29.03.2013 Views

Additional Information submitted during the information exchange on ...

Additional Information submitted during the information exchange on ...

Additional Information submitted during the information exchange on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

EUROPEAN COMMISSION<br />

DIRECTORATE-GENERAL JRC<br />

JOINT RESEARCH CENTRE<br />

Institute for Prospective Technological Studies<br />

Sustainability in Industry, Energy and Transport<br />

European IPPC Bureau<br />

<str<strong>on</strong>g>Additi<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Informati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>submitted</str<strong>on</strong>g> <str<strong>on</strong>g>during</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>exchange</str<strong>on</strong>g> <strong>on</strong><br />

Large Volume Inorganic Chemicals – Solid and O<str<strong>on</strong>g>the</str<strong>on</strong>g>rs Industry<br />

June 2005<br />

Edificio EXPO, c/ Inca Garcilaso s/n, E-41092 Sevilla - Spain<br />

Teleph<strong>on</strong>e: direct line (+34-95) 4488-284, switchboard 4488-318. Fax: 4488-426.<br />

Internet: http://eippcb.jrc.es; Email: JRC-IPTS-EIPPCB@cec.eu.int


<str<strong>on</strong>g>Additi<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Informati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>submitted</str<strong>on</strong>g> <str<strong>on</strong>g>during</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>exchange</str<strong>on</strong>g> <strong>on</strong> Large Volume Inorganic Chemicals – Solid and<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>rs Industry<br />

INTRODUCTION ..................................................................................................................................VII<br />

1 SELECTED ILLUSTRATIVE LVIC-S INDUSTRY PRODUCTS ..............................................1<br />

1.1 Aluminium chlorides ..................................................................................................................1<br />

1.1.1 Polyaluminium chloride ...................................................................................................1<br />

1.1.1.1 General <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>..................................................................................................1<br />

1.1.1.2 Process descripti<strong>on</strong> ...................................................................................................2<br />

1.1.1.2.1 Aluminium hydroxy chloride............................................................................2<br />

1.1.1.2.2 Aluminium hydroxy chloride sulphate .............................................................2<br />

1.1.1.3 Current c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> levels ................................................................3<br />

1.1.1.3.1 Aluminium hydroxy chloride............................................................................3<br />

1.1.1.3.2 Aluminium hydroxy chloride sulphate .............................................................3<br />

1.1.2 Aluminium chloride (soluti<strong>on</strong>) .........................................................................................4<br />

1.1.2.1 General <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>..................................................................................................4<br />

1.1.2.2 Process descripti<strong>on</strong> ...................................................................................................4<br />

1.1.2.3 Current c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> levels ................................................................5<br />

1.2 Aluminium sulphate....................................................................................................................6<br />

1.2.1 General <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>..........................................................................................................6<br />

1.2.1.1 Introducti<strong>on</strong> ..............................................................................................................6<br />

1.2.1.2 <str<strong>on</strong>g>Informati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> aluminium sulphate – inorganic coagulants.....................................6<br />

1.2.2 Process descripti<strong>on</strong> ...........................................................................................................7<br />

1.2.3 Current c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> levels ........................................................................8<br />

1.2.3.1 C<strong>on</strong>sumpti<strong>on</strong> of raw materials..................................................................................8<br />

1.2.3.2 Major envir<strong>on</strong>mental impacts ...................................................................................8<br />

1.3 Chromium compounds..............................................................................................................11<br />

1.4 Ferric chloride...........................................................................................................................12<br />

1.4.1 General <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>........................................................................................................12<br />

1.4.1.1 Introducti<strong>on</strong> – ferric chloride (FeCl3) .....................................................................12<br />

1.4.1.2 Background <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> ferric chloride (FeCl3)................................................12<br />

1.4.2 Process descripti<strong>on</strong> .........................................................................................................13<br />

1.4.2.1 Ferric chloride soluti<strong>on</strong> (scrap ir<strong>on</strong> + chlorine) ......................................................13<br />

1.4.2.2 Ferric chloride soluti<strong>on</strong> (scrap ir<strong>on</strong> + hydrochloric acid + chlorine) ......................13<br />

1.4.2.3 Ferric chloride soluti<strong>on</strong> (spent FeCl2 liquor + chlorine) .........................................14<br />

1.4.2.4 Ferric chloride soluti<strong>on</strong> (ir<strong>on</strong> ore + hydrochloric acid)...........................................14<br />

1.4.2.5 Ferric chloride soluti<strong>on</strong> (ir<strong>on</strong> ore + hydrochloric acid + oxidati<strong>on</strong>) .......................15<br />

1.4.3 Current c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> levels ......................................................................16<br />

1.4.4 Special features and limiting factors...............................................................................16<br />

1.4.5 Techniques to c<strong>on</strong>sider in <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> of BAT.....................................................17<br />

1.4.6 Emerging techniques ......................................................................................................17<br />

1.5 Potassium carb<strong>on</strong>ate .................................................................................................................18<br />

1.6 Sodium sulphate .......................................................................................................................19<br />

1.6.1 General <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>........................................................................................................19<br />

1.6.1.1 Introducti<strong>on</strong> ............................................................................................................19<br />

1.6.1.2 Basic data <strong>on</strong> sodium sulphate producti<strong>on</strong>..............................................................19<br />

1.6.2 Industrial processes used ................................................................................................21<br />

1.6.2.1 Fibres process (Na2SO4 producti<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> viscose-fibre process) ......................21<br />

1.6.2.2 MESSO process (from Glauber’s salt) ...................................................................22<br />

1.6.2.3 Chromium process..................................................................................................23<br />

1.6.2.4 Mannheim furnace process (hydrochloric acid)......................................................24<br />

1.6.2.5 Methi<strong>on</strong>ine process.................................................................................................25<br />

1.6.2.6 Formic acid process ................................................................................................27<br />

1.6.3 Current emissi<strong>on</strong> and energy c<strong>on</strong>sumpti<strong>on</strong> levels ..........................................................28<br />

1.6.4 Techniques to c<strong>on</strong>sider in <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> of BAT.....................................................29<br />

1.7 Zinc chloride.............................................................................................................................31<br />

1.8 Zinc sulphate.............................................................................................................................32<br />

1.9 Sodium bisulphate ....................................................................................................................33


2 PURIFICATION OF NON-FERTILISER GRADE WET PHOSPHORIC ACID (PARTIAL<br />

INFORMATION) .............................................................................................................................. 1<br />

2.1 Inorganic Phosphates – Introducti<strong>on</strong>.......................................................................................... 1<br />

2.2 Purificati<strong>on</strong> of n<strong>on</strong>-fertiliser grade wet phosphoric acid – <str<strong>on</strong>g>the</str<strong>on</strong>g> opti<strong>on</strong>s....................................... 3<br />

REFERENCES........................................................................................................................................... 5<br />

GLOSSARY OF TERMS AND ABBREVIATIONS .............................................................................. 9


List of figures<br />

Figure 1.1: Process flow diagram – manufacture of aluminium hydroxy chloride...................................2<br />

Figure 1.2: Process flow diagram – manufacture of aluminium hydroxy chloride sulphate ....................3<br />

Figure 1.3: Process flow diagram – manufacture of aluminium chloride soluti<strong>on</strong> ...................................4<br />

Figure 1.4: Process flow diagram of aluminium sulphate producti<strong>on</strong> ......................................................8<br />

Figure 1.5: A chromium chemical complex ...........................................................................................11<br />

Figure 1.6: Process diagram - producti<strong>on</strong> of FeCl3 based <strong>on</strong> scrap ir<strong>on</strong> and chlorine ............................13<br />

Figure 1.7: Process diagram - producti<strong>on</strong> of FeCl3 based <strong>on</strong> scrap ir<strong>on</strong>, HCl and chlorine...................14<br />

Figure 1.8: Process diagram - producti<strong>on</strong> of FeCl3 based <strong>on</strong> ir<strong>on</strong> ore and hydrochloric acid.................15<br />

Figure 1.9: Process diagram – producti<strong>on</strong> of FeCl3 based <strong>on</strong> ir<strong>on</strong> ore and HCl and oxidati<strong>on</strong> ..............16<br />

Figure 1.10: Flow scheme of sodium sulphate producti<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> viscose-fibre process ......................22<br />

Figure 1.11: Flow scheme of sodium sulphate producti<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> Messo process ....................................23<br />

Figure 1.12: Flow scheme of <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of sodium sulphate from <str<strong>on</strong>g>the</str<strong>on</strong>g> chromium process ................24<br />

Figure 1.13: Flow scheme of <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of Na2SO4 by <str<strong>on</strong>g>the</str<strong>on</strong>g> Mannheim furnace process....................25<br />

Figure 1.14: Flow scheme of <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of sodium sulphate from <str<strong>on</strong>g>the</str<strong>on</strong>g> methi<strong>on</strong>ine process...............27<br />

Figure 1.15: Flow scheme of sodium sulphate producti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> formic acid process .............................28<br />

Figure 1.16: Technological network of zinc chemical compounds ..........................................................31


List of tables<br />

Table 1.1: Typical c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> values – aluminium hydroxy chloride ........................... 3<br />

Table 1.2: Typical c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> values – aluminium hydroxy chloride sulphate............. 3<br />

Table 1.3: Typical c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> values – aluminium chloride soluti<strong>on</strong>............................ 5<br />

Table 1.4: Major applicati<strong>on</strong>s of aluminium sulphate ............................................................................ 7<br />

Table 1.5: Typical energy c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> values for liquid aluminium sulphate ................ 9<br />

Table 1.6: Typical energy c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> values for solid aluminium sulphate.................. 9<br />

Table 1.7: Locati<strong>on</strong> and capacities of FeCl3 plants in <str<strong>on</strong>g>the</str<strong>on</strong>g> EU............................................................... 12<br />

Table 1.8: C<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> values in <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of ferrous chloride ............................ 16<br />

Table 1.9: Sodium sulphate producti<strong>on</strong> in Europe................................................................................ 20<br />

Table 1.10: Sodium sulphate producti<strong>on</strong> – emissi<strong>on</strong>s to air (aggregated data: min – max).................... 28<br />

Table 1.11: Sodium sulphate producti<strong>on</strong> – emissi<strong>on</strong>s to water (aggregated data: min – max) ............... 29<br />

Table 1.12: Sodium sulphate producti<strong>on</strong> – solid residues (aggregated data: min –max)........................ 29<br />

Table 1.13: Sodium sulphate producti<strong>on</strong> - energy c<strong>on</strong>sumpti<strong>on</strong> (aggregated data: min - max).............. 29


INTRODUCTION<br />

Introducti<strong>on</strong><br />

The <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> c<strong>on</strong>tained in this document was <str<strong>on</strong>g>submitted</str<strong>on</strong>g> as part of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>exchange</str<strong>on</strong>g><br />

<strong>on</strong> BAT for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of Large Volume Inorganic Chemicals – Solid and O<str<strong>on</strong>g>the</str<strong>on</strong>g>rs (LVIC-S).<br />

However, it was ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>submitted</str<strong>on</strong>g> very late in <str<strong>on</strong>g>the</str<strong>on</strong>g> process or insufficient <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> is available<br />

to draw BAT c<strong>on</strong>clusi<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> nine ‘selected illustrative’ LVIC-S industry products included<br />

in this document (see <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tent list).<br />

In order not to lose this partial <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, it is made available here.<br />

It must be stressed, however, that this document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG <strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European<br />

Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly.


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

1 SELECTED ILLUSTRATIVE LVIC-S INDUSTRY PRODUCTS<br />

1.1 Aluminium chlorides<br />

In principle, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> c<strong>on</strong>tained in this secti<strong>on</strong> relates to aluminium chlorides, which are<br />

used as inorganic coagulants. Aluminium chloride is also extensively utilised in its anhydrous<br />

form. In 1984 approx. 30000 t<strong>on</strong>nes was produced in <str<strong>on</strong>g>the</str<strong>on</strong>g> US and approx. 50000 t<strong>on</strong>nes in<br />

Western Europe [48, W. Buchner et al, 1989].<br />

Anhydrous aluminium chloride is mainly used as a catalyst in organic chemistry, essentially as<br />

an alkylati<strong>on</strong> catalyst, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r in fine chemistry, or in <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of commodity organics like<br />

ethylbenzene in competiti<strong>on</strong> with e.g. solid catalysts. Its significance in <str<strong>on</strong>g>the</str<strong>on</strong>g> petrochemical<br />

industry has str<strong>on</strong>gly decreased with <str<strong>on</strong>g>the</str<strong>on</strong>g> advent of zeolite-based catalysts [6, CEFIC, 2002].<br />

It can be produced by two process routes:<br />

From aluminium<br />

This process is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> of gaseous chlorine injected into a molten aluminium bath<br />

at a typical temperature of 800 °C. The equati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> is:<br />

2 Al + 3 Cl2 F 2 AlCl3<br />

The chlorine c<strong>on</strong>versi<strong>on</strong> is very rapid and complete. Aluminium chloride leaves <str<strong>on</strong>g>the</str<strong>on</strong>g> reactor as a<br />

vapour, which is c<strong>on</strong>densed to a solid <strong>on</strong> a cooled surface. The solid aluminium chloride is<br />

c<strong>on</strong>diti<strong>on</strong>ed by crushing and sieving, <str<strong>on</strong>g>the</str<strong>on</strong>g>n stored in bulk or packaged and finally shipped.<br />

Air emissi<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> vent in <str<strong>on</strong>g>the</str<strong>on</strong>g> aluminium chloride c<strong>on</strong>densati<strong>on</strong> reactor and from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>diti<strong>on</strong>ing, handling and storage systems c<strong>on</strong>tain chlorine, hydrochloric acid and aluminium<br />

chloride. Emissi<strong>on</strong>s to water are essentially from <str<strong>on</strong>g>the</str<strong>on</strong>g> vents scrubbers, and include hydrochloric<br />

acid and dissolved/suspended aluminium compounds. Waste generati<strong>on</strong> is very small and<br />

includes essentially aluminium hydroxide sludge recovered from waste water treatment.<br />

From aluminium oxide<br />

This process, which is no l<strong>on</strong>ger used in Europe, is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> carbo-chlorinati<strong>on</strong> of<br />

aluminium oxide according to <str<strong>on</strong>g>the</str<strong>on</strong>g> following reacti<strong>on</strong>:<br />

2 Al2O3 + 3 C + 6 Cl2 F 3 CO2 + 4 AlCl3<br />

In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mental issues of <str<strong>on</strong>g>the</str<strong>on</strong>g> aluminium process, generic CO, SOx and NOx air<br />

emissi<strong>on</strong>s occur, while <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> of some chlorinated organics is possible [6, CEFIC, 2002].<br />

1.1.1 Polyaluminium chloride<br />

1.1.1.1 General <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g><br />

Product Name : Polyaluminium chloride<br />

CAS number : 1327-41-9 (Aluminium hydroxy chloride) and<br />

39290-78-3 (Aluminium hydroxy chloride sulphate)<br />

Polyaluminium chloride is a very comm<strong>on</strong> aluminium salt, <str<strong>on</strong>g>the</str<strong>on</strong>g> major uses of which are:<br />

Use Applicati<strong>on</strong><br />

Water Treatment As a coagulant for drinking, industrial waste and municipal waste water<br />

Paper Additive As a retenti<strong>on</strong> and fixing agent, and a sizing additive<br />

1


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

Due to different types of polyaluminium chloride (PAC) with different aluminium c<strong>on</strong>tents, all<br />

t<strong>on</strong>nage related data are normalised to <strong>on</strong>e comm<strong>on</strong> PAC with a c<strong>on</strong>tent of 9 % aluminium and<br />

are calculated <strong>on</strong> this basis. About 520000 t<strong>on</strong>nes of PAC were produced in Europe in 2002 at<br />

about 17 locati<strong>on</strong>s [89, CEFIC-INCOPA, 2004].<br />

1.1.1.2 Process descripti<strong>on</strong><br />

1.1.1.2.1 Aluminium hydroxy chloride<br />

Aluminium hydroxy chloride is formed directly by <str<strong>on</strong>g>the</str<strong>on</strong>g> digesti<strong>on</strong> of aluminium hydroxide and<br />

hydrochloric acid in an under-stoichiometric reacti<strong>on</strong>. The reacti<strong>on</strong> is carried out at a<br />

temperature between 140 and 160 °C and pressure between 3 and 5 bars. After <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong>,<br />

insoluble aluminium hydroxide is removed by filtrati<strong>on</strong> and is used again at <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

process. The clear liquid is c<strong>on</strong>diti<strong>on</strong>ed with water to become <str<strong>on</strong>g>the</str<strong>on</strong>g> finished product of a well<br />

defined quality.<br />

2<br />

Al(OH)3 + HCl F Alx(OH)yClz + H2O<br />

The process diagram of <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture of aluminium hydroxy chloride is given in Figure 1.1.<br />

Al(OH) 3<br />

HCl<br />

Reacti<strong>on</strong> Filtrati<strong>on</strong><br />

Unreacted Al(OH) 3<br />

PAC<br />

Figure 1.1: Process flow diagram – manufacture of aluminium hydroxy chloride<br />

[89, CEFIC-INCOPA, 2004]<br />

1.1.1.2.2 Aluminium hydroxy chloride sulphate<br />

Aluminium hydroxy chloride sulphate is formed by <str<strong>on</strong>g>the</str<strong>on</strong>g> digesti<strong>on</strong> of aluminium hydroxide with<br />

hydrochloric acid and sulphuric acid. The reacti<strong>on</strong> is carried out at a temperature between<br />

105 and 115 °C. The reacti<strong>on</strong> soluti<strong>on</strong> is partially neutralised by CaCO3 slurry to remove<br />

excessive sulphate by forming gypsum (CaSO4 . 2 H2O). The mo<str<strong>on</strong>g>the</str<strong>on</strong>g>r liquor is separated from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

gypsum by filtrati<strong>on</strong>. The gypsum is washed and <str<strong>on</strong>g>the</str<strong>on</strong>g> washing water is used to c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

product.<br />

Al(OH)3 + HCl + H2SO4 + CaCO3 F Alp(OH)qClr(SO4)s + H2O + CaSO4 + CO2<br />

The process diagram of <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture of aluminium hydroxy chloride sulphate is given in<br />

Figure 1.2.


