02.04.2013 Views

Primordial magnetic fields and gravitational waves

Primordial magnetic fields and gravitational waves

Primordial magnetic fields and gravitational waves

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Primordial</strong> <strong>magnetic</strong> <strong>fields</strong> <strong>and</strong><br />

<strong>gravitational</strong> <strong>waves</strong><br />

Chiara Caprini<br />

IPhT - CEA Saclay<br />

France<br />

CC, Ruth Durrer <strong>and</strong> Elisa Fenu, in preparation<br />

CC, Ruth Durrer <strong>and</strong> Geraldine Servant, in preparation<br />

CC, Ruth Durrer, Thomas Konst<strong>and</strong>in <strong>and</strong> Geraldine Servant, arXiv:0901.1661<br />

CC, Ruth Durrer <strong>and</strong> Tina Kahniashvili, astro-ph/0304556<br />

CC <strong>and</strong> Ruth Durrer, astro-ph/0603476, 0305059, 0106244


OUTLINE<br />

Gravitational <strong>waves</strong> are sourced by <strong>magnetic</strong> tensor<br />

anisotropic stresses<br />

Model of the primordial <strong>magnetic</strong> field spectrum<br />

Model of the time evolution of the <strong>magnetic</strong> field in<br />

the early radiation phase<br />

Evaluation <strong>and</strong> spectral shape of the emitted<br />

<strong>gravitational</strong> <strong>waves</strong> energy density<br />

Constraints on the <strong>magnetic</strong> field amplitude using<br />

<strong>gravitational</strong> <strong>waves</strong>


Why <strong>gravitational</strong> <strong>waves</strong>?<br />

Small perturbations in FRW metric:<br />

ds 2 = a 2 (η)(dη 2 − (δij + 2hij)dx i dx j ) Gµν = 8πG Tµν<br />

¨hij(k, η) + 2<br />

η ˙ hij(k, η) + k 2 hij(k, η) = 8πGa 2 (η)Πij(k, η)<br />

Source:<br />

Πij(k, η) tensor anisotropic stress<br />

Once emitted, propagate without interaction<br />

Direct probe of physical processes in the early universe<br />

<strong>Primordial</strong> source: stochastic background of GWs<br />

GW energy density:<br />

ΩG = 〈˙ hij ˙ h ij 〉<br />

Gρc<br />

=<br />

(hi i = ∂jhi j = 0)<br />

dk<br />

k<br />

dΩG(k)<br />

d log(k)


GW power spectrum:<br />

To determine the GW signal :<br />

dΩG<br />

d ln k = k3 | ˙ h| 2<br />

Gρc<br />

Wave equation:<br />

Anisotropic stress<br />

power spectrum:<br />

Πij(k) =<br />

hij(k, η) =<br />

η<br />

ηin<br />

projector that extracts the tensor component<br />

Pij = δij − ˆ ki ˆ kj<br />

〈 ˙ hij(k, η) ˙ h ∗ ij(q, η)〉 = δ(k − q)| ˙ h| 2 (k, η)<br />

dτG(τ, η)Πij(k, τ)<br />

〈Πij(k, τ1)Π ∗ ij(q, τ2)〉 = δ(k − q)Π(k, τ1, τ2)<br />

<br />

P l i P m j − 1<br />

<br />

lm<br />

PijP Tlm(k)<br />

2<br />

energy momentum tensor<br />

of the source


Magnetic field is a source of GW<br />

MF breaks FRW symmetries <strong>and</strong> has a non zero anisotropic stress:<br />

<br />

<br />

T B µν =<br />

− B2<br />

2 g00 0<br />

0 − B2<br />

2 gij − BiBj<br />

first order perturbation in FRW: stochastic field,<br />

statistically homogeneous, isotropic <strong>and</strong> gaussian<br />

GW: energy momentum tensor power spectrum<br />

〈Tij(k)T ∗<br />

lm(q)〉 ∝<br />

4 point correlation<br />

function<br />

<br />

d 3 <br />

p<br />

Wick<br />

theorem<br />

〈Bi〉 = 0 〈B 2 〉 = 0<br />

d 3 q〈Bi(p)Bj(|k − p|)B ∗ l (q)B ∗ m(|k − q|)〉<br />

Power spectrum<br />

of the field


<strong>Primordial</strong> <strong>magnetic</strong> field generation<br />

Phase transitions:<br />

correlation scale for MF :<br />

Inflation:<br />

generation is causal, operates sub-horizon<br />

(ɛ 0.01 for first order PT )<br />

generation at every scale<br />

1oo GeV<br />

horizon at T∗<br />

1 MeV 0.32 eV<br />

TURBULENT PHASE VISCOUS PHASE<br />

Re = vL<br />

ν<br />

ν ℓνe<br />

≫ 1<br />

σ ∝ T<br />

Jedamzik et al 1996, Ahonen <strong>and</strong> Enqvist 1996,<br />

Banerjee <strong>and</strong> Jedamzik 2004...<br />

L∗ = ɛη∗ ɛ ≤ 1 η∗<br />

Re 1<br />

ν ℓγe σ ∝ T 3/2<br />

Subramanian <strong>and</strong> Barrow 1997,<br />

Banerjee <strong>and</strong> Jedamzik 2004...


