29.03.2013 Views

Isothermal process on p-V, T-V, and p-T diagrams

Isothermal process on p-V, T-V, and p-T diagrams

Isothermal process on p-V, T-V, and p-T diagrams

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

p<br />

p 1<br />

p 2<br />

<str<strong>on</strong>g>Isothermal</str<strong>on</strong>g> <str<strong>on</strong>g>process</str<strong>on</strong>g> <strong>on</strong> p-V, T-V, <strong>and</strong> p-T <strong>diagrams</strong><br />

V 1<br />

a<br />

T 0<br />

W<br />

Q<br />

V 2<br />

b<br />

isothermal ⇒ T = T 0 = c<strong>on</strong>stant<br />

a = (p 1 , V 1 , T 0 ) b = (p 2 , V 2 , T 0 )<br />

V<br />

T<br />

T 0<br />

pV = nRT 0<br />

a<br />

V 1<br />

nRT0 p(V) = T(V) = T<br />

V<br />

0 p(T) = multivalued<br />

PHYS 1101, Winter 2009, Prof. Clarke 1<br />

b<br />

V 2<br />

V<br />

p<br />

p 1<br />

p 2<br />

T 0<br />

a<br />

b<br />

T


p<br />

p 1<br />

p 2<br />

Isochoric <str<strong>on</strong>g>process</str<strong>on</strong>g> <strong>on</strong> p-V, T-V, <strong>and</strong> p-T <strong>diagrams</strong><br />

V 0<br />

a<br />

b<br />

isochoric ⇒ V = V 0 = c<strong>on</strong>stant<br />

a = (p 1 , V 0 , T 1 ) b = (p 2 , V 0 , T 2 )<br />

V<br />

pV 0 = nRT<br />

p(V) = multivalued T(V) = multivalued<br />

T<br />

T 1<br />

V 0<br />

nRT<br />

p(T) =<br />

V0<br />

PHYS 1101, Winter 2009, Prof. Clarke 2<br />

a<br />

T2 b<br />

p2 b<br />

V<br />

p<br />

p 1<br />

T 2<br />

T 1<br />

a<br />

T


p<br />

p 0<br />

Isobaric <str<strong>on</strong>g>process</str<strong>on</strong>g> <strong>on</strong> p-V, T-V, <strong>and</strong> p-T <strong>diagrams</strong><br />

a<br />

V 1<br />

Q<br />

W<br />

p(V) = p 0<br />

b<br />

V 2<br />

isobaric ⇒ p = p 0 = c<strong>on</strong>stant<br />

a = (p 0 , V 1 , T 1 ) b = (p 0 , V 2 , T 2 )<br />

V<br />

T<br />

T 2<br />

T 1<br />

a<br />

p 0 V = nRT<br />

V 1<br />

p0V T(V) =<br />

nR<br />

p(T) = p 0<br />

PHYS 1101, Winter 2009, Prof. Clarke 3<br />

b<br />

V 2<br />

V<br />

p<br />

p 0<br />

a<br />

T 1<br />

b<br />

T 2<br />

T


p (Nm –2 )<br />

10 5<br />

a<br />

1<br />

T 0<br />

V c<br />

Clicker questi<strong>on</strong> 1<br />

C<strong>on</strong>sider the p-V diagram below in which the system evolves from a → b<br />

→ c. If T0 ~ 240K (<strong>and</strong> thus RT0 = 2,000 J mol –1 ), how many moles of<br />

gas, n, are in the system?<br />

a) 5<br />

p c<br />

isobar<br />

b<br />

isotherm<br />

c<br />

isochor<br />

V (m 3 )<br />

b) 10 5<br />

c) 50<br />

d) 1,000<br />

e) Not enough informati<strong>on</strong> to tell<br />

first law of thermodynamics: ΔE int = Q – W ( = nC V ΔT )<br />

ideal gas law: pV = nRT<br />

PHYS 1101, Winter 2009, Prof. Clarke 4


p (Nm –2 )<br />

10 5<br />

p c<br />

a<br />

1<br />

T 0<br />

V c<br />

Clicker questi<strong>on</strong> 1<br />

C<strong>on</strong>sider the p-V diagram below in which the system evolves from a → b<br />