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

H 2SO 4<br />

HCl<br />

Al(OH) 3<br />

Reacti<strong>on</strong><br />

C<strong>on</strong>diti<strong>on</strong>ing<br />

PAC<br />

Washing<br />

water<br />

Mo<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

liquor<br />

Neutralisati<strong>on</strong><br />

Filtrati<strong>on</strong><br />

CaSO 4*2H 2O<br />

CaCO 3<br />

Water<br />

Figure 1.2: Process flow diagram – manufacture of aluminium hydroxy chloride sulphate<br />

[89, CEFIC-INCOPA, 2004]<br />

1.1.1.3 Current c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> levels<br />

1.1.1.3.1 Aluminium hydroxy chloride<br />

Typical c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> values are given in Table 1.1.<br />

C<strong>on</strong>sumpti<strong>on</strong> of energy and water<br />

Energy c<strong>on</strong>sumpti<strong>on</strong> kWh/t product 600<br />

Water c<strong>on</strong>sumpti<strong>on</strong> m 3 /t product 1.5<br />

Emissi<strong>on</strong>s to air<br />

Chemical Emissi<strong>on</strong> kg/t product Emissi<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> limit<br />

HCl 0.01 500 mg/Nm 3<br />

Emissi<strong>on</strong>s to water<br />

Chemical Emissi<strong>on</strong> kg/t product Comments<br />

HCl 0.8 Water is mostly recycled<br />

Waste to land<br />

Chemical Waste kg/t product Comments<br />

Al(OH)3 12 Mostly recycled<br />

Table 1.1: Typical c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> values – aluminium hydroxy chloride<br />

[89, CEFIC-INCOPA, 2004]<br />

1.1.1.3.2 Aluminium hydroxy chloride sulphate<br />

Typical c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> values are given in Table 1.2<br />

C<strong>on</strong>sumpti<strong>on</strong> of energy and water<br />

Energy c<strong>on</strong>sumpti<strong>on</strong> kWh/t product 200<br />

Water c<strong>on</strong>sumpti<strong>on</strong> m 3 /t product 15<br />

Emissi<strong>on</strong>s to air<br />

Chemical Emissi<strong>on</strong> kg/t product Emissi<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> limit<br />

HCl 0.2 500 mg/Nm 3<br />

Emissi<strong>on</strong>s to water<br />

Chemical Emissi<strong>on</strong> kg/t product Comments<br />

HCl 35 Scrubber water<br />

CaSO4 3800 Water with gypsum<br />

Waste to land<br />

Chemical Waste kg/t product Comments<br />

Gypsum, Al(OH)3 1.5<br />

Table 1.2: Typical c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> values – aluminium hydroxy chloride sulphate<br />

[89, CEFIC-INCOPA, 2004]<br />

3


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

There are no special features or limiting factors to be menti<strong>on</strong>ed [89, CEFIC-INCOPA, 2004].<br />

There is a wide range of air and water emissi<strong>on</strong>s. This depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> type of gas scrubber.<br />

Some scrubbers can recycle water by c<strong>on</strong>centrating hydrochloric acid and re-using it in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

process. Therefore, waste water emissi<strong>on</strong> from scrubber water is minimised.<br />

1.1.2 Aluminium chloride (soluti<strong>on</strong>)<br />

1.1.2.1 General <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g><br />

Product Name : Aluminium chloride soluti<strong>on</strong><br />

CAS number : Not established for aluminium chloride soluti<strong>on</strong><br />

Aluminium chloride is a very comm<strong>on</strong> aluminium salt, <str<strong>on</strong>g>the</str<strong>on</strong>g> major uses of which are:<br />

4<br />

Use Applicati<strong>on</strong><br />

Water treatment As a coagulant for drinking, industrial waste and municipal waste water<br />

About 25000 t<strong>on</strong>nes of aluminium chloride (as inorganic coagulant) were produced in 2002 at<br />

three locati<strong>on</strong>s.<br />

1.1.2.2 Process descripti<strong>on</strong><br />

Aluminium chloride soluti<strong>on</strong> is formed directly by <str<strong>on</strong>g>the</str<strong>on</strong>g> digesti<strong>on</strong> of aluminium hydroxide and<br />

hydrochloric acid in a stoichiometric reacti<strong>on</strong>. The reacti<strong>on</strong> is carried out at a temperature<br />

between 100 and 110 °C. After <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong>, insoluble aluminium hydroxide is removed by<br />

filtrati<strong>on</strong> and is used again at <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning of <str<strong>on</strong>g>the</str<strong>on</strong>g> process. The clear liquid is c<strong>on</strong>diti<strong>on</strong>ed with<br />

water to become <str<strong>on</strong>g>the</str<strong>on</strong>g> finished product of a well defined quality.<br />

Al(OH)3 + 3HCl F AlCl3 + 3H2O<br />

The process flow diagram for <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture of aluminium chloride soluti<strong>on</strong> is given in<br />

Figure 1.3.<br />

Al(OH) 3<br />

HCl<br />

Reacti<strong>on</strong> Filtrati<strong>on</strong><br />

Unreacted Al(OH) 3<br />

Figure 1.3: Process flow diagram – manufacture of aluminium chloride soluti<strong>on</strong><br />

[89, CEFIC-INCOPA, 2004]<br />

AlCl 3


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

1.1.2.3 Current c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> levels<br />

Typical c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> values are given in Table 1.3.<br />

C<strong>on</strong>sumpti<strong>on</strong> of energy and water<br />

Energy c<strong>on</strong>sumpti<strong>on</strong> kWh/t product 100<br />

Water c<strong>on</strong>sumpti<strong>on</strong> m 3 /t product 3<br />

Emissi<strong>on</strong>s to air<br />

Chemical Emissi<strong>on</strong> kg/t product Emissi<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> limit<br />

HCl 0.02 10 mg/Nm 3<br />

Emissi<strong>on</strong>s to water<br />

Chemical Emissi<strong>on</strong> kg/t product Comments<br />

HCl 0.1<br />

Waste to land<br />

Chemical Waste kg/t product Comments<br />

Al(OH)3 0.1 Undissolved raw material<br />

Table 1.3: Typical c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> values – aluminium chloride soluti<strong>on</strong><br />

[89, CEFIC-INCOPA, 2004]<br />

There are no special features or limiting factors to be menti<strong>on</strong>ed [89, CEFIC-INCOPA, 2004].<br />

There is a wide range of air and water emissi<strong>on</strong>s. This depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> type of gas scrubber.<br />

Some scrubbers can recycle water by c<strong>on</strong>centrating hydrochloric acid and re-using it in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

process. Therefore, waste water emissi<strong>on</strong> from scrubber water is minimised.<br />

5


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

1.2 Aluminium sulphate<br />

1.2.1 General <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g><br />

1.2.1.1 Introducti<strong>on</strong><br />

With a worldwide producti<strong>on</strong> of 2.9 milli<strong>on</strong> t<strong>on</strong>nes in 1982, aluminium sulphate is <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

important aluminium compound after aluminium oxide and hydroxide, <str<strong>on</strong>g>the</str<strong>on</strong>g>se latter compounds<br />

are already covered in <str<strong>on</strong>g>the</str<strong>on</strong>g> N<strong>on</strong>-Ferrous Metals BREF.<br />

The most important producers are <str<strong>on</strong>g>the</str<strong>on</strong>g> US (with 1.1 milli<strong>on</strong> t<strong>on</strong>nes in 1984 <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> basis of 17 %<br />

Al2O3, Western Europe (with 0.9 milli<strong>on</strong> t<strong>on</strong>nes per year) and Japan (with 0.8 milli<strong>on</strong> t<strong>on</strong>nes per<br />

year <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> basis of 14 % Al2O3) [48, W. Buchner et al, 1989].<br />

Aluminium sulphate is a substance essentially used in water treatment as a flocculating agent<br />

and in <str<strong>on</strong>g>the</str<strong>on</strong>g> paper industry. Aluminium sulphate is also <str<strong>on</strong>g>the</str<strong>on</strong>g> starting material for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r aluminium<br />

compounds [13, EIPPCB, 2000]. The commercial product is ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r a solid hydrated salt, whose<br />

formula is typically Al2(SO4)3 . 13 to 15 H2O. It is shipped in flakes, powder or blocks, or as an<br />

8 % (as Al2O3) soluti<strong>on</strong> in water [6, CEFIC, 2002].<br />

Aluminium sulphate is industrially produced by <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> of aluminium hydroxide (or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

aluminium raw materials such as bauxite or kaolin) with sulphuric acid. In Europe, <str<strong>on</strong>g>the</str<strong>on</strong>g> largest<br />

part of aluminium sulphate is produced by <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> of sulphuric acid with wet or dry<br />

aluminium hydroxide according to <str<strong>on</strong>g>the</str<strong>on</strong>g> following reacti<strong>on</strong>:<br />

6<br />

2Al(OH)3 + 3 H2SO4 F Al2(SO4)3 + 6H2O<br />

This reacti<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> trunk of all processes, and it is typically carried out in a stirred<br />

batch reactor at a temperature of 110 – 120 °C and under atmospheric pressure. The resulting<br />

soluti<strong>on</strong> is treated differently according to <str<strong>on</strong>g>the</str<strong>on</strong>g> shipment mode:<br />

for shipment as a soluti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> Al2O3 c<strong>on</strong>centrati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture leaving <str<strong>on</strong>g>the</str<strong>on</strong>g> reactor is<br />

simply adjusted, and <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting soluti<strong>on</strong> is clarified (by filtrati<strong>on</strong>). This process <strong>on</strong>ly<br />

generates minor air and water emissi<strong>on</strong>s<br />

for shipment as a solid, <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture leaving <str<strong>on</strong>g>the</str<strong>on</strong>g> reactor is sent ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r to a crystalliser, a flaker<br />

or a solidificati<strong>on</strong> box according to <str<strong>on</strong>g>the</str<strong>on</strong>g> shape required. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r treatments may include<br />

crushing, milling, sieving before packaging. This process generates almost clean waste<br />

water from <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> steps and air emissi<strong>on</strong>s c<strong>on</strong>taining particulate from solid<br />

handling.<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r feedstocks e.g. bauxite or clays, are industrially used, but as <str<strong>on</strong>g>the</str<strong>on</strong>g>y are not as pure as<br />

aluminium hydroxide, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir processing ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r leads to a less pure aluminium sulphate (e.g.<br />

c<strong>on</strong>taining soluble ir<strong>on</strong> sulphate or suspended solids) or generates solid wastes. Also, spent<br />

aluminium salts soluti<strong>on</strong>s (e.g. from aluminium surface treatment activities) can be a source of<br />

small amounts of aluminium sulphate used for <str<strong>on</strong>g>the</str<strong>on</strong>g> local markets [6, CEFIC, 2002].<br />

1.2.1.2 <str<strong>on</strong>g>Informati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> aluminium sulphate – inorganic coagulants<br />

The substances covered are all based <strong>on</strong> aluminium sulphate in a solid or liquid pure form or<br />

c<strong>on</strong>taining additives, mainly ir<strong>on</strong>, in <str<strong>on</strong>g>the</str<strong>on</strong>g> form of ir<strong>on</strong> sulphate. In both <str<strong>on</strong>g>the</str<strong>on</strong>g> solid and liquid form,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> categories can be split into three groups:<br />

ir<strong>on</strong> free<br />

low ir<strong>on</strong><br />

ir<strong>on</strong> blends.


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

Solid products have a c<strong>on</strong>centrati<strong>on</strong> of between 7 – 9.3 % Al with a typical c<strong>on</strong>centrati<strong>on</strong> of<br />

9.1 % equivalent to 14 crystal water. C<strong>on</strong>centrati<strong>on</strong> in liquid products is 3.5 – 4.5 % Al. The<br />

ir<strong>on</strong> c<strong>on</strong>tent in <str<strong>on</strong>g>the</str<strong>on</strong>g> substances can typically vary between 0 – 3 % as Fe.<br />

Solid products are produced in every fracti<strong>on</strong> from fine powder up to blocks of about 10 kg.<br />

Product Name : Aluminium sulphate Al2(SO4)3<br />

Derivatives: Low ir<strong>on</strong> aluminium sulphate, ir<strong>on</strong> c<strong>on</strong>taining aluminium sulphate,<br />

aluminium basic sulphate.<br />

As illustrated in Table 1.4, aluminium sulphate is a very comm<strong>on</strong> product that is used in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following major areas:<br />

Use Share Applicati<strong>on</strong><br />

Drinking water treatment ~ 30 % Coagulant for purificati<strong>on</strong><br />

Sewage water treatment ~ 10 % Coagulant for purificati<strong>on</strong> and phosphorus removal<br />

Paper industry ~ 40 % Coagulant for water purificati<strong>on</strong> and paper sizing<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r applicati<strong>on</strong>s ~ 20 % Pigment producti<strong>on</strong>, cement industry, detergent, fire<br />

extinguishers, etc.<br />

Table 1.4: Major applicati<strong>on</strong>s of aluminium sulphate<br />

[50, CEFIC-INCOPA, 2004]<br />

Due to its low value and high producti<strong>on</strong> volumes, aluminium sulphate is produced in most<br />

European countries to cover <str<strong>on</strong>g>the</str<strong>on</strong>g> local demand. The number of producti<strong>on</strong> units within Europe is<br />

about 65 plants. From <str<strong>on</strong>g>the</str<strong>on</strong>g>se, about 15 units are outside <str<strong>on</strong>g>the</str<strong>on</strong>g> EU-15. The total capacity is at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

level of 1.2 milli<strong>on</strong> t<strong>on</strong>nes calculated as solid equivalents of 9.1 % Al. The capacity utilisati<strong>on</strong> is<br />

<strong>on</strong> average 50 %, which would bring <str<strong>on</strong>g>the</str<strong>on</strong>g> total European market to about 600000 t<strong>on</strong>nes, i.e.<br />

20 – 25 % of <str<strong>on</strong>g>the</str<strong>on</strong>g> total world market [50, CEFIC-INCOPA, 2004].<br />

1.2.2 Process descripti<strong>on</strong><br />

Aluminium sulphate comes directly from <str<strong>on</strong>g>the</str<strong>on</strong>g> digesti<strong>on</strong> of aluminium c<strong>on</strong>taining raw materials<br />

with sulphuric acid.<br />

2Al(OH)3 + 3H2SO4 F Al2(SO4)3 + 6H2O<br />

The most comm<strong>on</strong> aluminium raw material is by far aluminium hydroxide, a product<br />

originating from <str<strong>on</strong>g>the</str<strong>on</strong>g> Bayer process, where bauxite is used as a raw material for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong><br />

of pure aluminium hydroxide or oxide. For <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of ir<strong>on</strong> c<strong>on</strong>taining aluminium<br />

sulphate products, bauxite is also used as a source for aluminium raw material.<br />

The digesti<strong>on</strong> with sulphuric acid normally takes place at atmospheric pressure and at a<br />

temperature between 110 – 120 ºC. In some cases pressure digesti<strong>on</strong> is also used with a<br />

temperature up to about 170 °C. The heat necessary for <str<strong>on</strong>g>the</str<strong>on</strong>g> process comes from <str<strong>on</strong>g>the</str<strong>on</strong>g> exo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmic<br />

reacti<strong>on</strong>. The normal Al-c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> digester is in <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio of 7 – 9 %, which means<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> boiling temperature is around 120 °C and <str<strong>on</strong>g>the</str<strong>on</strong>g> crystallisati<strong>on</strong> temperature 105 – 110 °C.<br />

A small amount of steam is sometimes used to avoid crystallisati<strong>on</strong> and prol<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong>.<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise <str<strong>on</strong>g>the</str<strong>on</strong>g> energy c<strong>on</strong>sumpti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> process is limited to pumps and agitators.<br />

After digesti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> product is ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r diluted with water for a liquid product or, in a solidificati<strong>on</strong><br />

unit, cooled directly or indirectly with air or water to a solid form, which is <str<strong>on</strong>g>the</str<strong>on</strong>g>n ground and<br />

screened to <str<strong>on</strong>g>the</str<strong>on</strong>g> required particle size. Dust coming from this process is handled by filters or<br />

scrubbers. This dust is comm<strong>on</strong>ly recycled through a diluti<strong>on</strong> step in <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of<br />

aluminium sulphate soluti<strong>on</strong>.<br />

7


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

The use of alternatives to aluminium hydroxide, like bauxite, will create a waste coming out of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> process mainly c<strong>on</strong>sisting of an insoluble silica rest. This is, however, less than when<br />

bauxite is used for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of aluminium hydroxide [50, CEFIC-INCOPA, 2004].<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of aluminium sulphate products c<strong>on</strong>taining ir<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> ir<strong>on</strong> ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r comes directly<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> raw material (bauxite), or is separately added to <str<strong>on</strong>g>the</str<strong>on</strong>g> reactor, or is mixed with <str<strong>on</strong>g>the</str<strong>on</strong>g> final<br />

product.<br />

The process flow diagram of aluminium sulphate producti<strong>on</strong> is given in Figure 1.4.<br />

8<br />

Rest<br />

Al (OH) 3<br />

Liquid<br />

producti<strong>on</strong><br />

Diluti<strong>on</strong><br />

Filtrati<strong>on</strong><br />

Reacti<strong>on</strong><br />

H 2 SO 4<br />

Water<br />

Solid<br />

producti<strong>on</strong><br />

Crystallisati<strong>on</strong><br />

Screening<br />

Grinding<br />

Storage Storage<br />

Figure 1.4: Process flow diagram of aluminium sulphate producti<strong>on</strong><br />

[50, CEFIC-INCOPA, 2004]<br />

Cooling<br />

(water or air)<br />

Dust to<br />

process<br />

Gas<br />

cleaning<br />

If air is used in direct c<strong>on</strong>tact with <str<strong>on</strong>g>the</str<strong>on</strong>g> product, <str<strong>on</strong>g>the</str<strong>on</strong>g> air is cleaned in a gas cleaning system. All<br />

dust that is separated is returned to <str<strong>on</strong>g>the</str<strong>on</strong>g> process [50, CEFIC-INCOPA, 2004].<br />

1.2.3 Current c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> levels<br />

1.2.3.1 C<strong>on</strong>sumpti<strong>on</strong> of raw materials<br />

C<strong>on</strong>sumpti<strong>on</strong> figures for solid aluminium sulphate are about: 50 % sulphuric acid, 30 %<br />

aluminium hydroxide, and 20 % water. The c<strong>on</strong>sumpti<strong>on</strong> figures for liquid products are about:<br />

20 – 25 % sulphuric acid, 12 – 15 aluminium hydroxide and 60 – 65 % water. The reacti<strong>on</strong> is<br />

almost complete, <str<strong>on</strong>g>the</str<strong>on</strong>g> yield of <str<strong>on</strong>g>the</str<strong>on</strong>g> raw materials being nearly 100 % [50, CEFIC-INCOPA,<br />

2004].<br />

1.2.3.2 Major envir<strong>on</strong>mental impacts<br />

Typical energy and water c<strong>on</strong>sumpti<strong>on</strong> figures and emissi<strong>on</strong>s values for liquid aluminium<br />

sulphate are given in Table 1.5.


