29.03.2013 Views

Cyanide and Thiocyanate in Human Saliva by Gas - Journal of ...

Cyanide and Thiocyanate in Human Saliva by Gas - Journal of ...

Cyanide and Thiocyanate in Human Saliva by Gas - Journal of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

espectively, <strong>by</strong> the TBAS method (Table I). St<strong>and</strong>ard solutions<br />

<strong>of</strong> CN <strong>and</strong> SCN were stable <strong>in</strong> water for at least 2 months. In<br />

different batch analysis, the ratios <strong>of</strong> CN/IS or SCN/IS were<br />

with<strong>in</strong> + 20%. Both CN <strong>and</strong> SCN were stable <strong>in</strong> saliva stored at<br />

2--4~ for 7 days. When six specimens were tested aga<strong>in</strong>, the re-<br />

sults were with<strong>in</strong> _+ 20% <strong>of</strong> the orig<strong>in</strong>al values.<br />

Three previously published studies found concentrations <strong>of</strong><br />

SCN <strong>in</strong> saliva <strong>of</strong> smokers to be 1655 +_ 841 IJmol/L (N = 20),<br />

3620 _+ 1720 tJmol/L (N = 5), <strong>and</strong> 2050 _+ 450 lJmol/L (N = 3)<br />

(4,28,33). These concentrations are much higher than those<br />

found for nonsmokers <strong>in</strong> this study, 655 _+ 215 IJmol/L. In a<br />

study <strong>of</strong> smokers with toxic amblyopia, the <strong>in</strong>vestigators found<br />

that plasma SCN concentrations returned to the nonsmoker<br />

range due to an <strong>in</strong>ability to convert CN to SCN (8,9,15). Other<br />

cl<strong>in</strong>ical abnormalities have also been reported <strong>in</strong> <strong>in</strong>dividuals<br />

who <strong>in</strong>gest cassava <strong>and</strong> have elevated plasma levels <strong>of</strong> SCN<br />

(10-12). It has also been proposed that identify<strong>in</strong>g endoge-<br />

nous components <strong>of</strong> saliva, such as CN <strong>and</strong> SCN, could be<br />

used to prove that specimens collected <strong>in</strong> drug test<strong>in</strong>g pro-<br />

grams are valid (36). One would expect that these various<br />

groups could be dist<strong>in</strong>guished based on CN <strong>and</strong> SCN concen-<br />

trations <strong>in</strong> their saliva.<br />

Conclusions<br />

Both CN <strong>and</strong> SCN are present <strong>in</strong> body fluids <strong>in</strong> different<br />

amounts. The validated GC-MS procedure presented here de-<br />

tects CN <strong>and</strong> SCN <strong>in</strong> saliva as low as 1.0 <strong>and</strong> 5.0 IJmol/L, re-<br />

spectively. In 10 specimens, the CN <strong>and</strong> SCN concentrations<br />

ranged from 4.8 to 29 lJmol/L <strong>and</strong> 293 to 1029 IJmol/L, re-<br />

spectively. The CN concentration was 0.8-3.7% <strong>of</strong> the SCN<br />

concentration. The saliva SCN concentrations found <strong>in</strong> this ex-<br />

periment were comparable with other literature procedures,<br />

support<strong>in</strong>g validity <strong>of</strong> the GC-MS method. The procedure may<br />

be useful <strong>in</strong> forensic drug test<strong>in</strong>g when specimen validity<br />

test<strong>in</strong>g is required <strong>and</strong> also <strong>in</strong> classify<strong>in</strong>g patients as smokers<br />

or non-smokers.<br />

References<br />

1. G.E. Boxer <strong>and</strong> J.C. Rickards. Determ<strong>in</strong>ation <strong>of</strong> thiocyanate <strong>in</strong><br />

body fluids. Arch. Biochem. Biophys. 39:292-300 (1952).<br />

2. J.C. Valentour, V. Aggarwal, <strong>and</strong> 1. Sunsh<strong>in</strong>e. Sensitive gas chro-<br />

matographic determ<strong>in</strong>ation <strong>of</strong> cyanide. Anal. Chem. 46:924-925<br />

