03.04.2013 Views

EMC Simulations of Power Electronic Devices and Systems - serec

EMC Simulations of Power Electronic Devices and Systems - serec

EMC Simulations of Power Electronic Devices and Systems - serec

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Didier Cottet, Stanislav Skibin, Ivica Stevanovic<br />

ABB Switzerl<strong>and</strong> Ltd., Corporate Research, 28. May 2010<br />

<strong>EMC</strong> <strong>Simulations</strong> <strong>of</strong> <strong>Power</strong><br />

<strong>Electronic</strong> <strong>Devices</strong> <strong>and</strong> <strong>Systems</strong><br />

© ABB Group<br />

June 2, 2010 | Slide 1


Outline<br />

© ABB Group<br />

June 2, 2010 | Slide 2<br />

Introduction<br />

Numerical Method<br />

Device <strong>Simulations</strong><br />

System <strong>Simulations</strong><br />

Conclusion


Introduction<br />

PE in <strong>Power</strong> Supply & Distribution<br />

© ABB Group<br />

June 2, 2010 | Slide 3<br />

Where do we find power electronics in power generation,<br />

transmission <strong>and</strong> distribution?


Introduction<br />

PE in <strong>Power</strong> Supply & Distribution<br />

© ABB Group<br />

June 2, 2010 | Slide 4<br />

Static excitation systems<br />

<strong>Power</strong><br />

stations<br />

SVC Light with<br />

energy storage<br />

Grid stabilization<br />

Solar inverters<br />

Photovoltaic


Introduction<br />

PE in <strong>Power</strong> Supply & Distribution<br />

© ABB Group<br />

June 2, 2010 | Slide 5<br />

HVDC for shore<br />

connection<br />

Oil platforms<br />

AC drives for pumps


Introduction<br />

PE in <strong>Power</strong> Supply & Distribution<br />

© ABB Group<br />

June 2, 2010 | Slide 6<br />

Generator frequency<br />

converter<br />

Wind parks<br />

StatComs for grid code<br />

HVDC for shore<br />

connection


Introduction<br />

<strong>EMC</strong> / EMI in <strong>Power</strong> <strong>Electronic</strong>s<br />