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

Energy c<strong>on</strong>sumpti<strong>on</strong><br />

kWh/t<strong>on</strong>ne product Comments<br />

Electricity


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

The following are special features and limiting factors relating to <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of aluminium<br />

sulphate [50, CEFIC-INCOPA, 2004]:<br />

10<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> digesti<strong>on</strong> process of aluminium hydroxide with sulphuric acid gives a yield of<br />

practically 100 %, which means that <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly emissi<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> is some steam<br />

coming from <str<strong>on</strong>g>the</str<strong>on</strong>g> reactor<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g> process is exo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmic, <str<strong>on</strong>g>the</str<strong>on</strong>g> energy c<strong>on</strong>sumpti<strong>on</strong> is negligible<br />

grinding, screening and bagging <str<strong>on</strong>g>the</str<strong>on</strong>g> solid form of aluminium sulphate creates dust, but this<br />

is taken care of by filters or scrubbers and is recycled back into <str<strong>on</strong>g>the</str<strong>on</strong>g> process, or sold as a fine<br />

powder<br />

<strong>on</strong>ly in <str<strong>on</strong>g>the</str<strong>on</strong>g> case of using bauxite as a raw material in liquid producti<strong>on</strong>, will <str<strong>on</strong>g>the</str<strong>on</strong>g>re be a waste<br />

stream coming from <str<strong>on</strong>g>the</str<strong>on</strong>g> process in <str<strong>on</strong>g>the</str<strong>on</strong>g> form of insoluble silica, which is, however, less than<br />

when <str<strong>on</strong>g>the</str<strong>on</strong>g> same amount of bauxite is used for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of aluminium hydroxide.


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

1.3 Chromium compounds<br />

The following chromium compounds are ec<strong>on</strong>omically important [48, W. Buchner et al, 1989]:<br />

dichromates and chromates – (basic intermediate, fireworks, dyes, chromate pigments)<br />

chromium(VI) oxide (chromic anhydride) – (metal alloys, refractory bricks, dyes)<br />

chromium(III) oxide (<str<strong>on</strong>g>the</str<strong>on</strong>g> green pigment in glass, porcelain, and oil paint)<br />

basic chromium(III) sulphate (chrome tanning agents)<br />

chromium(VI) and(III) compounds and chromium(IV) oxide (pigments: ceramics, textiles,<br />

magnetic pigment).<br />

Producti<strong>on</strong> pathways to <str<strong>on</strong>g>the</str<strong>on</strong>g> important chromium compounds lead from chromium ore via <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

commercially most important chromium (VI) compound sodium dichromate (dihydrate)<br />

Na2Cr2O7 . 2H2O, to which <str<strong>on</strong>g>the</str<strong>on</strong>g> capacities of chromium chemicals are usually referred.<br />

A chromium chemical complex is illustrated in Figure 1.5 below [85, EIPPCB, 2004].<br />

Chromium ore (chromite Cr2O3 .FeO) + dolomite + soda ash + sulphuric acid + fuel oil<br />

8000 TPY<br />

Sodium dichromate<br />

plant (Na 2 Cr 2 O 7 )<br />

5000 TPY (1 kiln)<br />

5000 TPY<br />

4450 TPY<br />

3800 TPY<br />

2400 TPY<br />

1200 TPY<br />

Sodium<br />

dichromate<br />

for salecommodityproducttanning,<br />

dyeing<br />

Chromium waste<br />

(chromium mud and sodium sulphate)<br />

550 TPY Basic chromium 1000 TPY<br />

sulphate Cr(SO 4 )OH<br />

plant 1000 TPY<br />

650 TPY Sodium chromate 1000 TPY<br />

(Na 2 CrO 4 )<br />

plant 1000 TPY<br />

1400 TPY Potassium 1000 TPY<br />

dichromate K 2 Cr 2 O 7<br />

plant 1000 TPY<br />

1200 TPY Chromic acid 700 TPY<br />

anhydride (CrO 3 )<br />

plant 700 TPY<br />

700 TPY<br />

Opti<strong>on</strong>al chromic<br />

acid plant<br />

500 TPY<br />

Lea<str<strong>on</strong>g>the</str<strong>on</strong>g>r tanning,<br />

alloys, catalysts<br />

Chromate pigments,<br />

chromium dyes<br />

Engraving chemicals,<br />

fireworks, dyes<br />

Chrom. metal alloys,<br />

refractory brick, dyes<br />

500 TPY<br />

Timber preservati<strong>on</strong>,<br />

catalysts producti<strong>on</strong><br />

Note: O<str<strong>on</strong>g>the</str<strong>on</strong>g>r chromium compounds may be manufactured at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

request such as (NH 4 ) 2 Cr 2 O 7 , ZnCrO 4 , PbCrO 4 , BaCrO 4 .<br />

Figure 1.5: A chromium chemical complex<br />

[EIPPCB, 2004 #85], based <strong>on</strong> [BIPROKWAS, 1985-1995 #79]<br />

No fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>submitted</str<strong>on</strong>g>.<br />

11


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

1.4 Ferric chloride<br />

1.4.1 General <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g><br />

1.4.1.1 Introducti<strong>on</strong> – ferric chloride (FeCl3)<br />

Of <str<strong>on</strong>g>the</str<strong>on</strong>g> halides of ir<strong>on</strong>, <strong>on</strong>ly ir<strong>on</strong>(II) chloride (ferrous chloride FeCl2) and ir<strong>on</strong>(III) chloride<br />

(ferric chloride FeCl3) have become commercially important [87, Ullmann's, 2001]. Ferric<br />

chloride is muchP more important industrially than ferrous chloride.<br />

Anhydrous ir<strong>on</strong>(III) chloride (FeCl3) is industrially produced by a high temperature reacti<strong>on</strong><br />

of dry chlorine with scrap ir<strong>on</strong> (direct chlorinati<strong>on</strong>). Ferric chloride is also aP by-product of<br />

some metallurgical and chemical processes, such as <str<strong>on</strong>g>the</str<strong>on</strong>g> chlorinating decompositi<strong>on</strong> of ir<strong>on</strong>bearing<br />

oxide ores. Its ready availability and cheap feedstock (ir<strong>on</strong> and chlorine) have made<br />

ir<strong>on</strong>(III) chloride, especially its aqueous soluti<strong>on</strong>, a significant raw material for many<br />

industries, in particular for water treatment and for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of ir<strong>on</strong> oxides or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

ir<strong>on</strong> compounds – refer to <str<strong>on</strong>g>the</str<strong>on</strong>g> BREF <strong>on</strong> Ferrous Metals Processing Industry (FMP).<br />

1.4.1.2 Background <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> ferric chloride (FeCl3)<br />

Product Name: Ferric chloride 40 %<br />

Chemical Formula FeCl3<br />

CAS number: 7705-08-0 (Ferric chloride soluti<strong>on</strong> 40 %)<br />

Ferric chloride can be used in different applicati<strong>on</strong>s.<br />

A. Principal uses include:<br />

12<br />

turbidity reducti<strong>on</strong><br />

colour eliminati<strong>on</strong><br />

coagulati<strong>on</strong><br />

sludge reducti<strong>on</strong><br />

filter c<strong>on</strong>diti<strong>on</strong>ing<br />

arsenic removal<br />

metal etching.<br />

B. Waste water treatment:<br />

phosphate precipitati<strong>on</strong> and removal<br />

sedimentati<strong>on</strong><br />

dewatering<br />

sulphide based odour eliminati<strong>on</strong>.<br />

The major EU ferric chloride capacities are listed in Table 1.7:<br />

Locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> FeCl3 plants in <str<strong>on</strong>g>the</str<strong>on</strong>g> EU Number of sites Capacity<br />

Area 1: Benelux, Germany, Austria and Switzerland 10 550000<br />

Area 2: Italy, France, Spain, Portugal 14 500000<br />

Area 3: Nordic countries (Finland, Denmark,<br />

Sweden, Norway), UK, Ireland, Slovenia, Hungary<br />

6 250000<br />

Total 30 1300000<br />

Table 1.7: Locati<strong>on</strong> and capacities of FeCl3 plants in <str<strong>on</strong>g>the</str<strong>on</strong>g> EU<br />

[CEFIC-INCOPA, 2004 #112]


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

1.4.2 Process descripti<strong>on</strong><br />

Ferric chloride can be manufactured according to <str<strong>on</strong>g>the</str<strong>on</strong>g> following five major process routes:<br />

1.4.2.1 Ferric chloride soluti<strong>on</strong> (scrap ir<strong>on</strong> + chlorine)<br />

1.<br />

Reacti<strong>on</strong>s:<br />

Fe + 2 FeCl3 3 FeCl2<br />

2. 3 FeCl2 + 3/2 Cl2 (g) 3 FeCl3<br />

The scrap ir<strong>on</strong> is added to a dissolving tank with a soluti<strong>on</strong> of ferric chloride and c<strong>on</strong>verted into<br />

a ferrous chloride soluti<strong>on</strong>.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d step, <str<strong>on</strong>g>the</str<strong>on</strong>g> ferrous chloride soluti<strong>on</strong> is oxidised in a chlorinati<strong>on</strong> tower using Cl2 (g).<br />

The product is divided, about 2/3 is recycled to <str<strong>on</strong>g>the</str<strong>on</strong>g> first stage, and about 1/3 is withdrawn as a<br />

final FeCl3 product.<br />

A process flow diagram illustrating <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of FeCl3 based <strong>on</strong> scrap ir<strong>on</strong> and chlorine is<br />

given in Figure 1.6 below:<br />

2/3 FeCl 3 (recycled)<br />

Cl 2 (g)<br />

Water Scrap ir<strong>on</strong><br />

REACTOR<br />

FILTRATION<br />

(Ferrous Chloride (FeCl 2 ))<br />

CHLORINATION<br />

1/3 Ferric Chloride (FeCl 3 )<br />

Sludge<br />

Figure 1.6: Process diagram - producti<strong>on</strong> of FeCl3 based <strong>on</strong> scrap ir<strong>on</strong> and chlorine<br />

[CEFIC-INCOPA, 2004 #112]<br />

1.4.2.2 Ferric chloride soluti<strong>on</strong> (scrap ir<strong>on</strong> + hydrochloric acid + chlorine)<br />

Reacti<strong>on</strong>s:<br />

1. Fe + 2HCl FeCl2 + H2<br />

2. FeCl2 + ½ Cl2 (g) FeCl3<br />

FeCl2 is produced by <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> of scrap ir<strong>on</strong> with hydrochloric acid at a temperature of<br />

>80 °C, hydrogen being released to <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere.<br />

This soluti<strong>on</strong> is also c<strong>on</strong>verted into ferric chloride by using Cl2 (g) in a chlorinati<strong>on</strong> tower.<br />

13


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

A process flow diagram illustrating <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of FeCl3 based <strong>on</strong> scrap ir<strong>on</strong>, hydrochloric<br />

acid and chlorine is given in Figure 1.7 below:<br />

14<br />

HCl<br />

Spent liquor<br />

Cl2(g)<br />

Water<br />

Reactor<br />

Scrap<br />

ir<strong>on</strong><br />

Filtrati<strong>on</strong><br />

Chlorinati<strong>on</strong><br />

H2<br />

(Ferrous Chloride (FeCl2)<br />

Sludge<br />

FeCl3<br />

Figure 1.7: Process diagram - producti<strong>on</strong> of FeCl3 based <strong>on</strong> scrap ir<strong>on</strong>, HCl and chlorine<br />

[CEFIC-INCOPA, 2004 #112]<br />

1.4.2.3 Ferric chloride soluti<strong>on</strong> (spent FeCl2 liquor + chlorine)<br />

Reacti<strong>on</strong>:<br />

FeCl2 + ½ Cl2 (g) FeCl3<br />

The spent liquor (FeCl2 + free HCl) recovered from different industries (for example: steel<br />

industry, galvanising industry, wire industry, …) can be added to a reactor with ir<strong>on</strong> to<br />

neutralise free HCl (in case when <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> of free HCl >1 %), and <str<strong>on</strong>g>the</str<strong>on</strong>g>n oxidised to<br />

ferric chloride by chlorine (see Figure 1.7 above) or, alternatively, directly c<strong>on</strong>verted into ferric<br />

chloride by chlorinati<strong>on</strong> if <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> of free HCl 70 %) in hydrochloric<br />

acid (HCl >33 %). The reacti<strong>on</strong> takes place at <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature of 80 – 120 °C and under ambient<br />

pressure, reacti<strong>on</strong> time being 1 – 2 h.<br />

A process flow diagram illustrating <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of FeCl3 based <strong>on</strong> ir<strong>on</strong> ore and hydrochloric<br />

acid is given in Figure 1.8 below:


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

HCl<br />

Ir<strong>on</strong> ore<br />

REACTOR<br />

FILTRATION<br />

FeCl 3<br />

Sludge<br />

Figure 1.8: Process diagram - producti<strong>on</strong> of FeCl3 based <strong>on</strong> ir<strong>on</strong> ore and hydrochloric acid<br />

[CEFIC-INCOPA, 2004 #112]<br />

1.4.2.5 Ferric chloride soluti<strong>on</strong> (ir<strong>on</strong> ore + hydrochloric acid + oxidati<strong>on</strong>)<br />

Dissoluti<strong>on</strong> of ir<strong>on</strong> ore in hydrochloric acid:<br />

Reacti<strong>on</strong>s:<br />

Fe3O4 (Fe2O3 + FeO) + 8HCl 2FeCl3 + FeCl2 + 4H2O<br />

Oxidati<strong>on</strong> of ferrous chloride using chlorine, hydrogen peroxide, or sodium chlorate:<br />

or<br />

or<br />

FeCl2 + ½ Cl2<br />

FeCl2 + HCl + ½ H2O2<br />

FeCl2 + ½ NaOCl3<br />

FeCl3<br />

FeCl3 + H2O<br />

FeCl3 + ½ NaOCl<br />

The ir<strong>on</strong> ore (magnetite: 2/3 Fe2O3 + 1/3 FeO) is dissolved in a reactor with hydrochloric acid<br />

(HCl >33 %) at <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature of >80 °C, to obtain a mixture of ferric chloride and ferrous<br />

chloride. In turn, this soluti<strong>on</strong> can be totally oxidised to form FeCl3 using Cl2 (g) or NaClO3 or<br />

H2O2 as oxidants.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> different processes (Secti<strong>on</strong>s 1.4.2.1, 1.4.2.2, 1.4.2.3, 1.4.2.5), chlorine – as <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidati<strong>on</strong><br />

agent – can be replaced with oxygen toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with hydrochloric acid. In some cases, it <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

gives a more diluted FeCl3 soluti<strong>on</strong>.<br />

A process flow diagram illustrating <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of FeCl3 based <strong>on</strong> ir<strong>on</strong> ore, hydrochloric acid<br />

and oxidati<strong>on</strong> is given in Figure 1.9 below:<br />

15


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

16<br />

Chlorinati<strong>on</strong><br />

tower<br />

Ir<strong>on</strong> ore<br />

HCl<br />

REACTOR<br />

FILTRATION<br />

Cl 2 (g)<br />

FeCl 3<br />

2/3 FeCl 3 , 1/3 FeCl 2<br />

Oxydising<br />

reactor<br />

Sludge<br />

H 2 O 2 or NaClO 3<br />

Figure 1.9: Process diagram – producti<strong>on</strong> of FeCl3 based <strong>on</strong> ir<strong>on</strong> ore and HCl and oxidati<strong>on</strong><br />

[CEFIC-INCOPA, 2004 #112]<br />

1.4.3 Current c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> levels<br />

C<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> values in <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of ferrous chloride are given in Table 1.8:<br />

Energy and water c<strong>on</strong>sumpti<strong>on</strong><br />

Energy c<strong>on</strong>sumpti<strong>on</strong> GJ/t product 0.012 to 0.3<br />

Water c<strong>on</strong>sumpti<strong>on</strong> m 3 /t product 0.25 to 13<br />

Emissi<strong>on</strong>s to air<br />

CO2<br />

Hydrogen<br />

Hydrogen chloride<br />

Ir<strong>on</strong><br />

Zinc<br />

Heavy metals<br />

Emissi<strong>on</strong> kg/t product<br />

2 to 12<br />

0.73 to 13<br />

0.0007 to 0.01<br />

Emissi<strong>on</strong>s to water<br />

Emissi<strong>on</strong> kg/t product<br />

0.05 to 5<br />

0.005 to 1.5<br />


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

1.4.5 Techniques to c<strong>on</strong>sider in <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> of BAT<br />

Ferric chloride can be made by a variety of processes. This leads to a wide range of<br />

envir<strong>on</strong>mental performances.<br />

The process based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> use of spent acid (pickle liquor) and <str<strong>on</strong>g>the</str<strong>on</strong>g> process using ir<strong>on</strong> ore are <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

most comm<strong>on</strong> technologies.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case of ferric chloride, <str<strong>on</strong>g>the</str<strong>on</strong>g> variety of equipment used is limited as <str<strong>on</strong>g>the</str<strong>on</strong>g> processes are<br />

generally simple. Therefore, within a particular process, <str<strong>on</strong>g>the</str<strong>on</strong>g> type and <str<strong>on</strong>g>the</str<strong>on</strong>g> technology of a<br />

particular item of equipment (i.e a filter) can greatly affect <str<strong>on</strong>g>the</str<strong>on</strong>g> overall performance of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

process from an envir<strong>on</strong>mental point of view.<br />

1.4.6 Emerging techniques<br />

As filtrati<strong>on</strong> is used in almost every process, <str<strong>on</strong>g>the</str<strong>on</strong>g> equipment that minimises emissi<strong>on</strong>s to water<br />

can be c<strong>on</strong>sidered and, if possible, included in a new plant set-up.<br />

The manufacturing of ferric chloride is exo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmic, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore heat recovery opti<strong>on</strong>s can be<br />

examined and, if possible, included in a new process scheme.<br />

Emissi<strong>on</strong>s to air can be c<strong>on</strong>trolled via a scrubbing technique.<br />

An area for future research and development would be <str<strong>on</strong>g>the</str<strong>on</strong>g> recycling of <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrogen.<br />

17


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

1.5 Potassium carb<strong>on</strong>ate<br />

Potassium carb<strong>on</strong>ate (K2CO3) finds its major applicati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> speciality glass industry e.g. in<br />

televisi<strong>on</strong> screens where it performs better than glass made with soda ash [6, CEFIC, 2002].<br />

Potassium carb<strong>on</strong>ate is produced by reacting potassium hydroxide with carb<strong>on</strong> dioxide, as<br />

follows:<br />

18<br />

2KOH + CO2 F K2CO3 + H2O<br />

It is shipped both as an aqueous soluti<strong>on</strong>, or it is crystallised and shipped as crystals.<br />

Air emissi<strong>on</strong>s are due to <str<strong>on</strong>g>the</str<strong>on</strong>g> handling of solid materials. Water emissi<strong>on</strong>s are due to <str<strong>on</strong>g>the</str<strong>on</strong>g> water<br />

evaporated <str<strong>on</strong>g>during</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crystallisati<strong>on</strong> step. Waste generati<strong>on</strong> is negligible [6, CEFIC, 2002].<br />

Potassium carb<strong>on</strong>ate (potash) was formerly produced by <str<strong>on</strong>g>the</str<strong>on</strong>g> ashing of wood and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r raw<br />

materials from plants. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> middle of <str<strong>on</strong>g>the</str<strong>on</strong>g> XIX century, <str<strong>on</strong>g>the</str<strong>on</strong>g> saline residues from <str<strong>on</strong>g>the</str<strong>on</strong>g> rock<br />

salt industry and salt deposits have been <str<strong>on</strong>g>the</str<strong>on</strong>g> raw materials used for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of potassium<br />

carb<strong>on</strong>ate. Currently, <str<strong>on</strong>g>the</str<strong>on</strong>g> most important process is <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>ati<strong>on</strong> of electrolytically produced<br />

potassium hydroxide as described by <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> above [48, W. Buchner et al, 1989].<br />

Potassium hydroxide soluti<strong>on</strong>s (50 % KOH) are saturated with CO2, <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> is partially<br />

eveporated and <str<strong>on</strong>g>the</str<strong>on</strong>g> potassium carb<strong>on</strong>ate hydrate K2CO3 . 1.5 H2O which precipitates is separated<br />

off. After drying, <str<strong>on</strong>g>the</str<strong>on</strong>g> product is ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r marketed as potash hydrate or is calcined in a rotary kiln<br />

at temperatures of 250 to 350 ºC. Anhydrous potassium carb<strong>on</strong>ate is also produced using a fluid<br />

bed process, in which KOH is reacted with CO2 gas countercurrently in a fluidised bed reactor.<br />

In Russia, potassium carb<strong>on</strong>ate is also produced from deposits of alkali aluminosilicates (e.g.<br />

nepheline) toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with aluminium oxide, cement and sodium carb<strong>on</strong>ate.<br />

The main applicati<strong>on</strong>s of potassium carb<strong>on</strong>ate include [48, W. Buchner et al, 1989]:<br />

glass manufacture (special glasses, crystal glass, CRT-tubes for TV)<br />

soaps, detergents<br />

enamels<br />

food industry<br />

pigment manufacture<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r downstream K compounds (potassium hydrogen carb<strong>on</strong>ate, potassium silicate)<br />

syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis of many organic chemicals and pharmaceutical products.<br />

Since no <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> was <str<strong>on</strong>g>submitted</str<strong>on</strong>g> <strong>on</strong> potassium carb<strong>on</strong>ate, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘Techniques to<br />

c<strong>on</strong>sider in <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> of BAT’ relevant to <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of potassium carb<strong>on</strong>ate could<br />

not have been analysed in this document.<br />

No fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> provided.


