br />

75. Srinivasan, A. et al. Glanders in a military research microbiologist. N. Engl.<br />

J. Med 345, 256-258 (2001).<br />

156


76. Kenny, D.J., Russell, P., Rogers, D., Eley, S.M. & Titball, R.W. In vitro<br />

susceptibilities <strong>of</strong> Burkholderia mallei in comparison to those <strong>of</strong> other<br />

p<strong>at</strong>hogenic Burkholderia spp. Antimicrob. Agents Chemother 43, 2773-<br />

2775 (1999).<br />

77. Thibault, F.M., Hernandez, E., Vidal, D.R., Girardet, M. & Cavallo, J.-D.<br />

Antibiotic susceptibility <strong>of</strong> 65 isol<strong>at</strong>es <strong>of</strong> Burkholderia pseudomallei and<br />

Burkholderia mallei to 35 antimicrobial agents. J. Antimicrob. Chemother.<br />

54, 1134-1138 (2004).<br />

78. Wernery, U. et al. N<strong>at</strong>ural Burkholderia mallei infection in Dromedary,<br />

Bahrain. Emerging Infect. Dis. 17, 1277-1279 (2011).<br />

79. Pruksachartvuthi, S., Aswapokee, N. & Thankerngpol, K. Survival <strong>of</strong><br />

Pseudomonas pseudomallei in human phagocytes. J. Med. Microbiol 31,<br />

109-114 (1990).<br />

80. Jones, A.L., Beveridge, T.J. & Woods, D.E. Intracellular survival <strong>of</strong><br />

Burkholderia pseudomallei. Infect. Immun 64, 782-790 (1996).<br />

81. French, C.T. et al. Dissection <strong>of</strong> the Burkholderia intracellular life cycle<br />

using a photothermal nanoblade. Proc. N<strong>at</strong>l. Acad. Sci. U.S.A 108, 12095-<br />

12100 (2011).<br />

82. Kespichayaw<strong>at</strong>tana, W., R<strong>at</strong>tanachetkul, S., Wanun, T., Utaisincharoen, P.<br />

& Sirisinha, S. Burkholderia pseudomallei induces cell fusion and actin-<br />

associ<strong>at</strong>ed membrane protrusion: a possible mechanism for cell-to-cell<br />

spreading. Infect. Immun 68, 5377-5384 (2000).<br />

83. Breitbach, K. et al. Actin-based motility <strong>of</strong> Burkholderia pseudomallei<br />

involves the Arp 2/3 complex, but not N-WASP and Ena/VASP proteins.<br />

Cell. Microbiol 5, 385-393 (2003).<br />

84. Stevens, M.P. et al. Identific<strong>at</strong>ion <strong>of</strong> a bacterial factor required for actin-<br />

based motility <strong>of</strong> Burkholderia pseudomallei. Mol. Microbiol 56, 40-53<br />

(2005).<br />

85. Norville, I.H. et al. A Burkholderia pseudomallei Mip-like protein has<br />

rapamycin inhibitable peptidyl-prolyl isomerase activity and has<br />

pleiotropic effects on virulence. Infect Immun<br />

(2011).doi:10.1128/IAI.00134-11<br />

86. Reckseidler, S.L., DeShazer, D., Sokol, P.A. & Woods, D.E. Detection <strong>of</strong><br />

bacterial virulence genes by subtractive hybridiz<strong>at</strong>ion: identific<strong>at</strong>ion <strong>of</strong><br />

157


capsular polysaccharide <strong>of</strong> Burkholderia pseudomallei as a major virulence<br />

determinant. Infect. Immun 69, 34-44 (2001).<br />

87. Atkins, T. et al. Characteris<strong>at</strong>ion <strong>of</strong> an acapsular mutant <strong>of</strong> Burkholderia<br />

pseudomallei identified by sign<strong>at</strong>ure tagged mutagenesis. J. Med.<br />

Microbiol 51, 539-547 (2002).<br />

88. Reckseidler-Zenteno, S.L., DeVinney, R. & Woods, D.E. The capsular<br />

polysaccharide <strong>of</strong> Burkholderia pseudomallei contributes to survival in<br />

serum by reducing complement factor C3b deposition. Infect. Immun 73,<br />

1106-1115 (2005).<br />

89. Warawa, J.M., Long, D., Rosenke, R., Gardner, D. & Gherardini, F.C. Role<br />

for the Burkholderia pseudomallei capsular polysaccharide encoded by the<br />

wcb operon in acute dissemin<strong>at</strong>ed melioidosis. Infect. Immun 77, 5252-<br />

5261 (2009).<br />

90. Wikraiph<strong>at</strong>, C. et al. Compar<strong>at</strong>ive in vivo and in vitro analyses <strong>of</strong> put<strong>at</strong>ive<br />

virulence factors <strong>of</strong> Burkholderia pseudomallei using lipopolysaccharide,<br />

capsule and flagellin mutants. FEMS Immunol. Med. Microbiol 56, 253-<br />

259 (2009).<br />

91. Reckseidler-Zenteno, S.L. et al. Characteriz<strong>at</strong>ion <strong>of</strong> the type III capsular<br />

polysaccharide produced by Burkholderia pseudomallei. J. Med. Microbiol<br />

59, 1403-1414 (2010).<br />

92. Brett, P.J., Mah, D.C. & Woods, D.E. Isol<strong>at</strong>ion and characteriz<strong>at</strong>ion <strong>of</strong><br />

Pseudomonas pseudomallei flagellin proteins. Infect. Immun 62, 1914-1919<br />

(1994).<br />

93. DeShazer, D., Brett, P.J., Carlyon, R. & Woods, D.E. Mutagenesis <strong>of</strong><br />

Burkholderia pseudomallei with Tn5-OT182: isol<strong>at</strong>ion <strong>of</strong> motility mutants<br />

and molecular characteriz<strong>at</strong>ion <strong>of</strong> the flagellin structural gene. J. Bacteriol<br />

179, 2116-2125 (1997).<br />

94. Chua, K.L., Chan, Y.Y. & Gan, Y.H. Flagella are virulence determinants <strong>of</strong><br />

Burkholderia pseudomallei. Infect. Immun 71, 1622-1629 (2003).<br />

95. Inglis, T.J.J., Robertson, T., Woods, D.E., Dutton, N. & Chang, B.J.<br />

Flagellum-medi<strong>at</strong>ed adhesion by Burkholderia pseudomallei precedes<br />

invasion <strong>of</strong> Acanthamoeba astronyxis. Infect. Immun 71, 2280-2282<br />

(2003).<br />

158


96. Chuaygud, T., Tungpradabkul, S., Sirisinha, S., Chua, K.L. &<br />

Utaisincharoen, P. A role <strong>of</strong> Burkholderia pseudomallei flagella as a<br />

virulent factor. Trans. R. Soc. Trop. Med. Hyg 102 Suppl 1, S140-144<br />

(2008).<br />

97. M<strong>at</strong>suura, M., Kawahara, K., Ezaki, T. & Nakano, M. Biological activities <strong>of</strong><br />

lipopolysaccharide <strong>of</strong> Burkholderia (Pseudomonas) pseudomallei. FEMS<br />

Microbiol. Lett 137, 79-83 (1996).<br />

98. DeShazer, D., Brett, P.J. & Woods, D.E. The type II O-antigenic<br />

polysaccharide moiety <strong>of</strong> Burkholderia pseudomallei lipopolysaccharide is<br />

required for serum resistance and virulence. Mol. Microbiol 30, 1081-1100<br />

(1998).<br />

99. Novem, V. et al. Structural and biological diversity <strong>of</strong> lipopolysaccharides<br />

from Burkholderia pseudomallei and Burkholderia thailandensis. Clin.<br />

Vaccine Immunol (2009).doi:10.1128/CVI.00472-08<br />

100. Ulrich, R.L. et al. Role <strong>of</strong> quorum sensing in the p<strong>at</strong>hogenicity <strong>of</strong><br />

Burkholderia pseudomallei. J. Med. Microbiol 53, 1053-1064 (2004).<br />

101. Juhas, M. et al. Global regul<strong>at</strong>ion <strong>of</strong> quorum sensing and virulence by VqsR<br />

in Pseudomonas aeruginosa. Microbiology (Reading, Engl.) 150, 831-841<br />

(2004).<br />

102. Valade, E. et al. The PmlI-PmlR quorum-sensing system in Burkholderia<br />

pseudomallei plays a key role in virulence and modul<strong>at</strong>es production <strong>of</strong> the<br />

MprA protease. J. Bacteriol 186, 2288-2294 (2004).<br />

103. Song, Y., Xie, C., Ong, Y.-M., Gan, Y.-H. & Chua, K.-L. The BpsIR quorum-<br />

sensing system <strong>of</strong> Burkholderia pseudomallei. J. Bacteriol 187, 785-790<br />

(2005).<br />

104. Diggle, S.P. et al. Functional genetic analysis reveals a 2-Alkyl-4-quinolone<br />

signaling system in the human p<strong>at</strong>hogen Burkholderia pseudomallei and<br />

rel<strong>at</strong>ed bacteria. Chem. Biol 13, 701-710 (2006).<br />

105. Lumjiaktase, P. et al. Quorum sensing regul<strong>at</strong>es dpsA and the oxid<strong>at</strong>ive<br />

stress response in Burkholderia pseudomallei. Microbiology (Reading,<br />

Engl.) 152, 3651-3659 (2006).<br />

106. Vanaporn, M. et al. Superoxide dismutase C is required for intracellular<br />

survival and virulence <strong>of</strong> Burkholderia pseudomallei. Microbiology<br />

(Reading, Engl.) 157, 2392-2400 (2011).<br />

159


107. Essex-Lopresti, A.E. et al. A type IV pilin, PilA, contributes to adherence <strong>of</strong><br />

Burkholderia pseudomallei and virulence in vivo. Infect. Immun 73, 1260-<br />

1264 (2005).<br />

108. Stevens, M.P. et al. An Inv/Mxi-Spa-like type III protein secretion system<br />

in Burkholderia pseudomallei modul<strong>at</strong>es intracellular behaviour <strong>of</strong> the<br />

p<strong>at</strong>hogen. Mol. Microbiol 46, 649-659 (2002).<br />

109. Stevens, M.P. et al. Attenu<strong>at</strong>ed virulence and protective efficacy <strong>of</strong> a<br />

Burkholderia pseudomallei bsa type III secretion mutant in murine models<br />

<strong>of</strong> melioidosis. Microbiology (Reading, Engl.) 150, 2669-2676 (2004).<br />

110. Warawa, J. & Woods, D.E. Type III secretion system cluster 3 is required<br />

for maximal virulence <strong>of</strong> Burkholderia pseudomallei in a hamster infection<br />

model. FEMS Microbiol. Lett 242, 101-108 (2005).<br />

111. Pil<strong>at</strong>z, S. et al. Identific<strong>at</strong>ion <strong>of</strong> Burkholderia pseudomallei genes required<br />

for the intracellular life cycle and in vivo virulence. Infect. Immun 74,<br />

3576-3586 (2006).<br />

112. Burtnick, M.N. et al. Burkholderia pseudomallei type III secretion system<br />

mutants exhibit delayed vacuolar escape phenotypes in RAW 264.7 murine<br />

macrophages. Infect. Immun 76, 2991-3000 (2008).<br />

113. Sun, G.W. et al. Identific<strong>at</strong>ion <strong>of</strong> a regul<strong>at</strong>ory cascade controlling Type III<br />

Secretion System 3 gene expression in Burkholderia pseudomallei. Mol.<br />

Microbiol 76, 677-689 (2010).<br />

114. Schell, M.A. et al. Type VI secretion is a major virulence determinant in<br />

Burkholderia mallei. Mol. Microbiol 64, 1466-1485 (2007).<br />

115. Shalom, G., Shaw, J.G. & Thomas, M.S. In vivo expression technology<br />

identifies a type VI secretion system locus in Burkholderia pseudomallei<br />

th<strong>at</strong> is induced upon invasion <strong>of</strong> macrophages. Microbiology (Reading,<br />

Engl.) 153, 2689-2699 (2007).<br />

116. Burtnick, M.N. et al. The cluster 1 type VI secretion system is a major<br />

virulence determinant in Burkholderia pseudomallei. Infect. Immun 79,<br />

1512-1525 (2011).<br />

117. Ralph, P. & Nakoinz, I. Antibody-dependent killing <strong>of</strong> erythrocyte and<br />

tumor targets by macrophage-rel<strong>at</strong>ed cell lines: enhancement by PPD and<br />

LPS. J. Immunol 119, 950-954 (1977).<br />

160


118. Inglis, T.J. et al. Interaction between Burkholderia pseudomallei and<br />

Acanthamoeba species results in coiling phagocytosis, endamebic bacterial<br />

survival, and escape. Infect. Immun 68, 1681-1686 (2000).<br />

119. Utaisincharoen, P., Tangthawornchaikul, N., Kespichayaw<strong>at</strong>tana, W.,<br />

Chaisuriya, P. & Sirisinha, S. Burkholderia pseudomallei interferes with<br />

inducible nitric oxide synthase (iNOS) production: a possible mechanism <strong>of</strong><br />

evading macrophage killing. Microbiol. Immunol 45, 307-313 (2001).<br />

120. Dance, D.A. Melioidosis: the tip <strong>of</strong> the iceberg? Clin. Microbiol. Rev 4, 52-<br />

60 (1991).<br />

121. Dance, D.A. Melioidosis as an emerging global problem. Acta Trop 74, 115-<br />

119 (2000).<br />

122. Gambier, A. Un cas de mélioïdose observé à Phôm-Penh. Bulletins de la<br />

Société de p<strong>at</strong>hologie exotique et de ses filiales de l’Ouest africain et de<br />

Madagascar 23, 436–441 (1930).<br />

123. P<strong>at</strong>on, J.P.J., Peck, C.R. & van de Schaff, A. Report on a case <strong>of</strong> melioidosis<br />

from Siam. Br Med J 1, 336–337 (1947).<br />

124. Chittivej, C., Buspavanij, S. & Chaovanasai, A. Melioidosis with case report<br />

in a Thai. Royal Thai Army Medical Journal 68, 11–17 (1955).<br />

125. Chaowagul, W. et al. Melioidosis: a major cause <strong>of</strong> community-acquired<br />

septicemia in northeastern Thailand. J. Infect. Dis 159, 890-899 (1989).<br />

126. Punyagupta, S. Melioidosis. Review <strong>of</strong> 686 cases and present<strong>at</strong>ion <strong>of</strong> a new<br />

clinical classific<strong>at</strong>ion. Melioidosis 217–229 (1989).<br />

127. Krishnaswami, C.S. Morphia injectors’ septicaemia. Ind. Med. Gaz. 52,<br />

296–299 (1917).<br />

128. Aung, D.M.K. Melioidosis—a hidden disease in Myanmar. Myanmar<br />

journal <strong>of</strong> current medical practice 5, 57–59 (2000).<br />

129. Harries, E.J., Lewis, A.A.G., Waring, J.W.B. & Dowling, E.J. Melioidosis<br />

tre<strong>at</strong>ed with sulphonamides and penicillin. Lancet 251, 363–366 (1948).<br />

130. Lee, S.C., Ling, T.S., Chen, J.C., Huang, B.Y. & Sheih, W.B. Melioidosis with<br />

adrenal gland abscess. Am. J. Trop. Med. Hyg 61, 34-36 (1999).<br />

131. Wuthiekanun, V. et al. Short report: Melioidosis in Myanmar: forgotten but<br />

not gone? Am. J. Trop. Med. Hyg 75, 945-946 (2006).<br />

132. Cheng, A.C. & Currie, B.J. Melioidosis: epidemiology, p<strong>at</strong>hophysiology, and<br />

management. Clin Microbiol Rev 18, 383-416 (2005).<br />

161


133. Currie, B.J., Dance, D.A.B. & Cheng, A.C. The global distribution <strong>of</strong><br />

Burkholderia pseudomallei and melioidosis: an upd<strong>at</strong>e. Trans. R. Soc.<br />

Trop. Med. Hyg 102 Suppl 1, S1-4 (2008).<br />

134. Antony, B. et al. Spectrum <strong>of</strong> melioidosis in the suburbs <strong>of</strong> Mangalore, S<br />

West Coast <strong>of</strong> India. Southeast Asian J. Trop. Med. Public Health 41, 169-<br />

174 (2010).<br />

135. Saravu, K. et al. Melioidosis in southern India: epidemiological and clinical<br />

pr<strong>of</strong>ile. Southeast Asian J. Trop. Med. Public Health 41, 401-409 (2010).<br />

136. Mukhopadhyay, C. et al. Molecular Characteriz<strong>at</strong>ion <strong>of</strong> Clinical<br />

Burkholderia pseudomallei Isol<strong>at</strong>es from India. Am. J. Trop. Med. Hyg 85,<br />

121-123 (2011).<br />

137. O’Sullivan, B.P. et al. Burkholderia pseudomallei infection in a child with<br />

cystic fibrosis: acquisition in the Western hemisphere. Chest 140, 239-242<br />

(2011).<br />

138. Cuadros, J. et al. Case report: melioidosis imported from West Africa to<br />

Europe. Am. J. Trop. Med. Hyg. 85, 282-284 (2011).<br />

139. Strauss, J.M. et al. Melioidosis in Malaysia. IV. Intensive ecological <strong>study</strong><br />

<strong>of</strong> Carey Island, Selangor, for Pseudomonas pseudomallei. Med J Malaya<br />

24, 94-100 (1969).<br />

140. Chambon, L. Isolement du Bacille de Whitmore a partir du milieu<br />

exterieur. Ann Inst Pasteur (Paris) 89, 229-235 (1955).<br />

141. Krauss, H. Zoonoses: infectious diseases transmissible from animals to<br />

humans. (ASM Press: 2003).<br />

142. Shakespeare, M. Zoonoses. (Pharmaceutical Press: 2002).<br />

143. Choy, J.L., Mayo, M., Janma<strong>at</strong>, A. & Currie, B.J. Animal melioidosis in<br />

Australia. Acta Tropica 74, 153–158 (2000).<br />

144. Yap, E.H. et al. Comparison <strong>of</strong> Pseudomonas pseudomallei from humans,<br />

animals, soil and w<strong>at</strong>er by restriction endonuclease analysis. Singapore<br />

Med J 36, 60-62 (1995).<br />

145. Mollaret, H.H. «L’affaire du Jardin des plantes» ou comment le mélioïdose<br />

fit son apparition en France. Med Mal Infect 18, 643–54 (1988).<br />

146. Baharsef<strong>at</strong>, M. & Amjadi, A.R. Equine melioidosis in Iran. Arch Inst Razi<br />

22, 209–213 (1970).<br />

162


147. Galimand, M. & Dodin, A. Le point sur la melioidose dans le monde. Bull<br />

Soc P<strong>at</strong>hol Exot Filiales 75, 375-383 (1982).<br />

148. Dodin, A. & Galimand, M. Naissance, vie et recul d’une maladie infectieuse,<br />

la melioidose en pays tempere. Arch Inst Pasteur Tunis 63, 69-73 (1986).<br />

149. Sprague, L.D. & Neubauer, H. Melioidosis in animals: a review on<br />

epizootiology, diagnosis and clinical present<strong>at</strong>ion. J. Vet. Med. B Infect.<br />

Dis. Vet. Public Health 51, 305-320 (2004).<br />

150. Woods, D.E., Jones, A.L. & Hill, P.J. Interaction <strong>of</strong> insulin with<br />

Pseudomonas pseudomallei. Infect Immun 61, 4045-50 (1993).<br />

151. Wiersinga, W.J. et al. Toll-like receptor 2 impairs host defense in Gram-<br />

neg<strong>at</strong>ive sepsis caused by Burkholderia pseudomallei (melioidosis). PLoS<br />

Med 4, e248 (2007).<br />

152. Tuanyok, A., Tom, M., Dunbar, J. & Woods, D.E. Genome-wide expression<br />

analysis <strong>of</strong> Burkholderia pseudomallei infection in a hamster model <strong>of</strong><br />

acute melioidosis. Infect. Immun 74, 5465-5476 (2006).<br />

153. Dannenberg, A.M. & Scott, E.M. Melioidosis: p<strong>at</strong>hogenesis and immunity<br />

in mice and hamsters. III. Effect <strong>of</strong> vaccin<strong>at</strong>ion with avirulent strains <strong>of</strong><br />

Pseudomonas pseudomallei on the resistance to the establishment and the<br />

resistance to the progress <strong>of</strong> respir<strong>at</strong>ory melioidosis caused by virulent<br />

strains; all-or-none aspects <strong>of</strong> this disease. J. Immunol 84, 233-246<br />

(1960).<br />

154. Miller, W.R., Pannell, L., Cravitz, L., Tanner, W.A. & Rosebury, T. Studies<br />

on certain biological characteristics <strong>of</strong> Malleomyces mallei and<br />

Malleomyces pseudomallei: II. Virulence and infectivity for animals. J.<br />

Bacteriol 55, 127-135 (1948).<br />

155. Strauss, J.M., Groves, M.G., Mariappan, M. & Ellison, D.W. Melioidosis in<br />

Malaysia. II. Distribution <strong>of</strong> Pseudomonas pseudomallei in soil and surface<br />

w<strong>at</strong>er. Am. J. Trop. Med. Hyg 18, 698-702 (1969).<br />

156. Strauss, J.M., Alexander, A.D., Rapmund, G., Gan, E. & Dorsey, A.E.<br />

Melioidosis in Malaysia. III. Antibodies to Pseudomonas pseudomallei in<br />

the human popul<strong>at</strong>ion. Am. J. Trop. Med. Hyg 18, 703-707 (1969).<br />

157. Vuddhakul, V. et al. Epidemiology <strong>of</strong> Burkholderia pseudomallei in<br />

Thailand. Am. J. Trop. Med. Hyg 60, 458-461 (1999).<br />

163


158. Mayo, M. et al. Burkholderia pseudomallei in unchlorin<strong>at</strong>ed domestic bore<br />

w<strong>at</strong>er, tropical northern Australia. Emerging Infect. Dis 17, 1283-1285<br />

(2011).<br />

159. Chen, Y.-S. et al. Distribution <strong>of</strong> melioidosis cases and viable Burkholderia<br />

pseudomallei in soil: evidence for emerging melioidosis in Taiwan. J. Clin.<br />

Microbiol 48, 1432-1434 (2010).<br />

160. Limm<strong>at</strong>hurotsakul, D. et al. Burkholderia pseudomallei is sp<strong>at</strong>ially<br />

distributed in soil in northeast Thailand. PLoS Negl Trop Dis 4, e694<br />

(2010).<br />

161. Lin, H.-H. et al. Burkholderia multivorans acts as an antagonist against the<br />

growth <strong>of</strong> Burkholderia pseudomallei in soil. Microbiol Immunol<br />

(2011).doi:10.1111/j.1348-0421.2011.00365.x<br />

162. Kaestli, M. et al. Landscape changes influence the occurrence <strong>of</strong> the<br />

melioidosis bacterium Burkholderia pseudomallei in soil in northern<br />

Australia. PLoS Negl Trop Dis 3, e364 (2009).<br />

163. Inglis, T.J.J. & Sagripanti, J.-L. Environmental factors th<strong>at</strong> affect the<br />

survival and persistence <strong>of</strong> Burkholderia pseudomallei. Appl. Environ.<br />

Microbiol 72, 6865-6875 (2006).<br />

164. Marolda, C.L., Hauröder, B., John, M.A., Michel, R. & Valvano, M.A.<br />

Intracellular survival and saprophytic growth <strong>of</strong> isol<strong>at</strong>es from the<br />

Burkholderia cepacia complex in free-living amoebae. Microbiology<br />

(Reading, Engl.) 145 ( Pt 7), 1509-1517 (1999).<br />

165. Howard, K. & Inglis, T.J.J. Disinfection <strong>of</strong> Burkholderia pseudomallei in<br />

potable w<strong>at</strong>er. W<strong>at</strong>er Res 39, 1085-1092 (2005).<br />

166. Currie, B.J. & Jacups, S.P. Intensity <strong>of</strong> rainfall and severity <strong>of</strong> melioidosis,<br />

Australia. Emerging Infect. Dis 9, 1538-1542 (2003).<br />

167. Lo, T.J., Ang, L.W., James, L. & Goh, K.T. Melioidosis in a tropical city<br />

st<strong>at</strong>e, Singapore. Emerging Infect. Dis 15, 1645-1647 (2009).<br />

168. Suputtamongkol, Y. et al. The epidemiology <strong>of</strong> melioidosis in Ubon<br />

R<strong>at</strong>ch<strong>at</strong>ani, northeast Thailand. Int J Epidemiol 23, 1082-1090 (1994).<br />

169. Limm<strong>at</strong>hurotsakul, D. et al. Increasing incidence <strong>of</strong> human melioidosis in<br />

Northeast Thailand. Am J Trop Med Hyg 82, 1113-1117 (2010).<br />

170. Sam, I.-C. & Puthucheary, S.D. Melioidosis and rainfall in Kuala Lumpur,<br />

Malaysia. J. Infect 54, 519-520 (2007).<br />

164


171. Cheng, A.C., Jacups, S.P., Gal, D., Mayo, M. & Currie, B.J. Extreme we<strong>at</strong>her<br />

events and environmental contamin<strong>at</strong>ion are associ<strong>at</strong>ed with case-clusters<br />

<strong>of</strong> melioidosis in the Northern Territory <strong>of</strong> Australia. Int J Epidemiol 35,<br />

323-329 (2006).<br />

172. Su, H.-P., Chan, T.-C. & Chang, C.-C. Typhoon-rel<strong>at</strong>ed leptospirosis and<br />

melioidosis, Taiwan, 2009. Emerging Infect. Dis 17, 1322-1324 (2011).<br />

173. Lim, M.K., Tan, E.H., Soh, C.S. & Chang, T.L. Burkholderia pseudomallei<br />

infection in the Singapore Armed Forces from 1987 to 1994—an<br />

epidemiological review. Ann. Acad. Med. Singap 26, 13-17 (1997).<br />

174. Suputtamongkol, Y. et al. Risk factors for melioidosis and bacteremic<br />

melioidosis. Clin. Infect. Dis 29, 408-413 (1999).<br />

175. Currie, B.J., Ward, L. & Cheng, A.C. The epidemiology and clinical<br />

spectrum <strong>of</strong> melioidosis: 540 cases from the 20 year Darwin prospective<br />

<strong>study</strong>. PLoS Negl Trop Dis 4, e900 (2010).<br />

176. Currie, B.J. et al. The epidemiology <strong>of</strong> melioidosis in Australia and Papua<br />

New Guinea. Acta Trop 74, 121-127 (2000).<br />

177. Tan, A.L., Ang, B.S. & Ong, Y.Y. Melioidosis: epidemiology and antibiogram<br />

<strong>of</strong> cases in Singapore. Singapore Med J 31, 335-337 (1990).<br />

178. Heng, B.H., Sun, Y., Cheah, J.T.S. & Jong, M. The Singapore N<strong>at</strong>ional<br />

Healthcare Group Diabetes Registry—descriptive epidemiology <strong>of</strong> type 2<br />

<strong>diabetes</strong> mellitus. Ann. Acad. Med. Singap 39, 348-352 (2010).<br />

179. Chierakul, W. et al. Short report: disease severity and outcome <strong>of</strong><br />

melioidosis in HIV coinfected individuals. Am. J. Trop. Med. Hyg 73, 1165-<br />

1166 (2005).<br />

180. Mackowiak, P.A. & Smith, J.W. Septicemic melioidosis. Occurrence<br />

following acute influenza A six years after exposure in Vietnam. JAMA<br />

240, 764-766 (1978).<br />

181. Tan, G.-Y.G. et al. Burkholderia pseudomallei aerosol infection results in<br />

differential inflamm<strong>at</strong>ory responses in BALB/c and C57Bl/6 mice. J Med<br />

Microbiol 57, 508-515 (2008).<br />

182. Green, R.N. & Tuffnell, P.G. Labor<strong>at</strong>ory acquired melioidosis. Am. J. Med<br />

44, 599-605 (1968).<br />

165


183. Ho, P.L. et al. Activity <strong>of</strong> five fluoroquinolones against 71 isol<strong>at</strong>es <strong>of</strong><br />

