03.04.2013 Views

Cordilleran Vein Type Deposits Examples

Cordilleran Vein Type Deposits Examples

Cordilleran Vein Type Deposits Examples

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Vein</strong>s 11/3/10<br />

<strong>Cordilleran</strong> <strong>Vein</strong> <strong>Type</strong> <strong>Deposits</strong><br />

• Base-­‐ and precious-­‐metal deposits that occur<br />

as open-­‐space filling or replacement<br />

polymetallic vein deposits which are generally<br />

not obviously related to immediately adjacent<br />

igneous ac>vity.<br />

• ‘<strong>Type</strong>’ locality is the N/S American cordillera<br />

but they are found around the world<br />

<strong>Examples</strong><br />

• Ontario-­‐Tin>c Ag mines in Utah<br />

• Peru: Casapalca, San Cristobal, Cerro de<br />

Pasco<br />

• Ag-­‐Pb deposits of Coeur d’Alene, ID<br />

• Au-­‐Ag-­‐Te deposits of B.C. and the Colorado<br />

Front Range<br />

• Ag mines of Leadville, CO<br />

• Magma copper deposits, AZ<br />

1


<strong>Vein</strong>s 11/3/10<br />

Generaliza>ons -­‐1<br />

• Associa>on in space and >me with calc-­‐<br />

alkaline igneous ac>vity<br />

• Hydrothermal transport of ore components,<br />

deposited epigene>cally in faults<br />

• Ore minerals as typical open-­‐space fillings<br />

or co-­‐precipitates in silicate host rocks and<br />

as replacements in carbonate hosts<br />

• Deposi>on within 1+ km of the surface<br />

• Well developed metal zona>on<br />

Generaliza>ons-­‐2<br />

• Sulfur isotope ra>os close to 0 ‰<br />

• Structural control<br />

• Typically well-­‐developed bilaterally<br />

symmetrical wall-­‐rock altera>on<br />

• Normally contain porphyry-­‐Cu suite of<br />

elements with zona>on from (Sn-­‐W-­‐)Mo-­‐<br />

Cu-­‐Zn-­‐Pb-­‐Mn-­‐Ag<br />

• Magma>c-­‐hydrothermal fluids mixed (late,<br />

post-­‐ore?) with meteoric fluids<br />

2


<strong>Vein</strong>s 11/3/10<br />

Casapalca, Peru<br />

3


<strong>Vein</strong>s 11/3/10<br />

Casapalca, Peru<br />

• Mineraliza>on in a series of veins<br />

• <strong>Vein</strong>s cut series of N-­‐S an>clines and<br />

synclines in Cretaceous ls; 1500m of<br />

Ter>ary subaerial Casapalca Fm; 1500m of<br />

andesi>c tuffs, flows, and volcaniclas>c<br />

sediments and 1500m of pre-­‐Miocene<br />

sediments and volcanic rocks<br />

• Principal C vein N45°E, dips 70-­‐80 NW<br />

– Other veins subparallel; or as splays<br />

4


<strong>Vein</strong>s 11/3/10<br />

5


<strong>Vein</strong>s 11/3/10<br />

Casapalca Structures<br />

• Miocene folding and diori>c intrusions<br />

• Major intrusion cut by mineralized fault -­‐<br />

complicated history<br />

• Liile skarn in district<br />

– Found in the 11km Graton Tunnel driven below<br />

the workings to drain water (up to 66°C),<br />

ven>late, haulage<br />

• <strong>Vein</strong>s occupy shear planes -­‐ 6 km long, 2<br />

km high<br />

6


<strong>Vein</strong>s 11/3/10<br />

7


<strong>Vein</strong>s 11/3/10<br />

Timing, temperature, mineralogy,<br />

zona>on<br />

• See figure<br />

– Py-­‐Sphalerite-­‐Galena-­‐(huebnerite-­‐<br />

arsenopyrite) early at 350-­‐400° C<br />

– Chalcopyrite, then Tetrahedrite follow, ZnS-­‐PbS<br />

begin to wane<br />

– Pyrite and quartz gangue<br />

– Late sulfides strongly zoned: both<br />

mineralogically and composi>onally<br />

– Altera>on is extensive centrally becoming less<br />

intense and localized outward<br />

8


<strong>Vein</strong>s 11/3/10<br />

Timing, temperature, mineralogy,<br />

zona>on (cont.)<br />

• Chalcopyrite abundant in center, Sb-­‐As-­‐Bi<br />

sulfosalts take over peripherally<br />

• 4-­‐40% NaCl, varied erra>cally, minor boil<br />

• Average ore grade:<br />

– 2% Pb 3% Zn<br />

– 0.3% Cu 10 oz/ton (310 ppm) Ag<br />

• <strong>Vein</strong>s up to 1 meter wide<br />

– Important small adjacent parallel fractures<br />

9


<strong>Vein</strong>s 11/3/10<br />

10


<strong>Vein</strong>s 11/3/10<br />

Cerro de Pasco, Peru<br />

Buie, Montana<br />

11


<strong>Vein</strong>s 11/3/10<br />

Colorado Telluride Belt<br />

• NE end of the Colorado Mineral Belt<br />

• Placer gold discovered in 1859<br />

• Au-­‐Te ores discovered in 1872<br />

• Small, erra>cally distributed, rich ore bodies<br />

• Mined un>l about 1960<br />

• Te not recovered from these ores -­‐ Te<br />

recovered during Cu refining (porphyries)<br />

12


<strong>Vein</strong>s 11/3/10<br />

Geologic Seong<br />

• Precambrian schist and gneiss intruded by<br />

Ter>ary stocks & dikes<br />

• Te mineraliza>on related to dikes and<br />

intrusion breccias<br />