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

1.6 Sodium sulphate<br />

1.6.1 General <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g><br />

The producti<strong>on</strong> of natural sodium sulphate (like <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of natural NaCl or CaSO4) is<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> of a mineral with high c<strong>on</strong>tent of sodium sulphate and its recovery in a<br />

high purity grade through successive crystallisati<strong>on</strong>/separati<strong>on</strong> stages. This type of extractive<br />

industry is not classified by <str<strong>on</strong>g>the</str<strong>on</strong>g> IPPC Directive and, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, it is not included in this<br />

document. There are four producers of natural sodium sulphate in <str<strong>on</strong>g>the</str<strong>on</strong>g> EU-15, all of <str<strong>on</strong>g>the</str<strong>on</strong>g>m located<br />

in Spain and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir emissi<strong>on</strong> values have not been included in this secti<strong>on</strong>.<br />

1.6.1.1 Introducti<strong>on</strong><br />

The world producti<strong>on</strong> of sodium sulphate (anhydrous or as Glauber’s salt – sodium sulphate<br />

decahydrate Na2SO4 . 10H2O) was reported to be at <str<strong>on</strong>g>the</str<strong>on</strong>g> level of 4.2 milli<strong>on</strong> t<strong>on</strong>nes per year in<br />

1985, out of which almost 50 % was produced from natural deposits [48, W. Buchner et al,<br />

1989]. The producti<strong>on</strong> of pure sodium sulphate or Glauber’s salt from natural minerals such as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>nardite Na2SO4 or glauberite Na2SO4 . CaSO4 is still important in Spain, Canada, <str<strong>on</strong>g>the</str<strong>on</strong>g> US,<br />

Russia and China. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r producti<strong>on</strong> processes of sodium sulphate from salt lakes, salt brines<br />

and potassium salt deposits (in this latter case via reacti<strong>on</strong> of kieserite MgSO4 . H2O with sodium<br />

chloride NaCl), and in particular, sodium sulphate by-produced in large quantities in various<br />

chemical and metallurgical processes are increasing [48, W. Buchner et al, 1989].<br />

Sodium sulphate is a solid salt having wide range of applicati<strong>on</strong>s in miscellaneous industrial<br />

sectors like detergents, glass producti<strong>on</strong> or cellulose fibres [6, CEFIC, 2002]. Half of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

producti<strong>on</strong> is extracted from natural deposits while <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining part is a by-product of o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

industrial chemical processes, usually resulting from <str<strong>on</strong>g>the</str<strong>on</strong>g> neutralisati<strong>on</strong> of excess sulphuric acid.<br />

Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of sodium sulphate may, in some places, exceed <str<strong>on</strong>g>the</str<strong>on</strong>g> commercial<br />

demand, and processes have been developed to address this issue, using e.g. an electrochemical<br />

decompositi<strong>on</strong> route.<br />

The direct producti<strong>on</strong> processes based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> of solid sodium chloride with sulphuric<br />

acid or sulphur dioxide/oxygen have become less important [EIPPCB, 2004-2005 #85].<br />

Chemical processes like viscose-fibre spinning, ascorbic acid syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis or sodium dichromate<br />

producti<strong>on</strong>, deliver aqueous soluti<strong>on</strong>s of sodium sulphate which are, if necessary, c<strong>on</strong>centrated,<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>n directed to a crystallisati<strong>on</strong> system which produces ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r directly anhydrous sodium<br />

sulphate crystals or Glauber salt crystals (sodium sulphate decahydrate Na2SO4 . 10H2O) that are<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r dehydrated. Electrolysis and electrodialysis processes intended to decompose sodium<br />

sulphate into sulphuric acid and sodium hydroxide soluti<strong>on</strong>s, have been largely developed, but<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir operati<strong>on</strong>al cost (e.g. <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> of electricity) is an obstacle to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir implementati<strong>on</strong>.<br />

Dust emissi<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere are <str<strong>on</strong>g>the</str<strong>on</strong>g> result of handling <str<strong>on</strong>g>the</str<strong>on</strong>g> solids. Water emissi<strong>on</strong>s include<br />

dissolved salts.The generati<strong>on</strong> of wastes is not an issue.<br />

Organic c<strong>on</strong>taminati<strong>on</strong> of air, water and wastes is to be c<strong>on</strong>sidered, depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> organic<br />

process generating <str<strong>on</strong>g>the</str<strong>on</strong>g> sodium sulphate soluti<strong>on</strong> [6, CEFIC, 2002].<br />

1.6.1.2 Basic data <strong>on</strong> sodium sulphate producti<strong>on</strong><br />

Sodium sulphate is a n<strong>on</strong> toxic, hygroscopic white powder. It derives from natural deposits or is<br />

recovered as a by-product from various industrial processes. Natural sodium sulphate is<br />

extracted from sodium sulphate-rich brines or lakes, while <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong> industrial sources<br />

are <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of man-made fibres, hydrochloric acid, chromium chemicals, formic acid,<br />

desulphurisati<strong>on</strong> of flue-gases or lead battery recycling [64, CEFIC-SSPA, 2004].<br />

19


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

A major outlet for sodium sulphate is <str<strong>on</strong>g>the</str<strong>on</strong>g> detergent and cleaning agent industry, where <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

free-flowing and preventive anti-caking properties are highly appreciated. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r significant end<br />

uses are in <str<strong>on</strong>g>the</str<strong>on</strong>g> glass, textile, food and pharmaceutical industries.<br />

The estimated world producti<strong>on</strong> of sodium sulphate is 6 milli<strong>on</strong> t<strong>on</strong>nes per year. Total capacity<br />

is probably around 9 milli<strong>on</strong> t<strong>on</strong>nes. European producti<strong>on</strong> amounts to slightly more than<br />

2 milli<strong>on</strong> t<strong>on</strong>nes and about half of <str<strong>on</strong>g>the</str<strong>on</strong>g> European producti<strong>on</strong> is from mining operati<strong>on</strong>s (natural<br />

sodium sulphate). In Europe, approx. 40 producers of sodium sulphate can currently be<br />

identified. Am<strong>on</strong>gst <str<strong>on</strong>g>the</str<strong>on</strong>g>m, four companies are located in Spain and produce natural sodium<br />

sulphate by mining operati<strong>on</strong>s. The total European producti<strong>on</strong> of sodium sulphate is at <str<strong>on</strong>g>the</str<strong>on</strong>g> level<br />

of approx. 2100 kt – see Table 1.9, however, no data have been <str<strong>on</strong>g>submitted</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong><br />

amounts originating from each of <str<strong>on</strong>g>the</str<strong>on</strong>g> menti<strong>on</strong>ed process routes.<br />

Sodium sulphate producing Number<br />

Origin/Estimated combined<br />

countries/locati<strong>on</strong>s in Europe<br />

FRANCE<br />

of plants<br />

producti<strong>on</strong> for Europe<br />

Commentry, Roussill<strong>on</strong>, Loos<br />

BELGIUM<br />

3 Methi<strong>on</strong>ine (2), Mannheim (1)<br />

Tessenderlo, Lommel<br />

THE NETHERLANDS<br />

2 Mannheim (1), Viscose (1)<br />

Delfzijl<br />

SPAIN<br />

1 Messo (from Glauber’s salt) (1)<br />

Toledo, Burgos, Madrid, Burgos,<br />

Torrelavega, Almeria<br />

PORTUGAL<br />

6 Natural (4), Viscose (1), Unknown origin (1)<br />

Val<strong>on</strong>go-Porto<br />

UNITED KINGDOM<br />

1 Ray<strong>on</strong> (1)<br />

Eaglescliffe, Dalry<br />

GERMANY<br />

2 Sodium dichromate (1), Ascorbic acid (1)<br />

Obernburg, Kelheim, Düsseldorf, Marl,<br />

Ray<strong>on</strong> (2), Desulphurisati<strong>on</strong> (1), Low grade – ex fibres<br />

Milden Hütte, Schwedt<br />

AUSTRIA<br />

6 (1), Battery (1), Flue-gas desulphurisati<strong>on</strong> (1)<br />

BMG, Lenzing, Glanzstoff Austria<br />

ITALY<br />

3 Battery (1), Ray<strong>on</strong> (2)<br />

Bergamo, La Porto, T<strong>on</strong>no<br />

GREECE<br />

3 Unknown origin (1), Pigments (2)<br />

Piraeus<br />

FINLAND<br />

1 Natural (1)<br />

Valkeakoski, Lappeenranta<br />

SWEDEN<br />

2 Ray<strong>on</strong> (1), Unknown origin (1)<br />

Perstorp<br />

SWITZERLAND<br />

1 Formic acid (1)<br />

Pratteln<br />

POLAND<br />

1 Battery recycling<br />

Alwernia, Gorzow<br />

TURKEY<br />

2 Sodium dichromate (1), Ray<strong>on</strong> (1)<br />

Alkim, Sisecam, Kaprasama<br />

CZECH REPUBLIC<br />

3 Natural (1), Chromecake (2)<br />

Lovosice<br />

SLOVAKIA<br />

1 Ray<strong>on</strong> (1)<br />

Senica<br />

SERBIA<br />

1 Ray<strong>on</strong> (1)<br />

Loznica<br />

BULGARIA<br />

1 Ray<strong>on</strong> (1)<br />

Svistov 1 Ray<strong>on</strong> (1)<br />

TOTAL EUROPE 41 Approx. 2100 kt<br />

Notes: 1. Data estimati<strong>on</strong> for n<strong>on</strong>-CEFIC-SSPA Members, 2. For ‘natural’ producti<strong>on</strong> in Spain yearly capacities<br />

were estimated instead of typical producti<strong>on</strong> volumes.<br />

Table 1.9: Sodium sulphate producti<strong>on</strong> in Europe<br />

[64, CEFIC-SSPA, 2004]<br />

20


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

According to most sources, <str<strong>on</strong>g>the</str<strong>on</strong>g> total sodium sulphate c<strong>on</strong>sumpti<strong>on</strong> in Europe is estimated at<br />

1.6 milli<strong>on</strong> t<strong>on</strong>nes. Industry experts feel that overall c<strong>on</strong>sumpti<strong>on</strong> will remain stable or will<br />

slightly decline over <str<strong>on</strong>g>the</str<strong>on</strong>g> next five years, with detergents remaining <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant market.<br />

In recent years, <str<strong>on</strong>g>the</str<strong>on</strong>g> capital investment in sodium sulphate producti<strong>on</strong> in Europe has decreased.<br />

Some producti<strong>on</strong>s have been stopped am<strong>on</strong>g o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs in Italy, some plants have been<br />

debottlenecked, but no new plants have been built.<br />

1.6.2 Industrial processes used<br />

Sodium sulphate is produced ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r from <str<strong>on</strong>g>the</str<strong>on</strong>g> mining of natural sodium sulphate or as a byproduct<br />

from various kinds of processes. As previously menti<strong>on</strong>ed, mining process is not<br />

included in this secti<strong>on</strong>.<br />

The six major producti<strong>on</strong> processes covered are sodium sulphate as a by-product from:<br />

fibres (ray<strong>on</strong>/viscose)<br />

Messo process (from ‘Glauber’s salt’, <str<strong>on</strong>g>the</str<strong>on</strong>g> same as fibres)<br />

chromium<br />

Mannheim furnaces (HCl is c<strong>on</strong>sidered <str<strong>on</strong>g>the</str<strong>on</strong>g> main product) [64, CEFIC-SSPA, 2004]<br />

methi<strong>on</strong>ine<br />

formic acid.<br />

Of <str<strong>on</strong>g>the</str<strong>on</strong>g> above processes, <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of fibres is <str<strong>on</strong>g>the</str<strong>on</strong>g> dominating route for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of<br />

sodium sulphate as by-product in <str<strong>on</strong>g>the</str<strong>on</strong>g> EU.<br />

Example plants most characteristic to <str<strong>on</strong>g>the</str<strong>on</strong>g> sodium sulphate recovery and producti<strong>on</strong> are:<br />

viscose process – sodium sulphate plant in Lenzing, Austria<br />

Mannheim furnace process – sodium sulphate plant of <str<strong>on</strong>g>the</str<strong>on</strong>g> Tessenderlo Group, Belgium<br />

chromium process – sodium sulphate plant Elementis Chromium, Eaglescliffe, UK.<br />

There is much less <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> available <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r process routes (ascorbic acid,<br />

desulphurisati<strong>on</strong>, battery recycling).<br />

The starting materials for sodium sulphate depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> main process, but in comm<strong>on</strong> to all<br />

processes <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of sodium sulphate starts with Glauber’s salt (sodium sulphate<br />

decahydrate Na2SO4 . 10H2O) or sodium sulphate in soluti<strong>on</strong>, which has to be separated from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

main product by, or followed by, crystallisati<strong>on</strong> and drying. The different process steps can be<br />

applied in a numerous of ways and with a large variety of equipment, which depend mainly <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> main producti<strong>on</strong> process used.<br />

The different processes for producing sodium sulphate as a by-product, <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong>s within<br />

each process and <str<strong>on</strong>g>the</str<strong>on</strong>g> varying raw materials, yield sodium sulphate with different purity, particle<br />

size and c<strong>on</strong>tents of impurities.<br />

1.6.2.1 Fibres process (Na2SO4 producti<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> viscose-fibre process)<br />

Fibres are produced by spinning viscose in a sulphuric acid precipitati<strong>on</strong> bath in which <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following reacti<strong>on</strong> takes place – refer to <str<strong>on</strong>g>the</str<strong>on</strong>g> BREF for <str<strong>on</strong>g>the</str<strong>on</strong>g> Manufacture of Polymers (POL):<br />

2 Cell–OCS2Na + H2SO4 2 Cell–OH + 2CS2 + Na2SO4 (Cell = cellulose)<br />

21


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

A flow scheme of <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> sodium sulphate from <str<strong>on</strong>g>the</str<strong>on</strong>g> viscose-fibre process is given in<br />

Figure 1.10.<br />

22<br />

NaOH<br />

Steam<br />

Water<br />

Air<br />

Water<br />

Steam/gas/<br />

brine<br />

Fibre producti<strong>on</strong> process<br />

Spinbath crystallizati<strong>on</strong><br />

Calcinati<strong>on</strong><br />

melting, dehydrati<strong>on</strong><br />

Centrifuge<br />

Dryer / cooler<br />

Sieve<br />

Na 2 SO 4 product storage<br />

Vapour<br />

C<strong>on</strong>densate<br />

Water<br />

Filter<br />

Exhaust air<br />

Figure 1.10: Flow scheme of sodium sulphate producti<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> viscose-fibre process<br />

[64, CEFIC-SSPA, 2004]<br />

The raw material for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of sodium sulphate is Glauber´s salt coming from spinbath<br />

crystallisati<strong>on</strong> as a by-product of <str<strong>on</strong>g>the</str<strong>on</strong>g> viscose fibre process according to <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> above.<br />

The principle of <str<strong>on</strong>g>the</str<strong>on</strong>g> crystallisati<strong>on</strong> process is to cool <str<strong>on</strong>g>the</str<strong>on</strong>g> spinbath from <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> fibre to<br />


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

To change <str<strong>on</strong>g>the</str<strong>on</strong>g> sodium sulphate into <str<strong>on</strong>g>the</str<strong>on</strong>g> anhydrous <str<strong>on</strong>g>the</str<strong>on</strong>g>nardite form, <str<strong>on</strong>g>the</str<strong>on</strong>g> separated crystals must<br />

be suspended and heated with steam in a remelting vessel. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> water leaves <str<strong>on</strong>g>the</str<strong>on</strong>g> sodium<br />

sulphate crystals. The crystals are separated from <str<strong>on</strong>g>the</str<strong>on</strong>g> mo<str<strong>on</strong>g>the</str<strong>on</strong>g>r liquid using centrifuges. The<br />

separated crystals are dried in a flash dryer and stored in different silos.<br />

For reas<strong>on</strong>s of efficiency, <str<strong>on</strong>g>the</str<strong>on</strong>g> mo<str<strong>on</strong>g>the</str<strong>on</strong>g>r liquid from <str<strong>on</strong>g>the</str<strong>on</strong>g> sodium sulphate centrifuges is cooled and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong>al crystallised Glauber’s salt is also brought to <str<strong>on</strong>g>the</str<strong>on</strong>g> remelting vessel. The primary<br />

mo<str<strong>on</strong>g>the</str<strong>on</strong>g>r liquid and part of <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>dary mo<str<strong>on</strong>g>the</str<strong>on</strong>g>r liquid are purged to effluent. Steam is produced<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> site using natural gas. The dryers are heated directly with natural gas.<br />

A flow scheme of sodium sulphate producti<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> Messo process is shown in Figure 1.11.<br />

Salt purge<br />

Cooling Remelting Drying<br />

Purge<br />

Steam<br />

Natural gas<br />

Recovery<br />

Purge<br />

Figure 1.11: Flow scheme of sodium sulphate producti<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> Messo process<br />

