29.03.2013 Views

Use of nasal and buccal cells in human biomonitoring ... - Formacare

Use of nasal and buccal cells in human biomonitoring ... - Formacare

Use of nasal and buccal cells in human biomonitoring ... - Formacare

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Use</strong> <strong>of</strong> <strong>nasal</strong> <strong>and</strong> <strong>buccal</strong> <strong>cells</strong> <strong>in</strong> <strong>human</strong><br />

biomonitor<strong>in</strong>g studies for the detection<br />

<strong>of</strong> cytotoxic <strong>and</strong> DNA-damag<strong>in</strong>g<br />

siegfried.knasmueller@meduniwien.ac.at<br />

chemicals<br />

Siegfried Knasmüller,<br />

A. Nersesyan, M. Misik<br />

Cancer Research Institute, Innere Mediz<strong>in</strong> I<br />

Medic<strong>in</strong>e University <strong>of</strong> Vienna<br />

1


siegfried.knasmueller@meduniwien.ac.at<br />

Topics<br />

• background <strong>and</strong> historical notes<br />

• methodological aspects<br />

– MN assays with exfoliated <strong>buccal</strong> <strong>cells</strong><br />

– MN assays with <strong>nasal</strong> <strong>cells</strong><br />

– Advantages /disadvantages <strong>in</strong> comparison to<br />

MN assays with lymphocytes<br />

• <strong>Use</strong> <strong>of</strong> MN assays with exfoliated <strong>cells</strong> <strong>in</strong> <strong>human</strong><br />

biomonitor<strong>in</strong>g; the current data base<br />

• Studies on FA exposure<br />

• Conclusions<br />

2


siegfried.knasmueller@meduniwien.ac.at<br />

Background<br />

A variety <strong>of</strong> methods has been developed to detect exposure <strong>of</strong> <strong>human</strong>s<br />

to genotoxic carc<strong>in</strong>ogens<br />

<strong>in</strong> <strong>human</strong> <strong>cells</strong><br />

Adducts<br />

Chromosomal<br />

aberrrations<br />

Micronuclei<br />

Comet - Assay<br />

OH<br />

8 - Hydroxydeoxyguanos<strong>in</strong>e<br />

3


Not all endpo<strong>in</strong>ts are related to cancer risks !!!!<br />

• MN <strong>in</strong> lymphocytes <strong>and</strong> <strong>buccal</strong> <strong>cells</strong> reflect<br />

<strong>human</strong> cancer risks.<br />

• Chromosomal aberrations <strong>in</strong> lymphocytes<br />

correlate with <strong>human</strong> cancer risks.<br />

• Sister chromatid exchanges <strong>in</strong> lymphocytes: no<br />

correlation.<br />

• Comets: not known !!!!!<br />

• DNA Adducts: for certa<strong>in</strong> adducts clear<br />

associations were established.<br />

• OHdG <strong>in</strong> ur<strong>in</strong>e <strong>and</strong> lymphocytes: not known.<br />

siegfried.knasmueller@meduniwien.ac.at<br />

4


Not all endpo<strong>in</strong>ts are related to cancer risks !!!!<br />

siegfried.knasmueller@meduniwien.ac.at<br />

5


siegfried.knasmueller@meduniwien.ac.at<br />

Micronucleus<br />

conta<strong>in</strong><strong>in</strong>g an entire<br />

chromosome<br />

Micronuclei are<br />

formed as a<br />

consequence<br />

<strong>of</strong> chromosome<br />

breaks <strong>and</strong><br />

aneuploidy<br />

6


siegfried.knasmueller@meduniwien.ac.at<br />

Historical notes<br />

• Micronuclei were discovered by Schmid <strong>in</strong> 1972.<br />

• The first experiment with exfoliated <strong>cells</strong> was conducted by<br />

Stich <strong>and</strong> Parida <strong>in</strong> 1982.<br />

• The first FA study with <strong>nasal</strong> <strong>cells</strong> was published <strong>in</strong> 1992 by<br />

Ballar<strong>in</strong> et al.<br />

• A review on the effects <strong>of</strong> FA <strong>in</strong> exfoliated <strong>cells</strong> appeared <strong>in</strong><br />

2006 (Speit et al.)<br />

• In 2004 the HUMN xl consortium was formed (M. Fenech, E.<br />

Zeiger, N. Holl<strong>and</strong>, C. Bolognesi, S Burgaz, S. Knasmüller)<br />