(1974).<br />

3. R Lundquist, J. Martensson, B. Sorbo, <strong>and</strong> S. Ohman. Method for<br />

determ<strong>in</strong><strong>in</strong>g thiocyanate <strong>in</strong> serum <strong>and</strong> ur<strong>in</strong>e. Cl<strong>in</strong>. Chem. 25:<br />

678-681 (1979)<br />

4. K. Tsuge, M. Kataoka, <strong>and</strong> Y Seto. <strong>Cyanide</strong> <strong>and</strong> thiocyanate <strong>in</strong><br />

blood <strong>and</strong> saliva <strong>of</strong> healthy adult volunteers. J. Health Sci. 46:<br />

343-350 (2000)<br />

5. RM. Densen, B. Davidow, H.E. Bass, <strong>and</strong> E.W. Jones. A chemical<br />

test for smok<strong>in</strong>g exposure. Arch. Environ. Health 14:865-874<br />

(1976).<br />

6. W.C. Butts, M Kuehneman, <strong>and</strong> G.M. Widdowson. Automated<br />

method for determ<strong>in</strong><strong>in</strong>g serum thiocyanate to dist<strong>in</strong>guish smokers<br />

from nonsmokers. Cl<strong>in</strong>. Chem. 20:1344-1348 (1974).<br />

514<br />

<strong>Journal</strong> <strong>of</strong> Analytical Toxicology, Vol. 30, October 2006<br />

7. R.R Smith <strong>and</strong> H. Kruszyna. Nitroprusside propduces cyanide poi-<br />

son<strong>in</strong>g via a reaction with hemoglob<strong>in</strong>. J. Pharmacol. Exp. Ther.<br />

191:557-563 (I974).<br />

8. J. Wilson. Liber's hereditary optic atrophy: a possible defect <strong>of</strong><br />

cyanide metabolism. Cl<strong>in</strong>. Sci. 29:505-515 (1965).<br />

9. W.S. Foulds, J.M. Bronte-Stewart, <strong>and</strong> I.A. Chisholm. Serum thio-<br />

cyanate concentration <strong>in</strong> tobacco amblyopia. Nature 218:586<br />

(1968)<br />

10. B.O. Osuntokun. Cassava diet, chronic cyanide <strong>in</strong>toxication <strong>and</strong><br />

neuropathy <strong>in</strong> Nigerian Africans. World Rev. Nutr. Diet 36:<br />

141-173 (1981).<br />

11. D.E. McMillan <strong>and</strong> P.J. Geevarghese. Dietary cyanide <strong>and</strong> tropical<br />

malnutrition diabetes. Diabetes Care 2.' 202-208 (1979)<br />

12. F. Delange, V.D. Velden, <strong>and</strong> A.M. Ermans. Evidence <strong>of</strong> an an-<br />

tithyroid action <strong>of</strong> cassava <strong>in</strong> man <strong>and</strong> <strong>in</strong> animals. In Chronic Cas-<br />

sava Toxicity, B. Nestel <strong>and</strong> R.M. Maclntyre, Eds. Int. Devel. Res.<br />

Centre, Ottawa, Canada, 1973, pp 147-151.<br />

13. C.J. Vesey <strong>and</strong> C.J.C. Kirk. Two automated methods for mea-<br />

sur<strong>in</strong>g plasma thiocyanate compared. Cl<strong>in</strong>. Chem. 95:270-274<br />

(1985)<br />

14. N. Grgur<strong>in</strong>ovich. A colorimetric procedure for the determ<strong>in</strong>ation<br />

<strong>of</strong> thiocyanate <strong>in</strong> plasma. J. Anal. Toxicol. 6:53-55 (1982)<br />

15. A.R. Pettigrew <strong>and</strong> G.S. Fell. Simplified colorimetric determ<strong>in</strong>a-<br />

tion <strong>of</strong> thiocyanate <strong>in</strong> biological fluids, <strong>and</strong> its application to <strong>in</strong>-<br />

vestigation <strong>of</strong> the toxic amblyopias. Cl<strong>in</strong>. Chem. 18:996-1000<br />

(1972)<br />

16. R.G. Bowler. The determ<strong>in</strong>ation <strong>of</strong> thiocyanate <strong>in</strong> blood serum.<br />

Biochem. J. 38:385-388 (1944)<br />

17. P. Lundquist, H. Rosl<strong>in</strong>g, <strong>and</strong> B. Sorbo. Determ<strong>in</strong>ation <strong>of</strong> cyanide<br />