[64, CEFIC-SSPA, 2004]<br />

1.6.2.3 Chromium process<br />

Sodium sulphate<br />

Crude sodium sulphate, a by-product from <str<strong>on</strong>g>the</str<strong>on</strong>g> sodium dichromate plant c<strong>on</strong>taining sexivalent<br />

chromium compounds (Cr +6 ), is dissolved and transferred into treatment tanks. At this stage, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

soluti<strong>on</strong> is acidified in order to facilitate <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical reducti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> using sulphur<br />

dioxide. After reducti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> pH is raised leaving an insoluble species of chromium suspended<br />

in a soluti<strong>on</strong> of sodium sulphate. This is filtered and <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting solids are recycled back to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

primary process of <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of sodium dichromate. The purified sodium sulphate soluti<strong>on</strong><br />

goes forward subsequently into a crystalliser, centrifuge, dryer and classifier to form pure<br />

sodium sulphate crystals. A flow scheme of <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of sodium sulphate from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

chromium process is given in Figure 1.12.<br />

23


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

24<br />

Crude Sodium<br />

sulphate from<br />

evaporati<strong>on</strong> plant<br />

Dissolver<br />

Fine maternal<br />

returned to process<br />

C austic soda<br />

Sulphur dioxide<br />

Sulphuric acid<br />

Classifier<br />

Treatment<br />

tanks<br />

Pure sodium<br />

Sulphate to silos<br />

Cycl<strong>on</strong>e<br />

Filter<br />

Precipitated solids<br />

Exhaust gases<br />

Air<br />

Crystalliser<br />

Dryer<br />

Air<br />

Fuel<br />

C entrifuge<br />

Liquor recycled<br />

to crystalliser<br />

Figure 1.12: Flow scheme of <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of sodium sulphate from <str<strong>on</strong>g>the</str<strong>on</strong>g> chromium process<br />

[64, CEFIC-SSPA, 2004]<br />

1.6.2.4 Mannheim furnace process (hydrochloric acid)<br />

As menti<strong>on</strong>ed in Secti<strong>on</strong> 1.6.1, direct producti<strong>on</strong> processes based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> of solid<br />

sodium chloride with sulphuric acid or sulphur dioxide/oxygen, have become less important, as<br />

– apart from <str<strong>on</strong>g>the</str<strong>on</strong>g> natural product – a by-product sodium sulphate from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r processes is readily<br />

available. However, in some locati<strong>on</strong>s syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic sodium sulphate may be by-produced by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Mannheim furnace process jointly with hydrochloric acid [64, CEFIC-SSPA, 2004].<br />

Approximately two t<strong>on</strong>nes of 100 % Na2SO4 are produced per <strong>on</strong>e t<strong>on</strong>ne of 100 % HCl,<br />

equivalent to approximately three t<strong>on</strong>nes of HCl soluti<strong>on</strong> which is in fact obtained in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

process. Hydrochloric acid is widely applicable in various industries, including <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical,<br />

tannery, textile, ceramic and pharmaceutical industries.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> Mannheim furnace process, sulphuric acid reacts with sodium chloride producing sodium<br />

sulphate and a 32 % hydrochloric acid soluti<strong>on</strong> obtained through absorpti<strong>on</strong>. Combusti<strong>on</strong> gases,<br />

obtained as intermediate products, are used to heat up <str<strong>on</strong>g>the</str<strong>on</strong>g> combusti<strong>on</strong> air.<br />

Producing sodium sulphate, that is free of sulphuric acid and hydrochloric acid, requires<br />

equivalent amounts of acid (approx. 0.73 t of 100 % H2SO4 per t<strong>on</strong>ne of Na2SO4) and salt<br />

(approx. 0.83 t of 100 % NaCl per t<strong>on</strong>ne of Na2SO4). The salt is measured out by means of a<br />

screw, <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity of acid is measured by flow. Based <strong>on</strong> raw material analyses, <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity<br />

ratio of <str<strong>on</strong>g>the</str<strong>on</strong>g> materials is <str<strong>on</strong>g>the</str<strong>on</strong>g>n c<strong>on</strong>trolled by an operator.<br />

The reacti<strong>on</strong> between sulphuric acid and sodium chloride requires a l<strong>on</strong>g reacti<strong>on</strong> time and a<br />

high temperature. This is achieved in a muffle furnace with a hearth which is heated with<br />

burners to approx. 600 °C. The air volume/oil ratio is kept c<strong>on</strong>stant. To prevent any problem of<br />

exhaust gas after <str<strong>on</strong>g>the</str<strong>on</strong>g> HCl absorpti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> air is not blown into <str<strong>on</strong>g>the</str<strong>on</strong>g> process.


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

The hot air produced in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper part of <str<strong>on</strong>g>the</str<strong>on</strong>g> Mannheim furnace (combusti<strong>on</strong> chamber) is not in<br />

c<strong>on</strong>tact with <str<strong>on</strong>g>the</str<strong>on</strong>g> lower part of <str<strong>on</strong>g>the</str<strong>on</strong>g> Mannheim furnace (reacti<strong>on</strong> chamber). Indirect heating takes<br />

place through a special wall. The HCl gases coming from <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> lower part of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

furnace do not come into c<strong>on</strong>tact with <str<strong>on</strong>g>the</str<strong>on</strong>g> combusti<strong>on</strong> gases in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper part of <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace. The<br />

first stage of <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> produces acidic sodium sulphate, or sodium hydrogen sulphate, which<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n reacts with sodium chloride <str<strong>on</strong>g>during</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d stage to generate <str<strong>on</strong>g>the</str<strong>on</strong>g> end-product, sodium<br />

sulphate.<br />

Mechanical rakes rotate in <str<strong>on</strong>g>the</str<strong>on</strong>g> muffle furnace, pushing <str<strong>on</strong>g>the</str<strong>on</strong>g> sulphuric acid and sodium chloride<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> centre of <str<strong>on</strong>g>the</str<strong>on</strong>g> furnace and <str<strong>on</strong>g>the</str<strong>on</strong>g> produced sulphate to <str<strong>on</strong>g>the</str<strong>on</strong>g> outer edge. The hot, acidic, and<br />

partly caked sodium sulphate is transferred through a c<strong>on</strong>veyor belt to <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent treatment<br />

operati<strong>on</strong>s of: grinding, cooling, stabilisati<strong>on</strong>, and sieving.<br />

The final product is of homogeneous quality, stored in a closed warehouse and sold in bulk form<br />

or packed into 25 kg bags or 1000 kg big bags.<br />

The basic chemical reacti<strong>on</strong> governing <str<strong>on</strong>g>the</str<strong>on</strong>g> process is:<br />

2NaCl + H2SO4 - Na2SO4 + 2HCl<br />

A flow scheme of <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of Na2SO4 by <str<strong>on</strong>g>the</str<strong>on</strong>g> Mannheim furnace process is given in<br />

Figure 1.13.<br />

Sulphuric acid Sodium chloride<br />

FURNACES<br />

NEUTRALISATION<br />

& CONDITIONING<br />

Sodium sulphate<br />

HCl<br />

WATER<br />

ABSORPTION<br />

Hydrochloric acid<br />

Figure 1.13: Flow scheme of <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of Na2SO4 by <str<strong>on</strong>g>the</str<strong>on</strong>g> Mannheim furnace process<br />

[64, CEFIC-SSPA, 2004]<br />

1.6.2.5 Methi<strong>on</strong>ine process<br />

Methi<strong>on</strong>ine syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis leading to sodium sulphate producti<strong>on</strong> involves:<br />

sap<strong>on</strong>ificati<strong>on</strong> with caustic soda<br />

neutralisati<strong>on</strong> with sulphuric acid.<br />

25


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

Sodium sulphate is recovered from <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> called “mo<str<strong>on</strong>g>the</str<strong>on</strong>g>r liquor” by c<strong>on</strong>centrati<strong>on</strong> and<br />

water evaporati<strong>on</strong> in a multi-effects evaporator. With temperature increase and c<strong>on</strong>centrati<strong>on</strong>,<br />

sodium sulphate solubility decreases and leads to <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> sodium salt while<br />

methi<strong>on</strong>ine remains in soluti<strong>on</strong>.<br />

The solid phase is separated from <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> by decantati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>n filtrati<strong>on</strong> <strong>on</strong> a centrifuge in<br />

which <str<strong>on</strong>g>the</str<strong>on</strong>g> cake is washed by water.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> outlet of <str<strong>on</strong>g>the</str<strong>on</strong>g> centrifuge, sodium sulphate is dried in a hot air stream heated by steam.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> solid is separated from <str<strong>on</strong>g>the</str<strong>on</strong>g> gaseous phase by cycl<strong>on</strong>e and sent by pneumatic transport<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk storage silos from which it is loaded in bulk <strong>on</strong>to trucks to deliver to customers.<br />

Downstream <str<strong>on</strong>g>the</str<strong>on</strong>g> dryer, airflow is cleaned in a scrubber supplied with process water to remove<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>fine particles. During <str<strong>on</strong>g>the</str<strong>on</strong>g> drying, <str<strong>on</strong>g>the</str<strong>on</strong>g> humidity of sodium sulphate and <str<strong>on</strong>g>the</str<strong>on</strong>g> organic sulphur<br />

compounds dissolved in <str<strong>on</strong>g>the</str<strong>on</strong>g> water, are transferred to <str<strong>on</strong>g>the</str<strong>on</strong>g> air. Before being released to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmosphere, <str<strong>on</strong>g>the</str<strong>on</strong>g> airflow is deodorised by c<strong>on</strong>tact with bleach in air-mix equipment in which a<br />

chemical oxidati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> organic compounds is carried out.<br />

Part of <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> is purified in order to obtain a white coloured solid without odours.<br />

The process treatment is performed in three steps:<br />

26<br />

humidificati<strong>on</strong> and spraying with sodium chlorate (NaClO3)<br />

oxidati<strong>on</strong> by calcinati<strong>on</strong> in a rotary kiln<br />

cooling by air in a rotary mixer.<br />

The off-gases from <str<strong>on</strong>g>the</str<strong>on</strong>g> calcinati<strong>on</strong> have to be purified before <str<strong>on</strong>g>the</str<strong>on</strong>g>y can be released to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmosphere. In <str<strong>on</strong>g>the</str<strong>on</strong>g> first step, <str<strong>on</strong>g>the</str<strong>on</strong>g> solid particles are kept by a cycl<strong>on</strong>e and recycled into <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

process. The gaseous effluent is sent to a scrubber fed with water in order to eliminate residual<br />

dust. The liquid waste <strong>on</strong>ly c<strong>on</strong>tains sulphate and chloride in such a low c<strong>on</strong>centrati<strong>on</strong> that it<br />

can be released to <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment.<br />

A flow scheme of <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of sodium sulphate from <str<strong>on</strong>g>the</str<strong>on</strong>g> methi<strong>on</strong>ine process is given in<br />

Figure 1.14.


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

<br />

Sodium<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Calcinati<strong>on</strong><br />

<strong>on</strong> rotary kiln<br />

<br />

Purified<br />

sodium sulphate<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Liquid<br />

waste<br />

<br />

Figure 1.14: Flow scheme of <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of sodium sulphate from <str<strong>on</strong>g>the</str<strong>on</strong>g> methi<strong>on</strong>ine process<br />

[64, CEFIC-SSPA, 2004]<br />

1.6.2.6 Formic acid process<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> formic acid process, sodium formate is chemically reacted with sulphuric acid in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

presence of formic acid. The soluti<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> reactor, c<strong>on</strong>taining formic acid and sodium<br />

sulphate, is fed to a centrifuge where sodium sulphate crystals are separated from <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>.<br />

The mo<str<strong>on</strong>g>the</str<strong>on</strong>g>r liquor is pumped into an evaporator where an additi<strong>on</strong>al amount of sodium sulphate<br />

is crystallised. This step is followed by ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r centrifuging step.<br />

The sodium sulphate crystals are sent to a multi-coil dryer heated by steam, followed by cooling<br />

and sieving before <str<strong>on</strong>g>the</str<strong>on</strong>g> material is packed into bags or stored in bulk silos.<br />

27


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

The basic chemical equati<strong>on</strong> governing this process is:<br />

28<br />

2Na – COOH + H2SO4<br />

2HCOOH + Na2SO4<br />

A flow scheme of <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of sodium sulphate in <str<strong>on</strong>g>the</str<strong>on</strong>g> formic acid process is given in<br />

Figure 1.15.<br />

Cooling water<br />

Steam<br />

Air<br />

Cooling water<br />

Sodium formate<br />

Reactor<br />

Centrifuge<br />

Drier<br />

Cooler<br />

Sieve<br />

Na 2 SO 4<br />

Sulphuric acid<br />

Combusti<strong>on</strong> gases<br />

C<strong>on</strong>densate<br />

Evaporator<br />

Combusti<strong>on</strong> gases<br />

Cooling water<br />

Figure 1.15: Flow scheme of sodium sulphate producti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> formic acid process<br />

[64, CEFIC-SSPA, 2004]<br />

1.6.3 Current emissi<strong>on</strong> and energy c<strong>on</strong>sumpti<strong>on</strong> levels<br />

Formic acid<br />

The current levels of emissi<strong>on</strong>s to air and water, as well as of emissi<strong>on</strong>s of solid residues and<br />

energy c<strong>on</strong>sumpti<strong>on</strong> levels are briefly summarised in <str<strong>on</strong>g>the</str<strong>on</strong>g> following Tables. Aspects of key<br />

envir<strong>on</strong>mental issues are also addressed.<br />

Emissi<strong>on</strong>s to air are given in Table 1.10.<br />

Process Volume<br />

exhaust gas<br />

Cl2 HCl SOx NOx NH3 CO2 Dust<br />

m 3 /t Na2SO4<br />

All SSPA<br />

except<br />

kg/t kg/t kg/t kg/t kg/t kg/t kg/t<br />

natural 131 – 5000 0 – 0.0007 0 – 0.063 0 – 1.1 0 – 0.46 0 0 – 24 * 0.0003 – 0.66<br />

*No data available for some processes<br />

Table 1.10: Sodium sulphate producti<strong>on</strong> – emissi<strong>on</strong>s to air (aggregated data: min – max)<br />

[64, CEFIC-SSPA, 2004]


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

Emissi<strong>on</strong>s to water are given in Table 1.11.<br />

Process<br />

Volume of<br />

waste water Cl- SO4 2- NO3 - NH4 + F -<br />

COD<br />

Suspended<br />

matter<br />

m 3 /t Na2SO4 kg/t kg/t kg/t kg/t kg/t ppm mg/l<br />

All SSPA<br />

except natural 0 – 5 0 – 1.1 0.00006 – 20.0 0 0 0 0 – 60 * 0 – 5 *<br />

*No data available for some processes<br />

Table 1.11: Sodium sulphate producti<strong>on</strong> – emissi<strong>on</strong>s to water (aggregated data: min – max)<br />

[64, CEFIC-SSPA, 2004]<br />

Emissi<strong>on</strong>s of solid residues are given in Table 1.12.<br />

Process<br />

All SSPA<br />

except natural<br />

Solid waste<br />

t<strong>on</strong>ne/t<strong>on</strong>ne Na2SO4<br />

0 – 0.002<br />

in total<br />

Nature of<br />

residue<br />

C<strong>on</strong>taminated salts<br />

Various solid waste<br />

Metals<br />

Destinati<strong>on</strong>/<br />

Re-use<br />

Landfill<br />

Landfill/Incinerati<strong>on</strong><br />

Recycling<br />

Table 1.12: Sodium sulphate producti<strong>on</strong> – solid residues (aggregated data: min –max)<br />

[64, CEFIC-SSPA, 2004]<br />

Energy c<strong>on</strong>sumpti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of sodium sulphate is given in Table 1.13.<br />

Process Electricity<br />

kWh/t Na2SO4<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>rs (coal, fuel, gas,<br />

hydrogen, etc.)<br />

kWh/t Na2SO4<br />

Total energy<br />

c<strong>on</strong>sumpti<strong>on</strong><br />

kWh/t Na2SO4<br />

All SSPA except natural 0.17 – 237 0 – 1540 120 – 1660<br />

Table 1.13: Sodium sulphate producti<strong>on</strong> - energy c<strong>on</strong>sumpti<strong>on</strong> (aggregated data: min - max)<br />

[64, CEFIC-SSPA, 2004]<br />

Producti<strong>on</strong> of sodium sulphate as a by-product has a positive impact <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment. All <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

processes described in this secti<strong>on</strong> are treating a stream from its primary process and turning it<br />

into a useful product (or by-product). It is a classic example of sustainable development where a<br />

potential waste from <strong>on</strong>e industry has useful applicati<strong>on</strong>s in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r fields.<br />

1.6.4 Techniques to c<strong>on</strong>sider in <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> of BAT<br />

Apart from being produced from naturally occurring sources (mining), sodium sulphate is<br />

produced as a by-product from different chemical processes such as ray<strong>on</strong> producti<strong>on</strong>,<br />

chromium chemicals, hydrochloric acid, methi<strong>on</strong>ine, and formic acid. As <str<strong>on</strong>g>the</str<strong>on</strong>g> sodium sulphate<br />

derived from <str<strong>on</strong>g>the</str<strong>on</strong>g>se chemical processes could be c<strong>on</strong>sidered as a by-product, <str<strong>on</strong>g>the</str<strong>on</strong>g> six main<br />

processes described in Secti<strong>on</strong> 1.6.2 have been taken into account when analysing techniques to<br />

c<strong>on</strong>sider in <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> of BAT for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of sodium sulphate. This is because all<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g>m – except <str<strong>on</strong>g>the</str<strong>on</strong>g> Mannheim furnace process, dedicated for <str<strong>on</strong>g>the</str<strong>on</strong>g> co-producti<strong>on</strong> of HCl as a<br />

main product and sodium sulphate as a co-product – are, in principle, recovery processes and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir applicati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> industrial practice reduces <str<strong>on</strong>g>the</str<strong>on</strong>g> impact of several o<str<strong>on</strong>g>the</str<strong>on</strong>g>r industries <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

envir<strong>on</strong>ment [64, CEFIC-SSPA, 2004], [EIPPCB, 2004-2005 #85].<br />

29


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

The producti<strong>on</strong> of sodium sulphate should itself be c<strong>on</strong>sidered as a polluti<strong>on</strong> c<strong>on</strong>trol process, as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> waste stream would o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise go to effluent [64, CEFIC-SSPA, 2004]. The quantity of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sodium sulphate by-product depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> capabilities of <str<strong>on</strong>g>the</str<strong>on</strong>g> primary product and,<br />

in principle, all <str<strong>on</strong>g>the</str<strong>on</strong>g>se processes use Glauber’s salt as <str<strong>on</strong>g>the</str<strong>on</strong>g> raw material. The calcinati<strong>on</strong> of<br />

