29.03.2013 Views

Fundamentals of TDDFT for nonlinear phenomena of light

Fundamentals of TDDFT for nonlinear phenomena of light

Fundamentals of TDDFT for nonlinear phenomena of light

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

OUTLINE<br />

Introduction: <strong>TDDFT</strong> some Open questions<br />

Monitor excitations; photoemission; Correlations ( H 2 ; H-chain )<br />

Four linked concepts:<br />

* Molecular dissociation: bumps in Vxc<br />

* Electron many-body tunneling<br />

* Rabi Oscillations population analysis<br />

* Photochemistry...<br />

Application: Organic photovoltaics: triads “carotene-porphyrine-C 60 ”<br />

Publications:<br />

Quantum coherence controls the charge separation in a prototypical artificial <strong>light</strong> harvesting system, C. A. Rozzi, S. M. Falke, N.<br />

Spallanzani, AR, E. Molinari, D. Brida, M. Maiuri, G. Cerullo, H. Schramm, J. Christ<strong>of</strong>fers, C. Lienau Nature Communications (2013)<br />

Simulating pump-probe photo-electron and absorption spectroscopy on the attosecond time-scale with time-dependent density-functional<br />

theory, U. De Giovannini, G. Brunetto, A. Castro, J. Walkenhorst, A.R, Chemphyschem (2013)<br />

Universal Dynamical Steps in the Exact Time-Dependent Exchange-Correlation Potential<br />

Peter Elliott, Johanna I. Fuks, Angel Rubio, Neepa T. Maitra, Physical Review Letters 109, 266404 (2012)<br />

<strong>Fundamentals</strong> <strong>of</strong> Time-Resolved Charge-Transfer in Time-Dependent Density Functional Theory,<br />

Johanna I. Fuks, Peter Elliott, AR, Neepa T. Maitra Journal Of Physical Chemistry Letters (2013)<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


E.g.<br />

Beyond linear response: Real-time dynamics<br />

High-harmonic generation<br />

Multiple-ionization<br />

Photo-dissociation<br />

Photo-isomerization<br />

Enhanced ionization<br />

Electronic quantum control<br />

Optimizing a single<br />

harmonic (in Ar)<br />

Light-driven chiral molecular<br />

motors, Yamaki, Nakayama, Hoki,<br />

Kono, Fujimura, Phys. Chem. Chem.<br />

Phys. 11, 1649 (2009) Dye-Sensitized Solar Cell<br />

But how well do the <strong>TDDFT</strong> approximations work ?<br />

…importance <strong>of</strong> exactly-solvable models…<br />

Murnane &<br />

Kapteyn et al,<br />

Nature 2000<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Photovoltaics<br />

Absorption <strong>of</strong> ligh<br />

(matching solar spectra)<br />

“Level alignment”<br />

Exciton dynamics and<br />

splitting<br />

Transport at the interface<br />

Extracting charges<br />

Efficiency<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Theoretical Framework(s)<br />

DFT & <strong>TDDFT</strong><br />

MBPT<br />

Octopus Code<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


<strong>TDDFT</strong> <strong>for</strong>mulation <strong>for</strong> BO-MD dynamics: Ehrenfest<br />

dynamics (non adiabatic)<br />

The equation <strong>of</strong> motion without external field <strong>for</strong> simplicity<br />

i ∂<br />

∂t i=[ −ℏ2<br />

2m ∇ 2 V ionV HV xc] i<br />

J.L. Alonso, X. Andrade, P. Echenique, F. Falceto, D. Prada, AR PRL (2008), JCTC (2009), NJP (2010)<br />

Non-adiabatic couplings:<br />

M I ¨R I =−∇ I E[ ,R]<br />

See <strong>for</strong> example review by N.L Doltsinis and D. Marx,<br />

J.Theo.Comp.Chem 1, 319 (2002) and the books on<br />

<strong>TDDFT</strong> Springer Lecture Notes in Physics Vol. 706<br />

(2006) and Vol. 837 (2012)<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


<strong>TDDFT</strong>: All observables are functionals <strong>of</strong> n(r,t) (Runge&Gross 1984)<br />

Absorption spectra: from the power spectrum <strong>of</strong> the TD dipole moment<br />

d(t) = < r n(r,t) > ------> d(w) = FT[d(t)]<br />

........... and current/magnetic and spin responses<br />

Ionisation yields:<br />

Linear and non linear <strong>phenomena</strong> accessible<br />

Octopus Code http://www.tddft.org<br />

Time-Dependent Density Functional Theory, Lecture Notes in Physics, Springer Vols. 837, 706 (2012, 2006)<br />