© ABB Group<br />

June 2, 2010 | Slide 7<br />

<strong>EMC</strong> (compatibility)<br />

St<strong>and</strong>ards compliancy<br />

Switching harmonics / THD<br />

(up to 25 th / 40 th harmonic)<br />

Conducted emissions<br />

(150 kHz – 30 MHz)<br />

Radiated emissions<br />

(30 MHz – 1 GHz)<br />

EMI (interferences)<br />

Malfunction through self disturbance<br />

Performance de-rating<br />

…through load imbalance<br />

…through voltage/currents overshoots<br />

Low ruggedness in short circuit mode<br />

Electric stress through ringing <strong>and</strong> oscillations


Outline<br />

© ABB Group<br />

June 2, 2010 | Slide 8<br />

Introduction<br />

Numerical Method<br />

Device <strong>Simulations</strong><br />

System <strong>Simulations</strong><br />

Conclusion


Methodology<br />

PEEC – Partial Element Equivalent Circuits<br />

© ABB Group<br />

June 2, 2010 | Slide 9<br />

1) 3D geometry description<br />

<strong>and</strong> materials definition<br />

2) Geometry subdivision<br />

Nodes<br />

3) Surface mesh<br />

Node capacitances, C …<br />

to GND<br />

…to other nodes<br />

4) Volume mesh<br />

Node-to-node<br />

…resistances, R<br />

…self inductances, L<br />

Mutual inductances, M<br />

5) RLCM-circuit description


Methodology<br />

Modeling Procedures<br />

© ABB Group<br />

June 2, 2010 | Slide 10<br />

3D Broadb<strong>and</strong> Solution<br />

Time <strong>and</strong> frequency<br />

domain<br />

Current <strong>and</strong> potential<br />

distributions<br />

E-/H-fields<br />

Linear elements only<br />

Slow<br />

Order reduced Z-matrix<br />

for defined frequency f extr<br />

SPICE, Simplorer, …<br />

0D Narrowb<strong>and</strong> Solution<br />

Valid around frequency f extr<br />

Time <strong>and</strong> frequency<br />

domain<br />

Nonlinear elements<br />

No current/potential<br />

distributions<br />

No E-/H-fields<br />

Fast


Outline<br />

© ABB Group<br />

June 2, 2010 | Slide 11<br />

Introduction<br />

Numerical Method<br />

Device <strong>Simulations</strong><br />

System <strong>Simulations</strong><br />

Conclusion


Simulated Device<br />

IGBT <strong>Power</strong> Modules<br />

© ABB Group<br />

June 2, 2010 | Slide 12<br />

Example: HiPak IGBT power module<br />

Rating: 6.5 kV, 2.4 kA<br />

24 parallel IGBTs<br />

12 anti-parallel diodes<br />

EMI related design issues<br />

Dynamic / static current distribution<br />

Short circuit capabilities<br />

EM noise emission<br />

CM coupling through base plate<br />

Dominant effect<br />

Local disturbances in<br />

IGBT gate voltages, U GE<br />

6 ×


Modeling<br />

Package Macro Modeling<br />

© ABB Group<br />

June 2, 2010 | Slide 13<br />

3D PEEC model<br />

Substrates<br />

Bond wires<br />

<strong>Power</strong> terminals<br />

Auxiliary terminals<br />

Extraction <strong>of</strong> SPICE<br />

compatible Z-matrix<br />

(0D narrowb<strong>and</strong> solution)<br />

**********************************************<br />

*** subcircuit for hipak_package v1.0<br />

**********************************************<br />

.subckt hipak_package_v1 1 2 3 4 5 6 7 8 9 10<br />

1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26<br />

2728 29 30 31 32 33 34 35 36 37 38<br />

LZ_0 1 i_node0_2 2.25402e-008<br />

LZ_1 3 i_node1_2 1.44454e-008<br />

LZ_2 5 i_node2_2 9.15187e-009<br />

LZ_3 7 i_node3_2 2.30544e-008<br />

LZ_4 9 i_node4_2 1.48664e-008<br />

.<br />

.<br />

.<br />

KZ_1_0 LZ_1 LZ_0 0.888218<br />

KZ_2_0 LZ_2 LZ_0 0.662318<br />

KZ_2_1 LZ_2 LZ_1 0.812005<br />

KZ_3_0 LZ_3 LZ_0 0.0200939<br />

KZ_3_1 LZ_3 LZ_1 -0.0428358<br />

.<br />

.<br />

.<br />

RZ_0_0 i_node0_2 i_node0_3 0.000948648<br />

HZ_0_1 i_node0_3 i_node0_4 Vam_1 0.000703874<br />

HZ_0_2 i_node0_4 i_node0_5 Vam_2 0.000529978<br />

HZ_0_3 i_node0_5 i_node0_6 Vam_3 4.56201e-005<br />

HZ_0_4 i_node0_6 i_node0_7 Vam_4 4.65392e-005<br />

HZ_0_5 i_node0_7 i_node0_8 Vam_5 4.79563e-005<br />

.<br />

.<br />

.<br />

Vam_18 i_node18_21 38 dc=0v<br />

.ends


Modeling<br />

Circuit Model<br />

© ABB Group<br />

June 2, 2010 | Slide 14<br />

Gate signal<br />

Package<br />

Z-matrix<br />

IGBTs &<br />

diodes<br />

Load<br />

IGBTs &<br />

diodes


Results<br />

Switching Analysis<br />

© ABB Group<br />

June 2, 2010 | Slide 15<br />

IGBTs 1-4<br />

IGBTs 5-8<br />

Initial design<br />

Asymmetric current sharing<br />

between paralleled IGBTs<br />

up to 140 % current<br />

overshoot per IGBT<br />

Optimized design<br />

Symmetric current sharing<br />

between paralleled IGBTs<br />

max 60 % current<br />

overshoot per IGBT


Results<br />

H-Field Coupling Analysis<br />

© ABB Group<br />

June 2, 2010 | Slide 16<br />

Underst<strong>and</strong> coupling effects through visualization <strong>of</strong><br />

…magnetic field vectors <strong>and</strong><br />

…current density distributions<br />

Asymmetric coupling into V GE<br />

Asymmetric terminal current paths<br />

Open coupling loops in gate-emitter paths<br />

(Note: 3D simulation using TLM method, Transmission Line Matrix)


Outline<br />

© ABB Group<br />

June 2, 2010 | Slide 17<br />

Introduction<br />

Numerical Method<br />

Device <strong>Simulations</strong><br />

System <strong>Simulations</strong><br />

Conclusion


System <strong>Simulations</strong><br />

New Challenges<br />

© ABB Group<br />

June 2, 2010 | Slide 18<br />

Complexity<br />

Number <strong>of</strong> components<br />

Number <strong>of</strong> simulation cases<br />

Physical dimensions<br />

Availability <strong>of</strong> input data<br />


Case Study<br />

Medium Voltage Static Frequency Converter<br />

© ABB Group<br />

June 2, 2010 | Slide 19<br />

Static Frequency Converter<br />

16 inverter units<br />

(IGCTs, 3-level ANPC)<br />

1 common DC bus<br />

(~11 m length, +/neutral/-)<br />

18 DC link capacitors<br />

(film capacitors)<br />

Distributed, low resistive LC circuit<br />

Risk <strong>of</strong> ringing <strong>and</strong> oscillations<br />

EM noise <strong>and</strong> thermal stress <strong>of</strong> DC link capacitors