Burkholderia pseudomallei. J. Antimicrob. Chemother. 49, 1042 -1044<br />

(2002).<br />

184. Ralph, A., McBride, J. & Currie, B.J. Transmission <strong>of</strong> Burkholderia<br />

pseudomallei via breast milk in northern Australia. Pedi<strong>at</strong>r. Infect. Dis. J<br />

23, 1169-1171 (2004).<br />

185. West, T.E. et al. P<strong>at</strong>hogenicity <strong>of</strong> high-dose enteral inocul<strong>at</strong>ion <strong>of</strong><br />

Burkholderia pseudomallei to mice. Am. J. Trop. Med. Hyg 83, 1066-1069<br />

(2010).<br />

186. Currie, B.J. et al. A cluster <strong>of</strong> melioidosis cases from an endemic region is<br />

clonal and is linked to the w<strong>at</strong>er supply using molecular typing <strong>of</strong><br />

Burkholderia pseudomallei isol<strong>at</strong>es. Am. J. Trop. Med. Hyg 65, 177-179<br />

(2001).<br />

187. Inglis, T.J. et al. Acute melioidosis outbreak in Western Australia.<br />

Epidemiol. Infect 123, 437-443 (1999).<br />

188. Inglis, T.J. et al. Burkholderia pseudomallei traced to w<strong>at</strong>er tre<strong>at</strong>ment<br />

plant in Australia. Emerging Infect. Dis 6, 56-59 (2000).<br />

189. Chierakul, W. et al. Melioidosis in 6 tsunami survivors in southern<br />

Thailand. Clin. Infect. Dis 41, 982-990 (2005).<br />

190. Wuthiekanun, V. et al. Serological evidence for increased human exposure<br />

to Burkholderia pseudomallei following the tsunami in southern Thailand.<br />

J. Clin. Microbiol 44, 239-240 (2006).<br />

191. Athan, E., Allworth, A.M., Engler, C., Bastian, I. & Cheng, A.C. Melioidosis<br />

in tsunami survivors. Emerging Infect. Dis 11, 1638-1639 (2005).<br />

192. Othman, N. et al. Infections in post-tsunami victims. Pedi<strong>at</strong>r. Infect. Dis. J<br />

26, 960-961 (2007).<br />

193. Ciervo, A., M<strong>at</strong>tei, R. & Cassone, A. Melioidosis in an Italian tourist injured<br />

by the tsunami in Thailand. J Chemother 18, 443-444 (2006).<br />

194. Svensson, E., Welinder-Olsson, C., Claesson, B.A. & Studahl, M. Cutaneous<br />

melioidosis in a Swedish tourist after the tsunami in 2004. Scand. J. Infect.<br />

Dis 38, 71-74 (2006).<br />

195. Allworth, A.M. Tsunami lung: a necrotising pneumonia in survivors <strong>of</strong> the<br />

Asian tsunami. Med. J. Aust 182, 364 (2005).<br />

166


196. McCormick, J.B. et al. Human-to-human transmission <strong>of</strong> Pseudomonas<br />

pseudomallei. Ann. Intern. Med 83, 512-513 (1975).<br />

197. Kunakorn, M., Jayanetra, P. & Tanphaichitra, D. Man-to-man transmission<br />

<strong>of</strong> melioidosis. Lancet 337, 1290-1291 (1991).<br />

198. Abbink, F.C., Orendi, J.M. & de Beaufort, A.J. Mother-to-child<br />

transmission <strong>of</strong> Burkholderia pseudomallei. N. Engl. J. Med 344, 1171-1172<br />

(2001).<br />

199. Simpson, A.J. et al. Comparison <strong>of</strong> imipenem and ceftazidime as therapy<br />

for severe melioidosis. Clin. Infect. Dis 29, 381-387 (1999).<br />

200. Chetchotisakd, P., Porram<strong>at</strong>ikul, S., Mootsikapun, P., Anunn<strong>at</strong>siri, S. &<br />

Thinkhamrop, B. Randomized, double-blind, controlled <strong>study</strong> <strong>of</strong><br />

cefoperazone-sulbactam plus cotrimoxazole versus ceftazidime plus<br />

cotrimoxazole for the tre<strong>at</strong>ment <strong>of</strong> severe melioidosis. Clin. Infect. Dis 33,<br />

29–34 (2001).<br />

201. Apisarnthanarak, A., Apisarnthanarak, P. & Mundy, L.M. Computed<br />

tomography characteristics <strong>of</strong> Burkholderia pseudomallei liver abscess.<br />

Clin. Infect. Dis 42, 989-993 (2006).<br />

202. Teparrakkul, P. et al. Rheum<strong>at</strong>ological manifest<strong>at</strong>ions in p<strong>at</strong>ients with<br />

melioidosis. Southeast Asian J. Trop. Med. Public Health 39, 649-655<br />

(2008).<br />

203. Siripanthong, S. et al. Corneal ulcer caused by Pseudomonas pseudomallei:<br />

report <strong>of</strong> three cases. Rev. Infect. Dis 13, 335-337 (1991).<br />

204. Chen, K.-J., Sun, M.-H., Hou, C.-H., Sun, C.-C. & Chen, T.-L. Burkholderia<br />

pseudomallei endophthalmitis. J. Clin. Microbiol 45, 4073-4074 (2007).<br />

205. Yang, I.-H., Lee, J.-J., Liu, J.-W. & Teng, M.-C. Melioidosis with<br />

endophthalmitis. Arch. Ophthalmol 124, 1501-1502 (2006).<br />

206. Demar, M., Ferroni, A., Dupont, B., Eliaszewicz, M. & Bourée, P.<br />

Suppur<strong>at</strong>ive epididymo-orchitis and chronic prost<strong>at</strong>itis caused by<br />

Burkholderia pseudomallei: a case report and review. J Travel Med 12,<br />

108-112 (2005).<br />

207. Koh, K.B. Melioidosis presenting as epididymo-orchitis. Singapore Med J<br />

36, 446 (1995).<br />

167


208. Anunn<strong>at</strong>siri, S., Chetchotisakd, P. & Kularbkaew, C. Mycotic aneurysm in<br />

Northeast Thailand: the importance <strong>of</strong> Burkholderia pseudomallei as a<br />

caus<strong>at</strong>ive p<strong>at</strong>hogen. Clin. Infect. Dis 47, 1436-1439 (2008).<br />

209. Currie, B.J., Fisher, D.A., Howard, D.M. & Burrow, J.N. Neurological<br />

melioidosis. Acta Trop 74, 145-151 (2000).<br />

210. Limm<strong>at</strong>hurotsakul, D. et al. Variable present<strong>at</strong>ion <strong>of</strong> neurological<br />

melioidosis in Northeast Thailand. Am. J. Trop. Med. Hyg 77, 118-120<br />

(2007).<br />

211. Kasantikul, V., Lerdlum, S. & Suwanwela, N. Cerebral abscesses due to<br />

Pseudomonas pseudomallei. J Med Assoc Thai 75, 536-541 (1992).<br />

212. Chadwick, D.R., Ang, B., Sitoh, Y.Y. & Lee, C.C. Cerebral melioidosis in<br />

Singapore: a review <strong>of</strong> five cases. Trans. R. Soc. Trop. Med. Hyg 96, 72-76<br />

(2002).<br />

213. Chlebicki, M.P., Kurup, A. & Sin, Y.K. Burkholderia pseudomallei<br />

meningitis following inadequ<strong>at</strong>e tre<strong>at</strong>ment <strong>of</strong> melioidotic mycotic<br />

aneurysm. Singapore Med J 49, e219-221 (2008).<br />

214. Currie, B.J. et al. Endemic melioidosis in tropical northern Australia: a 10-<br />

year prospective <strong>study</strong> and review <strong>of</strong> the liter<strong>at</strong>ure. Clin. Infect. Dis 31, 981-<br />

986 (2000).<br />

215. Mayer, J.H. & Finlayson, M.H. Chronic melioidosis. S. Afr. Med. J. XVIII,<br />

109–112 (1944).<br />

216. Falade, O.O., Antonarakis, E.S., Kaul, D.R., Saint, S. & Murphy, P.A.<br />

Clinical problem-solving. Beware <strong>of</strong> first impressions. N Engl J Med 359,<br />

628-34 (2008).<br />

217. Vidyalakshmi, K. et al. Tuberculosis mimicked by melioidosis. Int. J.<br />

Tuberc. Lung Dis 12, 1209-1215 (2008).<br />

218. Chetchotisakd, P., Anunn<strong>at</strong>siri, S., Ki<strong>at</strong>choosakun, S. & Kularbkaew, C.<br />

Melioidosis pericarditis mimicking tuberculous pericarditis. Clin. Infect.<br />

Dis 51, e46-49 (2010).<br />

219. Saravu, K. et al. Melioidosis—a case series from south India. Trans R Soc<br />

Trop Med Hyg 102 Suppl 1, S18-20 (2008).<br />

220. Currie, B.J., Fisher, D.A., Anstey, N.M. & Jacups, S.P. Melioidosis: acute<br />

and chronic disease, relapse and re-activ<strong>at</strong>ion. Trans. R. Soc. Trop. Med.<br />

Hyg 94, 301-304 (2000).<br />

168


221. Pongrithsukda, V., Simakachorn, N. & Pimda, J. Childhood melioidosis in<br />

northeastern Thailand. Southeast Asian J. Trop. Med. Public Health 19,<br />

309-316 (1988).<br />

222. Dance, D.A. et al. Acute suppur<strong>at</strong>ive parotitis caused by Pseudomonas<br />

pseudomallei in children. J. Infect. Dis 159, 654-660 (1989).<br />

223. Lumbiganon, P. & Viengnondha, S. Clinical manifest<strong>at</strong>ions <strong>of</strong> melioidosis<br />

in children. Pedi<strong>at</strong>r. Infect. Dis. J 14, 136-140 (1995).<br />

224. Pagnarith, Y. et al. Emergence <strong>of</strong> pedi<strong>at</strong>ric melioidosis in Siem Reap,<br />

Cambodia. Am. J. Trop. Med. Hyg 82, 1106-1112 (2010).<br />

225. Sam, I.-C. & Puthucheary, S.D. Melioidosis in children from Kuala Lumpur,<br />

Malaysia. Ann Trop Paedi<strong>at</strong>r 26, 219-224 (2006).<br />

226. Kandasamy, Y. & Norton, R. Paedi<strong>at</strong>ric melioidosis in North Queensland,<br />

Australia. J Paedi<strong>at</strong>r Child Health 44, 706-708 (2008).<br />

227. Kandasamy, Y. & Somasundaram, P. Paedi<strong>at</strong>ric melioidosis with septic<br />

shock in a previously-well child. Singapore Med J 48, e109-110 (2007).<br />

228. Holland, D.J., Wesley, A., Drinkovic, D. & Currie, B.J. Cystic fibrosis and<br />

Burkholderia pseudomallei infection: an emerging problem? Clin. Infect.<br />

Dis. 35, e138 -e140 (2002).<br />

229. Gilbert, D.N., Moore, W.L., Jr, Hedberg, C.L. & Sanford, J.P. Potential<br />

medical problems in personnel returning from Vietnam. Ann. Intern. Med<br />

68, 662-678 (1968).<br />

230. Sanford, J.P. & Moore, W.L., Jr Recrudescent melioidosis: a southeast<br />

asian legacy. Am. Rev. Respir. Dis 104, 452-453 (1971).<br />

231. Sanford, J.P. Melioidosis: forgotten but not gone. Trans. Am. Clin.<br />

Clim<strong>at</strong>ol. Assoc 89, 201-205 (1978).<br />

232. Spotnitz, M. Disease may be Vietnamese time bomb. Med World News 7,<br />

55 (1966).<br />

233. Koponen, M.A., Zlock, D., Palmer, D.L. & Merlin, T.L. Melioidosis.<br />

Forgotten, but not gone! Arch. Intern. Med 151, 605-608 (1991).<br />

234. Mays, E.E. & Ricketts, E.A. Melioidosis: recrudescence associ<strong>at</strong>ed with<br />

bronchogenic carcinoma twenty-six years following initial geographic<br />

exposure. Chest 68, 261-263 (1975).<br />

235. Clayton, A.J., Lisella, R.S. & Martin, D.G. Melioidosis: a serological survey<br />

in military personnel. Mil Med 138, 24-26 (1973).<br />

169


236. Phung, L.V., Quynh, H.T., Yabuuchi, E. & Dance, D.A. Pilot <strong>study</strong> <strong>of</strong><br />

exposure to Pseudomonas pseudomallei in northern Vietnam. Trans. R.<br />

Soc. Trop. Med. Hyg 87, 416 (1993).<br />

237. Phung, L.V., Dung, D.H., Thu, P.M., Hong, N.H. & Dance, D.A.B. Exposure<br />

to Pseudomonas pseudomallei in Northern Vietnam. Melioidosis:<br />

Prevailing Problems and Future Directions 25 (1994).<br />

238. Wuthiekanun, V., Suputtamongkol, Y., Simpson, A.J., Kanaphun, P. &<br />

White, N.J. Value <strong>of</strong> thro<strong>at</strong> swab in diagnosis <strong>of</strong> melioidosis. J. Clin.<br />

Microbiol 39, 3801-3802 (2001).<br />

239. Schülin, T. & Steinmetz, I. Chronic melioidosis in a p<strong>at</strong>ient with cystic<br />

fibrosis. J. Clin. Microbiol 39, 1676-1677 (2001).<br />

240. Currie, B.J. Melioidosis: an important cause <strong>of</strong> pneumonia in residents <strong>of</strong><br />

and travellers returned from endemic regions. Eur. Respir. J 22, 542-550<br />

(2003).<br />

241. de Moor, C.E., Soekarnen & van der Walle, N. Melioidosis auf Java.<br />

Mededelingen van den Dienst der Volksgezondheid in Nederlands Indie<br />

21, 206–222, 226. (1932).<br />

242. Brygoo, E.R. Contribution à l‘étude des agglutinines n<strong>at</strong>urelles pour le<br />

bacille de Whitmore. Les agglutinines spécifiques dans quelques cas de<br />

mélioïdose. Bull Soc P<strong>at</strong>hol Exot Filiales 46, 347-353 (1953).<br />

243. Wuthiekanun, V. et al. Development <strong>of</strong> antibodies to Burkholderia<br />

pseudomallei during childhood in melioidosis-endemic northeast Thailand.<br />

Am. J. Trop. Med. Hyg 74, 1074-1075 (2006).<br />

244. Khupulsup, K. & Petchclai, B. Applic<strong>at</strong>ion <strong>of</strong> indirect hemagglutin<strong>at</strong>ion test<br />

and indirect fluorescent antibody test for IgM antibody for diagnosis <strong>of</strong><br />

melioidosis in Thailand. Am. J. Trop. Med. Hyg 35, 366-369 (1986).<br />

245. Yap, E.H. et al. Serodiagnosis <strong>of</strong> melioidosis in Singapore by the indirect<br />

haemagglutin<strong>at</strong>ion test. Singapore Med J 32, 211-213 (1991).<br />

246. Charoenwong, P., Lumbiganon, P. & Puapermpoonsiri, S. The prevalence<br />

<strong>of</strong> the indirect hemagglutin<strong>at</strong>ion test for melioidosis in children in an<br />

endemic area. Southeast Asian J. Trop. Med. Public Health 23, 698-701<br />

(1992).<br />

247. Norazah, A., Rohani, M.Y., Chang, P.T. & Kamel, A.G. Indirect<br />

hemagglutin<strong>at</strong>ion antibodies against Burkholderia pseudomallei in normal<br />

170


lood donors and suspected cases <strong>of</strong> melioidosis in Malaysia. Southeast<br />

Asian J. Trop. Med. Public Health 27, 263-266 (1996).<br />

248. O’Brien, M. et al. Further evalu<strong>at</strong>ion <strong>of</strong> a rapid diagnostic test for<br />

melioidosis in an area <strong>of</strong> endemicity. J. Clin. Microbiol 42, 2239-2240<br />

(2004).<br />

249. Warner, J.M., Pelowa, D.B., Currie, B.J. & Hirst, R.G. Melioidosis in a rural<br />

community <strong>of</strong> Western Province, Papua New Guinea. Trans. R. Soc. Trop.<br />

Med. Hyg 101, 809-813 (2007).<br />

250. Lazzaroni, S.M. et al. Seropositivity to Burkholderia pseudomallei does not<br />

reflect the development <strong>of</strong> cell-medi<strong>at</strong>ed immunity. Trans. R. Soc. Trop.<br />

Med. Hyg 102 Suppl 1, S66-70 (2008).<br />

251. Wuthiekanun, V. et al. Burkholderia pseudomallei antibodies in children,<br />

Cambodia. Emerging Infect. Dis 14, 301-303 (2008).<br />

252. Tiyawisutsri, R. et al. Antibodies from p<strong>at</strong>ients with melioidosis recognize<br />

Burkholderia mallei but not Burkholderia thailandensis antigens in the<br />

indirect hemagglutin<strong>at</strong>ion assay. J. Clin. Microbiol 43, 4872-4874 (2005).<br />

253. Gilmore, G., Barnes, J., Ketheesan, N. & Norton, R. Use <strong>of</strong> antigens derived<br />

from Burkholderia pseudomallei, B. thailandensis, and B. cepacia in the<br />

indirect hemagglutin<strong>at</strong>ion assay for melioidosis. Clin. Vaccine Immunol 14,<br />

1529-1531 (2007).<br />

254. Dance, D.A. et al. The use <strong>of</strong> bone marrow culture for the diagnosis <strong>of</strong><br />

melioidosis. Trans. R. Soc. Trop. Med. Hyg 84, 585-587 (1990).<br />

255. Cravitz, L. & Miller, W.R. Immunologic studies with Malleomyces mallei<br />

and Malleomyces pseudomallei, agglutin<strong>at</strong>ion and complement fix<strong>at</strong>ion<br />

tests in man and labor<strong>at</strong>ory animals. J. Infect. Dis 86, 52-62 (1950).<br />

256. Alexander, A.D., Huxsoll, D.L., Warner, A.R., Shepler, V. & Dorsey, A.<br />

Serological diagnosis <strong>of</strong> human melioidosis with indirect hemagglutin<strong>at</strong>ion<br />

and complement fix<strong>at</strong>ion tests. Appl Microbiol 20, 825-833 (1970).<br />

257. Peacock, S.J., Cheng, A.C., Currie, B.J. & Dance, D.A.B. The use <strong>of</strong> positive<br />

serological tests as evidence <strong>of</strong> exposure to Burkholderia pseudomallei.<br />

Am. J. Trop. Med. Hyg 84, 1021-1022; author reply 1023 (2011).<br />

258. Nigg, C. Serological studies on subclinical melioidosis. J. Immunol. 91, 18–<br />

28 (1963).<br />

171


259. White, N.J. et al. Halving <strong>of</strong> mortality <strong>of</strong> severe melioidosis by ceftazidime.<br />

Lancet 2, 697-701 (1989).<br />

260. Teparrugkul, P. Indirect hemagglutin<strong>at</strong>ion test for the diagnosis <strong>of</strong><br />

melioidosis in Ubon R<strong>at</strong>ch<strong>at</strong>hani. J. Infect. Dis. Antimicrob. Agents 14, 15–<br />

17 (1997).<br />

261. Cheng, A.C., O’brien, M., Freeman, K., Lum, G. & Currie, B.J. Indirect<br />

hemagglutin<strong>at</strong>ion assay in p<strong>at</strong>ients with melioidosis in northern Australia.<br />

Am. J. Trop. Med. Hyg 74, 330-334 (2006).<br />

262. Limm<strong>at</strong>hurotsakul, D. et al. Enzyme-linked immunosorbent assay for the<br />

diagnosis <strong>of</strong> melioidosis: better than we thought. Clin. Infect. Dis 52, 1024-<br />

1028 (2011).<br />

263. Appassakij, H., Silpapojakul, K.R., Wansit, R. & Pornp<strong>at</strong>kul, M. Diagnostic<br />

value <strong>of</strong> the indirect hemagglutin<strong>at</strong>ion test for melioidosis in an endemic<br />

area. Am. J. Trop. Med. Hyg 42, 248-253 (1990).<br />

264. Cheng, A.C. et al. Prospective evalu<strong>at</strong>ion <strong>of</strong> a rapid immunochromogenic<br />

cassette test for the diagnosis <strong>of</strong> melioidosis in northeast Thailand. Trans.<br />

R. Soc. Trop. Med. Hyg 100, 64-67 (2006).<br />

265. Puapermpoonsiri, S., Puapermpoonsiri, P., Bhuripanyo, K., Vilachai, C. &<br />

Auncharoen, A. Indirect hemagglutin<strong>at</strong>ion antibody titer to Pseudomonas<br />

pseudomallei in p<strong>at</strong>ients with melioidosis. Melioidosis 193–6 (1986).<br />

266. UNICEF At a glance: Singapore. <strong>at</strong><br />

<br />

267. Puthucheary, S.D., Anuar, A.S.S. & Tee, T.S. Burkholderia thailandensis<br />

whole cell antigen cross-reacts with B. pseudomallei antibodies from<br />

p<strong>at</strong>ients with melioidosis in an immun<strong>of</strong>luorescent assay. Southeast Asian<br />

J. Trop. Med. Public Health 41, 395-400 (2010).<br />

268. Thepthai, C., Smithtikarn, S., Suksuwan, M., Songsivilai, S. & Dharakul, T.<br />

Serodiagnosis <strong>of</strong> melioidosis by a competitive enzyme-linked<br />

immunosorbent assay using a lipopolysaccharide-specific monoclonal<br />

antibody. Asian Pac. J. Allergy Immunol 23, 127-132 (2005).<br />

269. Phung, L.V. et al. Enzyme-linked immunosorbent assay (ELISA) using a<br />

glycolipid antigen for the serodiagnosis <strong>of</strong> melioidosis. FEMS Immunol.<br />

Med. Microbiol 12, 259-264 (1995).<br />

172


270. Wuthiekanun, V. et al. Evalu<strong>at</strong>ion <strong>of</strong> immunoglobulin M (IgM) and IgG<br />

rapid cassette test kits for diagnosis <strong>of</strong> melioidosis in an area <strong>of</strong> endemicity.<br />

J. Clin. Microbiol 42, 3435-3437 (2004).<br />

271. Chuah, S.C., Gilmore, G. & Norton, R.E. Rapid serological diagnosis <strong>of</strong><br />

melioidosis: an evalu<strong>at</strong>ion <strong>of</strong> a prototype immunochrom<strong>at</strong>ographic test.<br />

P<strong>at</strong>hology 37, 169-171 (2005).<br />

272. Splettstoesser, W.D., Frangoulidis, D. & Puthucheary, S.D. Valid<strong>at</strong>ion and<br />

comparison <strong>of</strong> an extrapolysaccharide (EPS)-based in-house ELISA and the<br />

PanBio melioidosis rapid cassette test-kits for serodiagnosis <strong>of</strong> melioidosis<br />

in a non-endemic area. Trans. R. Soc. Trop. Med. Hyg 102 Suppl 1, S45-<br />

46 (2008).<br />

273. Limm<strong>at</strong>hurotsakul, D. et al. Defining the true sensitivity <strong>of</strong> culture for the<br />

diagnosis <strong>of</strong> melioidosis using Bayesian l<strong>at</strong>ent class models. PLoS ONE 5,<br />

e12485 (2010).<br />

274. Peck, C.R. & Zwanenburg, T. Melioidosis presenting as abscess in neck. Br<br />

Med J 1, 337–338 (1947).<br />

275. Miller, W.R., Pannell, L. & Ingalls, M.S. Experimental chemotherapy in<br />

glanders and melioidosis. Am J Hyg 47, 205-213 (1948).<br />

276. Mirick, G.S., Zimmerman, H.S., Maner, G.D. & Humphrey, A. Melioidosis<br />

on Guam. JAMA 130, 1063–1067 (1946).<br />

277. McDowell, F. & Varney, P.L. Melioidosis, report <strong>of</strong> first case from the<br />

Western Hemisphere. J Am Med Assoc 134, 361 (1947).<br />

278. Cros, R. & Demarchi, J. Note sur l’action in vitro de la chloromycetine sur<br />

le bacille de Whitmore. Ann Inst Pasteur (Paris) 79, 217-221 (1950).<br />

279. Hall, W.H. & Manion, R.E. Antibiotic susceptibility <strong>of</strong> Pseudomonas<br />

pseudomallei. Antimicrob. Agents Chemother 4, 193-195 (1973).<br />

280. Brygoo, E.R. & Henry, E. Action in vitro de divers antibiotiques sur le<br />

bacille de Whitmore. Bull Soc P<strong>at</strong>hol Exot Filiales 46, 279-283 (1953).<br />

281. Chambon, L., De Lajudie, P. & Fournier, J. Etude de la sensibilité du bacille<br />

de Whitmore aux antibiotiques in vitro et chez les malades <strong>at</strong>teints de<br />

mélioidose. Bull Soc P<strong>at</strong>hol Exot Filiales 47, 139-153 (1954).<br />

282. Dunlop, S.J.C. Rapid recovery in a case <strong>of</strong> melioidosis. Documenta de<br />

medicina geographica et tropica 4, 296–300 (1952).<br />

173


283. Chambon, L. Resistance du bacille de Whitmore acquise in vitro et in vivo a<br />

l’egard du chloramphenicol, de l’aureomycine et de la terramycine. Ann<br />

Inst Pasteur (Paris) 88, 315-324 (1955).<br />

284. Tan, A.L. & Tan, M.-L. Melioidosis: antibiogram <strong>of</strong> cases in Singapore<br />

1987-2007. Trans. R. Soc. Trop. Med. Hyg 102 Suppl 1, S101-102 (2008).<br />

285. Moore, R.A., DeShazer, D., Reckseidler, S., Weissman, A. & Woods, D.E.<br />

Efflux-medi<strong>at</strong>ed aminoglycoside and macrolide resistance in Burkholderia<br />

pseudomallei. Antimicrob. Agents Chemother 43, 465-470 (1999).<br />

286. Burtnick, M.N. & Woods, D.E. Isol<strong>at</strong>ion <strong>of</strong> polymyxin B-susceptible<br />

mutants <strong>of</strong> Burkholderia pseudomallei and molecular characteriz<strong>at</strong>ion <strong>of</strong><br />

genetic loci involved in polymyxin B resistance. Antimicrob. Agents<br />

Chemother 43, 2648-2656 (1999).<br />

287. Dance, D.A., Wuthiekanun, V., Chaowagul, W. & White, N.J. The<br />

antimicrobial susceptibility <strong>of</strong> Pseudomonas pseudomallei. Emergence <strong>of</strong><br />

resistance in vitro and during tre<strong>at</strong>ment. J. Antimicrob. Chemother 24,<br />

295-309 (1989).<br />

288. Cheng, A.C., West, T.E. & Peacock, S.J. Surviving sepsis in developing<br />

countries. Crit. Care Med 36, 2487 (2008).<br />

289. Kollef, M.H., Sherman, G., Ward, S. & Fraser, V.J. Inadequ<strong>at</strong>e<br />

antimicrobial tre<strong>at</strong>ment <strong>of</strong> infections: a risk factor for hospital mortality<br />

among critically ill p<strong>at</strong>ients. Chest 115, 462-474 (1999).<br />

290. Ibrahim, E.H., Sherman, G., Ward, S., Fraser, V.J. & Kollef, M.H. The<br />

influence <strong>of</strong> inadequ<strong>at</strong>e antimicrobial tre<strong>at</strong>ment <strong>of</strong> bloodstream infections<br />

on p<strong>at</strong>ient outcomes in the ICU setting. Chest 118, 146-155 (2000).<br />

291. Smith, M.D., Wuthiekanun, V., Walsh, A.L. & White, N.J. In-vitro activity<br />

<strong>of</strong> carbapenem antibiotics against beta-lactam susceptible and resistant<br />

strains <strong>of</strong> Burkholderia pseudomallei. J. Antimicrob. Chemother 37, 611-<br />