• Localized where NW ‘breccia reefs’ intersect<br />

NE veins<br />

13


<strong>Vein</strong>s 11/3/10<br />

14


<strong>Vein</strong>s 11/3/10<br />

Ore <strong>Deposits</strong> -­‐ Mul>ple Events<br />

• Pb-­‐Ag deposits: widely scaiered veins (NE)<br />

– (Pb,Ag)S, tetrahedrite, ± sph, cpy, py<br />

• Fluorite deposits: Jamestown<br />

– 1-­‐20’ wide veins, 100-­‐1000’ long<br />

– Adjacent to sodic grani>c stocks<br />

– Deep violet color: up to 0.05% U<br />

• Pyri>c Au deposits: NE trending veins<br />

– Coarse pyrite, cpy, sph, gal, tetrahedrite<br />

– Earlier than Au-­‐Te event<br />

Mul>ple Events -­‐ con>nued<br />

• Au-­‐Te deposits: NE trending fissures<br />

– Inches to feet thick, mined to 3-­‐700’ depth<br />

– Ore con>nues at depth but water and Au price<br />

made non-­‐economic<br />

– Best ore in breccia zones<br />

– Petzite, hessite, sylvanite, calaverite, …<br />

• Tungsten deposits: E-­‐NE belt overlapping<br />

end of Te belt<br />

– Fe-­‐Mn tungstates (ferberite)<br />

15


<strong>Vein</strong>s 11/3/10<br />

16


<strong>Vein</strong>s 11/3/10<br />

Coeur D’Alene, Idaho<br />

• One of the largest Ag districts in the world<br />

• $3+ billion of ore since 1879<br />

– 1 billion oz of Ag<br />

– 10 million tonnes of Pb<br />

– 3 million tonnes of Zn<br />

– 200,000 tonnes of Cu<br />

– Significant Sb<br />

17


<strong>Vein</strong>s 11/3/10<br />

• 50 x 20 km area<br />

• District-­‐wide zoning<br />

– Au in north<br />

– Pb-­‐Zn in center<br />

– Cu-­‐Ag in south<br />

• Underlain by:<br />

General Seong<br />

– Proterozoic Belt Group<br />

– Cretaceous igneous intrusions<br />

– Ter>ary and Quaternary unconsolidated units<br />

Belt Group<br />

• Quartzites, argillites and calcareous rocks<br />

up to 6km thick<br />

• Shallow water origin<br />

– Mud cracks, ripples, stromatolites<br />

• Folded, faulted and minor metamorphism<br />

in Proterozoic and during Laramide<br />

– Monzonite stocks and lamprophyre dikes and<br />

sills were intruded aver Mesozoic deforma>on<br />

– Minor diabase sills appear to be Precambrian<br />

18


<strong>Vein</strong>s 11/3/10<br />

Faul>ng<br />

• WNW faults, the major being:<br />

• Osburn Fault can be traced for hundreds of<br />

kms outside of district<br />

– Dips 55-­‐65° south<br />

– 4.5 km normal dip-­‐slip offset<br />

– 25 km right lateral strike slip displacement<br />

– Intermiiently ac>ve since Precambrian<br />

– 30-­‐60 m wide fault zone<br />

– Many parallel and oblique 2nd order faults<br />

19


<strong>Vein</strong>s 11/3/10<br />

Ore deposits<br />

• Most in fractures and shears in Belt rocks<br />

– Minor structures more favorable than major<br />

• Some ore in monzonites, lamprophyres<br />

unmineralized<br />

• Briile rocks more highly mineralized<br />

• Galena, sphalerite, tetrahedrite,<br />

chalcopyrite, pyrrho>te, magne>te,<br />

arsenopyrite<br />

– Minor bornite, chalcocite, s>bnite, Cu-­‐Sb-­‐S<br />

sulfosalts, scheelite, uraninite<br />

Ores (cont)<br />

• Arsenopyrite forms envelopes around ore<br />

• Qtz, siderite, pyrite, (barite) as gangue<br />

– Typical ‘mesothermal’ assemblage<br />

• 10% combined Pb-­‐Zn; 1 oz/tonne Ag<br />

• Ag in tetrahedrite, not galena<br />

20


<strong>Vein</strong>s 11/3/10<br />

Timing or Mineraliza>on<br />

• Very confusing and s>ll debated<br />

– Some may be Precambrian<br />

– Most probably syn-­‐ post-­‐Laramide<br />

– Some stocks seem directly implicated<br />

– Pb age is Precambrian -­‐ remobilized from Belt<br />

basement by Laramide hydrothermal systems?<br />

– No single paragenesis for district as whole<br />

– Altera>on variable -­‐ sericite most common<br />

Cobalt, Ont. Loca>on Map<br />

21


<strong>Vein</strong>s 11/3/10<br />

Cobalt, Ontario -­‐ Summary 1<br />

• 445 million oz Ag since 1903<br />

• Na>ve Ag w/ cobalt arsenides and sulfosalts<br />

• Near ver>cal carbonate veins cuong<br />

– Huronian Gowganda<br />

– Archean metavolcanics<br />

– Nipissing diabase<br />

• All major deposits within a few hundred<br />

meters of the Archean unconformity and in<br />

proximity to diabase and VMS sulfide<br />

mounds in the Archean metavolcanics<br />

22


<strong>Vein</strong>s 11/3/10<br />

Cobalt, Ontario -­‐ Summary 2<br />

• Ag mobilized from country rocks by<br />

hypersaline brines and deposited by mixing<br />

with cooler meteoric water<br />

• Chloride complexing dominant<br />

• Halite-­‐bearing fluid inclusions<br />

• 300-­‐350° C<br />

• 600-­‐1360 bars (2-­‐4 km lithosta>c depth)<br />

23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!