<strong>and</strong> started to evaluate <strong>and</strong> st<strong>and</strong>ardize MN experiments<br />

with exfoliated <strong>buccal</strong> <strong>cells</strong>.<br />

7


Methodological aspects- experiments with<br />

<strong>buccal</strong> <strong>cells</strong><br />

Holl<strong>and</strong> et al., Mutat Res 2008<br />

• Cells migrate from the basal membrane to the surface<br />

<strong>and</strong> are replaced by new <strong>cells</strong>; dur<strong>in</strong>g this process the<br />

<strong>cells</strong> divide <strong>and</strong> form MN.<br />

siegfried.knasmueller@meduniwien.ac.at<br />

8


Different types <strong>of</strong> nucelar aberrations can be<br />

identified <strong>in</strong> the <strong>cells</strong><br />

siegfried.knasmueller@meduniwien.ac.at<br />

9


Some endpo<strong>in</strong>ts reflect cytotoxicity others are<br />

considered to be a consequence <strong>of</strong> genetic damage<br />

• Genotoxic effects:<br />

– Micronuclei: aneugenic <strong>and</strong> clastogenic effect<br />

– B<strong>in</strong>ucleates: sp<strong>in</strong>dle disturbance<br />

– Nuclear buds: gene amplification<br />

• Cytotoxicity:<br />

– Pycnosis<br />

– Karyolysis<br />

– Condensed chromat<strong>in</strong><br />

– Karyorexis<br />

siegfried.knasmueller@meduniwien.ac.at<br />

10


Nat Protoc. 2009;4(6):825-37. 2009 Buccal micronucleus cytome assay. Thomas P, Holl<strong>and</strong> N, Bolognesi<br />

C, Kirsch-Volders M, Bonassi S, Zeiger E, Knasmueller S, Fenech M<br />

siegfried.knasmueller@meduniwien.ac.at<br />

11


Development <strong>of</strong> a st<strong>and</strong>ardized protocol……<br />

siegfried.knasmueller@meduniwien.ac.at<br />

12


• Sta<strong>in</strong><strong>in</strong>g<br />

siegfried.knasmueller@meduniwien.ac.at<br />

Important aspects<br />

• Preparation <strong>of</strong> optimal slides with a cytosp<strong>in</strong><br />

centrifuge<br />

• Number <strong>of</strong> <strong>cells</strong> that has to be scored<br />

• Number <strong>of</strong> <strong>in</strong>dividuals<br />

13


siegfried.knasmueller@meduniwien.ac.at<br />

Sta<strong>in</strong><strong>in</strong>g<br />

a b<br />

c<br />

Figures a <strong>and</strong> c depict May-Grünwald-Giemsa sta<strong>in</strong>ed <strong>cells</strong>.<br />

Figures b <strong>and</strong> d show the same <strong>cells</strong> after sta<strong>in</strong><strong>in</strong>g with Feulgen <strong>and</strong><br />

DAPI.<br />

d<br />

A large number <strong>of</strong><br />

earlier studies used<br />

DNA unspecific sta<strong>in</strong>s<br />

(e.g. Giemsa) which<br />

lead to false positive<br />

results (as they sta<strong>in</strong><br />

kerat<strong>in</strong> bodies that are<br />

formed <strong>in</strong> epithelial<br />

<strong>cells</strong> as a consequence<br />

<strong>of</strong> cytotoxicity.<br />

Nersesyan et al. Cancer Epidemiol Biomarkers Prev<br />

2006;15(10). October 2006<br />

14


siegfried.knasmueller@meduniwien.ac.at<br />

Slide preparation<br />

• Optimal slide preparation<br />

is achieved by use <strong>of</strong> a<br />

cytosp<strong>in</strong>.<br />

• Direct smears will lead to<br />

„low quality slides“ that are<br />

hard to evaluate.<br />

15


Number <strong>of</strong> <strong>cells</strong> which should be scored<br />

• Ceppi et al. (2010) suggest to score per <strong>in</strong>dividual 4000<br />

<strong>cells</strong>, this number is rarely reached <strong>in</strong> earlier studies.<br />

• However Thomas et al. 2009 suggest scor<strong>in</strong>g <strong>of</strong> 2000<br />

