03.04.2013 Views

Fission Product Yield Data for the Transmutation of Minor Actinide ...

Fission Product Yield Data for the Transmutation of Minor Actinide ...

Fission Product Yield Data for the Transmutation of Minor Actinide ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

a similar way, and we will concentrate below on <strong>the</strong><br />

analysis <strong>of</strong> super long mode fission. Contributions<br />

<strong>of</strong> super long mode fission to <strong>the</strong> observed fission<br />

cross-section are defined by <strong>the</strong> following equation:<br />

s E s E s E<br />

28<br />

X<br />

nFSL n nfSL n  n,xnffSL n<br />

x = 1<br />

( )= ( )+ ( )<br />

(3.1.2)<br />

coming from (n,xnf), x = 1, 2, 3...X fission reactions<br />

<strong>of</strong> relevant equilibrated uranium nuclei, and can be<br />

calculated using fission probability estimates<br />

J P E :<br />

s<br />

p ( )<br />

fSL<br />

n<br />

n,xnfSL (<br />

J U max<br />

n)= Â Ú<br />

Jp<br />

x+<br />

1<br />

Jp<br />

fSL( x+<br />

1)<br />

Jp<br />

0<br />

E W ( U) P ( U) dU<br />

(3.1.3)<br />

where is <strong>the</strong> population <strong>of</strong> <strong>the</strong> (x + 1)th<br />

nucleus at excitation energy U after emission <strong>of</strong><br />

x neutrons. The excitation energy Umax is defined by<br />

<strong>the</strong> incident neutron energy (En) and energy<br />

removed from <strong>the</strong> composite system by 238 Jp<br />

Wx+1( U)<br />

U(n,xnf)<br />

reaction neutrons. The fission probability<br />

Jp<br />

P is related to <strong>the</strong> symmetric scission <strong>of</strong><br />

fSL( x+1)<br />

( U)<br />

<strong>the</strong> xth fissioning nucleus, and can be approximated<br />

as:<br />

Jp<br />

fSL( x+ 1)<br />

U<br />

p p<br />

Jp<br />

fSLx<br />

Jp<br />

fSLx fSIx fSIIx<br />

P<br />

( )=<br />

( U)+ ( U)+ ( U )<br />

JpJp ( U ) + T ( U)+ T ( U)<br />

(3.1.4)<br />

T<br />

J T J T T<br />

(3.1.4)<br />

where <strong>the</strong> super long mode fission probability<br />

Jp<br />

Jp Jp<br />

( PfSL( x+1)<br />

( U)<br />

) depends on TfSLx ( U ) , TfSIx ( U ) ,<br />

Jp Jp Jp<br />

TfSIIx ( U ) , Tnx ( U ) and Tg x , <strong>the</strong> transmission<br />

coefficients <strong>of</strong> <strong>the</strong> super long (SL), S1, S2 mode<br />

fission, neutron emission and radiative decay<br />

channels, respectively. The index ‘x’ refers to <strong>the</strong><br />

nuclides fissioning in <strong>the</strong> (n,xnf) reaction, and will<br />

be omitted from <strong>the</strong> equations developed below <strong>for</strong><br />

simplicity.<br />

Consider a double humped fission barrier<br />

model [3.1.27] in which <strong>the</strong> neutron induced super<br />

long mode fission process can be viewed as a two<br />

step process (i.e. successive crossing over <strong>the</strong> inner<br />

hump A and outer hump BSL), while separate outer<br />

barrier humps BS1 and BS2 are assumed <strong>for</strong> S1 and<br />

U ( )<br />

nx<br />

g x<br />

S2 modes. Hence, <strong>the</strong> transmission coefficient <strong>of</strong> <strong>the</strong><br />

super long mode fission channel Jp T can be<br />

fSL ( U )<br />

approximated by <strong>the</strong> equation [3.1.28, 3.1.29]:<br />

T<br />

Jp<br />

fSL<br />

Jp<br />

Jp<br />

TfA U TfBU<br />

( U )=<br />

Jp<br />

Jp<br />

T U T U<br />

fA<br />

(3.1.5)<br />

The fission transmission coefficients Jp Tfi U<br />

are defined by <strong>the</strong> discrete transition states and<br />

level density rfi(e, J, p) <strong>of</strong> <strong>the</strong> fissioning nucleus at<br />

<strong>the</strong> inner and outer saddles (i = A, BSL, BS1, BS2):<br />

Jp<br />

fi<br />

J<br />

Â<br />

K=-J JKp<br />

fi<br />

. (3.1.6)<br />

The outer fission barrier height (E fBSL ) and<br />

width (ћw BSL) are correlated with <strong>the</strong> axial<br />

asymmetry <strong>of</strong> <strong>the</strong> outer saddle point, which<br />

increases <strong>the</strong> level density r fBSL (e, J, p) at outer<br />

saddle point de<strong>for</strong>mations while <strong>the</strong> width should<br />

also influence <strong>the</strong> energy dependence <strong>of</strong> <strong>the</strong> super<br />

long mode yield.<br />

3.1.2.2. Level density<br />

( ) ( )<br />

( )+ ( ) .<br />

fB<br />

( )= ( )<br />

T U T U<br />

+<br />

( )<br />

r e, J, p de<br />

U<br />

fi<br />

Ú 0 1 + exp 2p<br />

Efi + e -U<br />

/ hwi<br />

( ( ) )<br />

( )<br />

The total nuclear level density r(U, J, p) is<br />

represented as <strong>the</strong> factorised contribution <strong>of</strong> quasiparticle<br />

and collective states [3.1.30]. Quasi-particle<br />

level densities r qp(U, J, p) were calculated with a<br />

phenomenological generalized super fluid model by<br />

Ignatyuk et al. [3.1.31], taking into account shell,<br />

pairing and collective effects:<br />

ρ(U, J, π) = K rot (U, J)K vib (U)ρ qp (U, J, π) (3.1.7)<br />

where Krot (U, J) and Kvib (U, J) are <strong>the</strong> factors <strong>of</strong><br />

rotational and vibrational enhancement. At low<br />

intrinsic excitation energies <strong>of</strong> a few MeV, fewquasi-particle<br />

effects are essential, and <strong>the</strong>ir<br />

treatment is described in Ref. [3.1.9]. At saddle and<br />

ground state de<strong>for</strong>mations, sym K is defined<br />

rot ( U, J)<br />

by <strong>the</strong> de<strong>for</strong>mation order <strong>of</strong> symmetry adopted<br />

from shell correction model calculations by Howard<br />

and Möller [3.1.32]. Consider axially symmetric<br />

de<strong>for</strong>mations (U nuclei at equilibrium de<strong>for</strong>mation,<br />

neutron deficient U nuclei (N ≤ 144) at inner saddle<br />

de<strong>for</strong>mations and S1(S2) modes at outer saddle<br />

de<strong>for</strong>mations):

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!