615 (1996).<br />

292. Simpson, A.J. et al. Differential antibiotic-induced endotoxin release in<br />

severe melioidosis. J. Infect. Dis 181, 1014-1019 (2000).<br />

293. Chierakul, W. et al. Two randomized controlled trials <strong>of</strong> ceftazidime alone<br />

versus ceftazidime in combin<strong>at</strong>ion with trimethoprim-sulfamethoxazole for<br />

the tre<strong>at</strong>ment <strong>of</strong> severe melioidosis. Clin. Infect. Dis 41, 1105-1113 (2005).<br />

174


294. Chierakul, W. et al. Addition <strong>of</strong> trimethoprim-sulfamethoxazole to<br />

ceftazidime during parenteral tre<strong>at</strong>ment <strong>of</strong> melioidosis is not associ<strong>at</strong>ed<br />

with a long-term outcome benefit. Clin. Infect. Dis 45, 521-523 (2007).<br />

295. Ulett, G.C., Hirst, R., Bowden, B., Powell, K. & Norton, R. A comparison <strong>of</strong><br />

antibiotic regimens in the tre<strong>at</strong>ment <strong>of</strong> acute melioidosis in a mouse model.<br />

J. Antimicrob. Chemother 51, 77-81 (2003).<br />

296. Suputtamongkol, Y. et al. Ceftazidime vs. amoxicillin/clavulan<strong>at</strong>e in the<br />

tre<strong>at</strong>ment <strong>of</strong> severe melioidosis. Clin. Infect. Dis 19, 846-853 (1994).<br />

297. Jenney, A.W., Lum, G., Fisher, D.A. & Currie, B.J. Antibiotic susceptibility<br />

<strong>of</strong> Burkholderia pseudomallei from tropical northern Australia and<br />

implic<strong>at</strong>ions for therapy <strong>of</strong> melioidosis. Int. J. Antimicrob. Agents 17, 109-<br />

113 (2001).<br />

298. Dance, D.A., Wuthiekanun, V., Chaowagul, W., Suputtamongkol, Y. &<br />

White, N.J. Development <strong>of</strong> resistance to ceftazidime and co-amoxiclav in<br />

Pseudomonas pseudomallei. J. Antimicrob. Chemother 28, 321-324 (1991).<br />

299. Thamlikitkul, V. & Trakulsomboon, S. In vitro activity <strong>of</strong> doripenem<br />

against Burkholderia pseudomallei. Antimicrob Agents Chemother<br />

(2009).doi:10.1128/AAC.00893-08<br />

300. Shih, H.-I. et al. Sporadic and outbreak cases <strong>of</strong> melioidosis in southern<br />

Taiwan: clinical fe<strong>at</strong>ures and antimicrobial susceptibility. Infection 37, 9-15<br />

(2009).<br />

301. Thamlikitkul, V. & Trakulsomboon, S. In vitro activity <strong>of</strong> tigecycline against<br />

Burkholderia pseudomallei and Burkholderia thailandensis. Antimicrob<br />

Agents Chemother 50, 1555-7 (2006).<br />

302. Feterl, M., Govan, B., Engler, C., Norton, R. & Ketheesan, N. Activity <strong>of</strong><br />

tigecycline in the tre<strong>at</strong>ment <strong>of</strong> acute Burkholderia pseudomallei infection in<br />

a murine model. Int J Antimicrob Agents 28, 460-4 (2006).<br />

303. Sam, I.-C., See, K.H. & Puthucheary, S.D. Susceptibility <strong>of</strong> Burkholderia<br />

pseudomallei to tigecycline and other antimicrobials. Diagn. Microbiol.<br />

Infect. Dis 67, 308-309 (2010).<br />

304. Sivalingam, S.P., Sim, S.H., Aw, L.T. & Ooi, E.E. Antibiotic susceptibility <strong>of</strong><br />

50 clinical isol<strong>at</strong>es <strong>of</strong> Burkholderia pseudomallei from Singapore. J.<br />

Antimicrob. Chemother 58, 1102-1103 (2006).<br />

175


305. Karunakaran, R. & Puthucheary, S.D. Burkholderia pseudomallei: In vitro<br />

susceptibility to some new and old antimicrobials. Scand J Infect Dis 39,<br />

858-861 (2007).<br />

306. Limm<strong>at</strong>hurotsakul, D. et al. Risk factors for recurrent melioidosis in<br />

northeast Thailand. Clin. Infect. Dis 43, 979-986 (2006).<br />

307. Chaowagul, W., Suputtamongkul, Y., Smith, M.D. & White, N.J. Oral<br />

fluoroquinolones for maintenance tre<strong>at</strong>ment <strong>of</strong> melioidosis. Trans. R. Soc.<br />

Trop. Med. Hyg 91, 599-601 (1997).<br />

308. Chaowagul, W. et al. A comparison <strong>of</strong> chloramphenicol, trimethoprim-<br />

sulfamethoxazole, and doxycycline with doxycycline alone as maintenance<br />

therapy for melioidosis. Clin. Infect. Dis 29, 375-380 (1999).<br />

309. Chetchotisakd, P., Chaowagul, W., Mootsikapun, P., Budhsarawong, D. &<br />

Thinkamrop, B. Maintenance therapy <strong>of</strong> melioidosis with cipr<strong>of</strong>loxacin plus<br />

azithromycin compared with cotrimoxazole plus doxycycline. Am. J. Trop.<br />

Med. Hyg 64, 24-27 (2001).<br />

310. Chaowagul, W. et al. Open-label randomized trial <strong>of</strong> oral trimethoprim-<br />

sulfamethoxazole, doxycycline, and chloramphenicol compared with<br />

trimethoprim-sulfamethoxazole and doxycycline for maintenance therapy<br />

<strong>of</strong> melioidosis. Antimicrob. Agents Chemother 49, 4020-4025 (2005).<br />

311. Berrie, C. Cotrimoxazole as effective without doxycycline for eradic<strong>at</strong>ion <strong>of</strong><br />

melioidosis. DocGuide.com (2011).<strong>at</strong><br />

<br />

312. Dance, D.A., Wuthiekanun, V., Chaowagul, W. & White, N.J. Interactions<br />

in vitro between agents used to tre<strong>at</strong> melioidosis. J. Antimicrob.<br />

Chemother 24, 311-316 (1989).<br />

313. Cheng, A.C. et al. Dosing regimens <strong>of</strong> cotrimoxazole (trimethoprim-<br />

sulfamethoxazole) for melioidosis. Antimicrob. Agents Chemother<br />

(2009).doi:10.1128/AAC.01301-08<br />

314. Sarkar-Tyson, M. & Titball, R.W. Progress toward development <strong>of</strong> vaccines<br />

against melioidosis: A review. Clin Ther 32, 1437-1445 (2010).<br />

315. P<strong>at</strong>el, N. et al. Development <strong>of</strong> vaccines against Burkholderia<br />

pseudomallei. Front Microbiol 2, 198 (2011).<br />

176


316. Peacock, S.J. et al. Management <strong>of</strong> accidental labor<strong>at</strong>ory exposure to<br />

Burkholderia pseudomallei and B. mallei. Emerging Infect. Dis 14, e2<br />

(2008).<br />

317. Wuthiekanun, V. et al. Perasafe, Virkon and bleach are bactericidal for<br />

Burkholderia pseudomallei, a select agent and the cause <strong>of</strong> melioidosis. J.<br />

Hosp. Infect 77, 183-184 (2011).<br />

318. Gal, D. et al. Contamin<strong>at</strong>ion <strong>of</strong> hand wash detergent linked to<br />

occup<strong>at</strong>ionally acquired melioidosis. Am. J. Trop. Med. Hyg 71, 360-362<br />

(2004).<br />

319. Sookpranee, M., Lumbiganon, P., Puapermpoonsiri, S., T<strong>at</strong>tawas<strong>at</strong>ra, A. &<br />

Nopwinyoovongs, J. Contamin<strong>at</strong>ion <strong>of</strong> Savlon solution with Pseudomonas<br />

pseudomallei <strong>at</strong> Srinagarind Hospital. Melioidosis 211–213 (1989).<br />

320. Howard, K. & Inglis, T.J.J. The effect <strong>of</strong> free chlorine on Burkholderia<br />

pseudomallei in potable w<strong>at</strong>er. W<strong>at</strong>er Res 37, 4425-4432 (2003).<br />

321. Inglis, T.J.J., O’Reilly, L., Merritt, A.J., Levy, A. & He<strong>at</strong>h, C. The afterm<strong>at</strong>h<br />

<strong>of</strong> the Western Australian melioidosis outbreak. Am. J. Trop. Med. Hyg<br />

84, 851-857 (2011).<br />

322. O’Connell, H.A. et al. Variability <strong>of</strong> Burkholderia pseudomallei strain<br />

sensitivities to chlorine disinfection. Appl Environ Microbiol 75, 5405-<br />

5409 (2009).<br />

323. Cheng, A.C. et al. A randomized controlled trial <strong>of</strong> granulocyte colony-<br />

stimul<strong>at</strong>ing factor for the tre<strong>at</strong>ment <strong>of</strong> severe sepsis due to melioidosis in<br />

Thailand. Clin. Infect. Dis 45, 308-314 (2007).<br />

324. Metcalf, D. The granulocyte-macrophage colony-stimul<strong>at</strong>ing factors.<br />

Science 229, 16-22 (1985).<br />

325. Easton, A., Haque, A., Chu, K., Lukaszewski, R. & Bancr<strong>of</strong>t, G.J. A critical<br />

role for neutrophils in resistance to experimental infection with<br />

Burkholderia pseudomallei. J. Infect. Dis 195, 99-107 (2007).<br />

326. Cheng, A.C., Stephens, D.P., Anstey, N.M. & Currie, B.J. Adjunctive<br />

granulocyte colony-stimul<strong>at</strong>ing factor for tre<strong>at</strong>ment <strong>of</strong> septic shock due to<br />

melioidosis. Clin. Infect. Dis 38, 32-37 (2004).<br />

327. Finney, S.J., Zekveld, C., Elia, A. & Evans, T.W. Glucose control and<br />

mortality in critically ill p<strong>at</strong>ients. JAMA 290, 2041-2047 (2003).<br />

177


328. Koh, G.C.K.W. et al. Glyburide is anti-inflamm<strong>at</strong>ory and associ<strong>at</strong>ed with<br />

reduced mortality in melioidosis. Clin Infect Dis 52, 717–725 (2011).<br />

329. Bellomo, R. & Egi, M. Glycemic control in the intensive care unit: why we<br />

should wait for NICE-SUGAR. Mayo Clin. Proc 80, 1546-1548 (2005).<br />

330. van den Berghe, G. et al. Intensive insulin therapy in the medical ICU. N.<br />

Engl. J. Med 354, 449-461 (2006).<br />

331. Malmberg, K. et al. Intense metabolic control by means <strong>of</strong> insulin in<br />

p<strong>at</strong>ients with <strong>diabetes</strong> mellitus and acute myocardial infarction (DIGAMI<br />

2): effects on mortality and morbidity. Eur. Heart J 26, 650-661 (2005).<br />

332. Collier, B. et al. The impact <strong>of</strong> a normoglycemic management protocol on<br />

clinical outcomes in the trauma intensive care unit. JPEN J Parenter<br />

Enteral Nutr 29, 353-358; discussion 359 (2005).<br />

333. Finfer, S. et al. Intensive versus conventional glucose control in critically ill<br />

p<strong>at</strong>ients. N. Engl. J. Med 360, 1283-1297 (2009).<br />

334. Griesdale, D.E.G. et al. Intensive insulin therapy and mortality among<br />

critically ill p<strong>at</strong>ients: a meta-analysis including NICE-SUGAR <strong>study</strong> d<strong>at</strong>a.<br />

CMAJ 180, 821-827 (2009).<br />

335. Warren, H.S. Str<strong>at</strong>egies for the tre<strong>at</strong>ment <strong>of</strong> sepsis. N. Engl. J. Med 336,<br />

952-953 (1997).<br />

336. Thomas, L. Notes <strong>of</strong> a Biology W<strong>at</strong>cher: Germs. N. Engl. J. Med 287, 553-<br />

555 (1972).<br />

337. Hinshaw, L.B. et al. Survival <strong>of</strong> prim<strong>at</strong>es in LD100 septic shock following<br />

therapy with antibody to tumor necrosis factor (TNF alpha). Circ. Shock<br />

30, 279-292 (1990).<br />

338. Hinshaw, L.B. et al. Lethal Staphylococcus aureus-induced shock in<br />

prim<strong>at</strong>es: prevention <strong>of</strong> de<strong>at</strong>h with anti-TNF antibody. J Trauma 33, 568-<br />

573 (1992).<br />

339. Ohlsson, K., Björk, P., Bergenfeldt, M., Hageman, R. & Thompson, R.C.<br />

Interleukin-1 receptor antagonist reduces mortality from endotoxin shock.<br />

N<strong>at</strong>ure 348, 550-552 (1990).<br />

340. Alexander, H.R., Doherty, G.M., Buresh, C.M., Venzon, D.J. & Norton, J.A.<br />

A recombinant human receptor antagonist to interleukin 1 improves<br />

survival after lethal endotoxemia in mice. J. Exp. Med 173, 1029-1032<br />

(1991).<br />

178


341. Wakabayashi, G., Gelfand, J.A., Burke, J.F., Thompson, R.C. & Dinarello,<br />

C.A. A specific receptor antagonist for interleukin 1 prevents Escherichia<br />

coli-induced shock in rabbits. FASEB J 5, 338-343 (1991).<br />

342. Fischer, E. et al. Interleukin-1 receptor blockade improves survival and<br />

hemodynamic performance in Escherichia coli septic shock, but fails to<br />

alter host responses to sublethal endotoxemia. J. Clin. Invest 89, 1551-1557<br />

(1992).<br />

343. Alexander, H.R. et al. Recombinant interleukin-1 receptor antagonist (IL-<br />

1ra): effective therapy against gram-neg<strong>at</strong>ive sepsis in r<strong>at</strong>s. Surgery 112,<br />

188-193; discussion 193-194 (1992).<br />

344. Sprung, C.L. et al. The effects <strong>of</strong> high-dose corticosteroids in p<strong>at</strong>ients with<br />

septic shock. A prospective, controlled <strong>study</strong>. N. Engl. J. Med 311, 1137-<br />

1143 (1984).<br />

345. Bone, R.C., Fisher, C.J., Clemmer, T.P., Slotman, G.J. & Metz, C.A. Early<br />

methylprednisolone tre<strong>at</strong>ment for septic syndrome and the adult<br />

respir<strong>at</strong>ory distress syndrome. Chest 92, 1032-1036 (1987).<br />

346. Luce, J.M. et al. Ineffectiveness <strong>of</strong> high-dose methylprednisolone in<br />

preventing parenchymal lung injury and improving mortality in p<strong>at</strong>ients<br />

with septic shock. Am. Rev. Respir. Dis 138, 62-68 (1988).<br />

347. Slotman, G.J., Fisher, C.J., Bone, R.C., Clemmer, T.P. & Metz, C.A.<br />

Detrimental effects <strong>of</strong> high-dose methylprednisolone sodium succin<strong>at</strong>e on<br />

serum concentr<strong>at</strong>ions <strong>of</strong> hep<strong>at</strong>ic and renal function indic<strong>at</strong>ors in severe<br />

sepsis and septic shock. The Methylprednisolone Severe Sepsis Study<br />

Group. Crit. Care Med 21, 191-195 (1993).<br />

348. Annane, D. et al. Effect <strong>of</strong> tre<strong>at</strong>ment with low doses <strong>of</strong> hydrocortisone and<br />

fludrocortisone on mortality in p<strong>at</strong>ients with septic shock. JAMA 288,<br />

862-871 (2002).<br />

349. Briegel, J. et al. Stress doses <strong>of</strong> hydrocortisone reverse hyperdynamic septic<br />

shock: a prospective, randomized, double-blind, single-center <strong>study</strong>. Crit.<br />

Care Med 27, 723-732 (1999).<br />

350. Sprung, C.L. et al. Hydrocortisone therapy for p<strong>at</strong>ients with septic shock.<br />

N. Engl. J. Med 358, 111-124 (2008).<br />

351. Arabi, Y.M. et al. Low-dose hydrocortisone in p<strong>at</strong>ients with cirrhosis and<br />

septic shock: a randomized controlled trial. CMAJ 182, 1971-1977 (2010).<br />

179


352. Tracey, K.J. et al. Anti-cachectin/TNF monoclonal antibodies prevent<br />

septic shock during lethal bacteraemia. N<strong>at</strong>ure 330, 662-664 (1987).<br />

353. Fong, Y. et al. Antibodies to cachectin/tumor necrosis factor reduce<br />

interleukin 1 beta and interleukin 6 appearance during lethal bacteremia. J.<br />

Exp. Med 170, 1627-1633 (1989).<br />

354. Abraham, E. et al. Efficacy and safety <strong>of</strong> monoclonal antibody to human<br />

tumor necrosis factor alpha in p<strong>at</strong>ients with sepsis syndrome. A<br />

randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha<br />

MAb Sepsis Study Group. JAMA 273, 934-941 (1995).<br />

355. Abraham, E. et al. p55 Tumor necrosis factor receptor fusion protein in the<br />

tre<strong>at</strong>ment <strong>of</strong> p<strong>at</strong>ients with severe sepsis and septic shock. A randomized<br />

controlled multicenter trial. Ro 45-2081 Study Group. JAMA 277, 1531-<br />

1538 (1997).<br />

356. Abraham, E. et al. Double-blind randomised controlled trial <strong>of</strong> monoclonal<br />

antibody to human tumour necrosis factor in tre<strong>at</strong>ment <strong>of</strong> septic shock.<br />

NORASEPT II Study Group. Lancet 351, 929-933 (1998).<br />

357. Abraham, E. et al. Lenercept (p55 tumor necrosis factor receptor fusion<br />

protein) in severe sepsis and early septic shock: a randomized, double-<br />

blind, placebo-controlled, multicenter phase III trial with 1,342 p<strong>at</strong>ients.<br />

Crit. Care Med 29, 503-510 (2001).<br />

358. Cohen, J. & Carlet, J. INTERSEPT: an intern<strong>at</strong>ional, multicenter, placebo-<br />

controlled trial <strong>of</strong> monoclonal antibody to human tumor necrosis factor-<br />

alpha in p<strong>at</strong>ients with sepsis. Intern<strong>at</strong>ional Sepsis Trial Study Group. Crit.<br />

Care Med 24, 1431-1440 (1996).<br />

359. Lertmemongkolchai, G., Cai, G., Hunter, C.A. & Bancr<strong>of</strong>t, G.J. Bystander<br />

activ<strong>at</strong>ion <strong>of</strong> CD8+ T cells contributes to the rapid production <strong>of</strong> IFN-<br />

gamma in response to bacterial p<strong>at</strong>hogens. J. Immunol 166, 1097-1105<br />

(2001).<br />

360. Fisher, C.J. et al. Initial evalu<strong>at</strong>ion <strong>of</strong> human recombinant interleukin-1<br />

receptor antagonist in the tre<strong>at</strong>ment <strong>of</strong> sepsis syndrome: a randomized,<br />

open-label, placebo-controlled multicenter trial. Crit. Care Med 22, 12-21<br />

(1994).<br />

361. Fisher, C.J. et al. Recombinant human interleukin 1 receptor antagonist in<br />

the tre<strong>at</strong>ment <strong>of</strong> p<strong>at</strong>ients with sepsis syndrome. Results from a<br />

180


andomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra<br />

Sepsis Syndrome Study Group. JAMA 271, 1836-1843 (1994).<br />

362. Opal, S.M. et al. Confirm<strong>at</strong>ory interleukin-1 receptor antagonist trial in<br />

severe sepsis: a phase III, randomized, double-blind, placebo-controlled,<br />

multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis<br />

Investig<strong>at</strong>or Group. Crit. Care Med 25, 1115-1124 (1997).<br />

363. Masiello, S.A. & Siegel, J.P. License 125029/0. (2001).<strong>at</strong><br />

<br />

364. Hosac, A.M. Drotrecogin alfa (activ<strong>at</strong>ed): the first FDA-approved tre<strong>at</strong>ment<br />

for severe sepsis. Proc (Bayl Univ Med Cent) 15, 224-227 (2002).<br />

365. Bernard, G.R. et al. Efficacy and safety <strong>of</strong> recombinant human activ<strong>at</strong>ed<br />

protein C for severe sepsis. N. Engl. J. Med 344, 699-709 (2001).<br />

366. LaRosa, S.P. et al. Decreased protein C, protein S, and antithrombin levels<br />

are predictive <strong>of</strong> poor outcome in Gram-neg<strong>at</strong>ive sepsis caused by<br />

Burkholderia pseudomallei. Int. J. Infect. Dis 10, 25-31 (2006).<br />

367. Wiersinga, W.J. et al. Activ<strong>at</strong>ion <strong>of</strong> coagul<strong>at</strong>ion with concurrent<br />

impairment <strong>of</strong> anticoagulant mechanisms correl<strong>at</strong>es with a poor outcome<br />

in severe melioidosis. J. Thromb. Haemost 6, 32-39 (2008).<br />

368. Brown, A.E. et al. Immune cell activ<strong>at</strong>ion in melioidosis: increased serum<br />

levels <strong>of</strong> interferon-gamma and soluble interleukin-2 receptors without<br />

change in soluble CD8 protein. J. Infect. Dis 163, 1145-1148 (1991).<br />

369. Propst, K.L., Troyer, R.M., Kellihan, L.M., Schweizer, H.P. & Dow, S.W.<br />

Immunotherapy markedly increases the effectiveness <strong>of</strong> antimicrobial<br />

therapy for tre<strong>at</strong>ment <strong>of</strong> Burkholderia pseudomallei infection. Antimicrob<br />

Agents Chemother (2010).doi:10.1128/AAC.01513-09<br />

370. Gao, X.-F., Yang, Z.-W. & Li, J. Adjunctive therapy with interferon-gamma<br />

for the tre<strong>at</strong>ment <strong>of</strong> pulmonary tuberculosis: a system<strong>at</strong>ic review. Int J<br />

Infect Dis (2011).doi:10.1016/j.ijid.2011.05.002<br />

371. Koh, G.C.K.W. & Limm<strong>at</strong>hurotsakul, D. Gamma interferon<br />

supplement<strong>at</strong>ion for melioidosis. Antimicrob. Agents Chemother 54, 4520<br />

(2010).<br />

372. Santanirand, P., Harley, V.S., Dance, D.A., Drasar, B.S. & Bancr<strong>of</strong>t, G.J.<br />

Oblig<strong>at</strong>ory role <strong>of</strong> gamma interferon for host survival in a murine model <strong>of</strong><br />

181


infection with Burkholderia pseudomallei. Infect. Immun 67, 3593-3600<br />

(1999).<br />

373. Greenawald, K.A., Nash, G. & Foley, F.D. Acute systemic melioidosis.<br />

Autopsy findings in four p<strong>at</strong>ients. Am. J. Clin. P<strong>at</strong>hol 52, 188-198 (1969).<br />

374. Piggott, J.A. & Hochholzer, L. Human melioidosis. A histop<strong>at</strong>hologic <strong>study</strong><br />

<strong>of</strong> acute and chronic melioidosis. Arch P<strong>at</strong>hol 90, 101-111 (1970).<br />

375. Lauw, F.N. et al. Elev<strong>at</strong>ed plasma concentr<strong>at</strong>ions <strong>of</strong> interferon (IFN)-<br />

gamma and the IFN-gamma-inducing cytokines interleukin (IL)-18, IL-12,<br />

and IL-15 in severe melioidosis. J. Infect. Dis 180, 1878-1885 (1999).<br />

376. Lauw, F.N. et al. The CXC chemokines gamma interferon (IFN-gamma)-<br />

inducible protein 10 and monokine induced by IFN-gamma are released<br />

during severe melioidosis. Infect. Immun 68, 3888-3893 (2000).<br />

377. Calandra, T. et al. Prognostic values <strong>of</strong> tumor necrosis factor/cachectin,<br />

interleukin-1, interferon-alpha, and interferon-gamma in the serum <strong>of</strong><br />

p<strong>at</strong>ients with septic shock. Swiss-Dutch J5 Immunoglobulin Study Group.<br />

J. Infect. Dis 161, 982-987 (1990).<br />

378. Pinsky, M.R. et al. Serum cytokine levels in human septic shock. Rel<strong>at</strong>ion<br />

to multiple-system organ failure and mortality. Chest 103, 565-575 (1993).<br />

379. Ahmed, K. et al. Increased serum levels <strong>of</strong> interferon-gamma and<br />

interleukin-12 during human brucellosis. Am. J. Trop. Med. Hyg 61, 425-<br />

427 (1999).<br />

380. Brown, A.E., Rieder, K.T. & Webster, H.K. Prolonged elev<strong>at</strong>ions <strong>of</strong> soluble<br />

interleukin-2 receptors in tuberculosis. Am. Rev. Respir. Dis 139, 1036-<br />

1038 (1989).<br />

381. He, X.-Y. et al. T regul<strong>at</strong>ory cells and Th1/Th2 cytokines in peripheral<br />

blood from tuberculosis p<strong>at</strong>ients. Eur. J. Clin. Microbiol. Infect. Dis 29,<br />

643-650 (2010).<br />

382. Kornelisse, R.F. et al. Intr<strong>at</strong>hecal production <strong>of</strong> interleukin-12 and gamma<br />

interferon in p<strong>at</strong>ients with bacterial meningitis. Infect. Immun 65, 877-881<br />

(1997).<br />

383. Bjerre, A., Brusletto, B., Høiby, E.A., Kierulf, P. & Brandtzaeg, P. Plasma<br />

interferon-gamma and interleukin-10 concentr<strong>at</strong>ions in systemic<br />

meningococcal disease compared with severe systemic Gram-positive<br />

septic shock. Crit. Care Med 32, 433-438 (2004).<br />

182


384. Hazelzet, J.A. et al. Interleukin 12 levels during the initial phase <strong>of</strong> septic<br />

shock with purpura in children: rel<strong>at</strong>ion to severity <strong>of</strong> disease. Cytokine 9,<br />

711-716 (1997).<br />

385. Sheikh, A. et al. Interferon-γ and prolifer<strong>at</strong>ion responses to Salmonella<br />

enterica serotype Typhi proteins in p<strong>at</strong>ients with S. Typhi bacteremia in<br />

Dhaka, Bangladesh. PLoS Negl Trop Dis 5, e1193 (2011).<br />

386. Murray, H.W., Rubin, B.Y., Carriero, S.M., Harris, A.M. & Jaffee, E.A.<br />

Human mononuclear phagocyte antiprotozoal mechanisms: oxygen-<br />

dependent vs oxygen-independent activity against intracellular<br />

Toxoplasma gondii. J. Immunol 134, 1982-1988 (1985).<br />

387. Nacy, C.A., Fortier, A.H., Meltzer, M.S., Buchmeier, N.A. & Schreiber, R.D.<br />

Macrophage activ<strong>at</strong>ion to kill Leishmania major: activ<strong>at</strong>ion <strong>of</strong> macrophages<br />

for intracellular destruction <strong>of</strong> amastigotes can be induced by both<br />

recombinant interferon-gamma and non-interferon lymphokines. J.<br />

Immunol 135, 3505-3511 (1985).<br />

388. Buchmeier, N.A. & Schreiber, R.D. Requirement <strong>of</strong> endogenous interferon-<br />

gamma production for resolution <strong>of</strong> Listeria monocytogenes infection.<br />