energy density<br />

helicity density H =<br />

Magnetic field power spectrum<br />

〈Bi(k)B ∗ j (q)〉 = δ(k − q)[ iɛijm ˆ k m (δij − A(k)<br />

ˆ ki ˆ kj)S(k) +<br />

]<br />

EB =<br />

∞<br />

0<br />

∞<br />

0<br />

dk k 2 S(k)<br />

S(k) ∝ 〈B + (k)B + (−k) + B − (k)B − (−k)〉<br />

dk kA(k)<br />

A(k) ∝ 〈B + (k)B + (−k) − B − (k)B − (−k)〉<br />

k → 0<br />

at large scales : S(k) ∝ k n<br />

S(k) ≥ |A(k)|<br />

Divergence free<br />

parity even<br />

parity odd<br />

A(k) ∝ k m<br />

m ≥ n


Power spectrum at large scales <strong>and</strong> causality<br />

〈Bi(x)Bj(x + r)〉 = Σ(r)(δij − ˆri ˆrj)+Γ(r)ˆriˆrj + Λ(r)ɛijℓˆrℓ<br />

∂bij(r)<br />

MF is divergence free: =0 (r<br />

∂ri<br />

2 Γ(r)) ′ =2rΣ(r)<br />

MF generated by a CAUSAL process: (phase transition, charge separation...)<br />

bij(r) =<br />

S(k)<br />

〈Bi(x)Bj(x + r)〉 = 0 for r > L L ≤ horizon<br />

=<br />

<br />

0<br />

d 3 r e ik·r bii(r) =<br />

∞<br />

divergence free<br />

S(k → 0) k 2<br />

∞<br />

dr (r 3 Γ(r)) ′<br />

k 4<br />

∞<br />

+ dr r 4 bii(r)+O( )<br />

0<br />

0<br />

dr<br />

sin kr<br />

kr (r3 Γ(r)) ′


Power spectrum at large scales <strong>and</strong> causality<br />

〈Bi(x)Bj(x + r)〉 = Σ(r)(δij − ˆri ˆrj)+Γ(r)ˆriˆrj + Λ(r)ɛijℓˆrℓ<br />

∂bij(r)<br />

MF is divergence free: =0 (r<br />

∂ri<br />

2 Γ(r)) ′ =2rΣ(r)<br />

MF generated by a CAUSAL process: (phase transition, charge separation...)<br />

bij(r) =<br />

S(k)<br />

〈Bi(x)Bj(x + r)〉 = 0 for r > L L ≤ horizon<br />

=<br />

<br />

∞<br />

divergence free<br />

S(k → 0) k 2<br />

dr (r 3 Γ(r)) ′<br />

+<br />

0<br />

d 3 r e ik·r bii(r) =<br />

∞<br />

0<br />

dr<br />

sin kr<br />

kr (r3 Γ(r)) ′<br />

k 4<br />

∞<br />

dr r 4 bii(r)+O( )<br />

0<br />

(Loytsyanky)


