29.03.2013 Views

Development of EUV pellicle for reticle defect mitigation - Sematech

Development of EUV pellicle for reticle defect mitigation - Sematech

Development of EUV pellicle for reticle defect mitigation - Sematech

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Development</strong> <strong>of</strong> <strong>EUV</strong> Pellicle <strong>for</strong> Reticle<br />

Defect Mitigation<br />

Yashesh A. Shr<strong>of</strong>f, Michael Goldstein, Bryan Rice,<br />

Pei-Yang Yan, Daniel Tanzil, Sang Lee, K. V. Ravi<br />

October 18, 2006<br />

<strong>EUV</strong>L Symposium, Barcelona<br />

Intel Corporation


Outline<br />

• Motivation<br />

• Modeling results<br />

– Pitch, Transmission, Uni<strong>for</strong>mity impact<br />

– Aerial image impact<br />

• Experimental results<br />

– At-wavelength measurements<br />

– Full-size <strong>pellicle</strong> demonstration<br />

– Capping layer study<br />

– Pellicle optical metrology<br />

• Field work results<br />

– CDU analysis at DUV wavelength<br />

• Future work and summary<br />

Oct 18, 2006<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 2


Need <strong>for</strong> an <strong>EUV</strong> <strong>pellicle</strong><br />

•Pellicle-less <strong>EUV</strong> lithography development is a priority, with risk<br />

– Swapping removable <strong>pellicle</strong>s without generating particles<br />

– Operating within the lithography tool without added <strong>defect</strong>s<br />

– Metrology confirmation <strong>of</strong> <strong>defect</strong> free <strong>reticle</strong>s at sub-30nm<br />

•The aim <strong>of</strong> this research is to create an <strong>EUV</strong> <strong>pellicle</strong> as a backup<br />

to <strong>pellicle</strong>-less operation<br />

•An <strong>EUV</strong> <strong>pellicle</strong> is expected to have trade-<strong>of</strong>fs<br />

– Moderate transmission loss<br />

– Minimial uni<strong>for</strong>mity loss<br />

– Minimal contrast loss<br />

Oct 18, 2006<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 3


Concept<br />

Square cell mesh<br />

Oct 18, 2006<br />

Hexagonal cell mesh<br />

Stand-<strong>of</strong>f height = 6 mm<br />

Mesh pitch<br />

•<br />

•<br />

Mesh<br />

Mesh<br />

apodizes<br />

apodizes<br />

the<br />

the<br />

illuminator<br />

illuminator<br />

exit<br />

exit<br />

pupil<br />

pupil<br />

and<br />

and<br />

PO<br />

PO<br />

entrance<br />

entrance<br />

pupil.<br />

pupil.<br />

•<br />

•<br />

Mesh<br />

Mesh<br />

film<br />

film<br />

absorbs<br />

absorbs<br />

with<br />

with<br />

both<br />

both<br />

passes.<br />

passes.<br />

•The Concept<br />

– Thin film mounted on a wire-mesh<br />

– Mesh located “far” from <strong>reticle</strong> plane to defocus <strong>defect</strong>s<br />

– Transmission requires a high percentage open area<br />

– Illumination uni<strong>for</strong>mity requires partial coherence<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 4