Proc. N<strong>at</strong>l. Acad. Sci. U.S.A 82, 7404-7408 (1985).<br />

389. Henle, W. & Henle, G. The effect <strong>of</strong> ultraviolet irradi<strong>at</strong>ion on various<br />

properties. J. Exp. Med. 85, 347–364 (1947).<br />

390. Isaacs, A. & Lindenmann, J. Virus interference. I. The Interferon.<br />

Proceedings <strong>of</strong> the Royal Society B 147, 258–267 (1957).<br />

391. Havell, E.A. et al. Two antigenically distinct species <strong>of</strong> human interferon.<br />

Proc. N<strong>at</strong>l. Acad. Sci. U.S.A 72, 2185-2187 (1975).<br />

392. Stewart II, W.E. et al. Distinct molecular species <strong>of</strong> human interferons:<br />

requirements for stabilz<strong>at</strong>ion and reactiv<strong>at</strong>ion <strong>of</strong> human leukocyte and<br />

fibroblast interferons. J. Gen. Virol 26, 327-331 (1975).<br />

393. Grob, P.M. & Chadha, K.C. Separ<strong>at</strong>ion <strong>of</strong> human leukocyte interferon<br />

components by concanavalin A-agarose affinity chrom<strong>at</strong>ography and their<br />

characteriz<strong>at</strong>ion. Biochemistry 18, 5782-5786 (1979).<br />

394. N<strong>at</strong>han, C.F., Remold, H.G. & David, J.R. Characteriz<strong>at</strong>ion <strong>of</strong> a lymphocyte<br />

factor which alters macrophage functions. J. Exp. Med 137, 275-290<br />

(1973).<br />

183


395. Gray, P.W. & Goeddel, D.V. Structure <strong>of</strong> the human immune interferon<br />

gene. N<strong>at</strong>ure 298, 859-863 (1982).<br />

396. Gray, P.W. & Goeddel, D.V. Human immune interferon (IFN-gamma) gene<br />

sequence and structure. Basic Life Sci 25, 35-61 (1983).<br />

397. Kleinschmidt, W.J. & Schultz, R.M. Similarities <strong>of</strong> murine gamma<br />

interferon and the lymphokine th<strong>at</strong> renders macrophages cytotoxic. J.<br />

Interferon Res 2, 291-299 (1982).<br />

398. Roberts, W.K. & Vasil, A. Evidence for the identity <strong>of</strong> murine gamma<br />

interferon and macrophage activ<strong>at</strong>ing factor. J. Interferon Res 2, 519-532<br />

(1982).<br />

399. Schultz, R.M. & Kleinschmidt, W.J. Functional identity between murine<br />

gamma interferon and macrophage activ<strong>at</strong>ing factor. N<strong>at</strong>ure 305, 239-240<br />

(1983).<br />

400. Fukazawa, Y. et al. Biological and biochemical characteriz<strong>at</strong>ion <strong>of</strong><br />

macrophage activ<strong>at</strong>ing factor (MAF) in murine lymphocytes:<br />

physiocochemical similarity <strong>of</strong> MAF to gamma interferon (IFN-gamma).<br />

Microbiol. Immunol 28, 691-702 (1984).<br />

401. Svedersky, L.P. et al. Biological and antigenic similarities <strong>of</strong> murine<br />

interferon-gamma and macrophage-activ<strong>at</strong>ing factor. J. Exp. Med 159,<br />

812-827 (1984).<br />

402. Wheeler, A.P. & Bernard, G.R. Tre<strong>at</strong>ing p<strong>at</strong>ients with severe sepsis. N.<br />

Engl. J. Med 340, 207-214 (1999).<br />

403. Heinzel, F.P. The role <strong>of</strong> IFN-gamma in the p<strong>at</strong>hology <strong>of</strong> experimental<br />

endotoxemia. J. Immunol 145, 2920-2924 (1990).<br />

404. Car, B.D. et al. Interferon gamma receptor deficient mice are resistant to<br />

endotoxic shock. J. Exp. Med 179, 1437-1444 (1994).<br />

405. Fink, M.P. & Heard, S.O. Labor<strong>at</strong>ory models <strong>of</strong> sepsis and septic shock. J.<br />

Surg. Res 49, 186-196 (1990).<br />

406. Poli-de-Figueiredo, L.F., Garrido, A.G., Nakagawa, N. & Sannomiya, P.<br />

Experimental models <strong>of</strong> sepsis and their clinical relevance. Shock 30<br />

Suppl 1, 53-59 (2008).<br />

407. Zeni, F., Freeman, B. & N<strong>at</strong>anson, C. Anti-inflamm<strong>at</strong>ory therapies to tre<strong>at</strong><br />

sepsis and septic shock: a reassessment. Crit. Care Med 25, 1095-1100<br />

(1997).<br />

184


408. Belik<strong>of</strong>f, B. & Buras, J.A. A practical approach to animal models <strong>of</strong> sepsis.<br />

Sourcebook <strong>of</strong> Models for Biomedical Research 473–482 (2008).<strong>at</strong><br />

<br />

409. Koo, G.C. & Gan, Y.-H. The inn<strong>at</strong>e interferon gamma response <strong>of</strong> BALB/c<br />

and C57BL/6 mice to in vitro Burkholderia pseudomallei infection. BMC<br />

Immunol 7, 19 (2006).<br />

410. Haque, A. et al. Role <strong>of</strong> T cells in inn<strong>at</strong>e and adaptive immunity against<br />

murine Burkholderia pseudomallei infection. J. Infect. Dis 193, 370-379<br />

(2006).<br />

411. Wiersinga, W.J. et al. Endogenous interleukin-18 improves the early<br />

antimicrobial host response in severe melioidosis. Infect. Immun 75, 3739-<br />

3746 (2007).<br />

412. Friedland, J.S. et al. Prolonged elev<strong>at</strong>ion <strong>of</strong> interleukin-8 and interleukin-6<br />

concentr<strong>at</strong>ions in plasma and <strong>of</strong> leukocyte interleukin-8 mRNA levels<br />

during septicemic and localized Pseudomonas pseudomallei infection.<br />

Infect. Immun 60, 2402-2408 (1992).<br />

413. Trinchieri, G. Cytokines acting on or secreted by macrophages during<br />

intracellular infection (IL-10, IL-12, IFN-gamma). Curr. Opin. Immunol 9,<br />

17-23 (1997).<br />

414. Hemmi, H. et al. Small anti-viral compounds activ<strong>at</strong>e immune cells via the<br />

TLR7 MyD88-dependent signaling p<strong>at</strong>hway. N<strong>at</strong>. Immunol 3, 196-200<br />

(2002).<br />

415. Nguyen, K.B. et al. Coordin<strong>at</strong>ed and distinct roles for IFN-alpha beta, IL-<br />

12, and IL-15 regul<strong>at</strong>ion <strong>of</strong> NK cell responses to viral infection. J. Immunol<br />

169, 4279-4287 (2002).<br />

416. West, T.E., Ernst, R.K., Jansson-Hutson, M.J. & Skerrett, S.J. Activ<strong>at</strong>ion <strong>of</strong><br />

Toll-like receptors by Burkholderia pseudomallei. BMC Immunol 9, 46<br />

(2008).<br />

417. Suputtamongkol, Y., Kwi<strong>at</strong>kowski, D., Dance, D.A., Chaowagul, W. &<br />

White, N.J. Tumor necrosis factor in septicemic melioidosis. J. Infect. Dis<br />

165, 561-564 (1992).<br />

418. Collart, M.A., Belin, D., Vassalli, J.D., de Kossodo, S. & Vassalli, P. Gamma<br />

interferon enhances macrophage transcription <strong>of</strong> the tumor necrosis<br />

185


factor/cachectin, interleukin 1, and urokinase genes, which are controlled<br />

by short-lived repressors. J. Exp. Med 164, 2113-2118 (1986).<br />

419. Myers, M.J., Ghildyal, N. & Schook, L.B. Endotoxin and interferon-gamma<br />

differentially regul<strong>at</strong>e the transcriptional levels <strong>of</strong> proto-oncogenes and<br />

cytokine genes during the differenti<strong>at</strong>ion <strong>of</strong> colony-stimul<strong>at</strong>ing factor type-<br />

1-derived macrophages. Immunology 85, 318-324 (1995).<br />

420. Farber, J.M. Mig and IP-10: CXC chemokines th<strong>at</strong> target lymphocytes. J.<br />

Leukoc. Biol 61, 246-257 (1997).<br />

421. Simpson, A.J. et al. Prognostic value <strong>of</strong> cytokine concentr<strong>at</strong>ions (tumor<br />

necrosis factor-alpha, interleukin-6, and interleukin-10) and clinical<br />

parameters in severe melioidosis. J. Infect. Dis 181, 621-625 (2000).<br />

422. Shi, Z. et al. A novel Toll-like receptor th<strong>at</strong> recognizes vesicular stom<strong>at</strong>itis<br />

virus. J. Biol. Chem 286, 4517-4524 (2011).<br />

423. Heday<strong>at</strong>, M., Netea, M.G. & Rezaei, N. Targeting <strong>of</strong> Toll-like receptors: a<br />

decade <strong>of</strong> progress in comb<strong>at</strong>ing infectious diseases. Lancet Infect Dis 11,<br />

702–712 (2011).<br />

424. Kawai, T. & Akira, S. The role <strong>of</strong> p<strong>at</strong>tern-recognition receptors in inn<strong>at</strong>e<br />

immunity: upd<strong>at</strong>e on Toll-like receptors. N<strong>at</strong>. Immunol 11, 373-384<br />

(2010).<br />

425. Leulier, F. & Lemaitre, B. Toll-like receptors—taking an evolutionary<br />

approach. N<strong>at</strong>. Rev. Genet 9, 165-178 (2008).<br />

426. Casanova, J.-L., Abel, L. & Quintana-Murci, L. Human TLRs and IL-1Rs in<br />

host defense: n<strong>at</strong>ural insights from evolutionary, epidemiological, and<br />

clinical genetics. Annu. Rev. Immunol 29, 447-491 (2011).<br />

427. Wiersinga, W.J., Wieland, C.W., Roel<strong>of</strong>s, J.J.T.H. & van der Poll, T. MyD88<br />

dependent signaling contributes to protective host defense against<br />

Burkholderia pseudomallei. PLoS ONE 3, e3494 (2008).<br />

428. Chin, C.-Y., Monack, D.M. & N<strong>at</strong>han, S. Genome wide transcriptome<br />

pr<strong>of</strong>iling <strong>of</strong> a murine acute melioidosis model reveals new insights into how<br />

Burkholderia pseudomallei overcomes host inn<strong>at</strong>e immunity. BMC<br />

Genomics 11, 672 (2010).<br />

429. Li, Q. & Verma, I.M. NF-kappaB regul<strong>at</strong>ion in the immune system. N<strong>at</strong>.<br />

Rev. Immunol 2, 725-734 (2002).<br />

186


430. Karin, M., Cao, Y., Greten, F.R. & Li, Z.-W. NF-kappaB in cancer: from<br />

innocent bystander to major culprit. N<strong>at</strong>. Rev. Cancer 2, 301-310 (2002).<br />

431. Takeda, K. & Akira, S. TLR signaling p<strong>at</strong>hways. Semin. Immunol 16, 3-9<br />

(2004).<br />

432. Burstein, E. & Duckett, C.S. Dying for NF-kappaB? Control <strong>of</strong> cell de<strong>at</strong>h by<br />

transcriptional regul<strong>at</strong>ion <strong>of</strong> the apoptotic machinery. Curr. Opin. Cell Biol<br />

15, 732-737 (2003).<br />

433. Piva, R., Belardo, G. & Santoro, M.G. NF-kappaB: a stress-regul<strong>at</strong>ed switch<br />

for cell survival. Antioxid. Redox Signal 8, 478-486 (2006).<br />

434. Sutmuller, R.P.M. et al. Toll-like receptor 2 controls expansion and<br />

function <strong>of</strong> regul<strong>at</strong>ory T cells. J. Clin. Invest 116, 485-494 (2006).<br />

435. Fitzgerald, K.A. & Chen, Z.J. Sorting out Toll signals. Cell 125, 834-836<br />

(2006).<br />

436. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other<br />

inn<strong>at</strong>e receptors in infection and immunity. Immunity 34, 637-650 (2011).<br />

437. Akira, S., Uem<strong>at</strong>su, S. & Takeuchi, O. P<strong>at</strong>hogen recognition and inn<strong>at</strong>e<br />

immunity. Cell 124, 783-801 (2006).<br />

438. Muzio, M. et al. Differential expression and regul<strong>at</strong>ion <strong>of</strong> toll-like receptors<br />

(TLR) in human leukocytes: selective expression <strong>of</strong> TLR3 in dendritic cells.<br />

J. Immunol 164, 5998-6004 (2000).<br />

439. Hornung, V. et al. Quantit<strong>at</strong>ive expression <strong>of</strong> toll-like receptor 1-10 mRNA<br />

in cellular subsets <strong>of</strong> human peripheral blood mononuclear cells and<br />

sensitivity to CpG oligodeoxynucleotides. J. Immunol 168, 4531-4537<br />

(2002).<br />

440. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr<br />

mice: mut<strong>at</strong>ions in Tlr4 gene. Science 282, 2085-2088 (1998).<br />

441. Anuntagool, N. et al. Lipopolysaccharide heterogeneity among<br />

Burkholderia pseudomallei from different geographic and clinical origins.<br />

Am. J. Trop. Med. Hyg 74, 348-352 (2006).<br />

442. Schromm, A.B. et al. Molecular genetic analysis <strong>of</strong> an endotoxin<br />

nonresponder mutant cell line: a point mut<strong>at</strong>ion in a conserved region <strong>of</strong><br />

MD-2 abolishes endotoxin-induced signaling. J. Exp. Med 194, 79-88<br />

(2001).<br />

187


443. West, T.E. et al. Toll-like receptor 4 region genetic variants are associ<strong>at</strong>ed<br />

with susceptibility to melioidosis. Genes Immun<br />

(2011).doi:10.1038/gene.2011.49<br />

444. Morici, L.A., Heang, J., T<strong>at</strong>e, T., Didier, P.J. & Roy, C.J. Differential<br />

susceptibility <strong>of</strong> inbred mouse strains to Burkholderia thailandensis aerosol<br />

infection. Microb. P<strong>at</strong>hog (2009).doi:10.1016/j.micp<strong>at</strong>h.2009.10.004<br />

445. West, T.E., Hawn, T.R. & Skerrett, S.J. Toll-like receptor signaling in<br />

airborne Burkholderia thailandensis infection. Infect. Immun 77, 5612-<br />

5622 (2009).<br />

446. Utaisincharoen, P. et al. Kinetic studies <strong>of</strong> the production <strong>of</strong> nitric oxide<br />

(NO) and tumour necrosis factor-alpha (TNF-alpha) in macrophages<br />

stimul<strong>at</strong>ed with Burkholderia pseudomallei endotoxin. Clin. Exp. Immunol<br />

122, 324-329 (2000).<br />

447. Dziarski, R. & Gupta, D. Role <strong>of</strong> MD-2 in TLR2- and TLR4-medi<strong>at</strong>ed<br />

recognition <strong>of</strong> Gram-neg<strong>at</strong>ive and Gram-positive bacteria and activ<strong>at</strong>ion <strong>of</strong><br />

chemokine genes. J. Endotoxin Res 6, 401-405 (2000).<br />

448. Bernheiden, M. et al. LBP, CD14, TLR4 and the murine inn<strong>at</strong>e immune<br />

response to a peritoneal Salmonella infection. J. Endotoxin Res 7, 447-450<br />

(2001).<br />

449. Wang, X. et al. Toll-like receptor 4 medi<strong>at</strong>es inn<strong>at</strong>e immune responses to<br />

Haemophilus influenzae infection in mouse lung. J. Immunol 168, 810-815<br />

(2002).<br />

450. van Westerloo, D.J. et al. Toll-like receptor 4 deficiency and acute<br />

pancre<strong>at</strong>itis act similarly in reducing host defense during murine<br />

Escherichia coli peritonitis. Crit. Care Med 33, 1036-1043 (2005).<br />

451. Knapp, S. et al. Differential roles <strong>of</strong> CD14 and toll-like receptors 4 and 2 in<br />

murine Acinetobacter pneumonia. Am. J. Respir. Crit. Care Med 173, 122-<br />

129 (2006).<br />

452. Ting, J.P.-Y. et al. The NLR gene family: a standard nomencl<strong>at</strong>ure.<br />

Immunity 28, 285-287 (2008).<br />

453. Hibino, T. et al. The immune gene repertoire encoded in the purple sea<br />

urchin genome. Dev. Biol 300, 349-365 (2006).<br />

454. Inohara, N. & Nuñez, G. NODs: intracellular proteins involved in<br />

inflamm<strong>at</strong>ion and apoptosis. N<strong>at</strong>. Rev. Immunol 3, 371-382 (2003).<br />

188


455. Strober, W., Murray, P.J., Kitani, A. & W<strong>at</strong>anabe, T. Signalling p<strong>at</strong>hways<br />

and molecular interactions <strong>of</strong> NOD1 and NOD2. N<strong>at</strong>. Rev. Immunol 6, 9-<br />

20 (2006).<br />

456. Le Bourhis, L., Benko, S. & Girardin, S.E. Nod1 and Nod2 in inn<strong>at</strong>e<br />

immunity and human inflamm<strong>at</strong>ory disorders. Biochem. Soc. Trans 35,<br />

1479-1484 (2007).<br />

457. Pudla, M., Kananuruk, A., Limposuwan, K., Sirisinha, S. & Utaisincharoen,<br />

P. Nucleotide-binding oligomeriz<strong>at</strong>ion domain-containing protein 2<br />

regul<strong>at</strong>es suppressor <strong>of</strong> cytokine signaling 3 expression in Burkholderia<br />

pseudomallei- infected mouse macrophage cell line RAW 264.7. Inn<strong>at</strong>e<br />

Immun (2010).doi:10.1177/1753425910385484<br />

458. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular<br />

pl<strong>at</strong>form triggering activ<strong>at</strong>ion <strong>of</strong> inflamm<strong>at</strong>ory caspases and processing <strong>of</strong><br />

proIL-beta. Mol. Cell 10, 417-426 (2002).<br />

459. Franchi, L., Eigenbrod, T., Muñoz-Planillo, R. & Nuñez, G. The<br />

inflammasome: a caspase-1-activ<strong>at</strong>ion pl<strong>at</strong>form th<strong>at</strong> regul<strong>at</strong>es immune<br />

responses and disease p<strong>at</strong>hogenesis. N<strong>at</strong>. Immunol 10, 241-247 (2009).<br />

460. Faustin, B. et al. Reconstituted NALP1 inflammasome reveals two-step<br />

mechanism <strong>of</strong> caspase-1 activ<strong>at</strong>ion. Mol. Cell 25, 713-724 (2007).<br />

461. Grenier, J.M. et al. Functional screening <strong>of</strong> five PYPAF family members<br />

identifies PYPAF5 as a novel regul<strong>at</strong>or <strong>of</strong> NF-kappaB and caspase-1. FEBS<br />

Lett 530, 73-78 (2002).<br />

462. Wang, L. et al. PYPAF7, a novel PYRIN-containing Apaf1-like protein th<strong>at</strong><br />

regul<strong>at</strong>es activ<strong>at</strong>ion <strong>of</strong> NF-kappa B and caspase-1-dependent cytokine<br />

processing. J. Biol. Chem 277, 29874-29880 (2002).<br />

463. Dowds, T.A. et al. Regul<strong>at</strong>ion <strong>of</strong> cryopyrin/Pypaf1 signaling by pyrin, the<br />

familial Mediterranean fever gene product. Biochem. Biophys. Res.<br />

Commun 302, 575-580 (2003).<br />

464. Mari<strong>at</strong>hasan, S. et al. Differential activ<strong>at</strong>ion <strong>of</strong> the inflammasome by<br />

caspase-1 adaptors ASC and Ipaf. N<strong>at</strong>ure 430, 213-218 (2004).<br />

465. Miao, E.A. et al. Cytoplasmic flagellin activ<strong>at</strong>es caspase-1 and secretion <strong>of</strong><br />

interleukin 1beta via Ipaf. N<strong>at</strong>. Immunol 7, 569-575 (2006).<br />

189


466. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activ<strong>at</strong>ion <strong>of</strong> caspase-1<br />

and interleukin 1beta in salmonella-infected macrophages. N<strong>at</strong>. Immunol<br />

7, 576-582 (2006).<br />

467. Miao, E.A. et al. Inn<strong>at</strong>e immune detection <strong>of</strong> the type III secretion<br />

appar<strong>at</strong>us through the NLRC4 inflammasome. Proc. N<strong>at</strong>l. Acad. Sci. U.S.A<br />

107, 3076-3080 (2010).<br />

468. Lightfield, K.L. et al. Critical function for Naip5 in inflammasome<br />

activ<strong>at</strong>ion by a conserved carboxy-terminal domain <strong>of</strong> flagellin. N<strong>at</strong>.<br />

Immunol 9, 1171-1178 (2008).<br />

469. Franchi, L. et al. Critical role for Ipaf in Pseudomonas aeruginosa-induced<br />

caspase-1 activ<strong>at</strong>ion. Eur. J. Immunol 37, 3030-3039 (2007).<br />

470. Sutterwala, F.S. et al. Immune recognition <strong>of</strong> Pseudomonas aeruginosa<br />

medi<strong>at</strong>ed by the IPAF/NLRC4 inflammasome. J. Exp. Med 204, 3235-<br />

3245 (2007).<br />

471. Re, F., Sahoo, M., Ceballos-Olivera, I., Bina, J. & Miller, M. Critical role <strong>of</strong><br />

the NLRC4 inflammasome and IL-18 during mouse lung infection with<br />

virulent Burkholderia pseudomallei. Decoding Inn<strong>at</strong>e Immunity A157<br />

(2011).<br />

472. Sun, G.W., Lu, J., Pervaiz, S., Cao, W.P. & Gan, Y.-H. Caspase-1 dependent<br />

macrophage de<strong>at</strong>h induced by Burkholderia pseudomallei. Cell. Microbiol<br />

7, 1447-1458 (2005).<br />

473. Breitbach, K. et al. Caspase-1 medi<strong>at</strong>es resistance in murine melioidosis.<br />

Infect Immun (2009).doi:10.1128/IAI.01257-08<br />

474. Black, R.A. et al. Gener<strong>at</strong>ion <strong>of</strong> biologically active interleukin-1 beta by<br />

proteolytic cleavage <strong>of</strong> the inactive precursor. J. Biol. Chem 263, 9437-<br />

9442 (1988).<br />

475. Black, R.A., Kronheim, S.R., Merriam, J.E., March, C.J. & Hopp, T.P. A<br />

pre-aspart<strong>at</strong>e-specific protease from human leukocytes th<strong>at</strong> cleaves pro-<br />

interleukin-1 beta. J. Biol. Chem 264, 5323-5326 (1989).<br />

476. Kostura, M.J. et al. Identific<strong>at</strong>ion <strong>of</strong> a monocyte specific pre-interleukin 1<br />

beta convertase activity. Proc. N<strong>at</strong>l. Acad. Sci. U.S.A 86, 5227-5231 (1989).<br />

477. Howard, A.D. et al. IL-1-converting enzyme requires aspartic acid residues<br />

for processing <strong>of</strong> the IL-1 beta precursor <strong>at</strong> two distinct sites and does not<br />

cleave 31-kDa IL-1 alpha. J. Immunol 147, 2964-2969 (1991).<br />

190


478. Cerretti, D.P. et al. Molecular cloning <strong>of</strong> the interleukin-1 beta converting<br />

enzyme. Science 256, 97-100 (1992).<br />

479. Thornberry, N.A. et al. A novel heterodimeric cysteine protease is required<br />

for interleukin-1 beta processing in monocytes. N<strong>at</strong>ure 356, 768-774<br />

(1992).<br />

480. Thornberry, N.A. The caspase family <strong>of</strong> cysteine proteases. Br. Med. Bull<br />

53, 478-490 (1997).<br />

481. Alnemri, E.S. et al. Human ICE/CED-3 protease nomencl<strong>at</strong>ure. Cell 87, 171<br />

(1996).<br />

482. Saleh, M. et al. Enhanced bacterial clearance and sepsis resistance in<br />

caspase-12-deficient mice. N<strong>at</strong>ure 440, 1064-1068 (2006).<br />

483. Xue, Y. et al. Spread <strong>of</strong> an inactive form <strong>of</strong> caspase-12 in humans is due to<br />

recent positive selection. Am J Hum Genet 78, 659–670 (2006).<br />

484. Martinon, F. & Tschopp, J. Inflamm<strong>at</strong>ory caspases: linking an intracellular<br />

inn<strong>at</strong>e immune system to autoinflamm<strong>at</strong>ory diseases. Cell 117, 561-574<br />

(2004).<br />

485. Ghayur, T. et al. Caspase-1 processes IFN-gamma-inducing factor and<br />

regul<strong>at</strong>es LPS-induced IFN-gamma production. N<strong>at</strong>ure 386, 619-623<br />

(1997).<br />

486. Gu, Y. et al. Activ<strong>at</strong>ion <strong>of</strong> interferon-gamma inducing factor medi<strong>at</strong>ed by<br />

interleukin-1beta converting enzyme. Science 275, 206-209 (1997).<br />

487. Fantuzzi, G., Puren, A.J., Harding, M.W., Livingston, D.J. & Dinarello, C.A.<br />

Interleukin-18 regul<strong>at</strong>ion <strong>of</strong> interferon gamma production and cell<br />

prolifer<strong>at</strong>ion as shown in interleukin-1beta-converting enzyme (caspase-1)-<br />

deficient mice. Blood 91, 2118-2125 (1998).<br />

488. Fantuzzi, G., Reed, D.A. & Dinarello, C.A. IL-12-induced IFN-gamma is<br />

dependent on caspase-1 processing <strong>of</strong> the IL-18 precursor. J. Clin. Invest<br />

104, 761-767 (1999).<br />

489. Lamkanfi, M. et al. Targeted peptidecentric proteomics reveals caspase-7<br />

as a substr<strong>at</strong>e <strong>of</strong> the caspase-1 inflammasomes. Mol. Cell Proteomics 7,<br />

2350-2363 (2008).<br />

490. Fink, S.L. & Cookson, B.T. Caspase-1-dependent pore form<strong>at</strong>ion during<br />

pyroptosis leads to osmotic lysis <strong>of</strong> infected host macrophages. Cell.<br />

Microbiol 8, 1812-1825 (2006).<br />

191


491. Fernandes-Alnemri, T. et al. The pyroptosome: a supramolecular assembly<br />

<strong>of</strong> ASC dimers medi<strong>at</strong>ing inflamm<strong>at</strong>ory cell de<strong>at</strong>h via caspase-1 activ<strong>at</strong>ion.<br />

Cell De<strong>at</strong>h Differ 14, 1590-1604 (2007).<br />

492. Kayagaki, N. et al. Non-canonical inflammasome activ<strong>at</strong>ion targets<br />

caspase-11. N<strong>at</strong>ure 479, 117-121 (2011).<br />

493. Stennicke, H.R. & Salvesen, G.S. Biochemical characteristics <strong>of</strong> caspases-3,<br />

-6, -7, and -8. J. Biol. Chem 272, 25719-25723 (1997).<br />

494. Fischer, U., Jänicke, R.U. & Schulze-Osth<strong>of</strong>f, K. Many cuts to ruin: a<br />

comprehensive upd<strong>at</strong>e <strong>of</strong> caspase substr<strong>at</strong>es. Cell De<strong>at</strong>h Differ 10, 76-100<br />

(2003).<br />

495. Timmer, J.C. & Salvesen, G.S. Caspase substr<strong>at</strong>es. Cell De<strong>at</strong>h Differ 14, 66-<br />

72 (2007).<br />

496. Gery, I., Gershon, R.K. & Waksman, B.H. Potenti<strong>at</strong>ion <strong>of</strong> the T-lymphocyte<br />

response to mitogens. I. The responding cell. J. Exp. Med 136, 128-142<br />

(1972).<br />

497. Gery, I. & Waksman, B.H. Potenti<strong>at</strong>ion <strong>of</strong> the T-lymphocyte response to<br />

mitogens. II. The cellular source <strong>of</strong> potenti<strong>at</strong>ing medi<strong>at</strong>or(s). J. Exp. Med<br />

136, 143-155 (1972).<br />

498. Gery, I. & Handschumacher, R.E. Potenti<strong>at</strong>ion <strong>of</strong> the T lymphocyte<br />

response to mitogens. III. Properties <strong>of</strong> the medi<strong>at</strong>or(s) from adherent<br />

cells. Cell. Immunol 11, 162-169 (1974).<br />

499. Rosenwasser, L.J., Dinarello, C.A. & Rosenthal, A.S. Adherent cell function<br />

in murine T-lymphocyte antigen recognition. IV. Enhancement <strong>of</strong> murine<br />

T-cell antigen recognition by human leukocytic pyrogen. J. Exp. Med 150,<br />

709-714 (1979).<br />

500. March, C.J. et al. Cloning, sequence and expression <strong>of</strong> two distinct human<br />

interleukin-1 complementary DNAs. N<strong>at</strong>ure 315, 641-647 (1985).<br />