→ c. If T0 ~ 240K (<strong>and</strong> thus RT0 = 2,000 J mol –1 ), how many moles of<br />

gas, n, are in the system?<br />

a) 5<br />

isobar<br />

b<br />

isotherm<br />

c<br />

isochor<br />

V (m 3 )<br />

b) 10 5<br />

c) 50<br />

d) 1,000<br />

e) Not enough informati<strong>on</strong> to tell<br />

pV 100,000<br />

n = = = 50<br />

RT0 2,000<br />

first law of thermodynamics: ΔE int = Q – W ( = nC V ΔT )<br />

ideal gas law: pV = nRT<br />

PHYS 1101, Winter 2009, Prof. Clarke 5


Clicker questi<strong>on</strong> 2<br />

C<strong>on</strong>sider the p-V diagram below in which the system evolves from a → b<br />

→ c. What is V c , the volume at state c?<br />

p (Nm –2 )<br />

10 5<br />

p c<br />

a<br />

1<br />

T 0<br />

V c<br />

b<br />

c<br />

V (m 3 )<br />

a) 0.5 m 3<br />

b) 2.0 m 3<br />

c) 4.0 m 3<br />

d) 8.0 m 3<br />

e) Not enough informati<strong>on</strong> to tell<br />

first law of thermodynamics: ΔE int = Q – W ( = nC V ΔT )<br />

ideal gas law: pV = nRT<br />

PHYS 1101, Winter 2009, Prof. Clarke 6


Clicker questi<strong>on</strong> 2<br />

C<strong>on</strong>sider the p-V diagram below in which the system evolves from a → b<br />

→ c. What is V c , the volume at state c?<br />

p (Nm –2 )<br />

10 5<br />

p c<br />

a<br />

1<br />

T 0<br />

V c<br />

b<br />

c<br />

V (m 3 )<br />

a) 0.5 m 3<br />

b) 2.0 m 3<br />

c) 4.0 m 3<br />

d) 8.0 m 3<br />

e) Not enough informati<strong>on</strong> to tell<br />

need to know p c<br />

first law of thermodynamics: ΔE int = Q – W ( = nC V ΔT )<br />

ideal gas law: pV = nRT<br />

PHYS 1101, Winter 2009, Prof. Clarke 7


Clicker questi<strong>on</strong> 3<br />

C<strong>on</strong>sider the p-V diagram below in which the system evolves from a → b<br />

→ c. What is V c , the volume at state c?<br />

p (Nm –2 )<br />

10 5<br />

5 ×10 4<br />

a<br />

1<br />

T 0<br />

V c<br />

b<br />

c<br />

V (m 3 )<br />

a) 0.5 m 3<br />

b) 2.0 m 3<br />

c) 4.0 m 3<br />

d) 8.0 m 3<br />

e) Not enough informati<strong>on</strong> to tell<br />

first law of thermodynamics: ΔE int = Q – W ( = nC V ΔT )<br />

ideal gas law: pV = nRT<br />

PHYS 1101, Winter 2009, Prof. Clarke 8


Clicker questi<strong>on</strong> 3<br />

C<strong>on</strong>sider the p-V diagram below in which the system evolves from a → b<br />

→ c. What is V c , the volume at state c?<br />

p (Nm –2 )<br />

10 5<br />

5 ×10 4<br />

a<br />

1<br />

T 0<br />

V c<br />

b<br />

c<br />

V (m 3 )<br />

a) 0.5 m 3<br />

b) 2.0 m 3<br />

c) 4.0 m 3<br />

d) 8.0 m 3<br />

e) Not enough informati<strong>on</strong> to tell<br />

pcVc = paVa ⇒ Vc = Va = 2 m3 pa pc first law of thermodynamics: ΔE int = Q – W ( = nC V ΔT )<br />

ideal gas law: pV = nRT<br />

PHYS 1101, Winter 2009, Prof. Clarke 9


Clicker questi<strong>on</strong> 4<br />

C<strong>on</strong>sider the p-V diagram below in which the system evolves from a → b<br />

→ c. What is the net change in internal energy, ΔE int ?<br />

p (Nm –2 )<br />

10 5<br />

5 ×10 4<br />

a<br />

1<br />

T 0<br />

2<br />

b<br />

c<br />

V (m 3 )<br />

a) 0 J<br />

b) 5.0 ×10 4 J<br />

c) about 7.0 ×10 4 J<br />

d) 10 5 J<br />

e) Not enough informati<strong>on</strong> to tell<br />

first law of thermodynamics: ΔE int = Q – W ( = nC V ΔT )<br />

ideal gas law: pV = nRT<br />

PHYS 1101, Winter 2009, Prof. Clarke 10


Clicker questi<strong>on</strong> 4<br />

C<strong>on</strong>sider the p-V diagram below in which the system evolves from a → b<br />