Modeling<br />

Objectives<br />

© ABB Group<br />

June 2, 2010 | Slide 20<br />

DC-link system impedance simulation<br />

Identify system resonances<br />

Analysis <strong>of</strong> individual impedance contributions<br />

(bus bars, junctions, capacitors, cables)<br />

Design goal: reduce stray inductances


Modeling<br />

Bus Bar Thickness vs. Frequency<br />

© ABB Group<br />

June 2, 2010 | Slide 21<br />

Bus bar thickness: t = 2 cm<br />

Frequency <strong>of</strong> interest: DC to 10 kHz<br />

Skin depth ~ bar thickness<br />

Need for accurate & efficient volume discretization<br />

Non-uniform cross-sectional meshing


Model Verification<br />

<strong>Simulations</strong> vs. Measurements<br />

© ABB Group<br />

June 2, 2010 | Slide 22<br />

Impedance measurement setup<br />

meas.<br />

sim.<br />

short circuit,<br />

0D narrowb<strong>and</strong><br />

Capacitor cables to bus bar<br />

meas.<br />

sim.<br />

High accuracy with 0D narrowb<strong>and</strong> solution<br />

capacitive load,<br />

0D narrowb<strong>and</strong>


Model Improvement<br />

Acceleration<br />

© ABB Group<br />

June 2, 2010 | Slide 23<br />

Accurate volume<br />

discretization for skin-<br />

<strong>and</strong> proximity effects<br />

Large PEEC model<br />

Many ports<br />

Large RL-matrix<br />

in Simplorer<br />

Acceleration through<br />

divide <strong>and</strong> conquer<br />

(domain decomposition)<br />

3 small PEEC model<br />

Few ports<br />

9 small RL-matrices<br />

in Simplorer<br />

left 7 x intermediate right


Model Improvement<br />

Full Model<br />

© ABB Group<br />

June 2, 2010 | Slide 24<br />

×9


Model Improvement<br />

Decomposed (Segmented) Model<br />

© ABB Group<br />

June 2, 2010 | Slide 25<br />

×9


Model Improvement<br />

Verification<br />

© ABB Group<br />

June 2, 2010 | Slide 26<br />

- Full model<br />

- Segmented<br />

model<br />

- 0D narrowb<strong>and</strong><br />

3D broadb<strong>and</strong><br />

- Full model<br />

- Segmented<br />

model<br />

High agreement between full<br />

<strong>and</strong> segmented model<br />

High agreement between<br />

3D broadb<strong>and</strong> PEEC <strong>and</strong><br />

0D narrowb<strong>and</strong> segmented<br />

model


Results<br />

Impedance Discussion<br />

© ABB Group<br />

June 2, 2010 | Slide 27<br />

Single capacitor connected<br />

at far end <strong>of</strong> bus bar<br />

Cap + cables + bus bar<br />

Cap + cables<br />

Cap<br />

Impact on f res :<br />

bus bar <strong>and</strong> cables<br />

Nine capacitors connected<br />

along bus bar<br />

Complete bus bar<br />

Simplified bus bar<br />

(no junction elements)<br />

Ideal connection<br />

Impact on Z characteristics:<br />

bus bar <strong>and</strong> junctions


Outline<br />

© ABB Group<br />

June 2, 2010 | Slide 28<br />

Introduction<br />

Numerical Method<br />

Device <strong>Simulations</strong><br />

System <strong>Simulations</strong><br />

Conclusion


Conclusion<br />

© ABB Group<br />

June 2, 2010 | Slide 29<br />

<strong>Power</strong> electronics omnipresent in power T&D<br />

<strong>EMC</strong> <strong>and</strong> EMI in power electronics are known issues<br />

PEEC as promising numerical method for its flexibility<br />

Frequency range (DC to HF)<br />

Scalability (R, L, C)<br />

Time- <strong>and</strong> frequency domain<br />

Circuit formulation<br />

Device simulations: Advanced state-<strong>of</strong>-the-art for<br />

System simulations: Efficient methods in available & in use<br />

Effective acceleration methods for large system simulations<br />

PEEC simulations as powerful tool for bus bar design


© ABB Group<br />

June 2, 2010 | Slide 30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!