Outline<br />

• Motivation<br />

• Modeling results<br />

– Pitch, Transmission, Uni<strong>for</strong>mity impact<br />

– Aerial image impact<br />

• Experimental results<br />

– At-wavelength measurements<br />

– Full-size <strong>pellicle</strong> demonstration<br />

– Absorption uni<strong>for</strong>mity<br />

– Pellicle optical metrology<br />

• Field work results<br />

– CDU analysis at DUV wavelength<br />

• Future work and summary<br />

Oct 18, 2006<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 5


Numerical Model<br />

1. Define mesh transmission:<br />

2. Define illumination spots, integrate<br />

mesh*spot transmission <strong>for</strong> each and<br />

take the product.<br />

3. Slide location <strong>of</strong> illumination spot<br />

relative to the mesh to calculate nonuni<strong>for</strong>mity.<br />

1<br />

T ( px,<br />

py)<br />

= ∫TCirc1 dxdy∫TCirc2<br />

dxdy<br />

2 4<br />

π R<br />

Max(<br />

T ) − Min(<br />

T )<br />

ΔT<br />

≡ ±<br />

2 T<br />

Oct 18, 2006<br />

⎡<br />

⎡ x ⎤ ⎤<br />

T ( x,<br />

y)<br />

= UnitStep⎢P<br />

FractionalPart<br />

⎢ ⎥ − CD⎥<br />

×<br />

⎣<br />

⎣ P ⎦ ⎦<br />

⎡<br />

⎡ y ⎤ ⎤⎧x<br />

≥ 0<br />

UnitStep⎢P<br />

FractionalPart⎢<br />

⎥ − CD⎥⎨<br />

⎣<br />

⎣ P ⎦ ⎦⎩<br />

y ≥ 0<br />

1<br />

T = ∫∫T<br />

( x,<br />

y)<br />

dxdy<br />

A<br />

⎡ ⎡σ<br />

NA⎤⎤<br />

R = h Tan⎢ArcSin⎢<br />

⎥⎥<br />

⎣ ⎣ Mag ⎦⎦<br />

2<br />

2<br />

2<br />

[ R − ( x − px)<br />

− ( y ) ]<br />

Circ = UnitStep − py<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 6


Far-field uni<strong>for</strong>mity – Hexagonal mesh<br />

Animation<br />

Oct 18, 2006<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 7


0.5*range(T)/〈T〉<br />

Uni<strong>for</strong>mity<br />

Illumination non-uni<strong>for</strong>mity through pitch<br />

(LW=5um)<br />

Square mesh; LW=5um, sigma=0.75, NA=0.25, d=5mm, θ=6deg<br />

2<br />

1<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

50 100 150 200 250 300 350 400 450 500<br />

Pitch (μm)<br />

0<br />

Oct 18, 2006<br />

Square cell mesh<br />

Pitch (μm)<br />

• λ=13.5nm, σ=0.75, NA=0.25<br />

• Mesh-Reticle gap, d: 5mm<br />

• Illumination tilt, θ: 6o 0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Single pass Txm<br />

0.5*range(T)/〈T〉 Uni<strong>for</strong>mity<br />

0<br />

50 100 150 200 250 300 350 400 450 500<br />

Pitch (μm)<br />

0<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 8<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Hexagonal cell mesh<br />

Hex mesh; LW=5μm, sigma=0.75, NA=0.25, d=5mm, θ=6deg<br />

Pitch (μm)<br />

1 Range ( T)<br />

NonUnifomi ty ≡<br />

×<br />

2 T<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Single pass Txm


Uni<strong>for</strong>mity<br />

3.6<br />

3.2<br />

2.8<br />

2.4<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

Illumination non-uni<strong>for</strong>mity through pitch<br />

(LW=10um)<br />

4<br />

2<br />

Square mesh; LW=10μm, sigma=0.75, NA=0.25, d=5mm, θ=6deg<br />

0<br />

50 100 150 200 250 300 350 400 450 500<br />

Pitch (μm)<br />

0<br />

Oct 18, 2006<br />

Square cell mesh<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Single pass Txm<br />

Uni<strong>for</strong>mity<br />

Hex mesh; LW=10μm, sigma=0.75, NA=0.25, d=5mm, θ=6deg<br />

4<br />

1<br />

0<br />

50 100 150 200 250 300 350 400 450 500<br />

Pitch (μm)<br />

0<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 9<br />

3.6<br />

3.2<br />

2.8<br />

2.4<br />

2<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

Hexagonal cell mesh<br />

Pitch (μm) Pitch (μm)<br />

Illumination non-uni<strong>for</strong>mity is proportional to mesh line-width<br />

Hexagonal cell based mesh chosen <strong>for</strong> higher structural rigidity<br />

Selected: Hex cell pitch 250μm; target transmission 90%<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Present work<br />