Glauber’s salt, followed by <str<strong>on</strong>g>the</str<strong>on</strong>g> crystallisati<strong>on</strong> and drying of <str<strong>on</strong>g>the</str<strong>on</strong>g> sodium sulphate always<br />

depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> individual layout and technical arrangements of <str<strong>on</strong>g>the</str<strong>on</strong>g> installati<strong>on</strong>s, as well as<br />

linkages to various sources of energy. Polluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment <str<strong>on</strong>g>during</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of<br />

sodium sulphate from Glauber’s salt is very low.<br />

It should be noted, however, that <str<strong>on</strong>g>the</str<strong>on</strong>g> six main process routes for Na2SO4 producti<strong>on</strong> which have<br />

been formerly described as ‘Techniques to c<strong>on</strong>sider in <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> of BAT’ in <str<strong>on</strong>g>the</str<strong>on</strong>g> LVIC-S<br />

BREF secti<strong>on</strong> <strong>on</strong> sodium sulphate, have, in principle (with some excepti<strong>on</strong> regarding <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Mannheim process), <str<strong>on</strong>g>the</str<strong>on</strong>g> same envir<strong>on</strong>mental benefit (i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g>y use a by-product Na2SO4 which<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise would have to be discharged to waste waters). This means that <str<strong>on</strong>g>the</str<strong>on</strong>g>y reduce <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

envir<strong>on</strong>mental impact of <str<strong>on</strong>g>the</str<strong>on</strong>g> industries in which Na2SO4 is formed as a waste (or by-product)<br />

stream.<br />

They are, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, techniques to c<strong>on</strong>sider in <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> of BAT for <str<strong>on</strong>g>the</str<strong>on</strong>g> industries in<br />

which Na2SO4 is formed as a waste stream. They do not reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> emissi<strong>on</strong> and energy<br />

c<strong>on</strong>sumpti<strong>on</strong> levels of <str<strong>on</strong>g>the</str<strong>on</strong>g> Na2SO4 producti<strong>on</strong> processes <str<strong>on</strong>g>the</str<strong>on</strong>g>mselves (as given in <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘Current<br />

emissi<strong>on</strong> and energy c<strong>on</strong>sumpti<strong>on</strong> levels’ Secti<strong>on</strong> above) and, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are NOT<br />

techniques to c<strong>on</strong>sider in <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> of BAT for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of sodium sulphate.<br />

As no clear BAT c<strong>on</strong>clusi<strong>on</strong>s could be drawn for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of sodium sulphate, it was<br />

c<strong>on</strong>sidered reas<strong>on</strong>able to remove <str<strong>on</strong>g>the</str<strong>on</strong>g> six ‘Techniques to c<strong>on</strong>sider in <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> of BAT’<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> BAT Reference Document <strong>on</strong> LVIC-S, and to move <str<strong>on</strong>g>the</str<strong>on</strong>g> whole secti<strong>on</strong> <strong>on</strong> sodium<br />

sulphate from <str<strong>on</strong>g>the</str<strong>on</strong>g> BREF <strong>on</strong> LVIC-S to this “<str<strong>on</strong>g>Additi<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Informati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>submitted</str<strong>on</strong>g> <str<strong>on</strong>g>during</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>exchange</str<strong>on</strong>g> <strong>on</strong> Large Volume Inorganic Chemicals – Solid and O<str<strong>on</strong>g>the</str<strong>on</strong>g>rs Industry”<br />

document, which is associated with and closely related to <str<strong>on</strong>g>the</str<strong>on</strong>g> BREF <strong>on</strong> LVIC-S.<br />

30


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

1.7 Zinc chloride<br />

Zinc chloride (ZnCl2) is <strong>on</strong>e of several important members of <str<strong>on</strong>g>the</str<strong>on</strong>g> Zn-family of inorganic<br />

compounds. The technological network of zinc chemical compounds, illustrating <str<strong>on</strong>g>the</str<strong>on</strong>g> linkages<br />

am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Zn-family members (ZnCl2, ZnO and ZnSO4 am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>m) and major applicati<strong>on</strong>s of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Zn-based final products is shown in Figure 1.16, [83, UNIDO, 1988].<br />

Zinc chloride is produced and shipped ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r as a 47 % soluti<strong>on</strong> in water or as an anhydrous<br />

solid salt. Am<strong>on</strong>g its uses, wood preservati<strong>on</strong>, electric batteries and minor applicati<strong>on</strong>s in fibres<br />

treatment, etc. should be menti<strong>on</strong>ed [6, CEFIC, 2002].<br />

Zinc chloride is produced by <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> of a hydrochloric acid soluti<strong>on</strong> with zinc metal, zinc<br />

scraps or zinc oxide. If needed, <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> leaving <str<strong>on</strong>g>the</str<strong>on</strong>g> reactor is freed from its heavy metals<br />

c<strong>on</strong>taminants by chemical reacti<strong>on</strong>s with an alkali or an alkali plus oxidant which results in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

precipitati<strong>on</strong> under <str<strong>on</strong>g>the</str<strong>on</strong>g> form of hydroxide and are removed by filtrati<strong>on</strong>. When solid zinc<br />

chloride is needed, this is obtained by fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r evaporati<strong>on</strong> and cooling of <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>, until zinc<br />

chloride crystallises [6, CEFIC, 2002].<br />

Air dust emissi<strong>on</strong>s are due to <str<strong>on</strong>g>the</str<strong>on</strong>g> handling of <str<strong>on</strong>g>the</str<strong>on</strong>g> zinc chloride crystals and may include<br />

particles. Water streams arise from <str<strong>on</strong>g>the</str<strong>on</strong>g> evaporati<strong>on</strong>, and have traces of c<strong>on</strong>taminants.<br />

Generati<strong>on</strong> of solid wastes is negligible [6, CEFIC, 2002].<br />

Ore C<strong>on</strong>c.<br />

ZnCO 3<br />

H 3 PO 4<br />

HCI<br />

H 2 SO 4<br />

HNO 3<br />

CO2 Heat<br />

Zn (H 2 PO 4 ) 2<br />

ZnCl 2<br />

Zn(NO 3 ) 2<br />

ZnO<br />

Ore C<strong>on</strong>c.<br />

Zn<br />

H 2 SO 4<br />

O 2<br />

ZnSO 4<br />

(C) and heat<br />

Cadmium salts<br />

H 2 S<br />

Electrolysis<br />

Stearic acid<br />

NaOH<br />

Redphosphor<br />

Figure 1.16: Technological network of zinc chemical compounds<br />

Based <strong>on</strong> [83, UNIDO, 1988]<br />

No fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> provided.<br />

Zn<br />

(O2)<br />

C 36 H 70 O 4 Zn<br />

Zn (OH) 2<br />

Zn 5 P 2<br />

Pure ZnO<br />

H 2 O 2<br />

ZnO 2<br />

Paint primer<br />

Dryer<br />

Stabiliser<br />

Intermediate<br />

Filler in rubber<br />

Galvanising<br />

Cellulose<br />

Disinfectant<br />

Textile<br />

Textile<br />

Catalyst<br />

Rat pois<strong>on</strong><br />

Filler<br />

Glass<br />

Pigment<br />

Enamel<br />

Alloys<br />

Coating<br />

Medicine<br />

Cosmetics<br />

Herbicide<br />

Galvanisati<strong>on</strong><br />

Pigment<br />

Disinfectant<br />

31


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

1.8 Zinc sulphate<br />

As <str<strong>on</strong>g>submitted</str<strong>on</strong>g> by CEFIC in April 2005<br />

32


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

1.9 Sodium bisulphate<br />

As <str<strong>on</strong>g>submitted</str<strong>on</strong>g> by CEFIC in April 2005<br />

33


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

2 PURIFICATION OF NON-FERTILISER GRADE WET<br />

PHOSPHORIC ACID (PARTIAL INFORMATION)<br />

2.1 Inorganic Phosphates – Introducti<strong>on</strong><br />

In order to bridge <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> to Secti<strong>on</strong> 2.2 “Purificati<strong>on</strong> of n<strong>on</strong>-fertiliser-grade wet<br />

phosphoric acid – <str<strong>on</strong>g>the</str<strong>on</strong>g> opti<strong>on</strong>s” below, it was c<strong>on</strong>sidered reas<strong>on</strong>able to present here first key<br />

<str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> included in <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong> to Inorganic Phosphates, Chapter 6 of <str<strong>on</strong>g>the</str<strong>on</strong>g> BREF <strong>on</strong><br />

LVIC-S, as follows.<br />

The applicati<strong>on</strong> of inorganic phosphates as fertiliser is addressed in <str<strong>on</strong>g>the</str<strong>on</strong>g> BREF <strong>on</strong> Large Volume<br />

Inorganic Chemicals – Amm<strong>on</strong>ia, Acids and Fertilisers (LVIC – AAF), whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> BREF <strong>on</strong><br />

Large Volume Inorganic Chemicals – Solid and o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs (LVIC-S) covers <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of<br />

inorganic phosphates (refer to Chapter 6 of <str<strong>on</strong>g>the</str<strong>on</strong>g> BREF <strong>on</strong> LVIC-S).<br />

In general terms, all inorganic phosphates can be seen as indirectly derived from phosphate<br />

rock, Ca5(PO4)3F. The process from phosphate rock to final product may schematically be seen<br />

to involve four major steps:<br />

dissoluti<strong>on</strong> of phosphate from <str<strong>on</strong>g>the</str<strong>on</strong>g> rock to yield phosphoric acid<br />

purificati<strong>on</strong> of phosphoric acid to a varying degree of purity<br />

neutralisati<strong>on</strong> of phosphoric acid by reacti<strong>on</strong> with sodium, calcium, amm<strong>on</strong>ium and/or<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r i<strong>on</strong>s to produce <str<strong>on</strong>g>the</str<strong>on</strong>g> required inorganic phosphate<br />

dehydrati<strong>on</strong>, drying or calcinati<strong>on</strong> plus opti<strong>on</strong>al finishing to give a product in <str<strong>on</strong>g>the</str<strong>on</strong>g> required<br />

form (eg. dry powder).<br />

These steps may be carried out in <strong>on</strong>e locati<strong>on</strong>, but quite comm<strong>on</strong>ly intermediate products are<br />

used as <str<strong>on</strong>g>the</str<strong>on</strong>g> starting material for downstream steps. Therefore, when comparing several<br />

producti<strong>on</strong> routes to manufacture a given inorganic phosphate product it is important to c<strong>on</strong>sider<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> different strategies, process boundaries and starting points of <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong>.<br />

Although str<strong>on</strong>g mineral acids, such as sulphuric, hydrochloric and nitric acid are used for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dissoluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> phosphate from <str<strong>on</strong>g>the</str<strong>on</strong>g> rock, by far <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong>ly used is sulphuric acid.<br />

Unpurified (merchant grade), usually called “green”, phosphoric acid is a market commodity<br />

used by many producers as <str<strong>on</strong>g>the</str<strong>on</strong>g> starting point for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r processing.<br />

Invariably, <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting phosphoric acid stream c<strong>on</strong>tains impurities originating from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

phosphate rock, including a number of metals and fluoride. For most applicati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

impurities need to be removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> acid to obtain a certain level of purity of <str<strong>on</strong>g>the</str<strong>on</strong>g> product.<br />

The required level of purity is largely determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> final use of <str<strong>on</strong>g>the</str<strong>on</strong>g> phosphoric acid<br />

product.<br />

In some cases, <str<strong>on</strong>g>the</str<strong>on</strong>g> purificati<strong>on</strong> takes place in a dedicated plant by employing solvent extracti<strong>on</strong>,<br />

this leading to <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of a high quality phosphoric acid. Opti<strong>on</strong>ally, additi<strong>on</strong>al<br />

techniques (for removal of arsenic, sulphate or fluoride) may be applied.<br />

Depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> required degree of purity of <str<strong>on</strong>g>the</str<strong>on</strong>g> final product, this can provide a feedstock for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of detergent, animal feed or human food phosphates.<br />

C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> purificati<strong>on</strong> of ‘green’ phosphoric acid may be quite shallow (e.g. ‘green’<br />

acid pretreatment, virtually by desulphati<strong>on</strong> <strong>on</strong>ly) or deep (c<strong>on</strong>centrati<strong>on</strong>, desulphati<strong>on</strong>, fluoride<br />

and arsenic removal, and <str<strong>on</strong>g>the</str<strong>on</strong>g> purificati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘green’ acid by solvent extracti<strong>on</strong> in a number<br />

of steps – not necessarily in this order).<br />

1


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r cases (for instance in some of <str<strong>on</strong>g>the</str<strong>on</strong>g> sites producing detergent phosphates), <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

purificati<strong>on</strong> (starting from unpurified “green”, merchant commodity phosphoric acid) takes<br />

place in <str<strong>on</strong>g>the</str<strong>on</strong>g> same process as <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of a given inorganic phosphate.<br />

Phosphoric acids of various degrees of purity are available as global merchant commodities or,<br />

in some cases, can be produced at <str<strong>on</strong>g>the</str<strong>on</strong>g> same site where both acid purificati<strong>on</strong> installati<strong>on</strong>s and<br />

inorganic phosphate producti<strong>on</strong> plants are situated. Operators will purchase purified acid of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

degree of purity required for <str<strong>on</strong>g>the</str<strong>on</strong>g> range of inorganic phosphates <str<strong>on</strong>g>the</str<strong>on</strong>g>y are manufacturing, or will<br />

purify phosphoric acid <strong>on</strong>site to <str<strong>on</strong>g>the</str<strong>on</strong>g> degree of purity required in downstream operati<strong>on</strong>s.<br />

Depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> purity of <str<strong>on</strong>g>the</str<strong>on</strong>g> acid used, some sites can manufacture inorganic phosphates for<br />

different applicati<strong>on</strong>s (detergent, animal feed, food).<br />

A high purity phosphoric acid may also be obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal route. White phosphorus,<br />

derived by <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal reducti<strong>on</strong> from phosphate rock or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r phosphate sources, is combusted in<br />

air, followed by <str<strong>on</strong>g>the</str<strong>on</strong>g> absorpti<strong>on</strong> of phosphorus pentoxide (P2O5) in water (refer to <str<strong>on</strong>g>the</str<strong>on</strong>g> BREF <strong>on</strong><br />

LVIC-AAF).<br />

In general, this process route is seldom used in Western Europe for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of detergentgrade<br />

STPP or for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of inorganic feed phosphates, as <str<strong>on</strong>g>the</str<strong>on</strong>g> phosphoric acid produced<br />

from elemental phosphorus is of a high purity, not required for detergent or animal feed<br />

applicati<strong>on</strong>s.<br />

Some inorganic phosphate products have a range of uses which require different levels of<br />

purity: for example STPP, which is used in detergents and cleaning products, but also as a<br />

human food and pharmaceutical ingredient which requires higher grades of purity.<br />

In some cases, <str<strong>on</strong>g>the</str<strong>on</strong>g> same installati<strong>on</strong> can be used to manufacture an inorganic phosphate product<br />

for various purposes; different quality grades being achieved by using different quality<br />

feedstocks (phosphoric acid or phosphate rock of different levels or purity) and/or by additi<strong>on</strong>al<br />

purificati<strong>on</strong> steps operated opti<strong>on</strong>ally within <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> process.<br />

The purificati<strong>on</strong> of phosphoric acid has not been described in <str<strong>on</strong>g>the</str<strong>on</strong>g> BREF <strong>on</strong> LVIC-AAF as, for<br />

most fertiliser producti<strong>on</strong> processes, such a step is not necessary.<br />

Also, data and <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> purificati<strong>on</strong> of phosphoric acid have not been <str<strong>on</strong>g>submitted</str<strong>on</strong>g><br />

<str<strong>on</strong>g>during</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>exchange</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> BREF <strong>on</strong> LVIC-S and, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, detailed <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong><br />

c<strong>on</strong>sumpti<strong>on</strong> and emissi<strong>on</strong> levels from <str<strong>on</strong>g>the</str<strong>on</strong>g> phosphoric acid purificati<strong>on</strong> step is not available.<br />

As <str<strong>on</strong>g>the</str<strong>on</strong>g> descripti<strong>on</strong> of processes and unit operati<strong>on</strong>s applied in <str<strong>on</strong>g>the</str<strong>on</strong>g> purificati<strong>on</strong> of n<strong>on</strong> fertiliser<br />

grade wet phosphoric acid was not covered in detail ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r in <str<strong>on</strong>g>the</str<strong>on</strong>g> BREF <strong>on</strong> LVIC-AAF or in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

BREF <strong>on</strong> LVIC-S, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, a clear <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> gap in this area between <str<strong>on</strong>g>the</str<strong>on</strong>g> two large<br />

volume inorganic chemical industry BREFs.<br />

In order not to loose partial <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> from <str<strong>on</strong>g>the</str<strong>on</strong>g> BREF <strong>on</strong> LVIC-S (Chapter 6), it was<br />

c<strong>on</strong>sidered important to include in this document <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> “Techniques to c<strong>on</strong>sider in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

determinati<strong>on</strong> of BAT” (deleted from <str<strong>on</strong>g>the</str<strong>on</strong>g> BREF <strong>on</strong> LVIC-S up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> recommendati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

TWG <strong>on</strong> LVIC-S), as it may be of value in future for <str<strong>on</strong>g>the</str<strong>on</strong>g> revisi<strong>on</strong> of <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> LVIC BREFs<br />

and <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>exchange</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> routes available for <str<strong>on</strong>g>the</str<strong>on</strong>g> purificati<strong>on</strong> of “green” phosphoric<br />

acid, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r by a chemical process or a physical process (solvent extracti<strong>on</strong>).<br />

It should be noted that as <str<strong>on</strong>g>the</str<strong>on</strong>g> purificati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> phosphoric acid, typically (but not always) takes<br />

place upstream of <str<strong>on</strong>g>the</str<strong>on</strong>g> site of <str<strong>on</strong>g>the</str<strong>on</strong>g> inorganic phosphates plants, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, in most cases (but not<br />

always), <str<strong>on</strong>g>the</str<strong>on</strong>g> main envir<strong>on</strong>mental benefits are outside of <str<strong>on</strong>g>the</str<strong>on</strong>g> scope of <str<strong>on</strong>g>the</str<strong>on</strong>g> feed phosphates sector.<br />

2


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

2.2 Purificati<strong>on</strong> of n<strong>on</strong>-fertiliser grade wet phosphoric acid –<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> opti<strong>on</strong>s<br />

Descripti<strong>on</strong><br />

Since, in most cases, <str<strong>on</strong>g>the</str<strong>on</strong>g> purified n<strong>on</strong>-fertiliser-grade wet phosphoric acid is selected for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

producti<strong>on</strong> of inorganic phosphates, <str<strong>on</strong>g>the</str<strong>on</strong>g> techniques available for <str<strong>on</strong>g>the</str<strong>on</strong>g> purificati<strong>on</strong> of “green”<br />

phosphoric acid (to remove sulphate, arsenic, fluoride and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r impurities) need to be analysed<br />

and compared in detail from <str<strong>on</strong>g>the</str<strong>on</strong>g> technical, ec<strong>on</strong>omical, and envir<strong>on</strong>mental point of view in<br />

order to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> impact of <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of feed-phosphates <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

whole chain of operati<strong>on</strong>s, starting from <str<strong>on</strong>g>the</str<strong>on</strong>g> intermediate phosphoric acid product and ending at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> final food-grade phosphate product.<br />