PES ( p)=∑ i ∣Ψ i( p , t →∞)∣ 2<br />

Excited state densities and transition probabilities<br />

....................... and many more observables!!!!!!<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Photoelectron spectroscopy: spatial and energy resolved<br />

U. De Giovannini, D. Varsano, H. Appel, M. A. L. Marques,, E.K.U. Gross and and A. Rubio (2012)<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Transient Photoelectron Spectroscopy –<br />

time resolved pump-probe spectroscopy<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


TRPES <strong>for</strong> C 2 H 4<br />

A pump<br />

A p probe<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


TRPES <strong>for</strong> C 2 H 4<br />

Simulating pump-probe photo-electron and absorption spectroscopy on the attosecond time-scale with time-dependent density-functional theory, U. D<br />

Giovannini, G. Brunetto, A. Castro, J. Walkenhorst, A.R, Chemphyschem (2013)<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Charge Transfer<br />

excitations?<br />

Photovoltaic Hybrids: Grätzell cells<br />

Road to Improving Efciency: Controlling position <strong>of</strong> the frontier orbitals<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Photovoltaics<br />

Absorption <strong>of</strong> ligh<br />

(matching solar spectra)<br />

“Level alignment”<br />

Exciton dynamics and<br />

splitting<br />

Transport at the interface<br />

Extracting charges<br />

Efficiency<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Can we modify/optimise<br />

and control the spectra <strong>of</strong><br />

a molecular system<br />

(”dye”) at will?<br />

Non-equilibrium and non-<br />

linear response functions<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Transient Absorption Spectroscopy<br />

“Unperturbed” Unperturbed” Time-dependent Hamiltonian<br />

: static Hamiltonian<br />

: “pump” laser pulse couple<br />

: initially the system is at an equilibrium<br />

state


Response<br />

Measured by the variation <strong>of</strong> the<br />

expectation value <strong>of</strong> some observable Â.<br />

Apply a weak probe pulse:<br />

The non-equilibrium response function is:<br />

The response will be a functional <strong>of</strong> both pump and probe<br />

pulses


Transient Absorption Spectroscopy: a test case<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Helium<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Ethylene molecule C 2 H 4<br />

Transient Absorption (TAS)<br />

The molecule is excited by a 45 cycle sin 2 envelope laser pulse polarized along<br />

the x- axis with carrier w = 0.297 a.u. <strong>of</strong> intensity I=1.38 10 11 W/cm 2 .<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Transient Absorption C2H2<br />

Laser Pump<br />

15 cycles with a Sine<br />

square envelope function<br />

Frequency: 0.264 Ha<br />

Intensity: 5x10 13 W/cm 2<br />

?<br />

To be complemented by an optimal control loop to<br />

match better a given spectral range (“solar”)<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Let's increase complexity ??!!!!<br />

H +<br />

H2<br />

2<br />

and Dimers<br />

Illustrate the problem <strong>of</strong> SIC and beyond from a different perspective<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


The step in KS potential: open shell fragments<br />

●Step aligns the atomic HOMOs<br />

●Kohn-Sham system builds a ”wall“ to mimick the repulsion due to<br />

interaction and prevent tunneling<br />

Prevents dissociation to unphysical fractional charges<br />

●Step-height = difference between highest eigenvalues <strong>of</strong> the two wells<br />

Step in exact KS potential that<br />

exactly realigns the two atomic<br />

HOMOs: Step Δ = |ID – IA|<br />

Early work <strong>of</strong> Perdew, Almbladh& von Barth, Gritsenko & Baerends<br />

Recent work <strong>of</strong> Tempel, Martinez, Maitra, JCTC (2009) and N. Helbig, I. Tokatly, A. Rubio, JCP (2009)<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


H 2<br />

Diference between the KS-efective potential<br />

and the external (ionic) one<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


V KS- V ionic<br />

H-chain<br />

Mott insulator : in DFT !!!<br />

Clearly all local functionals and most orbital dependent<br />

functionals do not capture the step in the potential<br />

The KS systems is metallic : fxc responsible <strong>for</strong> the gap<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Finding the exact time-dependent xc potential<br />

<strong>for</strong> a given known density-evolution<br />

• In general, not easy.<br />

• But <strong>for</strong> 2 electrons, starting in a doubly-occupied orbital, it’s easy<br />