→ c. What is the net change in internal energy, ΔE int ?<br />

p (Nm –2 )<br />

10 5<br />

5 ×10 4<br />

a<br />

1<br />

T 0<br />

2<br />

b<br />

c<br />

V (m 3 )<br />

a) 0 J<br />

b) 5.0 ×10 4 J<br />

c) about 7.0 ×10 4 J<br />

d) 10 5 J<br />

e) Not enough informati<strong>on</strong> to tell<br />

ΔE int = nC V ΔT<br />

first law of thermodynamics: ΔE int = Q – W ( = nC V ΔT )<br />

ideal gas law: pV = nRT<br />

PHYS 1101, Winter 2009, Prof. Clarke 11


Clicker questi<strong>on</strong> 5<br />

C<strong>on</strong>sider the p-V diagram below in which the system evolves from a → b<br />

→ c. What is the net work d<strong>on</strong>e by the system <strong>on</strong> its envir<strong>on</strong>ment, W?<br />

p (Nm –2 )<br />

10 5<br />

5 ×10 4<br />

a<br />

1<br />

T 0<br />

2<br />

b<br />

c<br />

V (m 3 )<br />

a) 0 J<br />

b) 5.0 ×10 4 J<br />

c) about 7.0 ×10 4 J<br />

d) 10 5 J<br />

e) Not enough informati<strong>on</strong> to tell<br />

first law of thermodynamics: ΔE int = Q – W ( = nC V ΔT )<br />

ideal gas law: pV = nRT<br />

PHYS 1101, Winter 2009, Prof. Clarke 12


Clicker questi<strong>on</strong> 5<br />

C<strong>on</strong>sider the p-V diagram below in which the system evolves from a → b<br />

→ c. What is the net work d<strong>on</strong>e by the system <strong>on</strong> its envir<strong>on</strong>ment, W?<br />

p (Nm –2 )<br />

10 5<br />

5 ×10 4<br />

a<br />

1<br />

T 0<br />

W<br />

2<br />

b<br />

c<br />

V (m 3 )<br />

a) 0 J<br />

b) 5.0 ×10 4 J<br />

c) about 7.0 ×10 4 J<br />

d) 10 5 J<br />

e) Not enough informati<strong>on</strong> to tell<br />

first law of thermodynamics: ΔE int = Q – W ( = nC V ΔT )<br />

ideal gas law: pV = nRT<br />

PHYS 1101, Winter 2009, Prof. Clarke 13


Clicker questi<strong>on</strong> 6<br />

C<strong>on</strong>sider the p-V diagram below in which the system evolves from a → b<br />

→ c. What is the net heat transferred into the system, Q?<br />

p (Nm –2 )<br />

10 5<br />

5 ×10 4<br />

a<br />

1<br />

T 0<br />

2<br />

b<br />

c<br />

V (m 3 )<br />

a) –5.0 ×10 4 J<br />

b) 5.0 ×10 4 J<br />

c) –10 5 J<br />

d) 10 5 J<br />

e) Not enough informati<strong>on</strong> to tell<br />

first law of thermodynamics: ΔE int = Q – W ( = nC V ΔT )<br />

ideal gas law: pV = nRT<br />

PHYS 1101, Winter 2009, Prof. Clarke 14


Clicker questi<strong>on</strong> 6<br />

C<strong>on</strong>sider the p-V diagram below in which the system evolves from a → b<br />