Single pass Txm


Aerial image modeling<br />

Reticle<br />

Pellicle<br />

mesh<br />

Oct 18, 2006<br />

Entrance<br />

Plane <strong>of</strong> PO<br />

Illuminator<br />

exit plane<br />

• Mesh extracted from ‘near’ <strong>reticle</strong><br />

plane to source and PO<br />

exit/entrance planes<br />

• 3 cases explored: no mesh,<br />

square, and hex mesh<br />

• Mesh <strong>of</strong>fset from <strong>reticle</strong> = 6mm<br />

• Only PO entrance plane<br />

apodization is considered here.<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 10


LW=10um, Pitch=250um: Hex & Sq comparison<br />

(NA=0.25, sigma=0.75, d=5mm)<br />

No mesh<br />

Square mesh<br />

Hex mesh<br />

Dense pattern:<br />

32/43nm L/S<br />

No mesh Square<br />

mesh<br />

Hex<br />

mesh<br />

No mesh<br />

Square mesh<br />

Hex mesh<br />

Iso pattern:<br />

32/160nm L/S<br />

No mesh Square<br />

mesh<br />

• Oct ~7% 18, 2006reduction<br />

in contrast <strong>for</strong> iso and dense patterns <strong>for</strong> hex mesh.<br />

• 7% / 13% reduction in NILS with dense / iso patterns <strong>for</strong> hex mesh<br />

Hex<br />

mesh<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 11


Outline<br />

• Motivation<br />

• Modeling results<br />

– Pitch, Transmission, Uni<strong>for</strong>mity impact<br />

– Aerial image impact<br />

• Experimental results<br />

– At-wavelength measurements<br />

– Full-size <strong>pellicle</strong> demonstration<br />

– Capping layer study<br />

– Pellicle optical metrology<br />

• Field work results<br />

– CDU analysis at DUV wavelength<br />

• Future work and summary<br />

Oct 18, 2006<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 12


Full-size <strong>pellicle</strong><br />

•Si membrane on 70LPI mesh<br />

Oct 18, 2006<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 13


Transmission<br />

Transmission characteristics <strong>for</strong> full-size mesh<br />

• Near <strong>EUV</strong> • Across-field uni<strong>for</strong>mity at focus<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

12 12.5 13 13.5 14 14.5 15<br />

Oct 18, 2006<br />

Wavelength (nm)<br />

T=0.581<br />

Scanner<br />

WL<br />

Transmission<br />

0.4<br />

-80 -60 -40 -20 0 20 40<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 14<br />

0.6<br />

0.58<br />

0.56<br />

0.54<br />

0.52<br />

0.5<br />

0.48<br />

0.46<br />

0.44<br />

0.42<br />

X-Position (mm)<br />

Pellicle transmission at 13.57nm scanner wavelength is about 58%,<br />

double pass yields 33.6%.


Capping layer optimization: Transmission vs. stress<br />

4 capping layers investigated: Si oxidation <strong>mitigation</strong><br />

0.6<br />

0.5<br />

0.4<br />

Ti/Si/Ti: 20A/767A/20A<br />

0.3<br />

-5 0 5<br />

Oct 18, 2006<br />

22Å Ti<br />

Line scan (at focus)<br />

0.6<br />

0.5<br />

0.4<br />

11Å Ru 22Å Ru 33Å Ru<br />

Ru/Si/Ru: 11A/819A/11A<br />

0.3<br />

-5 0 5<br />

0.6<br />

0.5<br />

0.4<br />

Position(mm)<br />

Ru/Si/Ru: 22A/810A/22A<br />

0.3<br />

-5 0 5<br />

Line scan <strong>of</strong> <strong>pellicle</strong>s with 300 x 50μ2m wide <strong>EUV</strong> beam at focus at ALS (LBL)<br />

0.3<br />

-5 0 5<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 15<br />

0.6<br />

0.5<br />

0.4<br />

Ru/Si/Ru: 33A/829A/33A<br />

Stable Ru capping layer helps optimize membrane stress (tensile) at high transmission<br />

Note: At-focus scan. Average transmission matters.