<strong>in</strong> whole blood, erythrocytes, <strong>and</strong> plasma. Cl<strong>in</strong>. Chem. 31:<br />

591-595 (1985)<br />

18. P. Lundquist <strong>and</strong> B. Sorbo. Rapid determ<strong>in</strong>ation <strong>of</strong> toxic cyanide<br />

concentrations <strong>in</strong> blood. Cl<strong>in</strong>. Chem. 35:617-619 (1989)<br />

19. W.J. K6nig. Untersuchungen aus dem organischen Jaboratorium<br />

der technischen hochschule zu dresen. LXlX. Uber e<strong>in</strong>e neue,<br />

vom pyrid<strong>in</strong> deriveirende, klasse von farbst<strong>of</strong>fen. Prakt. Chem. 69'<br />

105-137 (1904)<br />

20. Y. Michigami, T. Takahashi, F. He, Y. Yamamoto, <strong>and</strong> K. Ueda. De-<br />

term<strong>in</strong>ation <strong>of</strong> thiocyanate <strong>in</strong> human serum <strong>by</strong> ion chromatog-<br />

raphy. Analyst 113:389-392 (1988)<br />

21. S. Ch<strong>in</strong>aka, N. Takayama, Y. Michigami, K. Ueda. Simultaneous<br />

determ<strong>in</strong>ation <strong>of</strong> cyanide <strong>and</strong> thiocyanate <strong>in</strong> blood <strong>by</strong> ion chro-<br />

matography with fluorescence <strong>and</strong> ultraviolet detection. J. Chro-<br />

matogr. B 713:353-359 (1998)<br />

22. J. Zamecnik <strong>and</strong> J. Tam. <strong>Cyanide</strong> <strong>in</strong> blood <strong>by</strong> gas chromatography<br />

with NP detector <strong>and</strong> acetonitrile as <strong>in</strong>ternal st<strong>and</strong>ard. Application<br />

on air accident fire victims. J. Anal. Toxicol. 11 : 47-48 (1987)<br />

23. C. Maseda, K. Matsubara, <strong>and</strong> H. Shiono. Improved gas chro-<br />

matography with electron-capture detection us<strong>in</strong>g a reaction pre-<br />

column for the determ<strong>in</strong>ation <strong>of</strong> blood cyanide: a higher content<br />

<strong>in</strong> the left ventricle <strong>of</strong> fire victims. J. Chromatogr. 490:319-327<br />

(1989)<br />

24. Y. Seto, N. Tsunoda, H. Ohta, <strong>and</strong> T. Sh<strong>in</strong>ohara. Determ<strong>in</strong>ation <strong>of</strong><br />

blood cyanide <strong>by</strong> headspace gas chromatography with nitrogen-<br />

phosphorus detection <strong>and</strong> us<strong>in</strong>g a megabore capillary column.<br />

Anal. Chim. Acta 276:247-259 (1993)<br />

25. S. Kage, T. Takeaki, <strong>and</strong> K. Kudo. Determ<strong>in</strong>ation <strong>of</strong> cyanide <strong>and</strong><br />

thiocyanate <strong>in</strong> blood <strong>by</strong> gas chromatography <strong>and</strong> gas chro-<br />

matography-mass spectrometry. J. Chromatogr. B 675:27-32<br />

(1996)<br />

26. A. SanD, N. Takimoto, <strong>and</strong> S. Takitani. High-performance liquid<br />

chromatographic determ<strong>in</strong>ation <strong>of</strong> cyanide <strong>in</strong> human red blood<br />

cells <strong>by</strong> pre-column fluorescence derivatization. ]. Chromatogr.<br />

582:13t-t35 (1992)<br />

27. S. Tanabe, M. Kitahara, M. Nawata, <strong>and</strong> K. Kawanabe. Determi-<br />

nation <strong>of</strong> oxidizable <strong>in</strong>organic anions <strong>by</strong> high-performance liquid<br />

chromatography with fluorescence detection <strong>and</strong> application to<br />

the determ<strong>in</strong>ation <strong>of</strong> salivary nitrite <strong>and</strong> thiocyanate <strong>and</strong> serum<br />

thiocyanate. J. Chromatogr. 424:29-37 (1988)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!