29.03.2013 Views

Frank Hekking - Physics@Technion

Frank Hekking - Physics@Technion

Frank Hekking - Physics@Technion

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Superconducting charge pumps<br />

<strong>Frank</strong> <strong>Hekking</strong><br />

Université Joseph Fourier<br />

& Institut Universitaire de France<br />

Laboratoire de Physique et Modélisation<br />

des Milieux Condensés<br />

Maison des Magistères Jean Perrin<br />

CNRS-Grenoble, France<br />

Together with V. Brosco, R. Fazio, F. Taddei, Pisa (Italy)<br />

M. Möttönen, J. Pekola, J. Vartiainen, Helsinki (Finland)<br />

M. Governale, Bochum (Germany)<br />

Acknowledgment: D. Greenbaum, Y. Gefen<br />

Quantum Pumping, January 7-12, 2007<br />

The Lewiner Institute for Theoretical Physics, Technion, Haifa, Israel


Introduction & Motivation<br />

Outline<br />

Adiabatic charge transfer in Cooper pair pumps<br />

- Relation between pumped charge and geometric phase<br />

Open Cooper pump<br />

-Adiabatic manipulation of Andreev bound states<br />

Closed Cooper pump<br />

-Effect of measuring device on pumped charge<br />

Conclusion


Introduction & Motivation


Parametric pumping in the normal state<br />

« Open » systems « Closed » systems<br />

(Brouwer PRB98)<br />

- modulation of transmission phase<br />

- electronic phase coherence crucial<br />

- interactions weak<br />

- non-integer number of electrons per cycle<br />

(Thouless PRB83, Brouwer PRB98<br />

Switkes et al. Science99)<br />

(Zorin JAP00)<br />

- modulation of Coulomb blockade<br />

- interactions crucial (charge quantization)<br />

- interference effects weak<br />

- integer number of electrons per cycle<br />

(Delft-Saclay, NIST Boulder<br />

PTB Braunschweig, TKK Helsinki)


Normal three-junction pump<br />

Central idea: controlled charge transfer<br />

upon gate modulation<br />

I = e f


Experiment (Delft-Saclay)<br />

(Pothier et al. EPL92)


Single Cooper pair pump (Delft-Saclay)<br />

(Geerligs et al., ZPB ’91)


Revived interest in superconducting pumps<br />

Metrology:<br />

operation of normal state multijunction pumps limited by RC-time<br />

- Pekola et al. PRB99: theory of coherent charge transfer<br />

- Zorin et al. cond-mat00: experiment on a resistive pump<br />

- Vartiainen et al, cond-mat 06, nanoampere pumping of Cooper pairs<br />

Quantum information processing:<br />

adiabatic manipulation of individual Cooper pairs<br />

- Averin cond-mat97: adiabatic quantum computing with Cooper pairs<br />

- Falci et al., Science 00: geometricJosephson qubits<br />

- Ioffe & Feigelman PRB02: protected Josephson qubits<br />

- Bibow et al . PRL02: experiment on resonant tunnelling through coherent charge states


Adiabatic charge transfer in Cooper pair pumps<br />

Relation between pumped charge and geometric phase<br />

Möttönen et al, PRB06<br />

Brosco et al., unpublished


Adiabatic charge transfer in Cooper pair pumps<br />

H(t) = H(Φ, {λ i(t)})<br />

Phase difference across pump<br />

Control parameters<br />

Adiabatic transfer of Cooper pairs is obtained by slow periodic modulation of<br />

control parameters


Adiabatic expansion<br />

Solution of Schrödinger equation up to first<br />

order in 1/T<br />

T denotes the duration of a<br />

pumping cycle<br />

Dynamical contribution, O(T) Geometrical<br />

contribution, O(0)