Must have<br />

Insert φ(x,t) into TDKS equation, and solve <strong>for</strong> :<br />

Further, we have<br />

so we can extract<br />

(↑↓ -↓↑)/√2<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


We found a wide range <strong>of</strong> different types <strong>of</strong> two-electron dynamics<br />

display non-adiabatic and spatially non-local step-like features.<br />

What´s new?<br />

● our steps typically appear: no need <strong>for</strong> fractional charges, nor<br />

even applied fields (see shortly), and<br />

● unlike previous, ours cannot be captured by adiabatic approx<br />

Outline<br />

Dynamical steps and peaks<br />

Time-Resolved Charge Transfer<br />

Another kind <strong>of</strong> non-local, non-adiabatic step also generically<br />

develops in time…<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Example 1: Field-free evolution <strong>of</strong> a non-stationary state He-atom<br />

exact vc<br />

vc adia-ex<br />

∂u/dt<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Example 1: Field-free evolution <strong>of</strong> a non-stationary state He-atom<br />

exact vc<br />

vc adia-ex<br />

∂u/dt<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Example 2: Weak on-resonant driving <strong>of</strong> a “He atom”<br />

Zooming in to an optical<br />

period around TR/4<br />

exact vc<br />

“exact-adiab.”<br />

density<br />

A = 0.00667 au<br />

w = 0.533 au (1st excn.)<br />

Snapshots over a<br />

Rabi period<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Example 2: Weak on-resonant driving <strong>of</strong> a “He atom”<br />

Zooming in to an optical<br />

period around TR/4<br />

exact vc<br />

“exact-adiab.”<br />

density<br />

A = 0.00667 au<br />

w = 0.533 au (1st excn.)<br />

Snapshots over a<br />

Rabi period<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Example 3: Strong <strong>of</strong>f-resonant driven He atom<br />

exact vc<br />

exact-adiab<br />

density<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Example 4: Time resolved Charge transfer<br />

CT-resonant excitation <strong>of</strong> two closed shell fragments<br />

(2pi/T R ) = 0.00136 Ha<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Example 4: Time resolved Charge transfer<br />

CT-resonant excitation <strong>of</strong> two closed shell fragments<br />

(2pi/T R ) = 0.00136 Ha<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


We have derived a new (memory)<br />

functional <strong>for</strong> 2e that reproduces<br />

all this <strong>phenomena</strong><br />

Work in progress results soon!<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Charge Transfer<br />

excitations?<br />

Photovoltaic Hybrids: Grätzell cells<br />

Road to Improving Efciency: Controlling position <strong>of</strong> the frontier orbitals<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Photo-excitation <strong>of</strong> the <strong>light</strong>-harvesting<br />

carotenoid-porphyrin-C 60<br />

C.A. Rozzi et al, Nat. Comm. (2013)<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Photo-excitation <strong>of</strong> the <strong>light</strong>-harvesting<br />

carotenoid-porphyrin-C60<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Carotenoid-porphyrin-C 60 photodynamics<br />

Charge on the C60<br />

Dynamical ions<br />

Clamped ions<br />

Clamped ions<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


(Some) Open questions<br />

* Tunneling and/or CT processes at interfaces ??? transport<br />

Open questions<br />

* Related concepts:<br />

* Molecular dissociation:<br />

* Electron tunneling<br />

* Rabi Oscillations (<strong>light</strong> induced e-h spliting)<br />

* Dissipation; lifetimes; de-coherence, Non adiabatic couplings<br />

* Quantum control and open quantum systems<br />

Work to be done: “new spatial and w-dependent functionals”<br />

.<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


Acknowledgements<br />

N. Helbig, J. Fuks, A. Craw<strong>for</strong>d, L. Stella, I. Tokatly<br />

ETSF , Dpto Material Physics, Centro Mixto CSIC-UPV, Donostia, Spain<br />

A. Castro BIFI, Zaragoza H. Appel FHI-Berlin<br />

E.K.U. Gross ; P. Elliot<br />

MPI-Halle Modena<br />

C.A. Rozzi<br />

N. Maitra Hunter College NY E. Molinari<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)


For more details see:<br />

http://nano-bio.ehu.es<br />

http://etsf.eu<br />

Thank you!!!!<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>TDDFT</strong> <strong>for</strong> <strong>nonlinear</strong> <strong>phenomena</strong> <strong>of</strong> <strong>light</strong>-matter interactions<br />

Workshop: Calculation <strong>of</strong> Optical Properties <strong>of</strong> Nanostructures from First Principles (20 th Feb.2013)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!