<strong>cells</strong>.<br />

siegfried.knasmueller@meduniwien.ac.at<br />

16


Number <strong>of</strong> participants<br />

requested<br />

siegfried.knasmueller@meduniwien.ac.at<br />

• The number <strong>of</strong><br />

participants which<br />

should be evaluated<br />

depends on the<br />

magnitude <strong>of</strong> the<br />

effect.<br />

• Ceppi et al. (2010)<br />

state that 120<br />

<strong>in</strong>dividuals (60<br />

controls <strong>and</strong> 60<br />

exposed) have to be<br />

analyzed <strong>in</strong> order to<br />

detect a 50% <strong>in</strong>crease<br />

<strong>of</strong> MN over the<br />

background.<br />

Mutat Res. 2010 Jul-Sep;705(1):11-9. Ceppi M, Biasotti B, Fenech M, Bonassi S.<br />

17


Average background frequencies <strong>of</strong> different anomalies<br />

Nuclear anomaly Number <strong>of</strong> subjects Mean±SE Ref.<br />

MNed <strong>cells</strong> 703 0.83±0.04<br />

Nuclear buds (broken<br />

egg)<br />

siegfried.knasmueller@meduniwien.ac.at<br />

789 1.36±0.08<br />

B<strong>in</strong>ucleated <strong>cells</strong> 852 3.04±0.20<br />

Karyorrhectic <strong>cells</strong> 408 2.23±0.25<br />

Pycnotic <strong>cells</strong> 210 4.38±0.52<br />

MNed <strong>cells</strong> Metanalysis <strong>of</strong> 63<br />

studies<br />

Bonassi et al., 2011<br />

1.10±0.55 Ceppi et al., 2010<br />

18


Methodological aspects: experiments with<br />

<strong>nasal</strong> <strong>cells</strong><br />

• The morphological features <strong>of</strong> the anomalies are similar as<br />

those found <strong>in</strong> <strong>buccal</strong> <strong>cells</strong>; however, the nuclei <strong>of</strong> the <strong>cells</strong><br />

are larger, many ciliated <strong>cells</strong> are found <strong>in</strong> the smears <strong>and</strong><br />

also goblet <strong>cells</strong> as well as lymphocytes <strong>and</strong> granulocytes.<br />

siegfried.knasmueller@meduniwien.ac.at<br />

19


Numbers <strong>in</strong> the picture A <strong>in</strong>dicate:<br />

1 - ciliated cell with 3 MNi<br />

2 - nuclear bud<br />

3 - normal ciliated cell<br />

4 - karyorrhexis<br />

5 - karyolysis<br />

6 - condensed chromation<br />

Picture B - 2 normal ciliated <strong>cells</strong><br />

A<br />

siegfried.knasmueller@meduniwien.ac.at<br />

B<br />

20


siegfried.knasmueller@meduniwien.ac.at<br />

Methodological aspects<br />

• The collection <strong>of</strong> <strong>cells</strong> with a cytobrush is more<br />

tricky as the collection <strong>of</strong> <strong>cells</strong> from the oral<br />

cavity.<br />

• The site <strong>of</strong> collection was shown to have an<br />

impact on the results. Apart from nuclear<br />

anomalies also metaplastic <strong>and</strong> dysplastic <strong>cells</strong><br />

can be scored.<br />

21


Figure 1. Nasal cytopathologic<br />

f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> nonsmok<strong>in</strong>g customs<br />

<strong>of</strong>ficers exposed to DEE<br />

throughout the<br />

year (Papanicolaou sta<strong>in</strong>). (A)<br />

Squamous cell metaplasia. (B)<br />

Cyl<strong>in</strong>der cell dysplasia. (C) Squamous<br />

cell<br />

dysplasia with mitotic figure (arrow).<br />

The scale bar <strong>in</strong> (B) also applies to (A)<br />

<strong>and</strong> (C).<br />

Glück et al. 2003 Environ<br />

Health Perspectives<br />

siegfried.knasmueller@meduniwien.ac.at<br />

22


siegfried.knasmueller@meduniwien.ac.at<br />

The current data base<br />

23


MN studies with exfoliated <strong>buccal</strong> <strong>cells</strong><br />

• In total ca. 300 studies have been published so far.<br />

• They concern the effects <strong>of</strong> lifestyle factors (betel<br />

chew<strong>in</strong>g, smok<strong>in</strong>g), health status, dietary factors<br />

