02.04.2013 Views

Ambient Bioassays - US Environmental Protection Agency

Ambient Bioassays - US Environmental Protection Agency

Ambient Bioassays - US Environmental Protection Agency

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Relationships among exceedences of<br />

metals criteria, the results of ambient<br />

bioassays, and community metrics in<br />

metals-impaired streams<br />

Michael B. Griffith 1 , James M. Lazorchak 2 ,<br />

and Alan T. Herlihy 3<br />

U.S. <strong>Environmental</strong> <strong>Protection</strong> <strong>Agency</strong>, Office of Research<br />

and Development, 1 National Center for <strong>Environmental</strong><br />

Assessment & 2 National Exposure Research Laboratory,<br />

Cincinnati, Ohio & 3 Department of Wildlife and Fisheries,<br />

Oregon State University, Corvallis, Oregon


Three Methods<br />

• Chemical criteria – AWQCs or sediment<br />

effect levels – for the protection of aquatic<br />

life<br />

• <strong>Ambient</strong> <strong>Bioassays</strong> – assess the<br />

ambient toxicity of water or sediment<br />

• Bioassessments of selected biotic<br />

assemblages – fish or macroinvertebrates


Measurement Endpoints<br />

• Chemical criteria: based on measures of<br />

individual responses in bioassays –<br />

individual-level effects<br />

• <strong>Ambient</strong> bioassays: measure individual<br />

responses of selected species – individuallevel<br />

effects<br />

• Bioassessments: measure communitylevel<br />

effects


Other Differences<br />

• differences in the stressor specificity:<br />

Chemical criteria - measured contaminants<br />

with criteria<br />

<strong>Ambient</strong> bioassays - bioavailable toxicants<br />

in the tested media<br />

Community metrics - although sensitive to a<br />

toxicant, may also be sensitive to other<br />

stream alterations


Objectives<br />

• Compare conclusions: effects of<br />

contaminants in different reaches - three<br />

methods for assessment of contaminant<br />

exposure and effects (waters or<br />

sediments)<br />

• Greater understanding of relationships:<br />

levels of biological organization used as<br />

measurement endpoints in these methods


e<br />

e<br />

G<br />

n<br />

R .<br />

Colorado R.<br />

Upstream Random-selection sites sites<br />

S<br />

a<br />

n Juan<br />

R .<br />

R<br />

io<br />

G ra<br />

n d<br />

e<br />

Denver<br />

S<br />

o<br />

u thPlatteR.<br />

Colorado Springs<br />

Downstream sites<br />

Mineralized region<br />

Arkansas R.