Power spectrum at large scales <strong>and</strong> causality<br />

A(k)<br />

B 2 λ =<br />

<br />

DIVERGENCE FREE + CAUSALITY IMPLY BLUE SPECTRA<br />

<br />

= ɛijℓ ˆ k ℓ<br />

dk k 2<br />

<br />

d 3 r e ik·r bij(r)<br />

e −k2 λ 2<br />

∞<br />

dr r 3 ∞<br />

Λ(r)+ dr r 4 k k Λ(r)+O( )<br />

3 k 5<br />

0<br />

m ≥ n<br />

(k → 0)<br />

Bλ = BL<br />

MF generated by a NON-CAUSAL process: (inflation, pre big bang...)<br />

n , m > −3<br />

<br />

L<br />

λ<br />

0<br />

n+3<br />

2<br />

S(k) n ≥ 2


0.15<br />

0.10<br />

0.05<br />

0.00<br />

Interpolating formula:<br />

(turbulence, Von Karman 48)<br />

blue<br />

Power spectrum at all scales<br />

Small scales: MHD spectrum: Kolmogorov, Iroshnikov Kraichnan....<br />

causal spectrum n=2<br />

peak at<br />

k 2π/L<br />

k 2<br />

k −7/2<br />

0 1 2 3 4 5 6<br />

K = kL/2π<br />

S(k) = EB L 3<br />

1000<br />

10<br />

0.1<br />

0.001<br />

10 5<br />

K n<br />

(1 + K 2 ) (2n+7)/4<br />

a-causal spectrum n>-3<br />

red k n<br />

feature at<br />

k 2π/L<br />

(horizon)<br />

k −7/2<br />

10<br />

0.01 0.1 1 10 100<br />

7<br />

K = kL/2π


Time evolution: freely decaying turbulence<br />

non-helical field: DIRECT TURBULENT CASCADE<br />

EB(τ) =E ∗ B τ −2(n+3)/(n+5)<br />

L(τ) =L∗τ 2/(n+5)<br />

constant on<br />

large scales<br />

(n=2)<br />

EBL 5 = E ∗ BL 5 ∗<br />

E B<br />

The evolution ends when<br />

the entire Komogorov range<br />

is dissipated:<br />

0.1<br />

0.01<br />

0.001<br />

10 4<br />

10 5<br />

λ(τfin) L(τfin)<br />

τ =<br />

η − ηin<br />

τL<br />

0.1 1 10 100 1000<br />

K<br />

τL L∗<br />

vL<br />

λ(τ)<br />

dissipation scale<br />

Re(λ) = vλ λ<br />

1<br />

ν<br />

grows faster than L<br />

MF with n=2 generated<br />

at EWPT :<br />

Tfin 180 MeV<br />

eddy<br />

turnover<br />

time


Time evolution: freely decaying turbulence<br />

helical field: INVERSE CASCADE<br />

EB(τ) =E ∗ B τ −2/3<br />

L(τ) =L ∗ τ 2/3<br />

Magnetic energy is transferred<br />

to large scales (n=2)<br />

EBL = E ∗ BL∗<br />

E B<br />

0.1<br />

0.01<br />

0.001<br />

10 4<br />

Maximally helical MF<br />

with n=2 generated at<br />

EWPT :<br />

10<br />

0.01 0.1 1 10 100 1000<br />

5<br />

(Christensson et al 2002, Banerjee <strong>and</strong> Jedamzik 2004, Campanelli 2007...)<br />