Such a comparis<strong>on</strong> needs to be carried out for two typical cases A and B pertaining to <str<strong>on</strong>g>the</str<strong>on</strong>g> plant<br />

locati<strong>on</strong>, and for two alternative process routes X and Y available to achieve <str<strong>on</strong>g>the</str<strong>on</strong>g> different degree<br />

(depth) of purificati<strong>on</strong> of “green” phosphoric acid:<br />

and<br />

A. Phosphoric acid purificati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> wet phosphoric acid producti<strong>on</strong> site, typically (but not<br />

always) outside of <str<strong>on</strong>g>the</str<strong>on</strong>g> inorganic phosphates producti<strong>on</strong> site<br />

B. Phosphoric acid purificati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> inorganic phosphates producti<strong>on</strong> site (in some cases it<br />

may also be <str<strong>on</strong>g>the</str<strong>on</strong>g> site of <str<strong>on</strong>g>the</str<strong>on</strong>g> phosphoric acid plant),<br />

X. Desulphati<strong>on</strong> (adding lime), neutralisati<strong>on</strong> (adding NaOH/Na2CO3) and purificati<strong>on</strong> by<br />

precipitati<strong>on</strong>, involving various techniques available for chemical purificati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> wet<br />

phosphoric acid, dependent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> required degree of acid quality<br />

Y. C<strong>on</strong>centrati<strong>on</strong>, desulphati<strong>on</strong>, and very deep purificati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> wet phosphoric acid by<br />

solvent extracti<strong>on</strong>, involving more elaborate physico-chemical techniques.<br />

Wet process phosphoric acid is purified by numerous methods and to a wide variety of<br />

standards depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r applicati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> acid.<br />

The most basic method, and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e which all suppliers of merchant-grade acid carry out before<br />

shipment, is clarificati<strong>on</strong>, by settling or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r mechanical means, to remove suspended solids. In<br />

case <str<strong>on</strong>g>the</str<strong>on</strong>g> acid is used for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of fertilisers no fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r treatment is usually applied.<br />

Chemical purificati<strong>on</strong> methods can be employed if <str<strong>on</strong>g>the</str<strong>on</strong>g> acid is to be used for specific purposes,<br />

not requiring a high quality. Active carb<strong>on</strong> treatment is <str<strong>on</strong>g>the</str<strong>on</strong>g> usual means of removing organic<br />

impurities. Fluorine is removed by adding reactive silica and distilling off silic<strong>on</strong> tetrafluoride.<br />

Phosphate rock or lime may be added to <str<strong>on</strong>g>the</str<strong>on</strong>g> impure acid to remove excess sulphate. Metals i<strong>on</strong>s<br />

can be selectively precipitated by various chemicals. By adding a Na2S soluti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> acid,<br />

arsenic can be precipitated as arsenic sulphide. Removal of o<str<strong>on</strong>g>the</str<strong>on</strong>g>r cati<strong>on</strong>ic impurities, especially<br />

Fe, Al, Mg and Ca, can be achieved by neutralising <str<strong>on</strong>g>the</str<strong>on</strong>g> acid with sodium carb<strong>on</strong>ate or caustic<br />

soda. The phosphoric acid in this process is c<strong>on</strong>verted to a phosphate salt soluti<strong>on</strong>.<br />

More elaborate techniques involving (organic) solvent treatment are used to obtain purer acid<br />

such as that required for animal feed supplements (mainly cadmium removal) and especially <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

food industry. Liquid/liquid extracti<strong>on</strong> processes are most comm<strong>on</strong>ly used. Processes are<br />

operated for <str<strong>on</strong>g>the</str<strong>on</strong>g> separati<strong>on</strong> of single comp<strong>on</strong>ents (e.g. uranium and cadmium) as well as of<br />

practically all impurities in wet phosphoric acid. The quality of such purified acid nearly equals<br />

that of <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally produced acid. Besides liquid/liquid extracti<strong>on</strong> processes, precipitati<strong>on</strong><br />

processes are also being employed.<br />

3


This document has not been fully peer reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> within is not validated nor endorsed by <str<strong>on</strong>g>the</str<strong>on</strong>g> TWG<br />

<strong>on</strong> LVIC-S or by <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, it is meant for <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g>, <strong>on</strong>ly<br />

Achieved envir<strong>on</strong>mental benefits<br />

The selecti<strong>on</strong> of both <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> (opti<strong>on</strong> A vs. B) and <str<strong>on</strong>g>the</str<strong>on</strong>g> route for <str<strong>on</strong>g>the</str<strong>on</strong>g> purificati<strong>on</strong> of n<strong>on</strong>fertiliser<br />

grade wet phosphoric acid (opti<strong>on</strong> X vs. Y) may benefit in <str<strong>on</strong>g>the</str<strong>on</strong>g> minimisati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

impact of <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of inorganic phosphates <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment.<br />

Optimum soluti<strong>on</strong>s can be selected with regard to <str<strong>on</strong>g>the</str<strong>on</strong>g> usage of raw materials, energy sources,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> recycling of by-products, and waste utilisati<strong>on</strong>, including <str<strong>on</strong>g>the</str<strong>on</strong>g> advantage of <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omy of<br />

scale in order to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> impact of <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of inorganic phosphates <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

envir<strong>on</strong>ment in <str<strong>on</strong>g>the</str<strong>on</strong>g> whole chain of operati<strong>on</strong>s, starting from <str<strong>on</strong>g>the</str<strong>on</strong>g> intermediate phosphoric acid<br />

product and ending at <str<strong>on</strong>g>the</str<strong>on</strong>g> final feed, food, and detergent-grade phosphate product.<br />

Cross-media effects<br />

To be analysed in detail for <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> (opti<strong>on</strong> A vs. B) and <str<strong>on</strong>g>the</str<strong>on</strong>g> route for <str<strong>on</strong>g>the</str<strong>on</strong>g> purificati<strong>on</strong> of<br />

n<strong>on</strong>-fertiliser grade wet phosphoric acid (opti<strong>on</strong> X vs. Y).<br />

Operati<strong>on</strong>al data<br />

No detailed data available, as typically (but not always) <str<strong>on</strong>g>the</str<strong>on</strong>g> purificati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> acid takes place<br />

upstream of <str<strong>on</strong>g>the</str<strong>on</strong>g> inorganic phosphate process. Moreover, specific data and <str<strong>on</strong>g>informati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> more<br />

elaborate techniques for <str<strong>on</strong>g>the</str<strong>on</strong>g> purificati<strong>on</strong> of wet phosphoric acid are, to a certain degree, subject<br />

to c<strong>on</strong>fidentiality.<br />

Applicability<br />

To varying degrees, applicable to <str<strong>on</strong>g>the</str<strong>on</strong>g> plants producing feed, food and detergent-grade<br />

phosphates by <str<strong>on</strong>g>the</str<strong>on</strong>g> phosphoric acid route, depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g-term strategies set for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

supply of phosphoric acid and <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture of final feed phosphate products.<br />

Driving force for implementati<strong>on</strong><br />

Reduced impact <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment in <str<strong>on</strong>g>the</str<strong>on</strong>g> whole chain of operati<strong>on</strong>s, beginning with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

intermediate phosphoric acid product and ending with feed, food and detergent-grade phosphate<br />

product. Reducti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacturing cost. Product quality improvement.<br />

Example plants<br />

Food and detergent-grade phosphate plant in Huelva, Spain (based <strong>on</strong> purified wet phosphoric<br />

acid). Food and detergent-grade phosphate plant in Engis, Belgium (based <strong>on</strong> purified wet<br />

phosphoric acid). Feed-grade phosphate plants in <str<strong>on</strong>g>the</str<strong>on</strong>g> EU based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> supplies of purified wet<br />

phosphoric acid from outside of <str<strong>on</strong>g>the</str<strong>on</strong>g> feed phosphate producti<strong>on</strong> sites.<br />

Reference literature<br />

[65, CEFIC-IFP, 2004], [84, A. Davister, 1981], [85, EIPPCB, 2004-2005], [93, CEFIC-CEEP,<br />

2004], [101, RIZA, 2000], [102, UNIDO, 1980].<br />

4


REFERENCES<br />

References<br />

6 CEFIC (2002). "IPPC BAT Reference Document, Best Available Techniques for<br />

Producing Large Volume Solid Inorganic Chemicals - Generic Part".<br />

8 CEFIC (2004). "CEFIC Chemistry Sectors".<br />

9 CEFIC (2004). "The European chemical industry in a worldwide perspective - Facts and<br />

Figures 2004".<br />

11 The Council of <str<strong>on</strong>g>the</str<strong>on</strong>g> EU (1996). "Council Directive 96/61/EC of 24 September 1996<br />

c<strong>on</strong>cerning integrated polluti<strong>on</strong> preventi<strong>on</strong> and c<strong>on</strong>trol".<br />

12 European Envir<strong>on</strong>ment Agency (2004). "The European Pollutant Emissi<strong>on</strong> Register<br />

EPER".<br />

13 EIPPCB (2000). "Inorganic Chemical Sector", Versi<strong>on</strong> 1.<br />

14 EIPPCB, S., Spain (2003). "Meeting Report of 23 September 2003 - Record of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Kick-off Meeting held in Sevilla <strong>on</strong> 7-8 July 2003, TWG <strong>on</strong> BAT for <str<strong>on</strong>g>the</str<strong>on</strong>g> manufature of<br />

LVIC-S".<br />

20 CEFIC-TDMA (2004). "Process BREF Titanium Dioxide Background Document".<br />

21 The Council of <str<strong>on</strong>g>the</str<strong>on</strong>g> EU (1992). "Council Directive 92/112/EEC <strong>on</strong> procedures for<br />

harm<strong>on</strong>ising <str<strong>on</strong>g>the</str<strong>on</strong>g> programmes for <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong> and eventual eliminati<strong>on</strong> of polluti<strong>on</strong><br />

caused by waste from <str<strong>on</strong>g>the</str<strong>on</strong>g> titanium dioxide industry".<br />

22 Euratom (1996). "European Directive 96/29/EEC".<br />

23 The Council of <str<strong>on</strong>g>the</str<strong>on</strong>g> EU (1996). "Council Directive 96/82/EC of 9 December 1996 <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>trol of major accident hazards involving dangerous substances".<br />

24 Tioxide Group Ltd (1995). "Synopsis "Making Better Choices - How Tioxide uses Life<br />

Cycle Assessment"".<br />

25 D.G. Heath (1996). ""A Life Cycle inventory comparis<strong>on</strong> of process and feedstock<br />

opti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of TiO2" by D.G Heath and M.J. Richards".<br />

26 EIPPCB (2003). "Missi<strong>on</strong> Report - Visits of two sites in <str<strong>on</strong>g>the</str<strong>on</strong>g> UK for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of<br />

TiO2 according to chloride route - Greatham and sulphate route - Grimsby".<br />

27 N.L. Glinka (1981). "Problems and Exercises in General Chemistry".<br />

28 UNIDO (1982). "A Programme for <str<strong>on</strong>g>the</str<strong>on</strong>g> Industrial Development Decade for Africa".<br />

31 R. N. Shreve (1945). "The Chemical Process Industries", Chemical Engineering Series.<br />

33 CEFIC-ESAPA (2004). "IPPCB BAT Reference Document Large Volume Solid<br />

Inorganic Chemicals Family, Process BREF for Soda Ash", Issue No: 3.<br />

39 S. Leszczynski et al (1978). "Soda i produkty towarzyszace".<br />

40 CEFIC-ESAPA (2003). "IPPCB BAT Reference Document Large Volume Solid<br />

Inorganic Chemicals Family, Process BREF for Soda Ash", Issue No. 2.<br />

5


References<br />

41 Solvay S.A. (2003). "Process BREF for Soda Ash - Presentati<strong>on</strong>".<br />

42 UBA-Germany (2001). "German Notes <strong>on</strong> BAT for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of LVSIC -<br />

Titanium Dioxide".<br />

43 UBA - Germany (2001). "German Notes <strong>on</strong> BAT for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of LVSIC -<br />

Sodium Silicate".<br />

44 UBA - Germany (2001). "German Notes <strong>on</strong> BAT for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of LVSIC -<br />

Sodium Perborate".<br />

45 UBA - Germany (2001). "German Notes <strong>on</strong> BAT for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of LVSIC - Soda".<br />

46 CEFIC-TDMA (2001). "Process BREF Titanium Dioxide Background Document".<br />

47 InfoMil (2002). "Dutch Notes <strong>on</strong> BAT for <str<strong>on</strong>g>the</str<strong>on</strong>g> Carb<strong>on</strong> Black industry", ISBN 90-76323-<br />

07-0.<br />

48 W. Buchner et al (1989). "Industrial Inorganic Chemistry", 3-527-26629-1.<br />

49 CEFIC-ASASP (2002). "BREF Working Group - Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic Amorphous Silica".<br />

50 CEFIC-INCOPA (2004). "Mini-Process BREF for Aluminium Sulphate".<br />

53 EIPPCB (2004). "Missi<strong>on</strong> Report - Visit of Soda Ash producti<strong>on</strong> plant site in<br />

Torrelavega, Santander, Cantabria, Spain".<br />

54 EIPPCB (2004). "Missi<strong>on</strong> Report - Carb<strong>on</strong> Black - Visits of two sites in Botlek and<br />

Rozenburg, Rotterdam area, <str<strong>on</strong>g>the</str<strong>on</strong>g> Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands".<br />

56 InfoMil (2004). "Dutch Fact sheet <strong>on</strong> Magnesium compounds".<br />

57 CEFIC-PEROXYGENES (2004). "Process BREF - Sodium Percarb<strong>on</strong>ate".<br />

58 CEFIC ZEAD-ZEODET (2004). "Mini-BREF Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic Zeolites for LVIC-S".<br />

59 CEFIC-TDMA (2004). "Mini-Process BREF for Copperas and Related Products".<br />

60 UBA-Austria (2004). "Mini BREF Calcium Carbide".<br />

61 Entec UK Limited (2004). "Mini-BREF for Sodium Sulphite and related products".<br />

62 CEFIC-ZOPA (2004). "Mini-BREF Zinc Oxide Producti<strong>on</strong>".<br />

63 CEFIC-PEROXYGENES PERBORATE Sub Group (2004). "Process BREF Sodium<br />

Perborate".<br />

64 CEFIC-SSPA (2004). "Mini-BREF Sodium Sulphate Producti<strong>on</strong>".<br />

65 CEFIC-IFP (2004). "BRF LVIC-S Inorganic Feed Phosphates".<br />

66 CEFIC-Sodium Chlorate (2004). "Mini-process BREF for Sodium Chlorate".<br />

67 InfoMil - Dutch Authorities (2004). "Factsheet <strong>on</strong> Producti<strong>on</strong> of Silic<strong>on</strong> Carbide".<br />

68 Norwegian Polluti<strong>on</strong> C<strong>on</strong>trol Authority (2003). "BAT for Al fluoride producti<strong>on</strong>".<br />

6


References<br />

69 Envir<strong>on</strong>ment Agency (1999). "Processes Subject to Integrated Polluti<strong>on</strong> C<strong>on</strong>trol -<br />

Inorganic Chemicals", S2 4.04.<br />

70 Envir<strong>on</strong>ment Agency (1999). "Processes Subject to Integrated Polluti<strong>on</strong> C<strong>on</strong>trol -<br />

Inorganic Acids and Halogens", S2 4.03.<br />

71 CITEPA (1997). "Best Available Techniques for <str<strong>on</strong>g>the</str<strong>on</strong>g> Chemical industry in Europe -<br />

Workshop <strong>on</strong> 14-16 May 1997 in Paris".<br />

73 G.V. Ellis (1979). "Energy C<strong>on</strong>servati<strong>on</strong> in a Large Chemical Company", Proceedings<br />

No. 183.<br />

75 J. A. Lee (1985). "The Envir<strong>on</strong>ment, Public Health and Human Ecology - a World Bank<br />

Publicati<strong>on</strong>", 0-8018-2911-9.<br />

76 Uni<strong>on</strong> of Inorganic Industry (1977). "Soda Industry in Poland - Guidebook".<br />

78 World Bank (1991). "Envir<strong>on</strong>mental Assessment Sourcebook - Volume III", World<br />

Bank Technical Paper Number 154.<br />

79 BIPROKWAS (1985-1995). "Bid Letters for Inorganic Chemicals", 511.171-TR-XYZ.<br />

82 UNIDO (1988). "Study <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Manufacture of Industrial Chemicals in <str<strong>on</strong>g>the</str<strong>on</strong>g> Member<br />

States of SADCC - Part II Inorganic Industry", DP/RAF/86/013.<br />

83 UNIDO (1988). "Study <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Manufacture of Industrial Chemicals in <str<strong>on</strong>g>the</str<strong>on</strong>g> Member<br />

States of SADCC - Part IV, Annex XII - Utilizati<strong>on</strong> of Chemical Metals, Minerals and<br />

Wastes", DP/RAF/86/013.<br />

84 A. Davister, G. M. (1981). "From Wet Crude Phosphoric Acid to High Purity<br />

Products", Proceedings No. 201.<br />

85 EIPPCB, C., MS, (2004). "Process BREFs, Mini-BREFs, Presentati<strong>on</strong>s, Papers, Notes<br />

and Documents c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> BREF <strong>on</strong> LVIC-S".<br />

86 The Council of <str<strong>on</strong>g>the</str<strong>on</strong>g> EU (2004). "Council Directive 2004/8/EC of 11 February 2004 <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> promoti<strong>on</strong> of cogenerati<strong>on</strong> based <strong>on</strong> a useful heat demand in <str<strong>on</strong>g>the</str<strong>on</strong>g> internal energy<br />

market".<br />

87 Ullmann's (2001). "Ullmann's Encyclopedia of Industrial Chemistry".<br />

88 UBA - Germany (2004). "Mini-BREF <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Producti<strong>on</strong> of Carb<strong>on</strong> Disulphide".<br />

89 CEFIC-INCOPA (2004). "Mini-Process BREFs for Polyaluminium Chloride,<br />

Aluminium Chloride".<br />

90 CEFIC-INCOPA (2004). "Mini-Process BREF Ferrous Chloride".<br />

91 Takuji Miyata (1983). “Soda ash producti<strong>on</strong> in Japan and <str<strong>on</strong>g>the</str<strong>on</strong>g> new Asahi process",<br />

Chemistry and Industry, pp. 4.<br />

92 EU DG Envir<strong>on</strong>ment (2002). "Phosphates and Alternative Detergent Builders", WRc<br />

Ref: UC 4011.<br />

93 CEFIC-CEEP (2004). "CEEP STPP BREF (BAT)".<br />

94 CEFIC-SOLVAY S.A. (2004). "Process BREF for Precipitated Calcium Carb<strong>on</strong>ate".<br />

7


References<br />

95 CEFIC-Brunner M<strong>on</strong>d (2004). "Process BREF for Calcium Chloride".<br />

96 CEFIC-ELOA (2004). "BAT Notes for <str<strong>on</strong>g>the</str<strong>on</strong>g> Producti<strong>on</strong> of Lead Oxide".<br />

