03.04.2013 Views

Fission Product Yield Data for the Transmutation of Minor Actinide ...

Fission Product Yield Data for the Transmutation of Minor Actinide ...

Fission Product Yield Data for the Transmutation of Minor Actinide ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

J<br />

Â<br />

K=-J 2 2 2<br />

^<br />

sym Krot ( U, J) = exp(<br />

-K<br />

/ Ko)ª<br />

s<br />

(3.1.8)<br />

while <strong>for</strong> axially asymmetric de<strong>for</strong>mations (U nuclei<br />

at inner saddle de<strong>for</strong>mations <strong>for</strong> N > 144 and super<br />

long mode outer saddle):<br />

asym 2<br />

( ) @ 2 2ps^s|<br />

K U<br />

rot<br />

(3.1.9)<br />

where K is <strong>the</strong> projection <strong>of</strong> <strong>the</strong> spin J on <strong>the</strong><br />

–1 nuclear symmetry axis, ;<br />

is <strong>the</strong> spin distribution parameter, and t<br />

is <strong>the</strong> <strong>the</strong>rmodynamic temperature F | = (6/p 2<br />

·m 2 Ò(1 – 2/3e) in which ·m 2 2 -2<br />

-2<br />

K 0 = ( s| -s<br />

^ )<br />

- 2 s | = Ft |<br />

Ò is <strong>the</strong> average value <strong>of</strong><br />

<strong>the</strong> squared projection <strong>of</strong> <strong>the</strong> angular momentum <strong>of</strong><br />

<strong>the</strong> single particle states and e is <strong>the</strong> quadrupole<br />

de<strong>for</strong>mation parameter. The o<strong>the</strong>r spin cut-<strong>of</strong>f<br />

parameter s 2 ^ is given by <strong>the</strong> equation:<br />

2<br />

^ ^<br />

2 -2<br />

0<br />

( )<br />

s = F t = 04 . mr 1+ 1/ 3e<br />

(3.1.10)<br />

where F ^ is <strong>the</strong> nuclear momentum <strong>of</strong> inertia<br />

perpendicular to <strong>the</strong> symmetry axis (equals <strong>the</strong> rigid<br />

body value at high excitation energies (pairing<br />

correlations are completely destroyed), and <strong>the</strong>re<br />

are experimental values at zero temperature so that<br />

interpolations can be made using <strong>the</strong> generalized<br />

super fluid model equations [3.1.31]. The mass<br />

asymmetry <strong>for</strong> S1(S2) modes at outer saddles<br />

doubles <strong>the</strong> rotational enhancement factors, as<br />

defined by Eqs (3.1.8, 3.1.9).<br />

Adiabatic approximation might be valid up to<br />

a critical energy (U r ), with damping <strong>of</strong> rotational<br />

modes being anticipated by Hansen and Jensen<br />

[3.1.33] at higher excitation energies. The damping<br />

<strong>of</strong> rotational modes as a function <strong>of</strong> excitation<br />

energy might differ <strong>for</strong> axially symmetric and<br />

triaxial nuclei:<br />

ax ( ) -<br />

K U = s 1 F( U)<br />

1<br />

rot<br />

tax<br />

rot<br />

( 2<br />

^ ) +<br />

ax<br />

rot ( ps ) +<br />

( )<br />

K ( U) = K ( U) 2 2 - 1 F( U)<br />

1<br />

-1<br />

FU ( ) = ( 1 + exp( U-Ur)/d r)<br />

.<br />

(3.1.11)<br />

(3.1.12)<br />

(3.1.13)<br />

Shell effects in level density are modelled with<br />

<strong>the</strong> shell correction dependence <strong>of</strong> <strong>the</strong> ‘a’<br />

parameter, as recommended by Ignatyuk et al.<br />

[3.1.31]. The value <strong>of</strong> <strong>the</strong> main a parameter is<br />

defined by fitting neutron resonance spacing ·D obs Ò<br />

or systematics [3.1.34], while <strong>the</strong> shell correction<br />

dependence <strong>of</strong> <strong>the</strong> a parameter is defined using <strong>the</strong><br />

following equation [3.1.30]:<br />

( ( ) )<br />

Ïa1+<br />

d Wf( U -Econd )/ U -Econd<br />

,<br />

Ô<br />

2<br />

aU ( ) = ÌU<br />

> Ucr = 047 . acrD -mD<br />

Ô<br />

2<br />

aU ( cr ) = £ = -<br />

ÓÔ<br />

acr , U Ucr 047 . acrD mD<br />

(3.1.14)<br />

where m = 0, 1, 2 <strong>for</strong> even–even, odd-A and odd–<br />

odd nuclei, respectively; f(x) = 1 – exp(–0.064x) is<br />

<strong>the</strong> dimensionless function defining <strong>the</strong> damping <strong>of</strong><br />

shell effects; condensation energy is E cond =<br />

0.152a cr Δ², where Δ is <strong>the</strong> correlation function, ã is<br />

<strong>the</strong> value <strong>of</strong> <strong>the</strong> asymptotic a parameter at high<br />

excitation energies, and a cr is <strong>the</strong> a parameter value<br />

at <strong>the</strong> excitation energy U = U cr . When ã parameter<br />

values <strong>for</strong> equilibrium ã n and saddle ã f de<strong>for</strong>mations<br />

are identical, <strong>the</strong> a f /a n ratio <strong>of</strong> fissioning and<br />

residual nuclei depends solely upon <strong>the</strong> respective<br />

shell correction values <strong>of</strong> dW f(n) taken from<br />

Ref. [3.1.35] (dW n) and Ref. [3.1.28] (dW f). See<br />

Ref. [3.1.9] <strong>for</strong> more details.<br />

3.1.3. Analysis <strong>of</strong> fission cross-sections<br />

The observed fission cross-section (s nF (Em))<br />

can be calculated as follows:<br />

sym<br />

asym<br />

nF<br />

s nF (E n ) = s nF + s<br />

= s (E ) + s (E )<br />

nFSL n nF( S1+ S2)<br />

n<br />

nfSL n<br />

X<br />

Âs<br />

n, xnfSL(E<br />

n )<br />

x= 1<br />

s nf ( S1+ S2) n<br />

X<br />

Âs<br />

n, xnf ( S1+ S2)<br />

x= 1<br />

n<br />

= s (E ) +<br />

+ (E ) +<br />

(E )<br />

(3.1.15)<br />

These equations depend on symmetric s nFSL (E n )<br />

and asymmetric s nF(S1+S2) (E n ) fission cross-sections,<br />

and contributions <strong>of</strong> emissive fission to both terms.<br />

We will show that <strong>the</strong> contributions <strong>of</strong> emissive<br />

fission chances are strongly dependent on <strong>the</strong><br />

asymptotic value <strong>of</strong> <strong>the</strong> a f parameter, while <strong>the</strong><br />

branching ratio <strong>of</strong> symmetric/asymmetric fission<br />

depends on both <strong>the</strong> contributions <strong>of</strong> fission<br />

chances and <strong>the</strong> damping <strong>of</strong> collective modes at<br />

saddle de<strong>for</strong>mations.<br />

29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!