<strong>and</strong> occupational exposure.<br />

siegfried.knasmueller@meduniwien.ac.at<br />

24


siegfried.knasmueller@meduniwien.ac.at<br />

25


MN studies with <strong>nasal</strong> <strong>cells</strong><br />

• In total only 19 studies were published, <strong>in</strong> most <strong>of</strong> them only<br />

MN were scored (three studies <strong>in</strong>cluded also other nuclear<br />

anomalies).<br />

• The <strong>in</strong>vestigations concerned the effects <strong>of</strong> occupational<br />

exposure (n=17/ 8 FA exposure), 2 <strong>in</strong>vestigations concerned<br />

air pollution <strong>in</strong> cities.<br />

siegfried.knasmueller@meduniwien.ac.at<br />

26


Chicken manure<br />

B: ─ / N ─<br />

Studies conducted <strong>in</strong> Vienna (ICR)<br />

Welders<br />

B: + (2 studies)<br />

siegfried.knasmueller@meduniwien.ac.at<br />

Khat chewers Coca chewers<br />

B: ─ / N + B: +<br />

B: ─<br />

Smok<strong>in</strong>g<br />

r<strong>in</strong>g trial (<strong>in</strong> progress)<br />

27


Fold <strong>in</strong>crease over background<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Which endpo<strong>in</strong>ts are the most sensitive<br />

ones???<br />

Nersesyan et al. 2006 -<br />

Smokers <strong>of</strong> unfiltered cigarets<br />

MN BE KR<br />

siegfried.knasmueller@meduniwien.ac.at<br />

Fold <strong>in</strong>crease over background<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Celik et al. 2004 -<br />

pa<strong>in</strong>ters (n=60 <strong>in</strong> each group)<br />

MN BE<br />

Rekhadevi et al. 2010 -<br />

fuel fill<strong>in</strong>g station attendants (n=100 <strong>in</strong> each group)<br />

Fold <strong>in</strong>crease over background<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

MN BE KR<br />

28


Which cell types are more sensitive, <strong>nasal</strong> or <strong>buccal</strong> <strong>cells</strong>?<br />

MN/1000 <strong>cells</strong><br />

MN/1000 <strong>cells</strong><br />

Gonsebatt et al. 2000 -<br />

Air pollution <strong>in</strong> Mexico City (n=20/group)<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Nasal Buccal Nasal Buccal<br />

Polluted area Control area<br />

Titenko-Holl<strong>and</strong> et al. 1996 -<br />

formadehyde exposure (n=19/group)<br />

Nasal Buccal Nasal Buccal<br />

Exposed Controls<br />

siegfried.knasmueller@meduniwien.ac.at<br />

MN/1000 <strong>cells</strong><br />

MN/1000 <strong>cells</strong><br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

3<br />

2<br />

1<br />

0<br />

Burgaz et al. 1998 -<br />

Welders I (n=32/group)<br />

Nasal Buccal Nasal Buccal<br />

Exposed Controls<br />

Wultsch et al. unpublished -<br />

Welders II (n=25/group)<br />

Nasal Buccal Nasal Buccal<br />

Exposed Controls<br />

29


Why experiments with exfoliated <strong>cells</strong>?<br />

(comparison <strong>of</strong> advantages <strong>and</strong> disadvantages <strong>in</strong><br />

relation <strong>of</strong> experiment with lymphocytes)<br />

Lymphocytes Buccal/Nasal <strong>cells</strong><br />

Large database (ca 2100 studies) only around 300 studies<br />

Automated evaluation available automated evaluation <strong>in</strong> preparation<br />

sampl<strong>in</strong>g <strong>in</strong>vasive sampl<strong>in</strong>g not <strong>in</strong>vasive<br />

long turnover time <strong>of</strong> lymphocytes short turnover time (2-3-weeks)<br />

Efficient DNA repair low repair capacity <strong>of</strong> the <strong>cells</strong><br />