0.65<br />

0.55<br />

0.45<br />

0.35<br />

Capping layer study: Transmissivity near <strong>EUV</strong><br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.25<br />

12 12.5 13 13.5 14 14.5 15<br />

Wavelength (nm)<br />

Oct 18, 2006<br />

y<br />

Ti/Si/Ti: 20A/767A/20A<br />

Ru/Si/Ru: 11A/819A/11A<br />

Ru/Si/Ru: 33A/829A/33A<br />

Ru/Si/Ru: 22A/810A/22A<br />

0.25<br />

12 12.5 13 13.5 14 14.5 15<br />

Wavelength (nm)<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 16<br />

0.65<br />

0.6<br />

0.55<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

Si: 150nm<br />

Si: 100nm<br />

Mesh + membrane transmission @ scanner wavelength:<br />

22A Ti cap: 55%<br />

11A Ru cap: 57%<br />

22A Ru cap: 52%<br />

33A Ru cap: 59%<br />

100nm Si: 58%<br />

150nm Si: 51%


Mesh metrology: Si membrane study<br />

3” sample<br />

150nm Si on 80% transmissive mesh<br />

Actinic measurement<br />

Peak transmission = 53%<br />

Elemental decomposition via XPS indicates<br />

need <strong>for</strong> capping layer.<br />

C<br />

Oct 18, 2006<br />

SiO<br />

XPS depth pr<strong>of</strong>ile<br />

Si<br />

O<br />

At-wavelength (13.5nm)<br />

in-focus scan<br />

-2<br />

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2<br />

Ra=7.9nm<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 17<br />

SiO<br />

Ni<br />

C<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

150nm Si / 80% Mesh<br />

0.5<br />

0.45<br />

0.4<br />

0.35


T (%)<br />

Full-scale <strong>pellicle</strong> optical metrology<br />

Non-destructive <strong>pellicle</strong> membrane thickness measurement is<br />

necessary to comply with high volume production requirements.<br />

• An optical metrology model is developed and calibrated using (n,k).<br />

• Rapid <strong>pellicle</strong> membrane thickness 2-D map generation capability.<br />

Film thickness<br />

Uni<strong>for</strong>mity map<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Thickness <strong>of</strong> membrane:<br />

1164 Å<br />

0<br />

200 300 400 500 600 700 800 900 1000<br />

Oct 18, 2006<br />

Measured Transmittance<br />

Calculated transmittance<br />

(with Ni absorption and interference scattering)<br />

Wavelength (nm)<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 18


0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Si deposition on Mo/Si ML<br />

110nm Si on MoSi ML Reference MoSi ML<br />

Extract 110nm Si txm<br />

0<br />

12.5 12.75 13 13.25 13.5 13.75 14 14.25 14.5<br />

Oct 18, 2006<br />

Si, Mo/Si ML: Reflectivity near <strong>EUV</strong><br />

wavelength (nm)<br />

110nm Si/MoSi ML refl<br />

Reference Mo/Si ML refl<br />

0.5<br />

12.5 12.75 13 13.25 13.5 13.75 14 14.25 14.5<br />

Note: Calculated Si and SiO2 transmissions are based on CXRO data<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 19<br />

0.9<br />

0.85<br />

0.8<br />

18% discrepancy<br />

0.75<br />

0.7<br />

0.65<br />

0.6<br />

0.55<br />

Si: Txm near <strong>EUV</strong><br />

wavelength (nm)<br />

Scanner wavelength<br />

Extracted: 110nm Si (norm)<br />

Calc: 110nm Si txm<br />

Calc: 110nm Si+3nm Ox txm


Towards improving <strong>pellicle</strong> membrane<br />

transmission<br />

• Measured Si membrane<br />

transmission is lower than<br />

expected <strong>for</strong> crystalline Si with<br />

surface oxidation.<br />

• Need to alter deposition<br />

conditions to improve intrinsic Si<br />

transmission.<br />

• Magnetron sputtered Si proven<br />

<strong>for</strong> high transmission at <strong>EUV</strong><br />

wavelength. See chart<br />

(Source: Eric Gullikson, ALS)<br />

Oct 18, 2006<br />

0.0<br />

10 15 20 25 30 35 40 45 50<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 20<br />