→ c. What is the net heat transferred into the system, Q?<br />

p (Nm –2 )<br />

10 5<br />

5 ×10 4<br />

a<br />

1<br />

T 0<br />

2<br />

b<br />

c<br />

V (m 3 )<br />

a) –5.0 ×10 4 J<br />

b) 5.0 ×10 4 J<br />

c) –10 5 J<br />

d) 10 5 J<br />

e) Not enough informati<strong>on</strong> to tell<br />

Q = ΔE int + W = 0 + 10 5 J<br />

first law of thermodynamics: ΔE int = Q – W ( = nC V ΔT )<br />

ideal gas law: pV = nRT<br />

PHYS 1101, Winter 2009, Prof. Clarke 15


type of gas degrees of<br />

freedom<br />

( f )<br />

Internal Energy (revisited)<br />

f<br />

2<br />

E int = nC V T = nRT = NkT C p = C V + R<br />

n = number of moles; 1 mole = 6.0221 × 10 22 particles (N A )<br />

N = number of particles<br />

R = gas c<strong>on</strong>stant = 8.3147 J mol –1 K –1<br />

k = Boltzmann’s c<strong>on</strong>stant = 1.3807 × 10 –23 J K –1<br />

specific heat at<br />

c<strong>on</strong>stant<br />

volume (C V )<br />

internal<br />

energy<br />

(E int )<br />

specific heat at<br />

c<strong>on</strong>stant<br />

pressure (C p )<br />

3 3<br />

5<br />

m<strong>on</strong>atomic 3 R nRT R<br />

2 2<br />

2<br />

5 5<br />

7<br />

diatomic 5 R nRT R<br />

2 2<br />

2<br />

polyatomic (≥3) ~6 3 R 3 nRT 4 R<br />

f<br />

2<br />

γ<br />

(C p /C V )<br />

PHYS 1101, Winter 2009, Prof. Clarke 16<br />

5<br />

3<br />

7<br />

5<br />

4<br />

3


p<br />

p 1<br />

p 2<br />

reversible<br />

a = (p 1 , V 1 , T 1 )<br />

b = (p 2 , V 2 , T 2 )<br />

γ<br />

pV = c<strong>on</strong>stant<br />

T 2<br />

V 1<br />

a<br />

T 1<br />

V 2<br />

Adiabatic <str<strong>on</strong>g>process</str<strong>on</strong>g>es<br />

adiabat<br />

b<br />

isotherms<br />

V<br />

isotherm<br />

PHYS 1101, Winter 2009, Prof. Clarke 17<br />

p<br />

p 1<br />

p 2<br />

V 1<br />

irreversible<br />

a = (p 1 , V 1 , T 0 )<br />

b = (p 2 , V 2 , T 0 )<br />

p 1 V 1 = p 2 V 2<br />

a<br />

T 0<br />

V 2<br />

b<br />

V


γ<br />

pV = c<strong>on</strong>stant<br />

Clicker questi<strong>on</strong> 7<br />

C<strong>on</strong>sider the p-V diagram below in which the system evolves reversibly<br />

al<strong>on</strong>g the adiabat from state a to state b. This gas is…<br />

p (kNm –2 )<br />

16<br />

1<br />

b<br />

adiabat<br />

1 8<br />

a<br />

V (m 3 )<br />

a) m<strong>on</strong>atomic (γ = 5/3)<br />

b) diatomic (γ = 7/5)<br />

c) polyatomic (γ = 4/3)<br />

d) not enough informati<strong>on</strong> to tell<br />

PHYS 1101, Winter 2009, Prof. Clarke 18


γ<br />

pV = c<strong>on</strong>stant<br />

Clicker questi<strong>on</strong> 7<br />

C<strong>on</strong>sider the p-V diagram below in which the system evolves reversibly<br />

al<strong>on</strong>g the adiabat from state a to state b. This gas is…<br />

p (kNm –2 )<br />

16<br />

1<br />

b<br />

adiabat<br />

1 8<br />

a<br />

V (m 3 )<br />

a) m<strong>on</strong>atomic (γ = 5/3)<br />

b) diatomic (γ = 7/5)<br />

c) polyatomic (γ = 4/3)<br />

d) not enough informati<strong>on</strong> to tell<br />

γ γ<br />

paVa = 1(8) = 23 γ =<br />

p b V b = 16(1) = 2 4<br />

⇒ γ = 4/3 ⇒ polyatomic<br />

PHYS 1101, Winter 2009, Prof. Clarke 19<br />

γ<br />

γ


γ<br />

pV = c<strong>on</strong>stant<br />

Clicker questi<strong>on</strong> 8<br />

C<strong>on</strong>sider the p-V diagram below in which the system evolves reversibly<br />

al<strong>on</strong>g the adiabat from state a to state b. How much heat is transferred to<br />

the system?<br />

a) 0 J<br />

p (kNm –2 )<br />

16<br />

1<br />

b<br />

adiabat<br />

1 8<br />

a<br />

V (m 3 )<br />

b) 8 kJ<br />

c) 16 kJ<br />

d) 128 kJ<br />

e) not enough informati<strong>on</strong> to tell<br />

PHYS 1101, Winter 2009, Prof. Clarke 20


γ<br />

pV = c<strong>on</strong>stant<br />

Clicker questi<strong>on</strong> 8<br />

C<strong>on</strong>sider the p-V diagram below in which the system evolves reversibly<br />

al<strong>on</strong>g the adiabat from state a to state b. How much heat, Q, is<br />