Methods<br />

• Standard EMAP protocols – biological<br />

assemblages, physical habitat, and water<br />

chemistry<br />

• Water – dissolved metals and hardness, 48hr<br />

mortality tests with Ceriodaphna dubia &<br />

Pimephales promelas<br />

• Sediment – total metals, 7-d growth and<br />

mortality tests with Hyallela azteca


Variables to Classify Reaches<br />

Variable<br />

Dissolved concentrations<br />

– Cd, Cu, Pb, or Zn<br />

Survival – C. dubia or P.<br />

promelas (48-hr test)<br />

Sediment concentrations<br />

– Cd, Cu, Pb, or Zn<br />

Survival or growth – H.<br />

azteca (7-day test)<br />

Endpoint<br />

> Hardness-adjusted<br />

dissolved chronic criteria<br />

< 80% survival<br />

> TEL (28-day H. azteca<br />

sediment toxicity test)<br />

< 85% survival or < 90%<br />

growth


Criteria (? = +0.89)<br />

Were sediment<br />

TELs exceeded?<br />

Did sediment<br />

bioassays show<br />

effects?<br />

Comparing Media<br />

No<br />

Yes<br />

Total<br />

<strong>Bioassays</strong> (? = +0.83)<br />

No<br />

Yes<br />

Total<br />

Were water criteria exceeded?<br />

No<br />

53<br />

15<br />

68<br />

Did water bioassays show<br />

effects?<br />

No<br />

63<br />

10<br />

73<br />

Yes<br />

3<br />

15<br />

18<br />

Yes<br />

4<br />

7<br />

11<br />

Total<br />

56<br />

30<br />

n = 86<br />

Total<br />

67<br />

17<br />

n = 84


Water (? = +0.98)<br />

Did water<br />

bioassays<br />

show effects?<br />

Did sediment<br />

bioassays<br />

show effects<br />

Comparing Methods<br />

No<br />

Yes<br />

Total<br />

Sediment (? = +0.73)<br />

No<br />

Yes<br />

Total<br />

Were water criteria exceeded?<br />

No<br />

65<br />

1<br />

66<br />

Were sediment TELs exceeded?<br />

No<br />

49<br />

5<br />

54<br />

Yes<br />

8<br />

10<br />

18<br />

Yes<br />

18<br />

12<br />

30<br />

Total<br />

73<br />

11<br />

n = 84<br />

Total<br />

67<br />

17<br />

n = 84


Metrics exhibiting differences<br />

Macroinvertebrates<br />

Total taxa richn.<br />

Total abundance<br />

Abundance per taxon<br />

Intolerant taxa richn.<br />

Ephemeroptera taxa richn.<br />

Plecoptera richn.<br />

Trichoptera taxa richn.<br />

EPT taxa richn.<br />

Chironomidae taxa richn.<br />

% Ind., tolerant taxa<br />

Orthoclainae taxa richn.<br />

Tanytanrsini taxa richn.<br />

Coleoptera taxa richn.<br />

% Ind., Ephemeroptera<br />

% Orthocladinae (Chironomidae)<br />

% Tanytarsini (Chironomidae)<br />

% Ind., Coleoptera<br />

% Ind., Diptera & noninsects<br />

% Ind., 5 most common taxa<br />

Collector-filterer taxa richn.<br />

Collector-gatherer taxa richn.<br />

Predator taxa richn.<br />

Shredder taxa richn.<br />

Scraper taxa richn.<br />

Fish<br />

Total species richn.<br />

Salmonidae species richn.<br />

Total abundance<br />

Adult abundance<br />

Salmonidae abundance<br />

% Ind., native species<br />

% Ind., Salmonidae<br />

% Ind., native Salmonidae<br />

% Oncorhynchus (Salmonidae)


Total taxa richness - macroinvertebrates<br />

n =<br />

60<br />

67 18 73 11 55 30 67 17<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

**<br />

**<br />

**<br />

**<br />

U A U A U A U A<br />

Dissolved<br />

criteria<br />

Water<br />

bioassay<br />

Sediment<br />

TEL<br />

Sediment<br />

bioassay


Total number of individuals - Macroinvertebrates<br />

Collector-gatherer richness<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

n = 67 18 73 11 55 30 67 17<br />

4000 ns<br />

ns<br />

3000<br />

2000<br />

1000<br />

0<br />

**<br />

U A U A U A U A<br />

Dissolved<br />

criteria<br />

**<br />

*<br />

**<br />

**<br />

U A U A U A U A<br />

Dissolved<br />

criteria<br />

*<br />

Water<br />

bioassay<br />

Water<br />

bioassay<br />

Sediment<br />

TEL<br />

Sediment<br />

TEL<br />

Sediment<br />

bioassay<br />

Sediment<br />

bioassay<br />

EPT taxa richness<br />

Chironomidae taxa richness<br />

n = 67 18 73 11 55 30 67 17<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