Transmission<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

80% txm at<br />

13.5nm<br />

CXRO Si filter<br />

100 nm Si<br />

100 nm Si + 6 nm SiO2<br />

Wavelength (nm)


Outline<br />

• Motivation<br />

• Modeling results<br />

– Pitch, Transmission, Uni<strong>for</strong>mity impact<br />

– Aerial image impact<br />

• Experimental results<br />

– At-wavelength measurements<br />

– Full-size <strong>pellicle</strong> demonstration<br />

– Capping layer study<br />

– Pellicle optical metrology<br />

• Field work results<br />

– CDU analysis at DUV wavelength<br />

• Future work and summary<br />

Oct 18, 2006<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 21


DUV exposure with blank mesh: Full scan speed<br />

Experiments run on an ASML XT 1400*<br />

23x26mm field, 11x51 point sampling<br />

Mesh transmission 91%, LW = 18μm, pitch = 300μm<br />

Reticle transmission 90%, stand-<strong>of</strong>f height = 5mm<br />

NA = 0.93, σ = 0.75<br />

Best dose <strong>for</strong> same CD is 10% higher <strong>for</strong> exposures with mesh <strong>pellicle</strong>. This is<br />

consistent with a mesh transmittance <strong>of</strong> 91%.<br />

Sensor at wafer-plane averages out mesh impact.<br />

Blank <strong>reticle</strong> line scan<br />

Oct 18, 2006<br />

Sensor<br />

0<br />

-0.006 -0.004 -0.002 0 0.002 0.004 0.006<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 22<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

-0.2<br />

Reticle (no mesh)<br />

Reticle (with mesh)<br />

Difference<br />

* Thanks to Nanda Samarakone and Jim Hunter <strong>of</strong> ASML <strong>for</strong> supporting this work.