501. Dinarello, C.A. A clinical perspective <strong>of</strong> IL-1β as the g<strong>at</strong>ekeeper <strong>of</strong><br />

inflamm<strong>at</strong>ion. Eur. J. Immunol 41, 1203-1217 (2011).<br />

502. Dinarello, C.A. IL-18: A TH1-inducing, proinflamm<strong>at</strong>ory cytokine and new<br />

member <strong>of</strong> the IL-1 family. J. Allergy Clin. Immunol 103, 11-24 (1999).<br />

503. Akhter, A. et al. Caspase-7 activ<strong>at</strong>ion by the Nlrc4/Ipaf inflammasome<br />

restricts Legionella pneumophila infection. PLoS P<strong>at</strong>hog 5, e1000361<br />

(2009).<br />

192


504. Fernandes-Alnemri, T. & Alnemri, E.S. Assembly, purific<strong>at</strong>ion, and assay <strong>of</strong><br />

the activity <strong>of</strong> the ASC pyroptosome. Meth. Enzymol 442, 251-270 (2008).<br />

505. Miao, E.A. et al. Caspase-1-induced pyroptosis is an inn<strong>at</strong>e immune<br />

effector mechanism against intracellular bacteria. N<strong>at</strong> Immunol 11, 1136-<br />

1142 (2010).<br />

506. Delneste, Y. et al. Interferon-gamma switches monocyte differenti<strong>at</strong>ion<br />

from dendritic cells to macrophages. Blood 101, 143-150 (2003).<br />

507. Sallusto, F. & Lanzavecchia, A. Efficient present<strong>at</strong>ion <strong>of</strong> soluble antigen by<br />

cultured human dendritic cells is maintained by granulocyte/macrophage<br />

colony-stimul<strong>at</strong>ing factor plus interleukin 4 and downregul<strong>at</strong>ed by tumor<br />

necrosis factor alpha. J. Exp. Med 179, 1109-1118 (1994).<br />

508. Zhou, L.J. & Tedder, T.F. CD14+ blood monocytes can differenti<strong>at</strong>e into<br />

functionally m<strong>at</strong>ure CD83+ dendritic cells. Proc. N<strong>at</strong>l. Acad. Sci. U.S.A 93,<br />

2588-2592 (1996).<br />

509. Chapuis, F. et al. Differenti<strong>at</strong>ion <strong>of</strong> human dendritic cells from monocytes<br />

in vitro. Eur. J. Immunol 27, 431-441 (1997).<br />

510. Mohamadzadeh, M. et al. Interleukin 15 skews monocyte differenti<strong>at</strong>ion<br />

into dendritic cells with fe<strong>at</strong>ures <strong>of</strong> Langerhans cells. J. Exp. Med 194,<br />

1013-1020 (2001).<br />

511. Chomar<strong>at</strong>, P., Banchereau, J., Davoust, J. & Palucka, A.K. IL-6 switches the<br />

differenti<strong>at</strong>ion <strong>of</strong> monocytes from dendritic cells to macrophages. N<strong>at</strong>.<br />

Immunol 1, 510-514 (2000).<br />

512. Menetrier-Caux, C. et al. Inhibition <strong>of</strong> the differenti<strong>at</strong>ion <strong>of</strong> dendritic cells<br />

from CD34(+) progenitors by tumor cells: role <strong>of</strong> interleukin-6 and<br />

macrophage colony-stimul<strong>at</strong>ing factor. Blood 92, 4778-4791 (1998).<br />

513. Allavena, P. et al. IL-10 prevents the gener<strong>at</strong>ion <strong>of</strong> dendritic cells from<br />

CD14+ blood monocytes, promotes the differenti<strong>at</strong>ion to m<strong>at</strong>ure<br />

macrophages and stimul<strong>at</strong>es endocytosis <strong>of</strong> FITC-dextran. Adv. Exp. Med.<br />

Biol 417, 323-327 (1997).<br />

514. Leff, J.A. et al. Interleukin-1-induced lung neutrophil accumul<strong>at</strong>ion and<br />

oxygen metabolite-medi<strong>at</strong>ed lung leak in r<strong>at</strong>s. Am. J. Physiol 266, L2-8<br />

(1994).<br />

515. Pugin, J., Ricou, B., Steinberg, K.P., Suter, P.M. & Martin, T.R.<br />

Proinflamm<strong>at</strong>ory activity in bronchoalveolar lavage fluids from p<strong>at</strong>ients<br />

193


with ARDS, a prominent role for interleukin-1. Am. J. Respir. Crit. Care<br />

Med 153, 1850-1856 (1996).<br />

516. Denis, M. Interferon-gamma-tre<strong>at</strong>ed murine macrophages inhibit growth<br />

<strong>of</strong> tubercle bacilli via the gener<strong>at</strong>ion <strong>of</strong> reactive nitrogen intermedi<strong>at</strong>es.<br />

Cell. Immunol 132, 150-157 (1991).<br />

517. Chan, J., Xing, Y., Magliozzo, R.S. & Bloom, B.R. Killing <strong>of</strong> virulent<br />

Mycobacterium tuberculosis by reactive nitrogen intermedi<strong>at</strong>es produced<br />

by activ<strong>at</strong>ed murine macrophages. J. Exp. Med 175, 1111-1122 (1992).<br />

518. Breitbach, K. et al. Role <strong>of</strong> inducible nitric oxide synthase and NADPH<br />

oxidase in early control <strong>of</strong> Burkholderia pseudomallei infection in mice.<br />

Infect. Immun 74, 6300-6309 (2006).<br />

519. Ouadrhiri, Y., Scorneaux, B., Sibille, Y. & Tulkens, P.M. Mechanism <strong>of</strong> the<br />

intracellular killing and modul<strong>at</strong>ion <strong>of</strong> antibiotic susceptibility <strong>of</strong> Listeria<br />

monocytogenes in THP-1 macrophages activ<strong>at</strong>ed by gamma interferon.<br />

Antimicrob. Agents Chemother 43, 1242-1251 (1999).<br />

520. Miyagi, K., Kawakami, K. & Saito, A. Role <strong>of</strong> reactive nitrogen and oxygen<br />

intermedi<strong>at</strong>es in gamma interferon-stimul<strong>at</strong>ed murine macrophage<br />

bactericidal activity against Burkholderia pseudomallei. Infect. Immun 65,<br />

4108-4113 (1997).<br />

521. Arjcharoen, S. et al. F<strong>at</strong>e <strong>of</strong> a Burkholderia pseudomallei<br />

lipopolysaccharide mutant in the mouse macrophage cell line RAW 264.7:<br />

possible role for the O-antigenic polysaccharide moiety <strong>of</strong><br />

lipopolysaccharide in internaliz<strong>at</strong>ion and intracellular survival. Infect.<br />

Immun 75, 4298-4304 (2007).<br />

522. Breitbach, K., Wongprompitak, P. & Steinmetz, I. Distinct roles for nitric<br />

oxide in resistant C57BL/6 and susceptible BALB/c mice to control<br />

Burkholderia pseudomallei infection. BMC Immunol 12, 20 (2011).<br />

523. Gong, L. et al. The Burkholderia pseudomallei type III secretion system<br />

and BopA are required for evasion <strong>of</strong> LC3-associ<strong>at</strong>ed phagocytosis. PLoS<br />

ONE 6, e17852 (2011).<br />

524. Ulett, G.C., Ketheesan, N. & Hirst, R.G. Macrophage-lymphocyte<br />

interactions medi<strong>at</strong>e anti-Burkholderia pseudomallei activity. FEMS<br />

Immunol. Med. Microbiol 21, 283-286 (1998).<br />

194


525. Heinzel, F.P., Sadick, M.D., Holaday, B.J., C<strong>of</strong>fman, R.L. & Locksley, R.M.<br />

Reciprocal expression <strong>of</strong> interferon gamma or interleukin 4 during the<br />

resolution or progression <strong>of</strong> murine leishmaniasis. Evidence for expansion<br />

<strong>of</strong> distinct helper T cell subsets. J. Exp. Med 169, 59-72 (1989).<br />

526. Heinzel, F.P., Sadick, M.D., Mutha, S.S. & Locksley, R.M. Production <strong>of</strong><br />

interferon gamma, interleukin 2, interleukin 4, and interleukin 10 by CD4+<br />

lymphocytes in vivo during healing and progressive murine leishmaniasis.<br />

Proc. N<strong>at</strong>l. Acad. Sci. U.S.A 88, 7011-7015 (1991).<br />

527. Palma, C., Vendetti, S. & Cassone, A. Role <strong>of</strong> 4-1BB receptor in the control<br />

played by CD8(+) T cells on IFN-gamma production by Mycobacterium<br />

tuberculosis antigen-specific CD4(+) T Cells. PLoS ONE 5, e11019 (2010).<br />

528. Sester, U. et al. Whole-blood flow-cytometric analysis <strong>of</strong> antigen-specific<br />

CD4 T-cell cytokine pr<strong>of</strong>iles distinguishes active tuberculosis from non-<br />

active st<strong>at</strong>es. PLoS ONE 6, e17813 (2011).<br />

529. Tominaga, K. et al. IL-12 synergizes with IL-18 or IL-1beta for IFN-gamma<br />

production from human T cells. Int. Immunol 12, 151-160 (2000).<br />

530. Altés, J. et al. Visceral leishmaniasis: another HIV-associ<strong>at</strong>ed opportunistic<br />

infection? Report <strong>of</strong> eight cases and review <strong>of</strong> the liter<strong>at</strong>ure. AIDS 5, 201-<br />

207 (1991).<br />

531. Rosenthal, E. et al. HIV and Leishmania coinfection: a review <strong>of</strong> 91 cases<br />

with focus on <strong>at</strong>ypical loc<strong>at</strong>ions <strong>of</strong> Leishmania. Clin. Infect. Dis 31, 1093-<br />

1095 (2000).<br />

532. Lawn, S.D. & Zumla, A.I. Tuberculosis. Lancet 378, 57-72 (2011).<br />

533. Kwan, C.K. & Ernst, J.D. HIV and tuberculosis: a deadly human syndemic.<br />

Clin. Microbiol. Rev 24, 351-376 (2011).<br />

534. B<strong>of</strong>ill, M. et al. Labor<strong>at</strong>ory control values for CD4 and CD8 T lymphocytes.<br />

Implic<strong>at</strong>ions for HIV-1 diagnosis. Clin. Exp. Immunol 88, 243-252 (1992).<br />

535. Limm<strong>at</strong>hurotsakul, D. et al. A simple scoring system to differenti<strong>at</strong>e<br />

between relapse and re-infection in p<strong>at</strong>ients with recurrent melioidosis.<br />

PLoS Negl Trop Dis 2, e327 (2008).<br />

536. Laws, T.R., Smither, S.J., Lukaszewski, R.A. & Atkins, H.S. Neutrophils are<br />

the predominant cell-type to associ<strong>at</strong>e with Burkholderia pseudomallei in a<br />

BALB/c mouse model <strong>of</strong> respir<strong>at</strong>ory melioidosis. Microb P<strong>at</strong>hog<br />

(2011).doi:10.1016/j.micp<strong>at</strong>h.2011.07.002<br />

195


537. Egan, A.M. & Gordon, D.L. Burkholderia pseudomallei activ<strong>at</strong>es<br />

complement and is ingested but not killed by polymorphonuclear<br />

leukocytes. Infect. Immun 64, 4952-4959 (1996).<br />

538. Chanchamroen, S., Kewcharoenwong, C., Susaengr<strong>at</strong>, W., Ato, M. &<br />

Lertmemongkolchai, G. Human polymorphonuclear neutrophil responses<br />

to Burkholderia pseudomallei in healthy and diabetic subjects. Infect.<br />

Immun 77, 456-463 (2009).<br />

539. Banerjee, A., Apte, U.M., Smith, R. & Ramaiah, S.K. Higher neutrophil<br />

infiltr<strong>at</strong>ion medi<strong>at</strong>ed by osteopontin is a likely contributing factor to the<br />

increased susceptibility <strong>of</strong> females to alcoholic liver disease. J. P<strong>at</strong>hol 208,<br />

473-485 (2006).<br />

540. Wiersinga, W.J. et al. Urokinase receptor is necessary for bacterial defense<br />

against pneumonia-derived septic melioidosis by facilit<strong>at</strong>ing phagocytosis.<br />

The Journal <strong>of</strong> Immunology 184, 3079 -3086 (2010).<br />

541. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science<br />

303, 1532-1535 (2004).<br />

542. Chan, J.M., Rimm, E.B., Colditz, G.A., Stampfer, M.J. & Willett, W.C.<br />

Obesity, f<strong>at</strong> distribution, and weight gain as risk factors for clinical <strong>diabetes</strong><br />

in men. Diabetes Care 17, 961-969 (1994).<br />

543. Sabanayagam, C. et al. Prevalence <strong>of</strong> <strong>diabetes</strong> mellitus, glycemic control,<br />

and associ<strong>at</strong>ed factors in a Malay popul<strong>at</strong>ion in Singapore. Asia Pac J<br />

Public Health 21, 385-398 (2009).<br />

544. Spiegelman, M. & Marks, H.H. Age and sex vari<strong>at</strong>ions in the prevalence<br />

and onset <strong>of</strong> <strong>diabetes</strong> mellitus. Am J Public Health N<strong>at</strong>ions Health 36, 26-<br />

33 (1946).<br />

545. Danaei, G. et al. N<strong>at</strong>ional, regional, and global trends in fasting plasma<br />

glucose and <strong>diabetes</strong> prevalence since 1980: system<strong>at</strong>ic analysis <strong>of</strong> health<br />

examin<strong>at</strong>ion surveys and epidemiological studies with 370 country-years<br />

and 2·7 million participants. The Lancet (2011).doi:10.1016/S0140-<br />

6736(11)60679-X<br />

546. Imamura, M. & Maeda, S. Genetics <strong>of</strong> type 2 <strong>diabetes</strong>: the GWAS era and<br />

future perspectives. Endocr J (2011).<strong>at</strong><br />

<br />

196


547. Carpenter, M.W. Gest<strong>at</strong>ional <strong>diabetes</strong>, pregnancy hypertension, and l<strong>at</strong>e<br />

vascular disease. Diabetes Care 30 Suppl 2, S246-250 (2007).<br />

548. Papang, R., John, A.S., Abraham, S. & Rao, P.S.S.S. A <strong>study</strong> <strong>of</strong> steroid-<br />

induced <strong>diabetes</strong> mellitus in leprosy. Indian J Lepr 81, 125-129 (2009).<br />

549. Olivarius, N. de F. et al. P<strong>at</strong>ients newly diagnosed with clinical type 2<br />

<strong>diabetes</strong> during oral glucocorticoid tre<strong>at</strong>ment and observed for 14 years:<br />

all-cause mortality and clinical developments. Basic Clin. Pharmacol.<br />

Toxicol 108, 285-288 (2011).<br />

550. Kim, S.Y. et al. Incidence and risk factors <strong>of</strong> steroid-induced <strong>diabetes</strong> in<br />

p<strong>at</strong>ients with respir<strong>at</strong>ory disease. J. Korean Med. Sci 26, 264-267 (2011).<br />

551. Sharma, A., Pinto Pereira, L.M., Capildeo, K., Charles, K. & Teelucksingh,<br />

S. Steroid-induced i<strong>at</strong>rogenic disease after tre<strong>at</strong>ing for<br />

pseudothrombocytopenia. Clin. Appl. Thromb. Hemost 17, 100-102 (2011).<br />

552. Mancini, T., Porcelli, T. & Giustina, A. Tre<strong>at</strong>ment <strong>of</strong> Cushing disease:<br />

overview and recent findings. Ther Clin Risk Manag 6, 505-516 (2010).<br />

553. Cui, Y. & Andersen, D.K. Pancre<strong>at</strong>ogenic <strong>diabetes</strong>: special consider<strong>at</strong>ions<br />

for management. Pancre<strong>at</strong>ology 11, 279-294 (2011).<br />

554. Wilson, C. Diabetes: cystic fibrosis-rel<strong>at</strong>ed <strong>diabetes</strong>. N<strong>at</strong> Rev Endocrinol 7,<br />

375 (2011).<br />

555. Utzschneider, K.M. & Kowdley, K.V. Hereditary hemochrom<strong>at</strong>osis and<br />

<strong>diabetes</strong> mellitus: implic<strong>at</strong>ions for clinical practice. N<strong>at</strong> Rev Endocrinol 6,<br />

26-33 (2010).<br />

556. Jaeger, M., Aul, C., Söhngen, D., Germing, U. & Schneider, W. Sekundare<br />

Hamochrom<strong>at</strong>ose bei polytransfundierten P<strong>at</strong>ienten mit<br />

myelodysplastischen Syndromen. Beitr Infusionsther 30, 464-468 (1992).<br />

557. Cambuli, V.M. et al. Glycometabolic control in acromegalic p<strong>at</strong>ients with<br />

<strong>diabetes</strong>: a <strong>study</strong> <strong>of</strong> the effects <strong>of</strong> different tre<strong>at</strong>ments for GH excess and for<br />

hyperglycaemia. J Endocrinol Invest (2011).doi:10.3275/7685<br />

558. Anagnostis, P. et al. Acromegaly: present<strong>at</strong>ion, morbidity and tre<strong>at</strong>ment<br />

outcomes <strong>at</strong> a single centre. Int. J. Clin. Pract 65, 896-902 (2011).<br />

559. McKinlay, J. & Marceau, L. US public health and the 21st century: <strong>diabetes</strong><br />

mellitus. The Lancet 356, 757-761 (2000).<br />

197


560. Davis, T.M.E., Pramukkul, P., Suputtamongkol, Y. & Chaowagul, W.<br />

Glucose tolerance in rural diabetic Thais, first-degree rel<strong>at</strong>ives and non-<br />

diabetic controls. Diabet Res Clin Prac 27, 171–180 (1995).<br />

561. Muller, L.M.A.J. et al. Increased risk <strong>of</strong> common infections in p<strong>at</strong>ients with<br />

type 1 and type 2 <strong>diabetes</strong> mellitus. Clin. Infect. Dis 41, 281-288 (2005).<br />

562. Shah, B.R. & Hux, J.E. Quantifying the risk <strong>of</strong> infectious diseases for people<br />

with <strong>diabetes</strong>. Diabetes Care 26, 510-513 (2003).<br />

563. Stegenga, M.E. et al. Diabetes does not alter mortality or hemost<strong>at</strong>ic and<br />

inflamm<strong>at</strong>ory responses in p<strong>at</strong>ients with severe sepsis. Crit. Care Med. 38,<br />

539–45 (2010).<br />

564. Restrepo, B.I. Convergence <strong>of</strong> the tuberculosis and <strong>diabetes</strong> epidemics:<br />

renewal <strong>of</strong> old acquaintances. Clin Infect Dis 45, 436-438 (2007).<br />

565. Joslin, E.P. Tre<strong>at</strong>ment <strong>of</strong> <strong>diabetes</strong> mellitus: with observ<strong>at</strong>ions upon the<br />

disease based upon one thousand cases. (Lea & Febiger: Philadelphia,<br />

Pennsylvania, 1916).<br />

566. Bertoni, A.G., Saydah, S. & Branc<strong>at</strong>i, F.L. Diabetes and the risk <strong>of</strong> infection-<br />

rel<strong>at</strong>ed mortality in the U.S. Diabetes Care 24, 1044-1049 (2001).<br />

567. Chandler, J.R. Malignant external otitis. Laryngoscope 78, 1257-1294<br />

(1968).<br />

568. Ali, T., Meade, K., Anari, S., ElBadawey, M.R. & Zammit-Maempel, I.<br />

Malignant otitis externa: case series. J Laryngol Otol 124, 846-851 (2010).<br />

569. Carfrae, M.J. & Kesser, B.W. Malignant otitis externa. Otolaryngol. Clin.<br />

North Am 41, 537-549, viii-ix (2008).<br />

570. Khaira, A. et al. Retrospective analysis <strong>of</strong> clinical pr<strong>of</strong>ile prognostic factors<br />

and outcomes <strong>of</strong> 19 p<strong>at</strong>ients <strong>of</strong> emphysem<strong>at</strong>ous pyelonephritis. Int Urol<br />

Nephrol 41, 959-966 (2009).<br />

571. Michaeli, J., Mogle, P., Perlberg, S., Heiman, S. & Caine, M.<br />

Emphysem<strong>at</strong>ous pyelonephritis. J. Urol 131, 203-208 (1984).<br />

572. Ahlering, T.E. et al. Emphysem<strong>at</strong>ous pyelonephritis: a 5-year experience<br />

with 13 p<strong>at</strong>ients. J. Urol 134, 1086-1088 (1985).<br />

573. Cook, D.J., Achong, M.R. & Dobranowski, J. Emphysem<strong>at</strong>ous<br />

pyelonephritis. Complic<strong>at</strong>ed urinary tract infection in <strong>diabetes</strong>. Diabetes<br />

Care 12, 229-232 (1989).<br />

198


574. Esper, A., Moss, M. & Martin, G. The effect <strong>of</strong> <strong>diabetes</strong> mellitus on organ<br />

dysfunction with sepsis: an epidemiological <strong>study</strong>. Crit. Care 13, R18<br />

(2009).<br />

575. Thomsen, R.W. et al. Diabetes and outcome <strong>of</strong> community-acquired<br />

pneumococcal bacteremia: a 10-year popul<strong>at</strong>ion-based cohort <strong>study</strong>.<br />

Diabetes Care 27, 70-76 (2004).<br />

576. Tsai, F.-C., Huang, Y.-T., Chang, L.-Y. & Wang, J.-T. Pyogenic liver abscess<br />

as endemic disease, Taiwan. Emerging Infect. Dis 14, 1592-1600 (2008).<br />

577. Gregory, J.E., Golden, A. & Haymaker, W. Mucormycosis <strong>of</strong> the central<br />

nervous system: a report <strong>of</strong> three cases. Bull. Johns Hopkins Hosp. 73,<br />

405–419 (1943).<br />

578. Mallis, A., Mastronikolis, S.N., Naxakis, S.S. & Papadas, A.T. Rhinocerebral<br />

mucormycosis: an upd<strong>at</strong>e. Eur Rev Med Pharmacol Sci 14, 987-992<br />

(2010).<br />

579. Dooley, K.E. & Chaisson, R.E. Tuberculosis and <strong>diabetes</strong> mellitus:<br />

convergence <strong>of</strong> two epidemics. Lancet Infect Dis 9, 737-746 (2009).<br />

580. Fine, M.J. et al. Prognosis and outcomes <strong>of</strong> p<strong>at</strong>ients with community-<br />

acquired pneumonia. A meta-analysis. JAMA 275, 134-141 (1996).<br />

581. Thomsen, R.W. et al. Diabetes mellitus as a risk and prognostic factor for<br />

community-acquired bacteremia due to enterobacteria: a 10-year,<br />

popul<strong>at</strong>ion-based <strong>study</strong> among adults. Clin. Infect. Dis 40, 628-631<br />

(2005).<br />

582. Kornum, J.B. et al. Type 2 <strong>diabetes</strong> and pneumonia outcomes: a<br />

popul<strong>at</strong>ion-based cohort <strong>study</strong>. Diabetes Care 30, 2251-2257 (2007).<br />

583. Falagas, M.E., Alexiou, V.G., Giannopoulou, K.P. & Siempos, I.I. Risk<br />

factors for mortality in p<strong>at</strong>ients with emphysem<strong>at</strong>ous pyelonephritis: a<br />

meta-analysis. J. Urol 178, 880-885; quiz 1129 (2007).<br />

584. Vincent, J.-L., Preiser, J.-C., Sprung, C.L., Moreno, R. & Sakr, Y. Insulin-<br />

tre<strong>at</strong>ed <strong>diabetes</strong> is not associ<strong>at</strong>ed with increased mortality in critically ill<br />

p<strong>at</strong>ients. Crit Care 14, R12 (2010).<br />

585. Michalia, M. et al. Diabetes mellitus is an independent risk factor for ICU-<br />

acquired bloodstream infections. Intensive Care Med 35, 448-454 (2009).<br />

586. Tsai, C.L. et al. Impact <strong>of</strong> <strong>diabetes</strong> on mortality among p<strong>at</strong>ients with<br />

community-acquired bacteremia. J Infect 55, 27–33 (2007).<br />

199


587. McAlister, F.A. et al. The rel<strong>at</strong>ion between hyperglycemia and outcomes in<br />

2,471 p<strong>at</strong>ients admitted to the hospital with community-acquired<br />

pneumonia. Diabetes Care 28, 810-815 (2005).<br />

588. Kaplan, V. et al. Hospitalized community-acquired pneumonia in the<br />

elderly: age- and sex-rel<strong>at</strong>ed p<strong>at</strong>terns <strong>of</strong> care and outcome in the United<br />

St<strong>at</strong>es. Am. J. Respir. Crit. Care Med 165, 766-772 (2002).<br />

589. Cooper, G. & Pl<strong>at</strong>t, R. Staphylococcus aureus bacteremia in diabetic<br />

p<strong>at</strong>ients. Endocarditis and mortality. Am. J. Med 73, 658-662 (1982).<br />

590. Libert, M. et al. Risk factors for meticillin resistance and outcome <strong>of</strong><br />

Staphylococcus aureus bloodstream infection in a Belgian university<br />

hospital. J. Hosp. Infect 68, 17-24 (2008).<br />

591. Carton, J.A. et al. Diabetes mellitus and bacteraemia: a compar<strong>at</strong>ive <strong>study</strong><br />

between diabetic and non-diabetic p<strong>at</strong>ients. Eur J Med 1, 281–87 (1992).<br />

592. Vardakas, K.Z., Siempos, I.I. & Falagas, M.E. Diabetes mellitus as a risk<br />

factor for nosocomial pneumonia and associ<strong>at</strong>ed mortality. Diabet. Med<br />

24, 1168-1171 (2007).<br />

593. Graham, B.B. et al. Diabetes mellitus does not adversely affect outcomes<br />

from a critical illness. Crit. Care Med 38, 16-24 (2010).<br />

594. Gong, M.N. et al. Clinical predictors <strong>of</strong> mortality in acute respir<strong>at</strong>ory<br />

distress syndrome: potential role <strong>of</strong> red cell transfusion. Crit Care Med 33,<br />

1191–1198 (2005).<br />

595. Moss, M. et al. Diabetic p<strong>at</strong>ients have a decreased incidence <strong>of</strong> acute<br />

respir<strong>at</strong>ory distress syndrome. Crit. Care Med 28, 2187-2192 (2000).<br />

596. W<strong>at</strong>son, R.S. & Angus, D.C. Assessing outcomes in critical care. J Intensive<br />

Care Med 17, 103–111 (2002).<br />

597. Schisterman, E.F., Cole, S.R. & Pl<strong>at</strong>t, R.W. Overadjustment bias and<br />

unnecessary adjustment in epidemiologic studies. Epidemiology 20, 488-<br />

495 (2009).<br />

598. Hennekens, C.H. & Buring, J.E. Epidemiology in medicine. (Lippincott,<br />

Williams & Wilkins: Philadelphia, Pennsylvania, 1987).<br />

599. Lassar, O. Ernährungstherapie bei Hautkrankheiten. Derm<strong>at</strong>ologische<br />

Zeitschrift 11, 189 (1904).<br />

200


600. Handmann, E. Über die Ursache der verminderten Resistenz des<br />

Diabetikers gegen Infektionen. Deutsches Archiv für klinische Medizin<br />

102, 1–14 (1911).<br />

601. Da Costa, J.C.J. The opsonic index in <strong>diabetes</strong> mellitus. A preliminary<br />

record <strong>of</strong> the findings in 22 cases <strong>of</strong> glycosuria, with remarks on the<br />

technique <strong>of</strong> the opsonin test and on its clinical utility. Am J Med Sci 134,<br />

57–70 (1907).<br />

602. Balasoiu, D., van Kessel, K.C., van K<strong>at</strong>s-Renaud, H.J., Collet, T.J. &<br />

Hoepelman, A.I. Granulocyte function in women with <strong>diabetes</strong> and<br />

asymptom<strong>at</strong>ic bacteriuria. Diabetes Care 20, 392-395 (1997).<br />