** **<br />

U A U A U A U A<br />

Dissolved<br />

criteria<br />

Water<br />

bioassay<br />

Sediment<br />

TEL<br />

* *<br />

Sediment<br />

bioassay<br />

ns ns<br />

* **<br />

U A U A U A U A<br />

Dissolved<br />

criteria<br />

Water<br />

bioassay<br />

Sediment<br />

TEL<br />

Sediment<br />

bioassay


Metric<br />

Total taxa richn.- inverts<br />

Total no. individuals<br />

EPT taxa richn.<br />

Total taxa richn.– inverts<br />

Ephemeroptera t. richn.<br />

Chironomidae t. richn.<br />

Individual-effects measures<br />

versus community metrics -<br />

Classified<br />

as<br />

unimpaired<br />

water<br />

Water criteria<br />

67<br />

67<br />

67<br />

73<br />

73<br />

73<br />

Metric <<br />

95% LCL for<br />

unimpaired<br />

group<br />

28<br />

36<br />

20<br />

Water bioassays<br />

29<br />

24<br />

32<br />

Classified<br />

as<br />

impaired<br />

18<br />

18<br />

18<br />

11<br />

11<br />

11<br />

Metric ><br />

95% UCL for<br />

impaired<br />

group<br />

6<br />

1<br />

4<br />

3<br />

2<br />

3


Metric<br />

Total taxa richn.- inverts<br />

Ephemeroptera t. richn.<br />

Shredder taxa richn.<br />

Total taxa richn.– inverts<br />

Tanytarsini t. richn.<br />

Tanytarsini/Chironomidae<br />

Individual-effects measures<br />

versus community metrics –<br />

Classified<br />

as<br />

unimpaired<br />

sediment<br />

Sediment TELs<br />

55<br />

55<br />

55<br />

67<br />

73<br />

73<br />

Metric <<br />

95% LCL for<br />

unimpaired<br />

group<br />

21<br />

25<br />

30<br />

Sediment bioassays<br />

26<br />

24<br />

32<br />

Classified<br />

as<br />

impaired<br />

30<br />

30<br />

30<br />

17<br />

11<br />

11<br />

Metric ><br />

95% UCL for<br />

impaired<br />

group<br />

13<br />

9<br />

8<br />

7<br />

2<br />

3


y = α + α x + β log x + β x log x<br />

0 1 1 0 e 2 1 1 e 2<br />

y = α + β log x<br />

Total taxa richness -<br />

macroinvertebrates<br />

0 0 e 2<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-3 -2 -1 0 1 2 3 4 5<br />

log e(Sconcentration/chronic AWQC)<br />

(1)<br />

(2)


Total taxa richness -<br />

macroinvertebrates<br />

Intolerant taxa richness<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

20<br />

15<br />

10<br />

5<br />

0<br />

y = 34.22 + 0.02 x 1 - 0.17 log e x 2 - 5.40 * (x 1 log e x 2 )<br />

r 2 = 0.31, F = 266.1 (p < 0.001)<br />

-3 -2 -1 0 1 2 3 4 5<br />

y = 9.40 - 1.48 x 1 + 0.52 log e x 2 - 1.61 * (x 1 log e x 2 )<br />

r 2 = 0.17, F = 127.0 (p < 0.001)<br />

-3 -2 -1 0 1 2 3 4 5<br />

log<br />

e (Σconcentration/chronic AWQC)<br />

Collector-gatherer richness<br />

EPT taxa richness<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

y = 9.12 - 0.07 x 1 - 0.25 log e x 2 - 1.20 (x 1 log e x 2 )<br />

r 2 = 0.18, F = 118.7 (p < 0.001)<br />

-3 -2 -1 0 1 2 3 4 5<br />

y = 16.90 - 2.77 x 1 + 1.57 * log e x 2 - 3.69 * (x 1 log e x 2 )<br />

r 2 = 0.22, F = 153.3 (p < 0.001)<br />

-3 -2 -1 0 1 2 3 4 5<br />

loge (Σconcentration/chronic AWQC)


Total taxa richness -<br />

macroinvertebrates<br />

Intolerant taxa richness<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

18<br />

16<br />

14<br />

y = 8.95 + 0.35 x<br />

1 - 2.67 * loge x2 + 1.52 (x1 loge x2)<br />

r 2 0<br />

-1 0 1 2 3 4 5<br />

= 0.22, F = 525.0 (p < 0.001)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

y = 35.22 + 3.03 x 1 - 5.63 * log e x 2 + 0.97(x 1 log e x 2 )<br />

r 2 = 0.26, F = 243.6 (p < 0.001)<br />

0<br />

-1 0 1 2 3 4 5<br />

log e (Σconcentration/TEL)<br />

Collector-gatherer taxa richness<br />

EPT taxa richness<br />

20<br />

15<br />

10<br />

5<br />

30<br />

y = 14.93 - 0.24 x<br />

1 - 4.86 * log<br />

e x2 + 3.43 * 0<br />

-1 0 1 2 3 4 5<br />

(x<br />

1 loge x2 )<br />

25<br />

20<br />

15<br />

10<br />

5<br />

y = 9.82 + 0.83 x 1 - 2.65 * log e x 2 + 1.32(x 1 log e x 2 )<br />

r 2 = 0.18 F = 118.3 (p < 0.001)<br />

r 2 = 0.21 F = 151.7 (p < 0.001)<br />

0<br />

-1 0 1 2 3 4 5<br />

log e (Σconcentration/TEL)


Conclusion<br />

• Using a simple approach, we demonstrated<br />

effects shown by criteria or<br />

ambient bioassays are both predictive of<br />

community effects as reflected in<br />

community metrics.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!