97 The Council of <str<strong>on</strong>g>the</str<strong>on</strong>g> EU (2004). "Regulati<strong>on</strong> (EC) No 648/2004 of <str<strong>on</strong>g>the</str<strong>on</strong>g> European<br />

Parliament and <str<strong>on</strong>g>the</str<strong>on</strong>g> Council of 31 March 2004 <strong>on</strong> detergents".<br />

98 CEFIC (2003). "CEFIC Note No. 295 - Criteria for <str<strong>on</strong>g>the</str<strong>on</strong>g> selecti<strong>on</strong> between LVIC and<br />

SIC industries".<br />

99 Polimex-Cekop S.A. (1995). "Some strategic suggesti<strong>on</strong>s towards enhancing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cooperati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> MW Kellogg Company and Polimex-Cekop S.A.".<br />

100 Envir<strong>on</strong>ment Agency (2004). "Guidance for <str<strong>on</strong>g>the</str<strong>on</strong>g> Inorganic Chemicals sector IPPC<br />

S4.03", Draft 1.1.<br />

101 InfoMil (2000). "Dutch notes <strong>on</strong> BAT for <str<strong>on</strong>g>the</str<strong>on</strong>g> phosphoric acid industry".<br />

102 UNIDO (1980). "Fertilizer Manual", Development and Transfer of Technology Series<br />

No. 13.<br />

8


GLOSSARY OF TERMS AND ABBREVIATIONS<br />

Abbreviati<strong>on</strong>s comm<strong>on</strong>ly used in this document<br />

Glossary<br />

BAT Best Available Techniques<br />

BL Battery Limits<br />

BOD Biochemical oxygen demand: <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity of dissolved oxygen required by<br />

micro-organisms in order to decompose organic matter. The unit of<br />

measurement is mg O2/l. In Europe, BOD is usually measured after 3 (BOD3), 5<br />

(BOD5) or 7 (BOD7) days.<br />

BREF BAT reference document<br />

CAS Chemical Abstract Service<br />

CFC Chlorofluorocarb<strong>on</strong><br />

CHP Co-generati<strong>on</strong> of Heat and Power<br />

COD Chemical oxygen demand: <str<strong>on</strong>g>the</str<strong>on</strong>g> amount of potassium dichromate, expressed as<br />

oxygen, required to chemically oxidize at ca. 150 °C substances c<strong>on</strong>tained in<br />

waste water.<br />

DBM Dead Burned Magnesia<br />

DC Direct Current<br />

DCP Dicalcium Phosphate<br />

ELV Emissi<strong>on</strong> limit values: <str<strong>on</strong>g>the</str<strong>on</strong>g> mass, expressed in terms of certain specific<br />

parameters, c<strong>on</strong>centrati<strong>on</strong> and/or level of an emissi<strong>on</strong>, which may not be<br />

exceeded <str<strong>on</strong>g>during</str<strong>on</strong>g> <strong>on</strong>e or more periods of time.<br />

EMS Envir<strong>on</strong>mental Management System<br />

EOP End-of-pipe<br />

EPER European Pollutant Emissi<strong>on</strong> Register<br />

ESP Electrostatic precipitator<br />

EURO European currency unit<br />

FCCR Fluid Catalytic Cracker Residue<br />

FSA Fluosilicic Acid<br />

GDP Gross Domestic Product<br />

GHG Greenhouse gases<br />

HEPA High-efficiency Particulate Arresters<br />

HHV High Heating Value<br />

HM Heavy Metals<br />

HP High Pressure<br />

IPPC Integrated Polluti<strong>on</strong> Preventi<strong>on</strong> and C<strong>on</strong>trol<br />

LCA Life Cycle Assessment<br />

LHV Low Heating Value<br />

LP Low Pressure<br />

LPG Liquefied Petroleum Gas<br />

LVIC-S Large Volume Inorganic Chemicals – Solid and O<str<strong>on</strong>g>the</str<strong>on</strong>g>rs<br />

MAP M<strong>on</strong>oam<strong>on</strong>ium Phosphate<br />

MCP M<strong>on</strong>ocalcium Phosphate<br />

MDCP M<strong>on</strong>odicalcium Phosphate<br />

MSP M<strong>on</strong>osodium Phosphate<br />

NA New Asahi soda ash process<br />

NeR Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands emissi<strong>on</strong> Regulati<strong>on</strong>s<br />

PAHs Polyaromatic hydrocarb<strong>on</strong>s<br />

PI Process-integrated<br />

PCC Precipitated Calcium Carb<strong>on</strong>ate<br />

ROI Return <strong>on</strong> Investment<br />

R&TD Research and Technical Development<br />

SCR Selective Catalytic Reducti<strong>on</strong><br />

SNCR Selective N<strong>on</strong>-Catalytic Reducti<strong>on</strong><br />

9


Glossary<br />

SS Suspended Solids (c<strong>on</strong>tent) (in water)<br />

STPP Sodium Tripolyphosphate<br />

TOE T<strong>on</strong>ne of Oil Equivalent<br />

VOC Volatile Organic Compounds<br />

WR Weight Ratio<br />

WWTP Waste water Treatment Plant<br />

10<br />

Abbreviati<strong>on</strong>s used for <str<strong>on</strong>g>the</str<strong>on</strong>g> organisati<strong>on</strong>s and countries quoted in this document<br />

ASASP Associati<strong>on</strong> of Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic Amorphous Silica Producers<br />

BSI British Standard Institute<br />

CEEP Centre Européen d’Etudes des Polyphosphates<br />

CEES Centre Européen d’Etudes des Silicates<br />

CEFIC European Chemical Industry Council<br />

CITEPA Centre Interprofessi<strong>on</strong>nel Technique D’Etudes de la Polluti<strong>on</strong> Atmospherique<br />

EA Envir<strong>on</strong>ment Agency<br />

EC European Commissi<strong>on</strong><br />

EIPPCB European Integrated Polluti<strong>on</strong> Preventi<strong>on</strong> and C<strong>on</strong>trol Bureau<br />

EFMA European Fertilisers Manufacturers Associati<strong>on</strong><br />

EFPA European Food Phosphate Producers Associati<strong>on</strong><br />

ELOA European Lead Oxide Associati<strong>on</strong><br />

ENTEC Entec UK Limited<br />

EPPAA European Pure Phosphoric Acid Producers Associati<strong>on</strong><br />

ESAPA European Soda Ash Producers Associati<strong>on</strong><br />

EU European Uni<strong>on</strong><br />

EU-15 European Uni<strong>on</strong> (15 Member States)<br />

EU-25 European Uni<strong>on</strong> (25 Member States, including 10 new Member States)<br />

HT Huntsman Tioxide<br />

ICBA Internati<strong>on</strong>al Carb<strong>on</strong> Black Associati<strong>on</strong><br />

INCOPA Inorganic Coagulants Producers Associati<strong>on</strong><br />

IEF <str<strong>on</strong>g>Informati<strong>on</strong></str<strong>on</strong>g> Exchange Forum (informal c<strong>on</strong>sultati<strong>on</strong> body in <str<strong>on</strong>g>the</str<strong>on</strong>g> framework of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> IPPC Directive)<br />

InfoMil The Dutch <str<strong>on</strong>g>Informati<strong>on</strong></str<strong>on</strong>g> Centre for Envir<strong>on</strong>mental Licensing<br />

IFP Inorganic Feed Phosphates<br />

IPTS Institute for Prospective Technological Studies<br />

ISO Internati<strong>on</strong>al Standards Organisati<strong>on</strong><br />

NGOs N<strong>on</strong>-Governmental Organisati<strong>on</strong>s<br />

SFT Norwegian Polluti<strong>on</strong> C<strong>on</strong>trol Authority<br />

SSPA Sodium Sulphate Producers Associati<strong>on</strong><br />

TDMA Titanium Dioxide Manufacturers Associati<strong>on</strong><br />

TWG Technical Working Groups<br />

UNIDO United Nati<strong>on</strong>s Industrial Development Organizati<strong>on</strong><br />

US EPA U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency<br />

UBA Umweltbundesamt (Federal Envir<strong>on</strong>mental Agency - Germany)<br />

UBA-Austria Umweltbundesamt (Federal Envir<strong>on</strong>ment Agency - Austria)<br />

US United States of America<br />

VROM Dutch Ministry of Housing, Spatial Planning and Envir<strong>on</strong>ment<br />

ZEAD Zeolite Adsorbents<br />

ZEODET Associati<strong>on</strong> of Detergent Zeolite Producers<br />

ZOPA Zinc Oxide Producers Associati<strong>on</strong>


Abbreviati<strong>on</strong>s of units of measure<br />

bar bar (1 bar = 100 kPa, 1.013 bar = 1 atm)<br />

°C degree Celsius<br />

g gram<br />

h hour<br />

J Joule<br />

K Kelvin (0 °C = 273.15 K)<br />

kg kilogram (1 kg = 1000 g)<br />

kPa kilo Pascal<br />

kt thousand t<strong>on</strong>nes<br />

kWh kilowatt-hour (1 kWh = 3600 kJ = 3.6 MJ)<br />

l litre<br />

m metre<br />

m 2<br />

square metre<br />

m 3<br />

cubic metre<br />

mg milligram (1 mg = 10 -3 gram)<br />

Nm 3<br />

Normalised m 3 (gas, 273 K, 101.3 kPa)<br />

pH scale for measuring acidity or alkalinity<br />

ppb parts per billi<strong>on</strong><br />

ppm parts per milli<strong>on</strong><br />

ppmv parts per milli<strong>on</strong> (by weight)<br />

s sec<strong>on</strong>d<br />

t metric t<strong>on</strong>ne (1000 kg or 10 6 gram)<br />

vol-% percentage by volume<br />

W Watt (1 W = 1 J/s)<br />

Prefixes<br />

n nano 10 -9<br />

b micro 10 -6<br />

m milli 10 -3<br />

c centi 10 -2<br />

k kilo 10 3<br />

M mega 10 6<br />

G giga 10 9<br />

Chemical formula comm<strong>on</strong>ly used in this document<br />

(refer also to Annex 1 – Basic classes of inorganic compounds)<br />

Al Aluminium<br />

AlCl3<br />

Aluminium chloride<br />

AlF3<br />

Aluminium fluoride<br />

AlNaO2<br />

Sodium aluminate<br />

Al2O3<br />

Aluminium oxide<br />

Al(OH)3<br />

Aluminium hydroxide<br />

Al2(SO4)3<br />

Aluminium sulphate<br />

Alx(OH)yClz Aluminium hydroxy chloride<br />

Alx(OH)yClz(SO4)q Aluminium hydroxy chloride sulphate<br />

As Arsenic<br />

Ba Barium<br />

BaCl2<br />

Barium chloride<br />

B Bor<strong>on</strong><br />

C Carb<strong>on</strong><br />

Ca Calcium<br />

Glossary<br />

11


Glossary<br />

Ca 2+ Calcium i<strong>on</strong><br />

CaC2<br />

Calcium carbide<br />

CaCl2<br />

Calcium chloride<br />

CaF2<br />

Calcium fluoride (flourspar)<br />

CaCO3<br />

Calcium carb<strong>on</strong>ate (limest<strong>on</strong>e)<br />

CaCO3 . MgCO3 Dolomite<br />

CaO Calcium oxide<br />

Ca(OH)2<br />

Calcium hydroxide<br />

CaHPO4<br />

Dicalcium phosphate<br />

Ca3(PO4)2<br />

Calcium phosphate<br />

CaSO3<br />

Calcium sulphite<br />

CaSO4<br />

Calcium sulphate<br />

Cd Cadmium<br />

CH4<br />

Methane<br />

CxHy<br />

Hydrocarb<strong>on</strong>s<br />

C2H6<br />

Ethane<br />

C2H4<br />

E<str<strong>on</strong>g>the</str<strong>on</strong>g>ne<br />

C2H2<br />

Acetylene<br />

Cl -<br />

Chloride<br />

Cl2<br />

Chlorine<br />

ClO -<br />

Hypochlorite<br />

ClO3- Chlorate<br />

CN -<br />

Cyanide<br />

Co Cobalt<br />

CO Carb<strong>on</strong> m<strong>on</strong>oxide<br />

CO2<br />

Carb<strong>on</strong> dioxide<br />

CO3 2- - Carb<strong>on</strong>ate<br />

COS Carb<strong>on</strong>yl sulphide<br />

Cr Chromium<br />

Cr 3+ /Cr 6+ Chromic i<strong>on</strong>s<br />

CrO Chromium oxide<br />

CS2<br />

Carb<strong>on</strong> disulphide<br />

Cu Copper<br />

CuO Copper oxide<br />

CuSO4<br />

Copper sulphate<br />

F Fluorine<br />

F -<br />

Fluoride<br />

Fe Ir<strong>on</strong><br />

Fe 2+ Ferrous i<strong>on</strong><br />

Fe 3+ Ferric i<strong>on</strong><br />

FeCl2<br />

Ferrous chloride<br />

FeCl3<br />

Ferric chloride<br />

FeClSO4<br />

Ir<strong>on</strong> chloro sulphate<br />

FeO Ir<strong>on</strong> (II) oxide<br />

Fe2O3<br />

Ir<strong>on</strong> (III) oxide<br />

FeO . TiO2<br />

Ilmenite<br />

FeSO4<br />

Ferrous sulphate<br />

FeSO4 . H2O Ferrous sulphate m<strong>on</strong>ohydrate<br />

FeSO4 . 7H2O Ferrous sulphate heptahydrate (copperas)<br />

Fe2(SO4)3<br />

Ferric sulphate<br />

H2<br />

Hydrogen<br />

HCl Hydrogen chloride<br />

HClO Hypochlorous acid<br />

HCN Hydrogen cyanide<br />

HCOOH Formica acid<br />

HCO3 -<br />

Bicarb<strong>on</strong>ate<br />

Hg Mercury<br />

12


HF Hydrogen fluoride<br />

H2O Water<br />

H2O2<br />

Hydrogen peroxide<br />

HNO2<br />

Nitrous acid<br />

HNO3<br />

Nitric acid<br />

H3PO4<br />

Phosphoric acid<br />

H2S Hydrogen sulphide<br />

H2SO4<br />

Sulphuric acid<br />

H2SiF6<br />

Flousilicic acid<br />

K Potassium<br />

KCl Potassium chloride<br />

KClO3<br />

Potassium chlorate<br />

K2CO3<br />

Potassium carb<strong>on</strong>ate<br />

KOH Potassium hydroxide<br />

Mg Magnesium<br />

Mg 2+ Magnesium i<strong>on</strong><br />

MgCl2<br />

Magnesium chloride<br />

MgCO3<br />

Magnesium carb<strong>on</strong>ate<br />

MgO Magnesium oxide<br />

Mg(OH)2<br />

Magnesium hydroxide<br />

MgSO4<br />

Magnesium sulphate<br />

Mn Manganese<br />

Na Sodium<br />

Na +<br />

Sodium i<strong>on</strong><br />

NaBO3 . H2O Sodium perborate m<strong>on</strong>ohydrate<br />

Na2B4O7 . 5H2O Borax<br />

NaCl Sodium chloride<br />

NaClO Sodium hypochlorite<br />

NaClO3<br />

Sodium chlorate<br />

Na2CO3<br />

Sodium carb<strong>on</strong>ate<br />

Na2CO3 . 1.5H2O2 Sodium percarb<strong>on</strong>ate<br />

Na2Cr2O7<br />

Sodium dichromate<br />

NaHCO3<br />

Sodium bicarb<strong>on</strong>ate<br />

NaH2PO4<br />

M<strong>on</strong>osodium phosphate<br />

Na2HPO4<br />

Disodium phosphate<br />

NaNO2<br />

Sodium nitrite<br />

NaNO3<br />

Sodium nitrate<br />

Na2O Sodium oxide<br />

NaOH Sodium hydroxide<br />

NaHSO3<br />

Sodium hydrogensulphite (sodium bisulphite)<br />

Na2SO3<br />

Sodium sulphite<br />

NaHSO4<br />

Sodium hydrogensulphate (sodium bisulphate)<br />

Na2SO4<br />

Sodium sulphate<br />

Na2SO4 . 10H2O Sodium sulphate decahydrate (Glauber’s salt)<br />

Na2S2O3<br />

Sodium thiosulphate<br />

Na2S2O5<br />

Sodium metabisulphite<br />

Na5P3O10<br />

Sodium tripolyphosphate<br />

Na2S Sodium sulphide<br />

Nax(AlO2)y(SiO2)z Zeolite<br />

N2<br />

Nitrogen<br />

NH3<br />

Amm<strong>on</strong>ia<br />

NH4 +<br />

Amm<strong>on</strong>ium i<strong>on</strong><br />

NH4OH Amm<strong>on</strong>ium hydroxide<br />

NH4Cl Amm<strong>on</strong>ium chloride<br />

NH4HCO3<br />

Amm<strong>on</strong>ium bicarb<strong>on</strong>ate<br />

(NH4)2CO3<br />

Amm<strong>on</strong>ium carb<strong>on</strong>ate<br />

NH4HSO4<br />

Amm<strong>on</strong>ium bisulphate<br />

Glossary<br />

13


Glossary<br />

(NH4)2SO4<br />

Amm<strong>on</strong>ium sulphate<br />

Ni Nickel<br />

NO Nitrogen m<strong>on</strong>oxide<br />

NO2<br />

Nitrogen dioxide<br />

NO3 -<br />

Nitrate<br />

NOx<br />

Nitrogen oxides<br />

O2<br />

Oxygen<br />

OCl -<br />

Hypochlorite<br />

OH -<br />

Hydroxide<br />

P Phosphorus<br />

P2O5<br />

Phosphorus pentoxide<br />

Pb Lead<br />

PbO Lead oxide (litharge)<br />

Pb3O4<br />

Lead oxide (red lead)<br />

R-NH2<br />

Amine<br />

S Sulphur<br />

S 2-<br />

Sulphide<br />

SO2<br />

Sulphur dioxide<br />

SO3<br />

Sulphur trioxide<br />

S2O3 2- Thiosulphate<br />

SO3 2-<br />

Sulphite<br />

SO4 2- Sulphate<br />

SOx<br />

Sulphur oxides<br />

Si Silic<strong>on</strong><br />

SiC Silic<strong>on</strong> carbide<br />

SiO2<br />

Silica<br />

n(SiO2) . Na2O Sodium silicate<br />

Ti Titanium<br />

TiO2<br />

Titanium dioxide<br />

TiO(OH)2<br />

Titanyl hydroxide<br />

TiOSO4<br />

Titanyl sulphate<br />

TiCl4<br />

Titanium tetrachloride<br />

V Vanadium<br />

VOCl Vanadium oxychloride<br />

W Tungsten<br />

Zn Zinc<br />

ZnCl2<br />

Zinc chloride<br />

ZnCO3<br />

Zinc carb<strong>on</strong>ate<br />

ZnO Zinc oxide<br />

ZnS Zinc sulphide<br />

ZnSO4<br />

Zinc sulphate<br />

14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!