603. Pickup, J.C., M<strong>at</strong>tock, M.B., Chusney, G.D. & Burt, D. NIDDM as a disease<br />

<strong>of</strong> the inn<strong>at</strong>e immune system: associ<strong>at</strong>ion <strong>of</strong> acute-phase reactants and<br />

interleukin-6 with metabolic syndrome X. Diabetologia 40, 1286-1292<br />

(1997).<br />

604. Myśliwska, J., Zorena, K., Bakowska, A., Skur<strong>at</strong>owicz-Kubica, A. &<br />

Myśliwski, A. Significance <strong>of</strong> tumor necrosis factor alpha in p<strong>at</strong>ients with<br />

long-standing type-I <strong>diabetes</strong> mellitus. Horm. Metab. Res 30, 158-161<br />

(1998).<br />

605. Zozuliñska, D., Majchrzak, A., Sobieska, M., Wiktorowicz, K. & Wierusz-<br />

Wysocka, B. Serum interleukin-8 level is increased in diabetic p<strong>at</strong>ients.<br />

Diabetologia 42, 117-118 (1999).<br />

606. Yende, S. et al. The influence <strong>of</strong> pre-existing <strong>diabetes</strong> mellitus on the host<br />

immune response and outcome <strong>of</strong> pneumonia: analysis <strong>of</strong> two multicentre<br />

cohort studies. Thorax 65, 870-877 (2010).<br />

607. Rao, A.K., Chouhan, V., Chen, X., Sun, L. & Boden, G. Activ<strong>at</strong>ion <strong>of</strong> the<br />

tissue factor p<strong>at</strong>hway <strong>of</strong> blood coagul<strong>at</strong>ion during prolonged hyperglycemia<br />

in young healthy men. Diabetes 48, 1156-1161 (1999).<br />

608. Stegenga, M.E. et al. Hyperglycemia stimul<strong>at</strong>es coagul<strong>at</strong>ion, whereas<br />

hyperinsulinemia impairs fibrinolysis in healthy humans. Diabetes 55,<br />

1807-1812 (2006).<br />

609. Geerlings, S.E. et al. Cytokine secretion is impaired in women with <strong>diabetes</strong><br />

mellitus. Eur. J. Clin. Invest 30, 995-1001 (2000).<br />

610. Aird, W.C. The role <strong>of</strong> the endothelium in severe sepsis and multiple organ<br />

dysfunction syndrome. Blood 101, 3765-3777 (2003).<br />

201


611. Schuetz, P. et al. Influence <strong>of</strong> <strong>diabetes</strong> on endothelial cell response during<br />

sepsis. Diabetologia 54, 996-1003 (2011).<br />

612. Neelamegham, S., Taylor, A.D., Burns, A.R., Smith, C.W. & Simon, S.I.<br />

Hydrodynamic shear shows distinct roles for LFA-1 and Mac-1 in<br />

neutrophil adhesion to intercellular adhesion molecule-1. Blood 92, 1626-<br />

1638 (1998).<br />

613. Hentzen, E.R. et al. Sequential binding <strong>of</strong> CD11a/CD18 and CD11b/CD18<br />

defines neutrophil capture and stable adhesion to intercellular adhesion<br />

molecule-1. Blood 95, 911-920 (2000).<br />

614. Li, J., Jin, H.-B., Sun, Y.-M., Su, Y. & Wang, L.-F. KB-R7943 inhibits high<br />

glucose-induced endothelial ICAM-1 expression and monocyte-endothelial<br />

adhesion. Biochem. Biophys. Res. Commun 392, 516-519 (2010).<br />

615. Takami, S., Yamashita, S., Kihara, S., Kameda-Takemura, K. & M<strong>at</strong>suzawa,<br />

Y. High concentr<strong>at</strong>ion <strong>of</strong> glucose induces the expression <strong>of</strong> intercellular<br />

adhesion molecule-1 in human umbilical vein endothelial cells.<br />

Atherosclerosis 138, 35-41 (1998).<br />

616. Altannavch, T.S., Roubalová, K., Kucera, P. & Andel, M. Effect <strong>of</strong> high<br />

glucose concentr<strong>at</strong>ions on expression <strong>of</strong> ELAM-1, VCAM-1 and ICAM-1 in<br />

HUVEC with and without cytokine activ<strong>at</strong>ion. Physiol Res 53, 77-82<br />

(2004).<br />

617. Andersen, B., Goldsmith, G.H. & Spagnuolo, P.J. Neutrophil adhesive<br />

dysfunction in <strong>diabetes</strong> mellitus; the role <strong>of</strong> cellular and plasma factors. J.<br />

Lab. Clin. Med 111, 275-285 (1988).<br />

618. Delamaire, M. et al. Impaired leucocyte functions in diabetic p<strong>at</strong>ients.<br />

Diabet. Med 14, 29-34 (1997).<br />

619. Morigi, M. et al. Leukocyte-endothelial interaction is augmented by high<br />

glucose concentr<strong>at</strong>ions and hyperglycemia in a NF-κB-dependent fashion.<br />

J. Clin. Invest 101, 1905-1915 (1998).<br />

620. Taki, H., Kashiwagi, A., Tanaka, Y. & Horiike, K. Expression <strong>of</strong> intercellular<br />

adhesion molecules 1 (ICAM-1) via an osmotic effect in human umbilical<br />

vein endothelial cells exposed to high glucose medium. Life Sci 58, 1713-<br />

1721 (1996).<br />

202


621. Park, C.W. et al. High glucose-induced intercellular adhesion molecule-1<br />

(ICAM-1) expression through an osmotic effect in r<strong>at</strong> mesangial cells is<br />

PKC-NF-kappa B-dependent. Diabetologia 43, 1544-1553 (2000).<br />

622. Boyden, S. The chemotactic effect <strong>of</strong> mixtures <strong>of</strong> antibody and antigen on<br />

polymorphonuclear leucocytes. J. Exp. Med 115, 453-466 (1962).<br />

623. Mow<strong>at</strong>, A. & Baum, J. Chemotaxis <strong>of</strong> polymorphonuclear leukocytes from<br />

p<strong>at</strong>ients with <strong>diabetes</strong> mellitus. N. Engl. J. Med 284, 621-627 (1971).<br />

624. Valerius, N.H. et al. Neutrophil and lymphocyte function in p<strong>at</strong>ients with<br />

<strong>diabetes</strong> mellitus. Acta Med Scand 211, 463-467 (1982).<br />

625. Nelson, R.D., Quie, P.G. & Simmons, R.L. Chemotaxis under agarose: a<br />

new and simple method for measuring chemotaxis and spontaneous<br />

migr<strong>at</strong>ion <strong>of</strong> human polymorphonuclear leukocytes and monocytes. J.<br />

Immunol 115, 1650-1656 (1975).<br />

626. T<strong>at</strong>er, D., Tepaut, B., Bercovici, J.P. & Youinou, P. Polymorphonuclear cell<br />

derangements in type I <strong>diabetes</strong>. Horm. Metab. Res 19, 642-647 (1987).<br />

627. Bybee, J.D. & Rogers, D.E. The phagocytic activity <strong>of</strong> polymorphonuclear<br />

leukocytes obtained from p<strong>at</strong>ients with <strong>diabetes</strong> mellitus. J. Lab. Clin. Med<br />

64, 1-13 (1964).<br />

628. Bagdade, J.D., Root, R.K. & Bulger, R.J. Impaired leukocyte function in<br />

p<strong>at</strong>ients with poorly controlled <strong>diabetes</strong>. Diabetes 23, 9-15 (1974).<br />

629. Bagdade, J.D. Phagocytic and microbicidal function in <strong>diabetes</strong> mellitus.<br />

Acta Endocrinol Suppl (Copenh) 205, 27-34 (1976).<br />

630. Alexiewicz, J.M., Kumar, D., Smogorzewski, M., Klin, M. & Massry, S.G.<br />

Polymorphonuclear leukocytes in non-insulin-dependent <strong>diabetes</strong> mellitus:<br />

abnormalities in metabolism and function. Ann. Intern. Med 123, 919-924<br />

(1995).<br />

631. Davidson, N.J., Sowden, J.M. & Fletcher, J. Defective phagocytosis in<br />

insulin controlled diabetics: evidence for a reaction between glucose and<br />

opsonising proteins. J. Clin. P<strong>at</strong>hol 37, 783-786 (1984).<br />

632. Dzi<strong>at</strong>kowiak, H., Kowalska, M. & Denys, A. Phagocytic and bactericidal<br />

activity <strong>of</strong> granulocytes in diabetic children. Diabetes 31, 1041-1043 (1982).<br />

633. Tan, J.S., Anderson, J.L., W<strong>at</strong>anakunakorn, C. & Phair, J.P. Neutrophil<br />

dysfunction in <strong>diabetes</strong> mellitus. J. Lab. Clin. Med 85, 26-33 (1975).<br />

203


634. Bagdade, J.D., Nielson, K.L. & Bulger, R.J. Reversible abnormalities in<br />

phagocytic function in poorly controlled diabetic p<strong>at</strong>ients. Am. J. Med. Sci<br />

263, 451-456 (1972).<br />

635. Wilson, R.M. & Reeves, W.G. Neutrophil phagocytosis and killing in<br />

insulin-dependent <strong>diabetes</strong>. Clin. Exp. Immunol 63, 478-484 (1986).<br />

636. Shah, S.V., Wallin, J.D. & Eilen, S.D. Chemiluminescence and superoxide<br />

anion production by leukocytes from diabetic p<strong>at</strong>ients. J. Clin. Endocrinol.<br />

Metab 57, 402-409 (1983).<br />

637. Wykretowicz, A., Wierusz-Wysocka, B., Wysocki, J., Szczepanik, A. &<br />

Wysocki, H. Impairment <strong>of</strong> the oxygen-dependent microbicidal<br />

mechanisms <strong>of</strong> polymorphonuclear neutrophils in p<strong>at</strong>ients with type 2<br />

<strong>diabetes</strong> is not associ<strong>at</strong>ed with increased susceptibility to infection.<br />

Diabetes Res. Clin. Pract 19, 195-201 (1993).<br />

638. S<strong>at</strong>o, N., Kashima, K., Tanaka, Y., Shimizu, H. & Mori, M. Effect <strong>of</strong><br />

granulocyte-colony stimul<strong>at</strong>ing factor on gener<strong>at</strong>ion <strong>of</strong> oxygen-derived free<br />

radicals and myeloperoxidase activity in neutrophils from poorly controlled<br />

NIDDM p<strong>at</strong>ients. Diabetes 46, 133-137 (1997).<br />

639. Daoud, A.K., Tayyar, M.A., Fouda, I.M. & Harfeil, N.A. Effects <strong>of</strong> <strong>diabetes</strong><br />

mellitus vs. in vitro hyperglycemia on select immune cell functions. J<br />

Immunotoxicol 6, 36-41 (2009).<br />

640. Grinberg, N., Elazar, S., Rosenshine, I. & Shpigel, N.Y. β-Hydroxybutyr<strong>at</strong>e<br />

abrog<strong>at</strong>es form<strong>at</strong>ion <strong>of</strong> bovine neutrophil extracellular traps and<br />

bactericidal activity against mammary p<strong>at</strong>hogenic Escherichia coli. Infect<br />

Immun 76, 2802-2807 (2008).<br />

641. Hill, H.R., Augustine, N.H., Rallison, M.L. & Santos, J.I. Defective<br />

monocyte chemotactic responses in <strong>diabetes</strong> mellitus. J. Clin. Immunol 3,<br />

70-77 (1983).<br />

642. Geisler, C., Almdal, T., Bennedsen, J., Rhodes, J.M. & Kølendorf, K.<br />

Monocyte functions in <strong>diabetes</strong> mellitus. Acta P<strong>at</strong>hol Microbiol Immunol<br />

Scand C 90, 33-37 (1982).<br />

643. K<strong>at</strong>z, S., Klein, B., Elian, I., Fishman, P. & Djaldetti, M. Phagocytotic<br />

activity <strong>of</strong> monocytes from diabetic p<strong>at</strong>ients. Diabetes Care 6, 479-482<br />

(1983).<br />

204


644. Nandy, D., Janardhanan, R., Mukhopadhyay, D. & Basu, A. Effect <strong>of</strong><br />

hyperglycemia on human monocyte activ<strong>at</strong>ion. J Investig Med<br />

(2011).doi:10.231/JIM.0b013e31820ee432<br />

645. R<strong>at</strong>tan, V., Shen, Y., Sultana, C., Kumar, D. & Kalra, V.K. Glucose-induced<br />

transmigr<strong>at</strong>ion <strong>of</strong> monocytes is linked to phosphoryl<strong>at</strong>ion <strong>of</strong> PECAM-1 in<br />

cultured endothelial cells. Am. J. Physiol 271, E711-717 (1996).<br />

646. Kitahara, M., Eyre, H.J., Lynch, R.E., Rallison, M.L. & Hill, H.R. Metabolic<br />

activity <strong>of</strong> diabetic monocytes. Diabetes 29, 251-256 (1980).<br />

647. Foss-Freitas, M.C., Foss, N.T., Donadi, E.A. & Foss, M.C. In vitro TNF-<br />

alpha and IL-6 production by adherent peripheral blood mononuclear cells<br />

obtained from type 1 and type 2 diabetic p<strong>at</strong>ients evalu<strong>at</strong>ed according to<br />

the metabolic control. Ann. N. Y. Acad. Sci 1079, 177-180 (2006).<br />

648. MacCuish, A.C., Urbaniak, S.J., Campbell, C.J., Duncan, L.J. & Irvine, W.J.<br />

Phytohemagglutinin transform<strong>at</strong>ion and circul<strong>at</strong>ing lymphocyte<br />

subpopul<strong>at</strong>ions in insulin-dependent diabetic p<strong>at</strong>ients. Diabetes 23, 708-<br />

712 (1974).<br />

649. Speert, D.P. & Silva, J. Abnormalities <strong>of</strong> in vitro lymphocyte response to<br />

mitogens in diabetic children during acute ketoacidosis. Am. J. Dis. Child<br />

132, 1014-1017 (1978).<br />

650. Eibl, N. et al. Impaired primary immune response in type-1 <strong>diabetes</strong>:<br />

results from a controlled vaccin<strong>at</strong>ion <strong>study</strong>. Clin. Immunol 103, 249-259<br />

(2002).<br />

651. Sp<strong>at</strong>z, M. et al. Impaired primary immune response in type-1 <strong>diabetes</strong>.<br />

Functional impairment <strong>at</strong> the level <strong>of</strong> APCs and T-cells. Cell. Immunol 221,<br />

15-26 (2003).<br />

652. Casey, J. & Sturm, C. Impaired response <strong>of</strong> lymphocytes from non-insulin-<br />

dependent diabetics to staphage lys<strong>at</strong>e and tetanus antigen. J. Clin.<br />

Microbiol 15, 109-114 (1982).<br />

653. Casey, J.I., Heeter, B.J. & Klyshevich, K.A. Impaired response <strong>of</strong><br />

lymphocytes <strong>of</strong> diabetic subjects to antigen <strong>of</strong> Staphylococcus aureus. J.<br />

Infect. Dis 136, 495-501 (1977).<br />

654. Da Costa, J.C.J. & Beardsley, E.J.G. The resistance <strong>of</strong> diabetics to bacterial<br />

infection: a <strong>study</strong> <strong>of</strong> the opsonophagocytic properties <strong>of</strong> the blood in 74<br />

205


cases <strong>of</strong> <strong>diabetes</strong> mellitus and rel<strong>at</strong>ed conditions. Am. J. Med. Sci. 136,<br />

361–373 (1908).<br />

655. Liber<strong>at</strong>ore, R.D.R. et al. Is immunity in diabetic p<strong>at</strong>ients influencing the<br />

susceptibility to infections? Immunoglobulins, complement and phagocytic<br />

function in children and adolescents with type 1 <strong>diabetes</strong> mellitus. Pedi<strong>at</strong>r<br />

Diabetes 6, 206-212 (2005).<br />

656. Moen, J.K. & Reimann, H.A. Immune reactions in <strong>diabetes</strong>. Arch Intern<br />

Med 51, 789-795 (1933).<br />

657. Richardson, R. Immunity in <strong>diabetes</strong>: influence <strong>of</strong> <strong>diabetes</strong> on the<br />

development <strong>of</strong> antibacterial properties in blood. J. Clin. Invest. 12, 1143-<br />

1149 (1933).<br />

658. Fiçicioğlu, C. et al. Reduced immune response to hep<strong>at</strong>itis B vaccine in<br />

children with insulin dependent <strong>diabetes</strong>. Acta Paedi<strong>at</strong>r Jpn 37, 687-690<br />

(1995).<br />

659. Pozzilli, P. et al. Reduced protection against hep<strong>at</strong>itis B virus following<br />

vaccin<strong>at</strong>ion in p<strong>at</strong>ients with type 1 (insulin-dependent) <strong>diabetes</strong>.<br />

Diabetologia 30, 817-819 (1987).<br />

660. Alavian, S.-M. & Tab<strong>at</strong>abaei, S.V. The effect <strong>of</strong> <strong>diabetes</strong> mellitus on<br />

immunological response to hep<strong>at</strong>itis B virus vaccine in individuals with<br />

chronic kidney disease: A meta-analysis <strong>of</strong> current liter<strong>at</strong>ure. Vaccine 28,<br />

3773-3777 (2010).<br />

661. Bouter, K.P. et al. Humoral immune response to a yeast-derived hep<strong>at</strong>itis B<br />

vaccine in p<strong>at</strong>ients with type 1 <strong>diabetes</strong> mellitus. Diabet. Med 9, 66-69<br />

(1992).<br />

662. Douvin, C. et al. Hep<strong>at</strong>itis B vaccin<strong>at</strong>ion in diabetic p<strong>at</strong>ients. Randomized<br />

trial comparing recombinant vaccines containing and not containing pre-<br />

S2 antigen. Diabetes Care 20, 148-151 (1997).<br />

663. Brydak, L.B. & Machala, M. Humoral immune response to influenza<br />

vaccin<strong>at</strong>ion in p<strong>at</strong>ients from high risk groups. Drugs 60, 35-53 (2000).<br />

664. Pozzilli, P. et al. The immune response to influenza vaccin<strong>at</strong>ion in diabetic<br />

p<strong>at</strong>ients. Diabetologia 29, 850-854 (1986).<br />

665. Muszk<strong>at</strong>, M. et al. Response to influenza vaccin<strong>at</strong>ion in community and in<br />

nursing home residing elderly: rel<strong>at</strong>ion to clinical factors. Exp. Gerontol<br />

38, 1199-1203 (2003).<br />

206


666. Tamer, A. et al. Impaired immunity against tetanus in type 2 <strong>diabetes</strong>.<br />

Med. Sci. Monit 11, CR580-584 (2005).<br />

667. Kiliç, D. et al. Seroprevalence <strong>of</strong> tetanus immunity among noninsulin-<br />

dependent <strong>diabetes</strong> mellitus p<strong>at</strong>ients. J. Diabetes Complic<strong>at</strong> 17, 258-263<br />

(2003).<br />

668. Beam, T.R., Crigler, E.D., Goldman, J.K. & Schiffman, G. Antibody<br />

response to polyvalent pneumococcal polysaccharide vaccine in diabetics.<br />

JAMA 244, 2621-2624 (1980).<br />

669. Mijovic, C.H., Fletcher, J.A., Bradwell, A.R. & Barnett, A.H. Low C4 levels<br />

in type 1 (insulin-dependent) <strong>diabetes</strong>. Diabetologia 30, 824 (1987).<br />

670. Vergani, D., Johnston, C., B-Abdullah, N. & Barnett, A.H. Low serum C4<br />

concentr<strong>at</strong>ions: an inherited predisposition to insulin dependent <strong>diabetes</strong>?<br />

Br Med J (Clin Res Ed) 286, 926-928 (1983).<br />

671. Jenhani, F., Bardi, R., Gorgi, Y., Ayed, K. & Jeddi, M. C4 polymorphism in<br />

multiplex families with insulin dependent <strong>diabetes</strong> in the Tunisian<br />

popul<strong>at</strong>ion: standard C4 typing methods and RFLP analysis. J. Autoimmun<br />

5, 149-160 (1992).<br />

672. Hernández-Mijares, A. et al. Levels <strong>of</strong> C3 in p<strong>at</strong>ients with severe, morbid<br />

and extreme obesity: its rel<strong>at</strong>ionship to insulin resistance and different<br />

cardiovascular risk factors. Int J Obes (Lond) 31, 927-932 (2007).<br />

673. Karlsson, E., Sha<strong>at</strong>, N. & Groop, L. Can complement factors 5 and 8 and<br />

transthyretin be used as biomarkers for MODY 1 (HNF4A-MODY) and<br />

MODY 3 (HNF1A-MODY)? Diabet. Med 25, 788-791 (2008).<br />

674. Davin, J.C. et al. IgG glyc<strong>at</strong>ion and function during continuous ambul<strong>at</strong>ory<br />

peritoneal dialysis. Nephrol. Dial. Transplant 12, 310-314 (1997).<br />

675. Hostetter, M.K. Handicaps to host defense. Effects <strong>of</strong> hyperglycemia on C3<br />

and Candida albicans. Diabetes 39, 271-275 (1990).<br />

676. Williams, N.L., Morris, J.L., Rush, C., Govan, B.L. & Ketheesan, N. Impact<br />

<strong>of</strong> streptozotocin-induced <strong>diabetes</strong> on functional responses <strong>of</strong> dendritic<br />

cells and macrophages toward Burkholderia pseudomallei. FEMS Immunol<br />

Med Microbiol (2010).doi:10.1111/j.1574-695X.2010.00767.x<br />

677. Hodgson, K.A., Morris, J.L., Feterl, M.L., Govan, B.L. & Ketheesan, N.<br />

Altered macrophage function is associ<strong>at</strong>ed with severe Burkholderia<br />

207


pseudomallei infection in a murine model <strong>of</strong> type 2 <strong>diabetes</strong>. Microbes<br />

Infect (2011).doi:10.1016/j.micinf.2011.07.008<br />

678. Coleman, D.L. & Hummel, K.P. Studies with the mut<strong>at</strong>ion, <strong>diabetes</strong>, in the<br />

mouse. Diabetologia 3, 238-248 (1967).<br />

679. Chen, H. et al. Evidence th<strong>at</strong> the <strong>diabetes</strong> gene encodes the leptin receptor:<br />

identific<strong>at</strong>ion <strong>of</strong> a mut<strong>at</strong>ion in the leptin receptor gene in db/db mice. Cell<br />

84, 491-495 (1996).<br />

680. Park, S., Rich, J., Hanses, F. & Lee, J.C. Defects in inn<strong>at</strong>e immunity<br />

predispose C57BL/6J-Leprdb/Leprdb mice to infection by Staphylococcus<br />

aureus. Infect. Immun 77, 1008-1014 (2009).<br />

681. Limm<strong>at</strong>hurotsakul, D. et al. Role and significance <strong>of</strong> quantit<strong>at</strong>ive urine<br />

cultures in diagnosis <strong>of</strong> melioidosis. J. Clin. Microbiol 43, 2274-2276<br />

(2005).<br />

682. Nelder, J.A. & Wedderburn, R.W.M. Generalized linear models. Journal <strong>of</strong><br />

the Royal St<strong>at</strong>istical Society 135, 370 (1972).<br />

683. Verhulst, P.F. Notice sur la loi que la popul<strong>at</strong>ion suit dans son<br />

accroissement. Correspondance M<strong>at</strong>hém<strong>at</strong>ique et Physique, publiée par A.<br />

Quetelet 4, 113–121 (1838).<br />

684. Verhulst, P.F. Recherches m<strong>at</strong>hém<strong>at</strong>iques sur la loi d’accroissement de la<br />

popul<strong>at</strong>ion. Nouveaux Mémoires de l’Académie Royale des Sciences, des<br />

Lettres et des Beaux-Arts de Belgique 18, 1–32 (1845).<br />

685. Berkson, J. Applic<strong>at</strong>ion <strong>of</strong> the logistic function to bio-assay. Journal <strong>of</strong> the<br />

American St<strong>at</strong>istical Associ<strong>at</strong>ion 39, 357–365 (1944).<br />

686. Cramer, J.S. Chapter 9: The origins and development <strong>of</strong> the logit model.<br />

Logit Models from Economics and Other Fields 149–157 (2003).<br />

687. Cox, D.R. Analysis <strong>of</strong> Binary D<strong>at</strong>a. (Chapman & Hall: London, England,<br />

1969).<br />

688. Hosmer, D.W. & Lemeshow, S. Applied Logistic Regression. (Wiley: New<br />

York, USA, 1989).<br />

689. Peduzzi, P., Conc<strong>at</strong>o, J., Kemper, E., Holford, T.R. & Feinstein, A.R. A<br />

simul<strong>at</strong>ion <strong>study</strong> <strong>of</strong> the number <strong>of</strong> events per variable in logistic regression<br />

analysis. J Clin Epidemiol 49, 1373-1379 (1996).<br />

208


690. Vittingh<strong>of</strong>f, E. & McCulloch, C.E. Relaxing the rule <strong>of</strong> ten events per<br />

variable in logistic and Cox regression. Am. J. Epidemiol 165, 710-718<br />

(2007).<br />

691. Good, P.I. & Hardin, J.W. Common Errors in St<strong>at</strong>istics. (John Wiley &<br />

Sons: Hoboken, New Jersey, USA, 2009).<br />

692. Rothman, K.J. Modern Epidemiology. (Lippincott Williams and Wilkins:<br />

1986).<br />

693. Robins, J.M. D<strong>at</strong>a, design, and background knowledge in etiologic<br />

inference. Epidemiology 12, 313-320 (2001).<br />

694. Pearl, J. Chapter 6.2. Why there is no st<strong>at</strong>istical test for confounding, Why<br />

many think there is, and Why they are almost right. Causality: Models,<br />

Reasoning and Inference 182f (2009).<br />

695. K<strong>at</strong>z, M.H. Multivariable analysis: a primer for readers <strong>of</strong> medical research.<br />

Ann. Intern. Med 138, 644-650 (2003).<br />

696. Cole, S.R. et al. Illustr<strong>at</strong>ing bias due to conditioning on a collider. Int J<br />

Epidemiol 39, 417-420 (2010).<br />

697. Maldonado, G. & Greenland, S. Simul<strong>at</strong>ion <strong>study</strong> <strong>of</strong> confounder-selection<br />

str<strong>at</strong>egies. Am. J. Epidemiol 138, 923-936 (1993).<br />

698. Greenland, S., Pearl, J. & Robins, J.M. Causal diagrams for epidemiologic<br />

research. Epidemiology 10, 37-48 (1999).<br />

699. Hernán, M.A., Hernández-Díaz, S., Werler, M.M. & Mitchell, A.A. Causal<br />

knowledge as a prerequisite for confounding evalu<strong>at</strong>ion: an applic<strong>at</strong>ion to<br />

birth defects epidemiology. Am. J. Epidemiol 155, 176-184 (2002).<br />

700. Victora, C.G., Huttly, S.R., Fuchs, S.C. & Olinto, M.T.A. The role <strong>of</strong><br />

conceptual frameworks in epidemiological analysis: a hierarchical<br />

approach. Int J Epidemiol 26, 224-227 (1997).<br />

701. Kumar, A. et al. Dur<strong>at</strong>ion <strong>of</strong> hypotension before initi<strong>at</strong>ion <strong>of</strong> effective<br />

antimicrobial therapy is the critical determinant <strong>of</strong> survival in human<br />

septic shock. Crit. Care Med 34, 1589-1596 (2006).<br />

702. Buckley, J.F., Singer, M. & Clapp, L.H. Role <strong>of</strong> KATP channels in sepsis.<br />

Cardiovasc. Res 72, 220-230 (2006).<br />

703. Warrillow, S., Egi, M. & Bellomo, R. Randomized, double-blind, placebo-<br />

controlled crossover pilot <strong>study</strong> <strong>of</strong> a potassium channel blocker in p<strong>at</strong>ients<br />

with septic shock. Crit. Care Med. 34, 980–985 (2006).<br />

209


704. Morelli, A. et al. Glibenclamide dose response in p<strong>at</strong>ients with septic shock:<br />

effects on norepinephrine requirements, cardiopulmonary performance,<br />

and global oxygen transport. Shock 28, 530–535 (2007).<br />

705. Cole, S.R. & Hernán, M.A. Fallibility in estim<strong>at</strong>ing direct effects.<br />

Intern<strong>at</strong>ional Journal <strong>of</strong> Epidemiology 31, 163–165 (2002).<br />