CDU analysis – full field CD uni<strong>for</strong>mity<br />

50 <br />

-<br />

49 <br />

3.1<br />

28 <br />

5.3<br />

27 <br />

-<br />

69 <br />

-<br />

51 <br />

3.8<br />

48 <br />

2.5<br />

29 <br />

2.1<br />

26 <br />

2.1<br />

8 <br />

-<br />

70 <br />

Oct 18, 2006<br />

-<br />

68 <br />

3.4<br />

52 <br />

2.6<br />

47 <br />

2.7<br />

30 <br />

1.9<br />

25 <br />

1.9<br />

9 <br />

2.3<br />

7 <br />

-<br />

71 <br />

3.5<br />

67 <br />

5.2<br />

53 <br />

2.4<br />

46 <br />

2.2<br />

31 <br />

2.6<br />

24 <br />

2.5<br />

10 <br />

2.2<br />

6 <br />

2.7<br />

72 <br />

3.0<br />

66 <br />

4.4<br />

54 <br />

2.7<br />

45 <br />

2.7<br />

32 <br />

1.9<br />

23 <br />

1.8<br />

11 <br />

2.4<br />

5 <br />

2.6<br />

VERTICAL<br />

73 <br />

3.4<br />

65 <br />

4.6<br />

55 <br />

2.7<br />

44 <br />

2.8<br />

33 <br />

67.4<br />

22 <br />

2.9<br />

12 <br />

2.5<br />

4 <br />

3.2<br />

74 <br />

3.6<br />

64 <br />

5.6<br />

56 <br />

2.9<br />

43 <br />

2.9<br />

34 <br />

25.3<br />

21 <br />

3.4<br />

13 <br />

2.5<br />

3 <br />

2.8<br />

75 <br />

3.3<br />

63 <br />

6.3<br />

57 <br />

3.1<br />

42 <br />

43.2<br />

35 <br />

2.8<br />

20 <br />

2.7<br />

14 <br />

2.4<br />

2 <br />

3.3<br />

76 <br />

-<br />

62 <br />

4.6<br />

58 <br />

4.5<br />

41 <br />

3.1<br />

36 <br />

2.6<br />

19 <br />

2.2<br />

15 <br />

2.4<br />

1 <br />

-<br />

61 <br />

-<br />

59 <br />

6.0<br />

40 <br />

4.3<br />

37 <br />

3.4<br />

18 <br />

3.6<br />

16 <br />

-<br />

3σ Edge Fields Vert<br />

Max 0.0<br />

Ave −<br />

Min 0.0<br />

Spec ≤ 7<br />

60 <br />

-<br />

39 <br />

5.5<br />

38 <br />

7.0<br />

17 <br />

-<br />

3s Full Fields Vert<br />

Max 67.4<br />

Ave 5.2<br />

Min 1.8<br />

Spec ≤ 4.2<br />

VERTICAL<br />

With <strong>pellicle</strong> Without <strong>pellicle</strong><br />

CD uni<strong>for</strong>mity difference between wafers with and without<br />

mesh is negligible – on average 0.2nm difference observed.<br />

68<br />

66<br />

64<br />

62<br />

60<br />

58<br />

56<br />

54<br />

52<br />

50<br />

48<br />

46<br />

44<br />

42<br />

40<br />

38<br />

No<br />

3σ Edge Fields Vert<br />

Max 0.0<br />

Ave −<br />

Min 0.0<br />

Spec ≤ 7<br />

3s Full Fields Vert<br />

Max 67.4<br />

Ave 4.4<br />

Min 1.7<br />

Spec ≤ 4.2<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 23<br />

50 <br />

-<br />

49 <br />

3.4<br />

28 <br />

6.0<br />

27 <br />

-<br />

69 <br />

-<br />

51 <br />

4.6<br />

48 <br />

2.4<br />

29 <br />

1.8<br />

26 <br />

1.9<br />

8 <br />

-<br />

70 <br />

-<br />

68 <br />

3.5<br />

52 <br />

2.9<br />

47 <br />

2.4<br />

30 <br />

1.7<br />

25 <br />

2.0<br />

9 <br />

1.9<br />

7 <br />

-<br />

71 <br />

3.5<br />

67 <br />

4.9<br />

53 <br />

2.8<br />

46 <br />

2.0<br />

31 <br />

2.2<br />

24 <br />

2.7<br />

10 <br />

1.9<br />

6 <br />

2.7<br />

72 <br />

3.1<br />

66 <br />

4.0<br />

54 <br />

2.2<br />

45 <br />

2.3<br />

32 <br />

1.9<br />

23 <br />

1.9<br />

11 <br />

2.5<br />

5 <br />

2.7<br />

73 <br />

3.2<br />

65 <br />

4.1<br />

55 <br />

2.8<br />

44 <br />

2.6<br />

33 <br />

67.4<br />

22 <br />

2.3<br />

12 <br />

2.4<br />

4 <br />

2.6<br />

74 <br />

3.9<br />

64 <br />

4.8<br />

56 <br />

2.5<br />

43 <br />

2.2<br />

34 <br />

24.6<br />

21 <br />

3.0<br />

13 <br />

2.2<br />

3 <br />

3.0<br />

75 <br />

3.8<br />

63 <br />

5.7<br />

57 <br />

3.0<br />

42 <br />

2.0<br />

35 <br />

2.0<br />

20 <br />

2.3<br />

14 <br />

2.4<br />

2 <br />

3.3<br />

76 <br />

-<br />

62 <br />

4.8<br />

58 <br />

4.5<br />

41 <br />

3.0<br />

36 <br />

2.7<br />

19 <br />

2.2<br />

15 <br />

2.5<br />

1 <br />

-<br />

61 <br />

-<br />

59 <br />

6.2<br />

40 <br />

4.3<br />

37 <br />

3.5<br />

18 <br />

3.6<br />

16 <br />

-<br />

60 <br />

-<br />

39 <br />

4.8<br />

38 <br />

6.4<br />

17 <br />

-<br />

69<br />

67<br />

65<br />

63<br />

61<br />

59<br />

57<br />

55<br />

53<br />

51<br />

49<br />

47<br />

45<br />

43<br />

41<br />

39<br />

No


Summary<br />

• A new model <strong>of</strong> illumination uni<strong>for</strong>mity <strong>for</strong> <strong>pellicle</strong>s has been created. Results<br />

are consistent with experimental data.<br />

– Mechanical stability in mesh is an important factor – low stress and high structural<br />

rigidity with decreasing line-width are needed.<br />

– Modeling results indicate linear dependence <strong>of</strong> LW to illumination uni<strong>for</strong>mity.<br />