Instantaneous eigenstates<br />

Initial condition<br />

Instantaneous eigenstates<br />

Expansion in terms of instantaneous eigenstates<br />

Dynamical phase Berry phase


Charge pumped in a cycle of duration T<br />

Dynamical<br />

contribution, O(T)<br />

Geometrical<br />

contribution, O(0)<br />

Berry phase


First example: « open » Cooper pump<br />

Adiabatic manipulation of Andreev bound states<br />

Governale et al, PRL05


−φ/2<br />

Δ0 Hamiltonian<br />

0<br />

0<br />

Open SNS pump<br />

φ(r)<br />

Δ(r)<br />

φ/2<br />

Δ 0


Andreev bound states in the absence of normal<br />

scattering<br />

Plane-wave solutions for particles and holes<br />

Matching yields discrete spectrum<br />

(Kulik, Sov. Phys. JETP70)<br />

NS interface:<br />

Andreev reflection process<br />

χ<br />

Scattering amplitude: α e<br />

±i χ


Andreev bound states in the presence of normal<br />

scattering<br />

(Beenakker, Les Houches 94)<br />

Andreev reflection<br />

Phase factor<br />

Normal scattering<br />

Normal state scattering matrix


Andreev bound states in a short single channel pump<br />

Schrödinger equation<br />

Instantaneous eigenstates<br />

If W < ξ 0<br />

States above the gap do not contribute to current


Dynamical contribution, O(T)<br />

Pumped charge<br />

Geometrical contribution, O(0)


Results<br />

Difference in scales<br />

Q Jos(φ) is O(T), Q p(φ) is O(1)<br />

Parity:<br />

Q Jos(φ) odd, Q p(φ) even<br />

Measure Q(φ)+Q(−φ)<br />

Adiabaticity condition


Second example: « closed » Cooper pair pump<br />

Effect of measuring device<br />

on geometrically pumped charge<br />

Fazio et al, PRB03


Superconducting three-junction pump<br />

Charging energy dominates!


Charging energy: stability diagram


Josephson coupling: coherent mixing of charge states


Results


(Pekola et al. PRB99)<br />

Coherent Cooper pair pump<br />

Triangular gating sequence<br />

incoherent classical<br />

contribution<br />

coherent correction<br />

Interference due to higher order process


Pump: current generates<br />

flux through SQUID<br />

SQUID: critical current<br />

depends on flux<br />

Two possible measuring circuits<br />

Pump: current generates extra<br />

current through escape junction<br />

Escape junction in quantum limit:<br />

voltage sensitive to small current changes<br />

I (μA)<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

V=0<br />

V~2Δ/e<br />

-0.6 -0.4 -0.2 0 0.2 0.4 0.6<br />

Uech (mV)


Measurement circuit: the model<br />

Phase across junction fluctuates<br />

Physics governed by partition function


Integrate out circuit degrees of freedom<br />

Here<br />

Second order: interaction term<br />

Effective theory<br />

First order: renormalized Josephson coupling<br />

where


up to a frequency ω c<br />

RG-analysis:<br />

Resistive environment<br />

Effect on pumped charge<br />

where<br />

logarithmic divergence!<br />

low energy cut-off ω 0 = max (f, eV, …)


Coulomb blockade<br />

lifted at finite bias<br />

Resistive Cooper pair pump<br />

(Zorin, cond-mat00)<br />

Coulomb blockade at<br />

zero bias


α = ω<br />

LCL LCL<br />

s/R s/R<br />

Measurement with a SQUID loop<br />

Frequency-dependent impedance<br />

γ = M 2 /(L s L)<br />

Renormalized Josephson coupling<br />

independent of low energy cut-off!


η 0 R K/ω LCL J<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

Measurement with an escape junction<br />

2 4 6 8 10 12 14<br />

α = ωLCLJ/R Value of R: trade-off hysteresis-fluctuations<br />

Frequency-dependent<br />

impedance<br />

Renormalized Josephson coupling<br />

independent of low energy cut-off!


Conclusions<br />

Adiabatic charge transfer in Cooper pair pumps<br />

- Relation between pumped charge and geometric phase<br />

“Open” Cooper pump<br />

-Adiabatic manipulation of Andreev bound states<br />

“Closed” Cooper pump<br />

-Effect of measuring device on pumped charge:<br />

suppression of Josephson energy<br />

Examples<br />

-Resistive environment: efficiently suppresses coherent part<br />

-Inductive environment: coherent part survives<br />

-SQUID<br />

-Escape junction

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!