transferred to the system?<br />

a) 0 J<br />

p (kNm –2 )<br />

16<br />

1<br />

b<br />

adiabat<br />

1 8<br />

a<br />

V (m 3 )<br />

b) 8 kJ<br />

c) 16 kJ<br />

d) 128 kJ<br />

e) not enough informati<strong>on</strong> to tell<br />

By definiti<strong>on</strong>, Q = 0 for all adiabatic<br />

<str<strong>on</strong>g>process</str<strong>on</strong>g>es.<br />

PHYS 1101, Winter 2009, Prof. Clarke 21


Clicker questi<strong>on</strong> 9<br />

C<strong>on</strong>sider the p-V diagram below in which the system evolves reversibly<br />

al<strong>on</strong>g the adiabat from state a to state b. How much work, W, does the<br />

system do <strong>on</strong> its envir<strong>on</strong>ment?<br />

a) 20 kJ b) –20 kJ<br />

p (kNm –2 )<br />

16<br />

1<br />

b<br />

adiabat<br />

1 8<br />

a<br />

V (m 3 )<br />

c) 24 kJ d) –24 kJ<br />

e) 32 kJ f) –32 kJ<br />

g) not enough informati<strong>on</strong> to tell<br />

E int = nC V T = n3RT (for a polyatomic gas)<br />

first law: ΔE int = Q – W ideal gas law: pV = nRT<br />

PHYS 1101, Winter 2009, Prof. Clarke 22


Clicker questi<strong>on</strong> 9<br />

C<strong>on</strong>sider the p-V diagram below in which the system evolves reversibly<br />

al<strong>on</strong>g the adiabat from state a to state b. How much work, W, does the<br />

system do <strong>on</strong> its envir<strong>on</strong>ment?<br />

a) 20 kJ b) –20 kJ<br />

p (kNm –2 )<br />

16<br />

1<br />

b<br />

W<br />

adiabat<br />

1 8<br />

a<br />

V (m 3 )<br />

c) 24 kJ d) –24 kJ<br />

e) 32 kJ f) –32 kJ<br />

g) not enough informati<strong>on</strong> to tell<br />

ΔE int = 0 – W = 3Δ(nRT) = 3Δ(pV)<br />

= 3(16 – 8) = 24 ⇒ W = –24 kJ<br />

E int = nC V T = n3RT (for a polyatomic gas)<br />

first law: ΔE int = Q – W ideal gas law: pV = nRT<br />

PHYS 1101, Winter 2009, Prof. Clarke 23


p<br />

p 1<br />

p 2<br />

p 3<br />

p 4<br />

S 4<br />

S 3<br />

a<br />

V 1<br />

e<br />

S 2<br />

S 1<br />

Summary of Processes<br />

isentrop: ΔS = 0<br />

(reversible adiabat: Q = 0)<br />

V 2<br />

d<br />

isobar: Δp = 0<br />

isochor: ΔV = 0<br />

isotherm: ΔT = 0<br />

T 2<br />

V<br />

T 1<br />

T 3<br />

free expansi<strong>on</strong> (irreversible adiabat: Q = 0)<br />

b<br />

c<br />

a = (p 1 , V 1 , T 2 , S 3 )<br />

b = (p 1 , V 2 , T 1 , S 1 )<br />

c = (p 2 , V 2 , T 2 , S 2 )<br />

d = (p 4 , V 2 , T 3 , S 3 )<br />

e = (p 3 , V 1 , T 3 , S 4 )<br />

PHYS 1101, Winter 2009, Prof. Clarke 24


Summary of Processes<br />

<str<strong>on</strong>g>process</str<strong>on</strong>g> W Q<br />

ΔE int =<br />

nC V ΔT<br />

pCp pCV isobar p(V2 – V1 ) (V2 – V1 ) (V2 – V1 ) nCp ln ( )<br />

R<br />

V1 V2 isotherm nRT ln nRT ln 0 nR ln<br />

p1V1 – p2V2 p2V2 – p1V1 isentrop 0 0<br />

γ – 1<br />

γ – 1<br />

free<br />

expansi<strong>on</strong><br />

( V2 V1 )<br />

R<br />

isochor 0 (p2 – p1 ) (p2 – p1 ) nCV ln ( p VCV VCV 2<br />

R<br />

R<br />

p1 ( V2 V1 0 0 0 nR ln<br />

PHYS 1101, Winter 2009, Prof. Clarke 25<br />

)<br />

ΔS<br />

( V 2<br />

V 1<br />

( V 2<br />

V 1<br />

)<br />

)<br />

)