Hexagonal mesh with 250μm pitch chosen. Current line-width <strong>of</strong> 18μm will ultimately<br />

drive to 5μm.<br />

• Full-scale <strong>pellicle</strong> created and at-wavelength transmission measured.<br />

– 100% yield in membranes. Process is reliable.<br />

– Single-pass <strong>EUV</strong> transmission at 58%<br />

• Capping layer optimization shows 3.3nm Ru can improve membrane stress<br />

without compromising <strong>EUV</strong> transmission.<br />

• Successful field run with ASML’s XT1400 tool by mounting a blank mesh on<br />

patterning <strong>reticle</strong>. Negligible impact on CDU, process latitude at DUV.<br />

• Created a model to measure <strong>pellicle</strong> uni<strong>for</strong>mity using non-destructive optical<br />

techniques.<br />

• Future work:<br />

– Quantify <strong>reticle</strong> <strong>defect</strong> <strong>mitigation</strong> using <strong>EUV</strong> <strong>pellicle</strong>s<br />

– Improve single-pass transmission to 84% with implementation <strong>of</strong> suitable capping<br />

layer solution with improvement in sputter deposition process, reduction in film<br />

thickness, and higher mesh transmission.<br />

Oct 18, 2006<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 24


Thanks to…<br />

•Eric Gullikson at the Advanced Light Source <strong>EUV</strong> beamline (LBL)<br />

<strong>for</strong> at-wavelength transmission measurements.<br />

•ASML (particularly, Nanda Samarakone and Jim Hunter) <strong>for</strong><br />

supporting mesh CDU imaging study at DUV with XT1400.<br />

•Brian Coombs (Intel) <strong>for</strong> ECD measurements <strong>of</strong> wafers.<br />

•MATTEC (Materials Technology) at Intel <strong>for</strong> AFM and elemental<br />

depth pr<strong>of</strong>iling <strong>of</strong> membranes via XPS.<br />

•Ravi Mullapudi at Tango Systems (San Jose, CA) <strong>for</strong> helping<br />

develop reliable membranes on challenging substrates.<br />

•Committed support from senior management at Intel <strong>for</strong> funding<br />

and providing resources <strong>for</strong> the project.<br />

Oct 18, 2006<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 25


Backup<br />

Oct 18, 2006<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 26


Si / Ru transmission<br />

Si thickness (nm)<br />

Oct 18, 2006<br />

150<br />

100<br />

50<br />

0<br />

0 1 2<br />

Ru thickness (nm)<br />

3 4<br />

DoE: Cap layer optimizations<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 27<br />

0.95<br />

0.9<br />

0.85<br />

0.8<br />

0.75<br />

0.7


XPS metrology: Ti/Si/Ti pr<strong>of</strong>ile<br />

Oct 18, 2006<br />

C<br />

Capping layer protects Si from oxidation, improving transmission<br />

Marginal cap layer oxidation observed<br />

Si<br />

O<br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 28<br />

O<br />

Si-O<br />

C


CDU analysis <strong>for</strong> mesh impact at DUV<br />

V-H Bias (nm)<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

Process window curves with and without <strong>pellicle</strong> are<br />

comparable.<br />

Best dose <strong>for</strong> same CD is 10% higher <strong>for</strong> exposures with mesh<br />

<strong>pellicle</strong>. This is consistent with a mesh transmittance <strong>of</strong> 91%.<br />

Oct 18, 2006<br />

H-V bias <strong>for</strong> 100nm Iso lines<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21<br />

Cross-slit position by column<br />

H-V +scan without <strong>pellicle</strong><br />

H-V +scan with <strong>pellicle</strong><br />

Y. Shr<strong>of</strong>f, et. al., <strong>EUV</strong> Pellicle <strong>Development</strong> ~ <strong>EUV</strong>L Symosium, 2006 ~ 29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!