706. McNicholas, C.M. et al. Sensitivity <strong>of</strong> a renal K+ channel (ROMK2) to the<br />

inhibitory sulfonylurea compound glibenclamide is enhanced by<br />

coexpression with the ATP-binding cassette transporter cystic fibrosis<br />

transmembrane regul<strong>at</strong>or. Proc. N<strong>at</strong>l. Acad. Sci. U.S.A 93, 8083-8088<br />

(1996).<br />

707. Payen, L. et al. The sulphonylurea glibenclamide inhibits multidrug<br />

resistance protein (MRP1) activity in human lung cancer cells. Br. J.<br />

Pharmacol 132, 778-784 (2001).<br />

708. Melin, P., Hosy, E., Vivaudou, M. & Becq, F. CFTR inhibition by<br />

glibenclamide requires a positive charge in cytoplasmic loop three.<br />

Biochim. Biophys. Acta 1768, 2438-2446 (2007).<br />

709. Southern, E.M. Detection <strong>of</strong> specific sequences among DNA fragments<br />

separ<strong>at</strong>ed by gel electrophoresis. J. Mol. Biol. 98, 503-517 (1975).<br />

710. Augenlicht, L.H. & Kobrin, D. Cloning and screening <strong>of</strong> sequences<br />

expressed in a mouse colon tumor. Cancer Res 42, 1088-1093 (1982).<br />

711. Augenlicht, L.H. et al. Expression <strong>of</strong> cloned sequences in biopsies <strong>of</strong> human<br />

colonic tissue and in colonic carcinoma cells induced to differenti<strong>at</strong>e in<br />

vitro. Cancer Res 47, 6017-6021 (1987).<br />

712. Illumina HumanWG-6 v3.0 and HumanRef-8 v3.0 Expression BeadChips.<br />

(2008).<br />

713. Chapter 18, The Reference Sequence (RefSeq) Project. The NCBI<br />

handbook (2002).<strong>at</strong> <br />

714. Chapter 21, UniGene: a unified view <strong>of</strong> the transcriptome. The NCBI<br />

Handbook (2002).<strong>at</strong> <br />

715. Fare, T.L. et al. Effects <strong>of</strong> <strong>at</strong>mospheric ozone on microarray d<strong>at</strong>a quality.<br />

Anal. Chem 75, 4672-4675 (2003).<br />

716. Bonferroni, C.E. Il calcolo delle assicurazioni su gruppi di teste. Studi in<br />

Onore del Pr<strong>of</strong>essore Salv<strong>at</strong>ore Ortu Carboni 13–60 (1935).<br />

210


717. Dunn, O.J. Multiple comparisons among means. Journal <strong>of</strong> the American<br />

St<strong>at</strong>istical Associ<strong>at</strong>ion 56, 52–64 (1961).<br />

718. Holm, S. A simple sequentially rejective multiple test procedure.<br />

Scandinavian Journal <strong>of</strong> St<strong>at</strong>istics 6, 65-70 (1979).<br />

719. Benjamini, Y. & Hochberg, Y. Controlling the false discovery r<strong>at</strong>e: a<br />

practical and powerful approach to multiple testing. J R St<strong>at</strong>ist Soc B 57,<br />

289–300 (1995).<br />

720. Perneger, T.V. Wh<strong>at</strong>’s wrong with Bonferroni adjustments. BMJ 316,<br />

1236–1238 (1998).<br />

721. Sterne, J.A. & Davey Smith, G. Sifting the evidence-wh<strong>at</strong>’s wrong with<br />

significance tests? BMJ 322, 226-231 (2001).<br />

722. Keppel, G. & Wickens, T.D. Design and Analysis: A Researcher’s<br />

Handbook. (Prentice Hall: Upper Saddle River, New Jersey, 2004).<br />

723. Shi, L. et al. The MicroArray Quality Control (MAQC) project shows inter-<br />

and intrapl<strong>at</strong>form reproducibility <strong>of</strong> gene expression measurements. N<strong>at</strong>.<br />

Biotechnol 24, 1151-1161 (2006).<br />

724. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based<br />

approach for interpreting genome-wide expression pr<strong>of</strong>iles. Proc. N<strong>at</strong>l.<br />

Acad. Sci. U.S.A 102, 15545 -15550 (2005).<br />

725. Lynn, D. et al. Cur<strong>at</strong>ing the inn<strong>at</strong>e immunity interactome. BMC Systems<br />

Biology 4, 117 (2010).<br />

726. Cr<strong>of</strong>t, D. et al. Reactome: a d<strong>at</strong>abase <strong>of</strong> reactions, p<strong>at</strong>hways and biological<br />

processes. Nucleic Acids Res 39, D691-697 (2011).<br />

727. Rodbell, M. The role <strong>of</strong> hormone receptors and GTP-regul<strong>at</strong>ory proteins in<br />

membrane transduction. N<strong>at</strong>ure 284, 17-22 (1980).<br />

728. The Nobel Prize in Physiology or Medicine 1994. (2011).<strong>at</strong><br />

<br />

729. Wu, G., Feng, X. & Stein, L. A human functional protein interaction<br />

network and its applic<strong>at</strong>ion to cancer d<strong>at</strong>a analysis. Genome Biol 11, R53<br />

(2010).<br />

730. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & H<strong>at</strong>tori, M. The KEGG<br />

resource for deciphering the genome. Nucleic Acids Res 32, D277-280<br />

(2004).<br />

211


731. Ashburner, M. et al. Gene ontology: tool for the unific<strong>at</strong>ion <strong>of</strong> biology. The<br />

Gene Ontology Consortium. N<strong>at</strong>. Genet 25, 25-29 (2000).<br />

732. Brazma, A. et al. Minimum inform<strong>at</strong>ion about a microarray experiment<br />

(MIAME)-toward standards for microarray d<strong>at</strong>a. N<strong>at</strong>. Genet 29, 365-371<br />

(2001).<br />

733. Ioannidis, J.P.A. et al. Repe<strong>at</strong>ability <strong>of</strong> published microarray gene<br />

expression analyses. N<strong>at</strong>. Genet 41, 149-155 (2009).<br />

734. McCane, D.R. et al. Comparison <strong>of</strong> tests for glyc<strong>at</strong>ed haemoglobin and<br />

fasting and two hour plasma glucose concentr<strong>at</strong>ions as diagnostic methods<br />

for <strong>diabetes</strong>. BMJ 308, 1323-1328 (1994).<br />

735. Lamkanfi, M. et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome.<br />

J. Cell Biol 187, 61-70 (2009).<br />

736. Meduri, G.U. et al. Persistent elev<strong>at</strong>ion <strong>of</strong> inflamm<strong>at</strong>ory cytokines predicts<br />

a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent<br />

and efficient predictors <strong>of</strong> outcome over time. Chest 107, 1062-1073 (1995).<br />

737. Kikkawa, T. et al. Assessment <strong>of</strong> IL-18 values in septic acute lung<br />

injury/acute respir<strong>at</strong>ory distress syndrome p<strong>at</strong>ients. Critical Care 13, P368<br />

(2009).<br />

738. Koh, Y., Hybertson, B.M., Jepson, E.K., Cho, O.J. & Repine, J.E. Cytokine-<br />

induced neutrophil chemo<strong>at</strong>tractant is necessary for interleukin-1-induced<br />

lung leak in r<strong>at</strong>s. J. Appl. Physiol 79, 472-478 (1995).<br />

739. Ware, L.B. & M<strong>at</strong>thay, M.A. The acute respir<strong>at</strong>ory distress syndrome. N.<br />

Engl. J. Med 342, 1334-1349 (2000).<br />

740. Pompermayer, K. et al. The ATP-sensitive potassium channel blocker<br />

glibenclamide prevents renal ischemia/reperfusion injury in r<strong>at</strong>s. Kidney<br />

Int 67, 1785-1796 (2005).<br />

741. Pompermayer, K. et al. Effects <strong>of</strong> the tre<strong>at</strong>ment with glibenclamide, an<br />

ATP-sensitive potassium channel blocker, on intestinal ischemia and<br />

reperfusion injury. Eur. J. Pharmacol 556, 215-222 (2007).<br />

742. Riddle, M.C. Sulfonylureas differ in effects on ischemic preconditioning—Is<br />

it time to retire glyburide? J Clin Endocrinol Metab 88, 528-530 (2003).<br />

743. Muruve, D.A. et al. The inflammasome recognizes cytosolic microbial and<br />

host DNA and triggers an inn<strong>at</strong>e immune response. N<strong>at</strong>ure 452, 103-107<br />

(2008).<br />

212


744. Haskó, G., Deitch, E.A., Németh, Z.H., Kuhel, D.G. & Szabó, C. Inhibitors <strong>of</strong><br />

ATP-binding cassette transporters suppress interleukin-12 p40 production<br />

and major histocomp<strong>at</strong>ibility complex II up-regul<strong>at</strong>ion in macrophages. J.<br />

Pharmacol. Exp. Ther 301, 103-110 (2002).<br />

745. Hamon, Y. et al. ABC1 promotes engulfment <strong>of</strong> apoptotic cells and<br />

transbilayer redistribution <strong>of</strong> phosph<strong>at</strong>idylserine. N<strong>at</strong>. Cell Biol 2, 399-406<br />

(2000).<br />

746. Di Virgillo, F. Liaisons dangereuses: P2X(7) and the inflammasome.<br />

Trends Pharmacol. Sci. 28, 465–72 (2007).<br />

747. Jiang, H. et al. Stimul<strong>at</strong>ion <strong>of</strong> r<strong>at</strong> erythrocyte P2X7 receptor induces the<br />

release <strong>of</strong> epoxyeicos<strong>at</strong>rienoic acids. Br. J. Pharmacol. 151, 1033–40<br />

(2007).<br />

748. Dal-Secco, D. et al. Hydrogen sulfide augments neutrophil migr<strong>at</strong>ion<br />

through enhancement <strong>of</strong> adhesion molecule expression and prevention <strong>of</strong><br />

CXCR2 internaliz<strong>at</strong>ion: role <strong>of</strong> ATP-sensitive potassium channels. J.<br />

Immunol. 181, 4287–98 (2008).<br />

749. Pettitt, S.J. et al. Agouti C57BL/6N embryonic stem cells for mouse genetic<br />

resources. N<strong>at</strong>. Methods 6, 493-495 (2009).<br />

750. Skarnes, W.C. et al. A conditional knockout resource for the genome-wide<br />

<strong>study</strong> <strong>of</strong> mouse gene function. N<strong>at</strong>ure 474, 337-342 (2011).<br />

751. Leakey, A.K., Ulett, G.C. & Hirst, R.G. BALB/c and C57Bl/6 mice infected<br />

with virulent Burkholderia pseudomallei provide contrasting animal<br />

models for the acute and chronic forms <strong>of</strong> human melioidosis. Microb.<br />

P<strong>at</strong>hog 24, 269-275 (1998).<br />

752. Hoppe, I. et al. Characteriz<strong>at</strong>ion <strong>of</strong> a murine model <strong>of</strong> melioidosis:<br />

comparison <strong>of</strong> different strains <strong>of</strong> mice. Infect. Immun 67, 2891-2900<br />

(1999).<br />

753. Conejero, L. et al. Low-dose exposure <strong>of</strong> C57BL/6 mice to Burkholderia<br />

pseudomallei mimics chronic human melioidosis. Am. J. P<strong>at</strong>hol 179, 270-<br />

280 (2011).<br />

754. Reiner, S.L. & Locksley, R.M. The regul<strong>at</strong>ion <strong>of</strong> immunity to Leishmania<br />

major. Annu. Rev. Immunol 13, 151-177 (1995).<br />

213


755. Chackerian, A.A. & Behar, S.M. Susceptibility to Mycobacterium<br />

tuberculosis: lessons from inbred strains <strong>of</strong> mice. Tuberculosis (Edinb) 83,<br />

279-285 (2003).<br />

756. Autenrieth, I.B., Beer, M., Bohn, E., Kaufmann, S.H. & Heesemann, J.<br />

Immune responses to Yersinia enterocolitica in susceptible BALB/c and<br />

resistant C57BL/6 mice: an essential role for gamma interferon. Infect.<br />

Immun 62, 2590-2599 (1994).<br />

757. Mohammadi, M., Redline, R., Nedrud, J. & Czinn, S. Role <strong>of</strong> the host in<br />

p<strong>at</strong>hogenesis <strong>of</strong> Helicobacter-associ<strong>at</strong>ed gastritis: H. felis infection <strong>of</strong><br />

inbred and congenic mouse strains. Infect. Immun. 64, 238-245 (1996).<br />

758. Morissette, C., Skamene, E. & Gervais, F. Endobronchial inflamm<strong>at</strong>ion<br />

following Pseudomonas aeruginosa infection in resistant and susceptible<br />

strains <strong>of</strong> mice. Infect. Immun. 63, 1718-1724 (1995).<br />

759. Ulett, G.C., Ketheesan, N. & Hirst, R.G. Cytokine gene expression in<br />

inn<strong>at</strong>ely susceptible BALB/c mice and rel<strong>at</strong>ively resistant C57BL/6 mice<br />

during infection with virulent Burkholderia pseudomallei. Infect. Immun<br />

68, 2034-2042 (2000).<br />

760. Barnes, J.L. et al. Induction <strong>of</strong> multiple chemokine and colony-stimul<strong>at</strong>ing<br />

factor genes in experimental Burkholderia pseudomallei infection.<br />

Immunol. Cell Biol 79, 490-501 (2001).<br />

761. Ralph, P. & Nakoinz, I. Phagocytosis and cytolysis by a macrophage tumour<br />

and its cloned cell line. N<strong>at</strong>ure 257, 393-394 (1975).<br />

762. W<strong>at</strong>anabe, H., Num<strong>at</strong>a, K., Ito, T., Takagi, K. & M<strong>at</strong>sukawa, A. Inn<strong>at</strong>e<br />

immune response in Th1- and Th2-dominant mouse strains. Shock 22,<br />

460-466 (2004).<br />

763. Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A. & C<strong>of</strong>fman,<br />

R.L. Two types <strong>of</strong> murine helper T cell clone. I. Definition according to<br />

pr<strong>of</strong>iles <strong>of</strong> lymphokine activities and secreted proteins. J. Immunol 136,<br />

2348-2357 (1986).<br />

764. Atkins, T. et al. A mutant <strong>of</strong> Burkholderia pseudomallei, auxotrophic in the<br />

branched chain amino acid biosynthetic p<strong>at</strong>hway, is <strong>at</strong>tenu<strong>at</strong>ed and<br />

protective in a murine model <strong>of</strong> melioidosis. Infect Immun 70, 5290-5294<br />

(2002).<br />

214


765. Wiersinga, W.J. et al. Inflamm<strong>at</strong>ion p<strong>at</strong>terns induced by different<br />

Burkholderia species in mice. Cell. Microbiol. 10, 81-87 (2008).<br />

766. van Schaik, E., Tom, M., DeVinney, R. & Woods, D.E. Development <strong>of</strong><br />

novel animal infection models for the <strong>study</strong> <strong>of</strong> acute and chronic<br />

Burkholderia pseudomallei pulmonary infections. Microbes Infect 10,<br />

1291-1299 (2008).<br />

767. Cuccui, J. et al. Development <strong>of</strong> sign<strong>at</strong>ure-tagged mutagenesis in<br />

Burkholderia pseudomallei to identify genes important in survival and<br />

p<strong>at</strong>hogenesis. Infect. Immun 75, 1186-1195 (2007).<br />

768. Nelson, M. et al. Development <strong>of</strong> an acute model <strong>of</strong> inhal<strong>at</strong>ional<br />

melioidosis in the common marmoset (Callithrix jacchus). Int J Exp P<strong>at</strong>hol<br />

92, 428-435 (2011).<br />

769. Manzeniuk, I.N. et al. [Burkholderia mallei and Burkholderia<br />

pseudomallei. Study <strong>of</strong> immuno- and p<strong>at</strong>hogenesis <strong>of</strong> glanders and<br />

melioidosis. Heterologous vaccines]. Antibiot. Khimioter 44, 21-26 (1999).<br />

770. Narita, M., Logan<strong>at</strong>han, P., Hussein, A., Jamaluddin, A. & Joseph, P.G.<br />

P<strong>at</strong>hological changes in go<strong>at</strong>s experimentally inocul<strong>at</strong>ed with Pseudomonas<br />

pseudomallei. N<strong>at</strong>l Inst Anim Health Q (Tokyo) 22, 170-179 (1982).<br />

771. Najdenski, H., Kussovski, V. & Vesselinova, A. Experimental Burkholderia<br />

pseudomallei infection <strong>of</strong> pigs. J. Vet. Med. B Infect. Dis. Vet. Public Health<br />

51, 225-230 (2004).<br />

772. O’Quinn, A.L., Wiegand, E.M. & Jeddeloh, J.A. Burkholderia pseudomallei<br />

kills the nem<strong>at</strong>ode Caenorhabditis elegans using an endotoxin-medi<strong>at</strong>ed<br />

paralysis. Cell. Microbiol 3, 381-393 (2001).<br />

773. Gan, Y.-H. et al. Characteriz<strong>at</strong>ion <strong>of</strong> Burkholderia pseudomallei infection<br />

and identific<strong>at</strong>ion <strong>of</strong> novel virulence factors using a Caenorhabditis elegans<br />

host system. Mol. Microbiol 44, 1185-1197 (2002).<br />

774. von Mering, J.F. & Minkowski, O. Diabetes mellitus nach<br />

Pankreasexstirp<strong>at</strong>ion. Archiv für experimentelle P<strong>at</strong>hologie und<br />

Pharmakologie 26, 371–387 (1890).<br />

775. Banting, F.G. & Best, C.H. The internal secretion <strong>of</strong> the pancreas. J. Lab.<br />

Clin. Invest. 7, 251–266 (1922).<br />

776. Makino, S. et al. Breeding <strong>of</strong> a non-obese, diabetic strain <strong>of</strong> mice. Jikken<br />

Dobutsu 29, 1-13 (1980).<br />

215


777. Makino, S., Hayashi, Y. & Muraoka, Y. Establishment <strong>of</strong> the nonobese-<br />

diabetic (NOD) mouse model. Current topics in clinical and experimental<br />

aspects <strong>of</strong> <strong>diabetes</strong> mellitus 25–52 (1985).<br />

778. Bowman, M.A., Leiter, E.H. & Atkinson, M.A. Prevention <strong>of</strong> <strong>diabetes</strong> in the<br />

NOD mouse: implic<strong>at</strong>ions for therapeutic intervention in human disease.<br />

Immunol. Today 15, 115-120 (1994).<br />

779. Harada, M. & Makino, S. Promotion <strong>of</strong> spontaneous <strong>diabetes</strong> in non-obese<br />

<strong>diabetes</strong>-prone mice by cyclophosphamide. Diabetologia 27, 604-606<br />

(1984).<br />

780. H<strong>at</strong>tori, M. et al. A single recessive non-MHC diabetogenic gene<br />

determines the development <strong>of</strong> insulitis in the presence <strong>of</strong> an MHC-linked<br />

diabetogenic gene in NOD mice. J. Autoimmun. 3, 1-10 (1990).<br />

781. M<strong>at</strong>hews, C.E., Graser, R.T., Serreze, D.V. & Leiter, E.H. Reevalu<strong>at</strong>ion <strong>of</strong><br />

the major histocomp<strong>at</strong>ibility complex genes <strong>of</strong> the NOD-progenitor<br />

CTS/Shi strain. Diabetes 49, 131-134 (2000).<br />

782. Yoshioka, M., Kayo, T., Ikeda, T. & Koizumi, A. A novel locus, Mody4, distal<br />

to D7Mit189 on chromosome 7 determines early-onset NIDDM in<br />

nonobese C57BL/6 (Akita) mutant mice. Diabetes 46, 887-894 (1997).<br />

783. Soares, M.B. et al. RNA-medi<strong>at</strong>ed gene duplic<strong>at</strong>ion: the r<strong>at</strong> preproinsulin I<br />

gene is a functional retroposon. Mol. Cell. Biol. 5, 2090-2103 (1985).<br />

784. M<strong>at</strong>hews, C.E. & Leiter, E.H. Chapter 18: Rodent models for the <strong>study</strong> <strong>of</strong><br />

<strong>diabetes</strong>. Joslin’s Diabetes Mellitus (2005).<br />

785. Coleman, D.L. & Eicher, E.M. F<strong>at</strong> (f<strong>at</strong>) and tubby (tub): two autosomal<br />

recessive mut<strong>at</strong>ions causing obesity syndromes in the mouse. J. Hered. 81,<br />

424-427 (1990).<br />

786. Vavra, J.J., Deboer, C., Dietz, A., Hanka, L.J. & Sokolski, W.T.<br />

Streptozotocin, a new antibacterial antibiotic. Antibiot Annu 7, 230-5<br />

(1959).<br />

787. Szkudelski, T. The mechanism <strong>of</strong> alloxan and streptozotocin action in B<br />

cells <strong>of</strong> the r<strong>at</strong> pancreas. Physiol Res 50, 537-546 (2001).<br />

788. Lenzen, S. The mechanisms <strong>of</strong> alloxan- and streptozotocin-induced<br />

<strong>diabetes</strong>. Diabetologia 51, 216-226 (2008).<br />

789. McEvoy, R.C., Andersson, J., Sandler, S. & Hellerström, C. Multiple low-<br />

dose streptozotocin-induced <strong>diabetes</strong> in the mouse. Evidence for<br />

216


stimul<strong>at</strong>ion <strong>of</strong> a cytotoxic cellular immune response against an insulin-<br />

producing beta cell line. J. Clin. Invest 74, 715-722 (1984).<br />

790. Oberg, K. Chemotherapy and biotherapy in the tre<strong>at</strong>ment <strong>of</strong><br />

neuroendocrine tumours. Ann Oncol 12, S111–S114 (2001).<br />

791. Rakieten, N., Rakieten, M.L. & Nadkarni, M.V. Studies on the diabetogenic<br />

action <strong>of</strong> streptozotocin (NSC-37917). Cancer Chemother Rep 29, 91-98<br />

(1963).<br />

792. Dunn, J.S., Sheehan, H.L. & McLetchie, N.G.B. Necrosis <strong>of</strong> islets <strong>of</strong><br />

Langerhans produced experimentally. The Lancet 241, 484-487 (1943).<br />

793. Isermann, B. et al. Activ<strong>at</strong>ed protein C protects against diabetic<br />

nephrop<strong>at</strong>hy by inhibiting endothelial and podocyte apoptosis. N<strong>at</strong>. Med<br />

13, 1349-1358 (2007).<br />

794. Burcelin, R., Kande, J., Ricquier, D. & Girard, J. Changes in uncoupling<br />

protein and GLUT4 glucose transporter expressions in interscapular brown<br />

adipose tissue <strong>of</strong> diabetic r<strong>at</strong>es: rel<strong>at</strong>ive roles <strong>of</strong> hyperglycaemia and<br />

hypoinsulinaemia. Biochem J 291, 109–113 (1993).<br />

795. Tancrède, G., Rousseau-Migneron, S. & Nadeau, A. Long-term changes in<br />

the diabetic st<strong>at</strong>e induced by different doses <strong>of</strong> streptozotocin in r<strong>at</strong>s. Br J<br />

Exp P<strong>at</strong>hol 64, 117-23 (1983).<br />

796. Hummel, K.P., Dickie, M.M. & Coleman, D.L. Diabetes, a new mut<strong>at</strong>ion in<br />

the mouse. Science 153, 1127-1128 (1966).<br />

797. Toye, A.A. et al. A genetic and physiological <strong>study</strong> <strong>of</strong> impaired glucose<br />

homeostasis control in C57BL/6J mice. Diabetologia 48, 675-686 (2005).<br />

798. Freeman, H.C., Hugill, A., Dear, N.T., Ashcr<strong>of</strong>t, F.M. & Cox, R.D. Deletion<br />

<strong>of</strong> nicotinamide nucleotide transhydrogenase: a new quantitive trait locus<br />

accounting for glucose intolerance in C57BL/6J mice. Diabetes 55, 2153-<br />

2156 (2006).<br />

799. Huang, T.-T. et al. Genetic modifiers <strong>of</strong> the phenotype <strong>of</strong> mice deficient in<br />

mitochondrial superoxide dismutase. Human Molecular Genetics 15, 1187<br />

-1194 (2006).<br />

800. Golde, W.T., Gollobin, P. & Rodriguez, L.L. A rapid, simple, and humane<br />

method for submandibular bleeding <strong>of</strong> mice using a lancet. Lab Anim (NY)<br />

34, 40–43 (2005).<br />

217


801. Deakin, A.M., Payne, A.N. & Blackwell, G.J. Role <strong>of</strong> potassium channels in<br />

the regul<strong>at</strong>ion <strong>of</strong> cytokine release from THP-1 cells. Inflamm<strong>at</strong>ion<br />

Research 41, C188-C190 (1994).<br />

802. Laliberte, R.E., Eggler, J. & Gabel, C.A. ATP tre<strong>at</strong>ment <strong>of</strong> human<br />

monocytes promotes caspase-1 m<strong>at</strong>ur<strong>at</strong>ion and externaliz<strong>at</strong>ion. J. Biol.<br />

Chem. 274, 36944-36951 (1999).<br />

803. van der Poll, T. & Opal, S.M. Host-p<strong>at</strong>hogen interactions in sepsis. Lancet<br />

Infect Dis 8, 32-43 (2008).<br />

804. Hamon, Y. et al. Interleukin-1beta secretion is impaired by inhibitors <strong>of</strong> the<br />

Atp binding cassette transporter, ABC1. Blood 90, 2911-2915 (1997).<br />

805. Ponte-Sucre, A., Campos, Y., Vázquez, J., Moll, H. & Mendoza-León, A.<br />

Sensitivity <strong>of</strong> Leishmania spp. to glibenclamide and 4-aminopyridine: a<br />

tool for the <strong>study</strong> <strong>of</strong> drug resistance development. Mem. Inst. Oswaldo<br />

Cruz 92, 601-606 (1997).<br />

806. Seltzer, H.S. A summary <strong>of</strong> criticisms <strong>of</strong> the findings and conclusions <strong>of</strong> the<br />

<strong>University</strong> Group Diabetes Program (UGDP). Diabetes 21, 976-979 (1972).<br />

807. Kilo, C., Miller, J.P. & Williamson, J.R. The crux <strong>of</strong> the UGDP. Spurious<br />

results and biologically inappropri<strong>at</strong>e d<strong>at</strong>a analysis. Diabetologia 18, 179-<br />

185 (1980).<br />

808. Meinert, C.L. Clinical trials: Design, Conduct, and Analysis. (Oxford<br />

<strong>University</strong> Press: Oxford, United Kingdom, 1986).<br />

809. Feinglos, M.N. & Bethel, M.A. Therapy <strong>of</strong> type 2 <strong>diabetes</strong>, cardiovascular<br />

de<strong>at</strong>h, and the UGDP. Am. Heart J 138, S346-352 (1999).<br />

810. Khalangot, M., Tronko, M., Kravchenko, V. & Kovtun, V. Glibenclamide-<br />

rel<strong>at</strong>ed excess in total and cardiovascular mortality risks: d<strong>at</strong>a from large<br />

Ukrainian observ<strong>at</strong>ional cohort <strong>study</strong>. Diabetes Res. Clin. Pract. 86, 247-<br />

253 (2009).<br />

811. Monami, M. et al. Are sulphonylureas all the same? A cohort <strong>study</strong> on<br />

cardiovascular and cancer-rel<strong>at</strong>ed mortality. Diabetes Metab. Res. Rev. 23,<br />

479-484 (2007).<br />

812. Schramm, T.K. et al. Mortality and cardiovascular risk associ<strong>at</strong>ed with<br />

different insulin secretagogues compared with metformin in type 2<br />

<strong>diabetes</strong>, with or without a previous myocardial infarction: a n<strong>at</strong>ionwide<br />