(higher sensitivity)<br />

Indirect relation to cancer ≥90% <strong>of</strong> cancers are <strong>of</strong> epithelial orig<strong>in</strong><br />

siegfried.knasmueller@meduniwien.ac.at<br />

30


FA studies with exfoliated <strong>cells</strong><br />

• S<strong>in</strong>ce 2006 four further studies were<br />

published<br />

siegfried.knasmueller@meduniwien.ac.at<br />

31


Micronucleus frequencies <strong>in</strong> exfoliated <strong>buccal</strong> <strong>cells</strong> <strong>of</strong> <strong>human</strong> subjects after<br />

formaldehyde exposure<br />

Study size (subjects/<strong>cells</strong> scored) Exposur<br />

e (ppm)<br />

29 Pre- <strong>and</strong> post exposure<br />

1500 <strong>cells</strong>/subject<br />

28 Pre- <strong>and</strong> post exposure<br />

500–4000 <strong>cells</strong>/per subject<br />

28 Exposed/18 controls<br />

3000 <strong>cells</strong>/subject<br />

80 Exposed/85<br />

Controls<br />

2000 <strong>cells</strong>/subject<br />

16 Exposed/23 controls<br />

????? <strong>cells</strong>/subject<br />

56 Exposed/85 controls<br />

2000 <strong>cells</strong>/subject<br />

21 Pre- <strong>and</strong> post exposure 1000 -<br />

2000 <strong>cells</strong>/subject<br />

1.4<br />

(peak:<br />

6.6)<br />

1.4<br />

(peak:<br />

6.6)<br />

siegfried.knasmueller@meduniwien.ac.at<br />

Sta<strong>in</strong><strong>in</strong>g Result: <strong>buccal</strong> <strong>cells</strong><br />

(exposed<br />

(‰)/controls (‰))<br />

Feulgen/Fast green 0.6/0.046<br />

↑ 1.6<br />

FISH/propidium<br />

iodide<br />

2.0/0.6<br />

↑ 3.3<br />

2–4 Feulgen /fast green 7.1/3.3<br />

↑ 2.2<br />

0.25 Feulgen/no<br />

counter sta<strong>in</strong><br />

1.27/0.13<br />

↑ 9.8<br />

0.64/0.13<br />

↑ 4.9<br />

0.1 Wright's sta<strong>in</strong> 0.86/0.57<br />

↔<br />

0.16 Feulgen/no<br />

counter sta<strong>in</strong><br />

0.96/0.16<br />

↑ 6.0<br />

13.5 DAPI 1.33/0.90<br />

↔<br />

Ref. Notes<br />

Suruda et al.,<br />

1993<br />

Titenko-<br />

Holl<strong>and</strong> et al.,<br />

1996<br />

Burgaz et al.,<br />

2002<br />

Viegas et al.,<br />

2010<br />

Y<strong>in</strong>g et al.,<br />

1997<br />

Ladeira et al.,<br />

2011<br />

Speit et al.,<br />

2007<br />

0 MN <strong>in</strong> 22 males,<br />

but 0.19‰ <strong>in</strong><br />

females<br />

First study <strong>of</strong> <strong>buccal</strong><br />

<strong>cells</strong> with FISH<br />

technique<br />

-<br />

-<br />

Not reliable results<br />

because <strong>of</strong> sta<strong>in</strong><br />

♀↑ 10.4/♂↑ 2.8<br />

Exposure under<br />

controlled<br />

conditions<br />

32


Micronucleus frequencies <strong>in</strong> exfoliated <strong>nasal</strong> <strong>cells</strong> <strong>of</strong> <strong>human</strong> subjects after<br />