λ(τfin) L(τfin)<br />

K<br />

Tfin 22 MeV<br />

MHD FIELDS SOURCE GW FOR SEVERAL HUBBLE TIMES


B<br />

Anisotropic stress power spectrum<br />

For GW energy density need the trace of power spectrum at different times<br />

1<br />

0.01<br />

10 4<br />

10 6<br />

10 8<br />

Π(k, τ, τ) =<br />

flat (causal n=2) or k inflationary<br />

2n+3<br />

non-helical<br />

〈Πij(k, τ1)Π ∗ ij(q, τ2)〉 = δ(k − q)Π(k, τ1, τ2)<br />

10<br />

0.001 0.01 0.1 1 10 100 1000<br />

10<br />

<br />

K<br />

d 3 p [<br />

S(p)S(|k − p|) + A(p)A(k − p) ]<br />

k −7/2<br />

B<br />

10<br />

0.1<br />

0.001<br />

maximally<br />

helical<br />

S(k) = A(k)<br />

10<br />

0.001 0.01 0.1 1 10 100<br />

5<br />

K


dΩG<br />

d ln k<br />

Gravitational wave power spectrum strongly influence<br />

G<br />

= k<br />

ρc<br />

3<br />

ηfin<br />

ηin<br />

dη1<br />

a(η1)<br />

ηfin<br />

ηin<br />

the GW spectrum<br />

dη2<br />

a(η2) cos(k(η1 − η2)) Π(k, η1, η2)<br />

COMPLETELY COHERENT Π(k, η1, η2) = Π(k, η1) Π(k, η2)<br />

dΩGW<br />

d ln k<br />

dΩG<br />

d ln k<br />

G<br />

∝ k<br />

ρc<br />

3<br />

<br />

<br />

<br />

<br />

(k→0)<br />

ηfin<br />

ηin<br />

GW spectrum at large scales :<br />

time Fourier transform<br />

∝ k 3 ,k 2n+6 always blue on large scales<br />

causal, flat inflationary<br />

dη1<br />

a(η1) cos(kη1) 2 Π(k, η1) + ...<br />

k 2n+3


Gravitational wave power spectrum<br />

GW spectrum at small scales : time Fourier transform, differentiability<br />

of time dependence<br />

k 2π<br />

Peak at characteristic<br />

timescale<br />

causal<br />

k 3<br />

spectrum for a continuous source C , 0<br />

τL<br />

10 8<br />

10 10<br />

10 12<br />

10 14<br />

10 16<br />

k −1<br />

slope due to<br />

continuity<br />

4 10 0.001 0.01 0.1 1 10 100<br />

K<br />

C m → k −m<br />

L∗ vLτL<br />

k 2π<br />

feature at characteristic<br />

lengthscale<br />

L∗<br />

slope due to<br />

continuity <strong>and</strong><br />

source<br />

k −1 k −7/2


10 8<br />

10 10<br />

10 12<br />

10 14<br />

10 16<br />

Gravitational wave power spectrum (preliminary)<br />

4 10 0.001 0.01 0.1 1 10 100<br />

K<br />

dΩG<br />

d ln k 0.1(Ω∗ B )2<br />

I(k)<br />

Ωrad<br />

causal n=2, EWPT, non helical causal n=2, EWPT, maximally helical<br />

inflationary n=-1.8,<br />

maximally helical<br />

0.1<br />

0.001<br />

10 5<br />

10 7<br />

105 10<br />

4 10 0.001 0.01 0.1 1 10<br />

9<br />

K<br />

10 8<br />

10 10<br />

10 12<br />

10 14<br />

10 16<br />

107 10<br />

5 10 0.001 0.1 10<br />

18<br />

K


Generation at 100 GeV, n=2 :<br />

Bounds from Nucleosynthesis<br />

Generation at inflation 10^14 GeV :<br />

n = 0<br />

n → −3<br />

non-helical<br />

helical<br />

non-helical B0.1Mpc 10 −39 G<br />

helical n = 0<br />

n = −1.8<br />

ΩG I∗<br />

(Ω ∗ B )2<br />

Ωrad<br />

0.1 Ωrad<br />

B0.1Mpc 10 −9 G<br />

B0.1Mpc 10 −28 G<br />

B0.1Mpc 10 −18 G<br />

Generation at 100 MeV, n=2 : B0.1Mpc ≤ 10 −20 G<br />

B0.1Mpc 10 −27 G<br />

B0.1Mpc 10 −25 G<br />

Ok without<br />

dynamo<br />

Ok with<br />

dynamo<br />

(preliminary helical, non-helical to be updated with the cascade)


Bounds at generation time<br />

Nucleosynthesis bound directly on MF : account for dissipation<br />

GW production stores energy at small scales<br />

BUT :<br />

Bound on the rms value :<br />

Ω ∗ B 0.1 Ωrad<br />

〈B 2 〉 10 −6 G<br />

Bound at large scales : Bλ 10 −8 G<br />

n =2<br />

n+3<br />

2 L<br />

λ<br />

Lew = 10 −4 pc λ = 1 kpc<br />

B1kpc 10 −26 G<br />

Crucial ingredients: blue spectrum <strong>and</strong> average at large scales<br />

GW production does not help in this case!


CONCLUSIONS<br />

Analytic formula for the MF spectrum interpolating large <strong>and</strong> small<br />

scale behaviour : consider the entire spectrum, no joining at k=1/L<br />

Using MHD decay laws, MF source of GW for several Hubble<br />

times<br />

Model of the anisotropic stress power spectrum at unequal time<br />

strongly influence the GW spectrum (peak position <strong>and</strong> small<br />

scales)<br />

If coherent, peak at characteristic time, but the speed of turning on<br />

<strong>and</strong> off strongly influence the small scale spectrum<br />

Under these assumptions, primordial MF generated before<br />

Nucleosynthesis are strongly constrained, even if helical


Time dependence of the anisotropic stress power<br />

spectrum<br />

1) totally incoherent:<br />

〈Πij(k, τ)Π ∗ ij(q, ζ)〉 = δ(k − q)Π(k, τ, τ)<br />

δ(τ − ζ)<br />

β<br />

2) totally coherent: correct one according to SIMULATIONS<br />

3) top hat in wavenumbers:<br />

〈Πij(k, τ)Π ∗ ij(q, ζ)〉 = δ(k − q)Π(k, τ, ζ)<br />

〈Πij(k, τ)Π ∗ ij(q, ζ)〉 = δ(k − q) Π(k, τ) Π(k, ζ)<br />

|ζ − τ| < xc<br />

k<br />

〈Πij(k, τ)Π ∗ ij(q, ζ)〉 = δ(k − q)[Π(k, τ)Θ(kζ − kτ)Θ(xc − (kζ − kτ))<br />

+ Π(k, ζ)Θ(kτ − kζ)Θ(xc − (kτ − kζ))]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!