<strong>study</strong>. Eur. Heart J. 32, 1900-1908 (2011).<br />

218


813. Schwartz, T.B. & Curtis L, M. The UGDP controversy: thirty-four years <strong>of</strong><br />

contentious ambiguity laid to rest. Perspect Biol Med 47, 564–574 (2004).<br />

814. Tomai, F. et al. Effects <strong>of</strong> K(ATP) channel blockade by glibenclamide on the<br />

warm-up phenomenon. Eur. Heart J 20, 196-202 (1999).<br />

815. Ovünç, K. Effects <strong>of</strong> glibenclamide, a K(ATP) channel blocker, on warm-up<br />

phenomenon in type II diabetic p<strong>at</strong>ients with chronic stable angina<br />

pectoris. Clin Cardiol 23, 535-539 (2000).<br />

816. Tomai, F. et al. Ischemic preconditioning during coronary angioplasty is<br />

prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker.<br />

Circul<strong>at</strong>ion 90, 700-705 (1994).<br />

817. Klepzig, H. et al. Sulfonylureas and ischaemic preconditioning; a double-<br />

blind, placebo-controlled evalu<strong>at</strong>ion <strong>of</strong> glimepiride and glibenclamide. Eur<br />

Heart J 20, 439–46 (1999).<br />

818. Lee, T.-M. & Chou, T.-F. Impairment <strong>of</strong> myocardial protection in type 2<br />

diabetic p<strong>at</strong>ients. J. Clin. Endocrinol. Metab 88, 531-537 (2003).<br />

819. Flynn, D.M. et al. The sulfonylurea glipizide does not inhibit ischemic<br />

preconditioning in anesthetized rabbits. Cardiovasc Drugs Ther 19, 337-<br />

346 (2005).<br />

820. Neiszner, E. et al. Influence <strong>of</strong> diabetic st<strong>at</strong>e and th<strong>at</strong> <strong>of</strong> different<br />

sulfonylureas on the size <strong>of</strong> myocardial infarction with and without<br />

ischemic preconditioning in rabbits. Exp Clin Endocrinol Diabetes 110,<br />

212–8 (2002).<br />

821. Hueb, W. et al. Effect <strong>of</strong> a hypoglycemic agent on ischemic preconditioning<br />

in p<strong>at</strong>ients with type 2 <strong>diabetes</strong> and stable angina pectoris. Coron. Artery<br />

Dis 18, 55-59 (2007).<br />

822. Geisen, K., Végh, A., Krause, E. & Papp, J.G. Cardiovascular effects <strong>of</strong><br />

conventional sulfonylureas and glimepiride. Horm. Metab. Res 28, 496-<br />

507 (1996).<br />

823. Rydberg, T., Jonsson, A., Roder, M. & Melander, A. Hypoglycemic activity<br />

<strong>of</strong> glyburide (glibenclamide) metabolites in humans. Diabetes Care 17,<br />

1026-1030 (1994).<br />

824. Balant, L., Fabre, J., Loutan, L. & Samimi, H. Does 4-trans-hydroxy-<br />

glibenclamide show hypoglycemic activity? Arzneimittelforschung 29, 162-<br />

163 (1979).<br />

219


825. Asplund, K., Wiholm, B.E. & Lithner, F. Glibenclamide-associ<strong>at</strong>ed<br />

hypoglycaemia: a report on 57 cases. Diabetologia 24, 412-417 (1983).<br />

826. Ravindran, S. et al. Identific<strong>at</strong>ion <strong>of</strong> glyburide metabolites formed by<br />

hep<strong>at</strong>ic and placental microsomes <strong>of</strong> humans and baboons. Biochem.<br />

Pharmacol 72, 1730-1737 (2006).<br />

827. Hill, R.A. et al. Hydroxyl-substituted sulfonylureas as potent inhibitors <strong>of</strong><br />

specific [3H]glyburide binding to r<strong>at</strong> brain synaptosomes. Bioorg. Med.<br />

Chem 11, 2099-2113 (2003).<br />

828. Blicklé, J.F. Meglitinide analogues: a review <strong>of</strong> clinical d<strong>at</strong>a focused on<br />

recent trials. Diabetes Metab 32, 113-120 (2006).<br />

220


Cre<strong>at</strong>ive Commons Licence<br />

Cre<strong>at</strong>ive Commons License Attribution-Noncommercial-Share Alike<br />

2.0<br />

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF<br />

THIS CREATIVE COMMONS PUBLIC LICENCE (“CCPL” OR “LICENCE”).<br />

THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE<br />

LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER<br />

THIS LICENCE OR COPYRIGHT LAW IS PROHIBITED. BY EXERCISING<br />

ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE<br />

TO BE BOUND BY THE TERMS OF THIS LICENCE. THE LICENSOR GRANTS<br />

YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR<br />

ACCEPTANCE OF SUCH TERMS AND CONDITIONS.<br />

This Cre<strong>at</strong>ive Commons England and Wales Public Licence enables You (all<br />

capitalised terms defined below) to view, edit, modify, transl<strong>at</strong>e and distribute<br />

Works worldwide, under the terms <strong>of</strong> this licence, provided th<strong>at</strong> You credit the<br />

Original Author.<br />

“The Licensor” (Gavin Christian Kia Wee Koh) and “You” agree as follows:<br />

1. Definitions<br />

1.1. “Attribution” means acknowledging all the parties who have<br />

contributed to and have rights in the Work or Collective Work under<br />

this Licence.<br />

1.1. “Collective Work” means the Work in its entirety in unmodified form<br />

along with a number <strong>of</strong> other separ<strong>at</strong>e and independent works,<br />

assembled into a collective whole.<br />

1.2. “Deriv<strong>at</strong>ive Work” means any work cre<strong>at</strong>ed by the editing,<br />

modific<strong>at</strong>ion, adapt<strong>at</strong>ion or transl<strong>at</strong>ion <strong>of</strong> the Work in any media<br />

(however a work th<strong>at</strong> constitutes a Collective Work will not be<br />

considered a Deriv<strong>at</strong>ive Work for the purpose <strong>of</strong> this Licence). For<br />

the avoidance <strong>of</strong> doubt, where the Work is a musical composition or<br />

221


sound recording, the synchroniz<strong>at</strong>ion <strong>of</strong> the Work in timed-rel<strong>at</strong>ion<br />

with a moving image (“synching”) will be considered a Deriv<strong>at</strong>ive<br />

Work for the purpose <strong>of</strong> this Licence.<br />

1.3. “Licence” means this Cre<strong>at</strong>ive Commons England and Wales Public<br />

Licence agreement.<br />

1.4. “Licence Elements” means the following high-level licence <strong>at</strong>tributes<br />

indic<strong>at</strong>ed in the title <strong>of</strong> this Licence: Attribution, Non-Commercial,<br />

Share-Alike.<br />

1.5. “Non-Commercial” means “not primarily intended for or directed<br />

towards commercial advantage or priv<strong>at</strong>e monetary compens<strong>at</strong>ion”.<br />

The exchange <strong>of</strong> the Work for other copyrighted works by means <strong>of</strong><br />

digital file-sharing or otherwise shall not be considered to be<br />

intended for or directed towards commercial advantage or priv<strong>at</strong>e<br />

monetary compens<strong>at</strong>ion, provided there is no payment <strong>of</strong> any<br />

monetary compens<strong>at</strong>ion in connection with the exchange <strong>of</strong><br />

copyrighted works.<br />

1.6. “Original Author” means the individual (or entity) who cre<strong>at</strong>ed the<br />

Work.<br />

1.7. “Work” means the work protected by copyright which is <strong>of</strong>fered<br />

under the terms <strong>of</strong> this Licence.<br />

1.8. For the purpose <strong>of</strong> this Licence, when not inconsistent with the<br />

context, words in the singular number include the plural number.<br />

2. Licence Terms<br />

2.1. The Licensor hereby grants to You a worldwide, royalty-free, non-<br />

exclusive, Licence for Non-Commercial use and for the dur<strong>at</strong>ion <strong>of</strong><br />

copyright in the Work.<br />

You may:<br />

• copy the Work;<br />

• cre<strong>at</strong>e one or more Deriv<strong>at</strong>ive Works;<br />

• incorpor<strong>at</strong>e the Work into one or more Collective Works;<br />

• copy Deriv<strong>at</strong>ive Works or the Work as incorpor<strong>at</strong>ed in any<br />

Collective Work; and<br />

222


• publish, distribute, archive, perform or otherwise dissemin<strong>at</strong>e<br />

the Work or the Work as incorpor<strong>at</strong>ed in any Collective Work,<br />

to the public in any m<strong>at</strong>erial form in any media whether now<br />

known or hereafter cre<strong>at</strong>ed.<br />

HOWEVER, You must not:<br />

• impose any terms on the use to be made <strong>of</strong> the Work, the<br />

Deriv<strong>at</strong>ive Work or the Work as incorpor<strong>at</strong>ed in a Collective<br />

Work th<strong>at</strong> alter or restrict the terms <strong>of</strong> this Licence or any rights<br />

granted under it or has the effect or intent <strong>of</strong> restricting the<br />

ability to exercise those rights;<br />

• impose any digital rights management technology on the Work<br />

or the Work as incorpor<strong>at</strong>ed in a Collective Work th<strong>at</strong> alters or<br />

restricts the terms <strong>of</strong> this Licence or any rights granted under it<br />

or has the effect or intent <strong>of</strong> restricting the ability to exercise<br />

those rights;<br />

• sublicense the Work;<br />

• subject the Work to any derog<strong>at</strong>ory tre<strong>at</strong>ment as defined in the<br />

FINALLY,<br />

You must:<br />

Copyright, Designs and P<strong>at</strong>ents Act 1988.<br />

• make reference to this Licence (by Uniform Resource Identifier<br />

(URI), spoken word or as appropri<strong>at</strong>e to the media used) on all<br />

copies <strong>of</strong> the Work and Collective Works published, distributed,<br />

performed or otherwise dissemin<strong>at</strong>ed or made available to the<br />

public by You;<br />

• recognise the Licensor’s / Original Author’s right <strong>of</strong> <strong>at</strong>tribution<br />

in any Work and Collective Work th<strong>at</strong> You publish, distribute,<br />

perform or otherwise dissemin<strong>at</strong>e to the public and ensure th<strong>at</strong><br />

You credit the Licensor / Original Author as appropri<strong>at</strong>e to the<br />

media used; and<br />

• to the extent reasonably practicable, keep intact all notices th<strong>at</strong><br />

refer to this Licence, in particular the URI, if any, th<strong>at</strong> the<br />

Licensor specifies to be associ<strong>at</strong>ed with the Work, unless such<br />

223


URI does not refer to the copyright notice or licensing<br />

inform<strong>at</strong>ion for the Work.<br />

Additional Provisions for third parties making use <strong>of</strong> the Work<br />

2.2 Further licence from the Licensor<br />

Each time You publish, distribute, perform or otherwise dissemin<strong>at</strong>e<br />

• the Work; or<br />

• any Deriv<strong>at</strong>ive Work; or<br />

• the Work as incorpor<strong>at</strong>ed in a Collective Work<br />

the Licensor agrees to <strong>of</strong>fer to the relevant third party making use <strong>of</strong><br />

the Work (in any <strong>of</strong> the altern<strong>at</strong>ives set out above) a licence to use the<br />

Work on the same terms and conditions as granted to You hereunder.<br />

2.3. Further licence from You<br />

Each time You publish, distribute, perform or otherwise dissemin<strong>at</strong>e<br />

• a Deriv<strong>at</strong>ive Work; or<br />

• a Deriv<strong>at</strong>ive Work as incorpor<strong>at</strong>ed in a Collective Work<br />

You agree to <strong>of</strong>fer to the relevant third party making use <strong>of</strong> the Work<br />

(in either <strong>of</strong> the altern<strong>at</strong>ives set out above) a licence to use the<br />

Deriv<strong>at</strong>ive Work on any <strong>of</strong> the following premises:<br />

• a licence on the same terms and conditions as the licence<br />

granted to You hereunder; or<br />

• a l<strong>at</strong>er version <strong>of</strong> the licence granted to You hereunder; or<br />

• any other Cre<strong>at</strong>ive Commons licence with the same Licence<br />

Elements.<br />

2.4. This Licence does not affect any rights th<strong>at</strong> the User may have under<br />

any applicable law, including fair use, fair dealing or any other legally<br />

recognised limit<strong>at</strong>ion or exception to copyright infringement.<br />

2.5. All rights not expressly granted by the Licensor are hereby reserved,<br />

including but not limited to, the exclusive right to collect, whether<br />

individually or via a licensing body, such as a collecting society,<br />

224


oyalties for any use <strong>of</strong> the Work which results in commercial<br />

advantage or priv<strong>at</strong>e monetary compens<strong>at</strong>ion.<br />

3. Warranties and Disclaimer<br />

Except as required by law, the Work is licensed by the Licensor on an “as<br />

is” and “as available” basis and without any warranty <strong>of</strong> any kind, either<br />

express or implied.<br />

4. Limit <strong>of</strong> Liability<br />

Subject to any liability which may not be excluded or limited by law the<br />

Licensor shall not be liable and hereby expressly excludes all liability for<br />

loss or damage howsoever and whenever caused to You.<br />

5. Termin<strong>at</strong>ion<br />

The rights granted to You under this Licence shall termin<strong>at</strong>e autom<strong>at</strong>ically<br />

upon any breach by You <strong>of</strong> the terms <strong>of</strong> this Licence. Individuals or entities<br />

who have received Collective Works from You under this Licence, however,<br />

will not have their Licences termin<strong>at</strong>ed provided such individuals or<br />

entities remain in full compliance with those Licences.<br />

6. General<br />

6.1. The validity or enforceability <strong>of</strong> the remaining terms <strong>of</strong> this<br />

agreement is not affected by the holding <strong>of</strong> any provision <strong>of</strong> it to be<br />

invalid or unenforceable.<br />

6.2. This Licence constitutes the entire Licence Agreement between the<br />

parties with respect to the Work licensed here. There are no<br />

understandings, agreements or represent<strong>at</strong>ions with respect to the<br />

Work not specified here. The Licensor shall not be bound by any<br />

additional provisions th<strong>at</strong> may appear in any communic<strong>at</strong>ion in any<br />

form.<br />

6.3. A person who is not a party to this Licence shall have no rights under<br />

the Contracts (Rights <strong>of</strong> Third Parties) Act 1999 to enforce any <strong>of</strong> its<br />

terms.<br />

225


6.4. This Licence shall be governed by the law <strong>of</strong> England and Wales and<br />

the parties irrevocably submit to the exclusive jurisdiction <strong>of</strong> the<br />

Courts <strong>of</strong> England and Wales.<br />

7. On the role <strong>of</strong> Cre<strong>at</strong>ive Commons<br />

7.1. Neither the Licensor nor the User may use the Cre<strong>at</strong>ive Commons<br />

logo except to indic<strong>at</strong>e th<strong>at</strong> the Work is licensed under a Cre<strong>at</strong>ive<br />

Commons Licence. Any permitted use has to be in compliance with<br />

the Cre<strong>at</strong>ive Commons trade mark usage guidelines <strong>at</strong> the time <strong>of</strong> use<br />

<strong>of</strong> the Cre<strong>at</strong>ive Commons trade mark. These guidelines may be found<br />

on the Cre<strong>at</strong>ive Commons website or be otherwise available upon<br />

request from time to time.<br />

7.2. Cre<strong>at</strong>ive Commons Corpor<strong>at</strong>ion does not pr<strong>of</strong>it financially from its<br />

role in providing this Licence and will not investig<strong>at</strong>e the claims <strong>of</strong><br />

any Licensor or user <strong>of</strong> the Licence.<br />

7.3. One <strong>of</strong> the conditions th<strong>at</strong> Cre<strong>at</strong>ive Commons Corpor<strong>at</strong>ion requires<br />

<strong>of</strong> the Licensor and You is an acknowledgement <strong>of</strong> its limited role and<br />

agreement by all who use the Licence th<strong>at</strong> the Corpor<strong>at</strong>ion is not<br />

responsible to anyone for the st<strong>at</strong>ements and actions <strong>of</strong> You or the<br />

Licensor or anyone else <strong>at</strong>tempting to use or using this Licence.<br />

7.4. Cre<strong>at</strong>ive Commons Corpor<strong>at</strong>ion is not a party to this Licence, and<br />

makes no warranty wh<strong>at</strong>soever in connection to the Work or in<br />

connection to the Licence, and in all events is not liable for any loss<br />

or damage resulting from the Licensor’s or Your reliance on this<br />

Licence or on its enforceability.<br />

7.5. USE OF THIS LICENCE MEANS THAT YOU AND THE LICENSOR<br />

EACH ACCEPTS THESE CONDITIONS IN SECTION 7.1, 7.2, 7.3, 7.4<br />

AND EACH ACKNOWLEDGES CREATIVE COMMONS<br />

CORPORATION’S VERY LIMITED ROLE AS A FACILITATOR OF<br />

THE LICENCE FROM THE LICENSOR TO YOU.<br />

226


List <strong>of</strong> manuscripts<br />

Koh GCKW, Maude RR, Schreiber MF, Limm<strong>at</strong>hurotsakul D, Wiersinga WJ,<br />

Wuthiekanun V, Lee SJ, Mahavanakul W, Chaowagul W, Chierakul W, White NJ,<br />

van der Poll T, Day NPJ, Dougan G, Peacock SJ. Glyburide is anti-inflamm<strong>at</strong>ory<br />

and associ<strong>at</strong>ed with reduced mortality in melioidosis. Clin Infect Dis<br />

2011;52(6):717–725.<br />

Koh GCKW, Peacock SJ, van der Poll T, Wiersinga WJ. The impact <strong>of</strong><br />

<strong>diabetes</strong> on the p<strong>at</strong>hogenesis <strong>of</strong> sepsis. Eur J Clin Microbiol Infect Dis 2011.<br />

PubMed ID: 21805196. [Epub ahead <strong>of</strong> print]<br />

Koh GCKW, Bretibach K, Kager LM, de Jong HK, Hoogendijk AJ, Day NPJ,<br />

Peacock SJP, van der Poll T, Steinmetz I, Wiersinga WJ. Glibenclamide inhibits<br />

interleukin-1β secretion in a murine model <strong>of</strong> melioidosis. [Manuscript in<br />

prepar<strong>at</strong>ion]<br />

227


Acknowledgements<br />

I have been privileged to work in three countries and <strong>at</strong> three intern<strong>at</strong>ional<br />

centres <strong>of</strong> excellence. This work could not have been achieved without help<br />

from, collabor<strong>at</strong>ion with, and the support <strong>of</strong> a vast number <strong>of</strong> people. My job<br />

was only to provide the thread th<strong>at</strong> stitched together the broad canvases <strong>of</strong> this<br />

painting.<br />

I wish to thank my supervisors, Pr<strong>of</strong>essor Sharon J Peacock, Pr<strong>of</strong>essor<br />

Tom van der Poll, Pr<strong>of</strong>essor Gordon Dougan, Dr Willem Joost Wiersinga and<br />

Pr<strong>of</strong>essor Nicholas J P Day for their support and guidance, access to their time<br />

and most especially for allowing me to try their p<strong>at</strong>ience. I am extremely<br />

gr<strong>at</strong>eful to the Wellcome Trust for funding me, for funding this research, for<br />

funding the units within which I work and without whose support this work<br />

would not have been possible.<br />

The cohort <strong>study</strong> was initially conceived by Pr<strong>of</strong>essor Peacock and<br />

Dr Direk Limm<strong>at</strong>hurotsakul (mor Dee), using d<strong>at</strong>a previously collected <strong>at</strong><br />

Sappasithiprasong Hospital in Ubon R<strong>at</strong>ch<strong>at</strong>hani by Dr Limm<strong>at</strong>hurotsakul,<br />

Dr Wirongrong Chierakul (p’Kae), Dr Bina Maharajan, Saowanit Getchalar<strong>at</strong><br />

(p’Luk), Dr Allen Cheng and Dr Atchriya Hemachandra. Dr Rapeephan<br />

R<strong>at</strong>tanawongnara Maude (Meen) helped me with retrieving the medical notes<br />

and cleaning the d<strong>at</strong>a. Dr Limm<strong>at</strong>hurotsakul and Khun Varinthorn Praikaew<br />

(nong Deaw) were responsible for d<strong>at</strong>a entry for this <strong>study</strong>.<br />

Dr Limm<strong>at</strong>hurotsakul and Dr Sue Lee guided me through the st<strong>at</strong>istical<br />

analysis, and Jon<strong>at</strong>han Sterne helped me to understand and build the<br />

conceptual hierarchical framework.<br />

The work in Thailand was made possible by the support <strong>of</strong> Pr<strong>of</strong>essor<br />

Nick Day, who made available to me the staff and resources to do this <strong>study</strong>,<br />

including the initial decision to fund me for 12 months and the subsequent<br />

decision to fund me for an additional 6 months when it became clear th<strong>at</strong> I was<br />

not efficient enough to complete the <strong>study</strong> objectives within the time allotted.<br />

The gene expression <strong>study</strong> was conceived <strong>of</strong> by Pr<strong>of</strong>essor Peacock and<br />

Pr<strong>of</strong>essor Gordon Dougan. Dr Wirongrong Chierakul (p’Kae),<br />

Dr Limm<strong>at</strong>hurotsakul and Khun Vanaporn Wuthiekanun (p’Lek) critiqued the<br />

228


original <strong>study</strong> proposal and helped presented it to the Thai ethics committee. I<br />

am gr<strong>at</strong>eful to the Wellcome Trust Melioidosis Labor<strong>at</strong>ory staff <strong>at</strong><br />

Sappasithiprasong, Khun Gumphol Wongsuvan (p’Gum), Khun Sukalya<br />

Paengmee (nong Ya) and Khun Vanaporn Wuthiekanun (p’Lek) for help<br />

diagnosing and identifying p<strong>at</strong>ients for the <strong>study</strong>, and to Dr Limm<strong>at</strong>hurotsakul,<br />

Dr R<strong>at</strong>tanawongnara Maude, Khun Jintana Suwanapruek (p’Taew), Dr Ekamol<br />

Tantis<strong>at</strong>tamo (mor Bird), Khun Saowanit Getchalar<strong>at</strong> (p’Luk),<br />

Khun Pittachayanant Ariyaprasert and Khun Maliwan Hongsuvan (N’ng) for<br />

helping to recruit the p<strong>at</strong>ients and to collect the blood specimens. I must<br />

acknowledge the sterling work <strong>of</strong> the medical and nursing staff <strong>of</strong><br />

Sappasithiprasong Hospital in caring for the melioidosis p<strong>at</strong>ients under difficult<br />

conditions, particularly Dr Suchart Boonraphun, Dr Prapit Teparrukkul,<br />

Dr Praprut Thanakitcharu, Dr Saran Wanapasanee, Dr Akom Arayawichanont,<br />

Dr Wiriya Chualee and Pr<strong>of</strong>essor Wipada Chaowagul. I also wish to thank the<br />

staff <strong>of</strong> Warin Chamrap Hospital, Dr Charoen Sayreer<strong>at</strong>tanakorn,<br />

Khun Runglamei Suddee, Khun Uraiwan Kumsrisuk, Khun Niri<strong>at</strong>chadaporn<br />

Prowsri, Khun Yupadee Nampanya, Khun Supalak Thanomlab and Dr Suthee<br />

Suddee, who run wh<strong>at</strong> is probably the best <strong>diabetes</strong> clinic in the world.<br />

Dr R<strong>at</strong>tanawongnara Maude was critically responsible for feeding me while I<br />

was in Thailand, teaching me Thai, chauffeuring me around, negoti<strong>at</strong>ing on my<br />

behalf, cleaning up after me and for keeping me sane (thank you, sister).<br />

At the Mahidol-Oxford Tropical Medicine Unit in Bangkok, Kanchana<br />

Pongsaw<strong>at</strong> (p’Phung), Sujitra Sukhapiw<strong>at</strong>ana (p’Jiab), Mondira Sarapark<br />

(p’Ting) and nong Anne were indispensible in sorting out the transport <strong>of</strong><br />

people, equipment, money and reagents.<br />

At the Academic Medical Center in Amsterdam, I received guidance on<br />

designing the mouse experiments from Dr Willem Joost Wiersinga and<br />

Pr<strong>of</strong>essor Tom van der Poll. Mouse experiments are not a one-person job and I<br />

am gr<strong>at</strong>eful for the technical expertise <strong>of</strong> Marieke ten Brink and Joost<br />

Daalhuizen in caring for the animals, inocul<strong>at</strong>ing them, teaching me how to<br />

administer drugs and when the time came, to sacrifice them humanely and<br />

efficiently. Sample processing would have been much slower and more boring<br />

without the help <strong>of</strong> (in alphabetical order) Dana Blok, Daan de Boer, Floor van<br />

den Boogaard, Tijmen Hommes, Arjan Hoogendijk, K<strong>at</strong>ja de Jong, Liesbeth<br />

229


Kager, Anne Jan van der Meer. Special thanks goes to Arjan Hoogendijk, who<br />

introduced me gently into lab work and incisive scientific advice. I also wish to<br />

thank Tassili Weehuizen, Liesbeth Kager, Taijmen Hommes, Arjan Hoogendijk<br />

and Regina de Beer for help cutting wax blocks and staining p<strong>at</strong>hology slides.<br />

For cytokine assays (ELISA and CBA), I have to thank Arjan Hoogendijk,<br />

Danielle Kruijswijk, Miriam van Lieshout, K<strong>at</strong>ja de Jong and Tassili Weehuizen.<br />

For the protein assays, I wish to thank Tim Schuijt and Anne Jan van der Meer.<br />

I wish to thank Arjan Hoogendijk, Alex de Vos, Jan Willem Duitman, Teunis<br />

Geitenbeek and Tim Schuijt for helpful and insightful discussions. Special<br />

thanks go to Ajran Hoogendijk and Karla de Souza Queiroz for food, sanity and<br />

spectacularly good Brazilian c<strong>of</strong>fee. Thanks also to Chai Yew Wei for gourmet<br />

Chinese and Italian cuisine. I am especially gr<strong>at</strong>eful to Pr<strong>of</strong>essor van der Poll for<br />

inviting me to work in Amsterdam with him and for providing the labor<strong>at</strong>ory<br />

space and resource without which this project could not have happened.<br />

At the Wellcome Trust Sanger Institute, I wish to thank Pr<strong>of</strong>essor Gordon<br />

Dougan for providing the resources, space and facilities th<strong>at</strong> enabled me to do<br />

this project. I wish to thank Fernanda Schreiber for extracting the RNA, and the<br />

staff <strong>of</strong> the Microarray Facility for the cDNA conversion and microarray<br />

hybridis<strong>at</strong>ion (particularly Peter Ellis, Ruben Bautista, Rob Kennedy and<br />

Cordelia Langford). I wish to thank Fernanda Schreiber, Roslin Russell, Keith<br />

James, Mike Smith, Robert Stojnic, Ana Luisa Toribio, Mark Dunning, Wei Shi<br />

for help performing the microarray analysis. Special thanks go to Sophie Palmer<br />

for just making things work.<br />

My brain works better for having people to bounce ideas <strong>of</strong>f; for being a<br />

useful sounding board, therefore, I wish to give special thanks to thank Arjan<br />

Hoogendijk, Hsü Li Yang, Emma Nickerson, Richard Maude and Anton<br />

Ilderton. David Dance provided invaluable help obtaining scanned copies <strong>of</strong><br />

otherwise unobtainable papers and conference abstracts, despite being in Laos.<br />

I must also acknowledge the help <strong>of</strong> Anne Bourgeois-Vignon, Samuel Kerrien<br />

and Christopher Kimber for help transl<strong>at</strong>ing articles from the original French<br />

and German. And to Anton Ilderton, for listening to me complain, cups <strong>of</strong> tea,<br />

cheering me up, and unconditional support.<br />

In the course <strong>of</strong> writing this dissert<strong>at</strong>ion, I must acknowledge the help <strong>of</strong><br />

Sharon Peacock and Joost Wiersinga for their revisions and suggestions. I also<br />

230


wish to thank my examiners Pr<strong>of</strong>essors Arthur Kaser and Richard Titball for<br />

their helpful comments. All errors remaining are mine alone.<br />

231

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!