formaldehyde exposure<br />

Study size (subjects/<strong>cells</strong><br />

scored)<br />

15 Exposed/15 controls<br />

6000 <strong>cells</strong>/subject<br />

29 Pre- <strong>and</strong> post exposure<br />

1500 <strong>cells</strong>/subject<br />

28 Pre- <strong>and</strong> post exposure<br />

500–4000 <strong>cells</strong>/per subject<br />

23 Exposed/25 controls<br />

3000 <strong>cells</strong>/subject<br />

18 Exposed/23 controls<br />

3000 <strong>cells</strong>/subject<br />

16 Exposed/23 controls<br />

????? <strong>cells</strong>/subject<br />

41 Exposed/the same subject were<br />

controls 1000-2000 cell subject<br />

Exposure<br />

(ppm)<br />

siegfried.knasmueller@meduniwien.ac.at<br />

Sta<strong>in</strong><strong>in</strong>g<br />

0.1–0.39 Feulgen/Fast green<br />

1.4 (peak:<br />

6.6)<br />

1.4 (peak:<br />

6.6)<br />

Feulgen/Fast green<br />

FISH/propidium<br />

iodide<br />

2–4 Feulgen/Fast green<br />

1 Wright's sta<strong>in</strong><br />

0.1 Wright's sta<strong>in</strong><br />

0 to 0.7<br />

Result: <strong>nasal</strong> <strong>cells</strong><br />

(exposed (‰)/controls<br />

(‰))<br />

0.90/0.25<br />

↑ 3.6<br />

0.5/0.41<br />

↔<br />

2.5/2.0<br />

↔<br />

1.0/0.61<br />

↑ 1.6<br />

2.70/1.25<br />

↑ 2.2<br />

3.9/1.2<br />

↑ 3.3<br />

DAPI 0.21/0.17<br />

↔<br />

Ref. Notes<br />

Ballar<strong>in</strong> et al.,<br />

1992<br />

Suruda et al.,<br />

1993<br />

Titenko-Holl<strong>and</strong><br />

et al., 1996<br />

Burgaz et al.,<br />

2001<br />

Ye et al., 2005<br />

Y<strong>in</strong>g et al., 1997<br />

Zeller et al.,<br />

2011<br />

-<br />

13% <strong>in</strong>crease <strong>in</strong><br />

males, 37% <strong>in</strong><br />

females<br />

First study <strong>of</strong> <strong>nasal</strong><br />

<strong>cells</strong> with FISH<br />

technique<br />

-<br />

Not reliable results<br />

because <strong>of</strong> sta<strong>in</strong><br />

Not reliable results<br />

because <strong>of</strong> sta<strong>in</strong><br />

Exposure under<br />

controlled<br />

conditions 33


siegfried.knasmueller@meduniwien.ac.at<br />

Comments I<br />

• Two studies used Wright's sta<strong>in</strong> (a modified Giemsa<br />

sta<strong>in</strong><strong>in</strong>g procedure), their results are irrelevant as<br />

unspecific sta<strong>in</strong>s give mislead<strong>in</strong>g results.<br />

• In one study (Suruda et al. 1993) no MN were found <strong>in</strong><br />

samples from males (controls), this result is out <strong>of</strong> the<br />

acceptable range calculated by Bonassi et al. (2011) <strong>and</strong><br />

is therefore, irrelevant.<br />

34


siegfried.knasmueller@meduniwien.ac.at<br />

Comments II<br />

• The results <strong>of</strong> the rema<strong>in</strong><strong>in</strong>g studies are controversial; none <strong>of</strong><br />

them fulfills the criteria for optimal <strong>in</strong>vestigations<br />

• Ladeira et al (2011) <strong>and</strong> also Viegas et al (2010) conducted<br />

relatively large studies; they evaluated 2000 <strong>cells</strong> <strong>and</strong> used<br />

Feulgen without counter sta<strong>in</strong>.<br />

• All other studies were smaller as suggested <strong>and</strong> <strong>in</strong> some <strong>of</strong><br />

them the number <strong>of</strong> evaluated <strong>cells</strong> was below 2000 (Holl<strong>and</strong><br />

et al, 1996, Zeller et al, 2011).<br />

• In none <strong>of</strong> the FA studies published so far nuclear anomalies<br />

other than MN were evaluated.<br />

35


siegfried.knasmueller@meduniwien.ac.at<br />

Overall conclusions<br />

The methods for MN studies with exfoliated <strong>cells</strong> have been<br />

substantially improved <strong>in</strong> the last years by the jo<strong>in</strong>t efforts <strong>of</strong> the<br />

HUMN XL consortium. It was shown that the MN frequencies <strong>of</strong><br />

exfoliated <strong>cells</strong> <strong>of</strong> the oral cavity correlate with <strong>human</strong> cancer<br />

risks <strong>and</strong> are therefore valuable biomarkers for the detection <strong>of</strong><br />

exposure to genotoxic carc<strong>in</strong>ogens. Nasal <strong>cells</strong> have been less<br />

frequently used as oral <strong>cells</strong> but the morphological<br />

characteristics <strong>of</strong> their nuclear anomalies are similar as those<br />

seen <strong>in</strong> <strong>buccal</strong> <strong>cells</strong>. Results obta<strong>in</strong>ed so far with FA exposed<br />

<strong>in</strong>dividuals yielded controversial results; three studies <strong>in</strong> which<br />

positive results were obta<strong>in</strong>ed are <strong>in</strong>adequate due to<br />

methodological shortcom<strong>in</strong>gs.<br />

36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!