p<br />

a<br />

V<br />

All <str<strong>on</strong>g>process</str<strong>on</strong>g>es <strong>on</strong> p-V, T-V, <strong>and</strong> T-S <strong>diagrams</strong><br />

p<br />

T<br />

S<br />

V<br />

T<br />

a<br />

V<br />

An isobar (p), isotherm (T), isentrop (S), <strong>and</strong> isochor (V)<br />

emanating from the same initial state (a) as manifest <strong>on</strong><br />

a p-V, T-V, <strong>and</strong> a T-S diagram.<br />

PHYS 1101, Winter 2009, Prof. Clarke 26<br />

p<br />

T<br />

S<br />

V<br />

T<br />

V<br />

a<br />

S<br />

p<br />

T<br />

S


p<br />

b<br />

Clicker questi<strong>on</strong> 10<br />

C<strong>on</strong>sider the p-V diagram below in which n = 1 mole of gas evolves reversibly<br />

from state a to state b al<strong>on</strong>g the path shown. What is the net change in<br />

entropy? (Note, e = 2.71828 = Euler’s number, <strong>and</strong> thus ln(e) = 1.)<br />

a<br />

1 e<br />

some formulae, in case they help…<br />

V<br />

a) C p b) C p e<br />

c) C V d) C V e<br />

e) R f) R e<br />

g) no where near enough informati<strong>on</strong>!!<br />

ΔS = nC p ln (isobar)<br />

ΔS = nC V ln (isochor)<br />

ΔS = nR ln (isotherm)<br />

PHYS 1101, Winter 2009, Prof. Clarke 27<br />

)<br />

( V2 V1 ( )<br />

p2 p1 ( )<br />

V2 V1


Clicker questi<strong>on</strong> 10<br />

C<strong>on</strong>sider the p-V diagram below in which n = 1 mole of gas evolves revers<br />

-ibly from state a to state b al<strong>on</strong>g the path shown. What is the net change in<br />

entropy? (Note, e = 2.71828 = Euler’s number, <strong>and</strong> thus ln(e) = 1.)<br />

p<br />

a<br />

1 e<br />

Since S is a state variable, it doesn’t<br />

matter which path from a to b you<br />

choose. Thus, choose the isobar.<br />

b<br />

V<br />

a) C p b) C p e<br />

c) C V d) C V e<br />

e) R f) R e<br />

g) Yes there is!!<br />

ΔS = nC p ln (isobar)<br />

ΔS = nC V ln (isochor)<br />

ΔS = nR ln (isotherm)<br />

PHYS 1101, Winter 2009, Prof. Clarke 28<br />

)<br />

( V2 V1 ( )<br />

p2 p1 ( )<br />

V2 V1


Clicker questi<strong>on</strong> 11<br />

The evoluti<strong>on</strong> of a system from state a to state b is shown <strong>on</strong> both the p-V<br />

<strong>and</strong> T-S <strong>diagrams</strong> below. What is the change in internal energy?<br />

p (Nm –2 )<br />

2,000<br />

b<br />

a<br />

1 V (m3 2 )<br />

T (K)<br />

500<br />

250<br />

b<br />

10 S (JK –1 30 )<br />

a) 2000 J b) –2000 J c) 5000 J<br />

d) –5000 J e) 7000 J f) –7000 J<br />

PHYS 1101, Winter 2009, Prof. Clarke 29<br />

a<br />

ΔE int = Q – W<br />

= nC V ΔT<br />

pV = nRT


Clicker questi<strong>on</strong> 11<br />

The evoluti<strong>on</strong> of a system from state a to state b is shown <strong>on</strong> both the p-V<br />

<strong>and</strong> T-S <strong>diagrams</strong> below. What is the change in internal energy?<br />

p (Nm –2 )<br />

2,000<br />

b<br />

a<br />

W = –2000 J<br />

1 V (m3 2 )<br />

T (K)<br />

500<br />

250<br />

b<br />

Q –7500 J<br />

><br />

~<br />

10 S (JK –1 30 )<br />

Q ~ –7000 J<br />

W = –2000 J<br />

ΔE int = Q – W<br />

a) 2000 J b) –2000 J c) 5000 J<br />

d) –5000 J e) 7000 J f) –7000 J<br />

~ –5000 J<br />

PHYS 1101, Winter 2009, Prof. Clarke 30<br />

a


Clicker questi<strong>on</strong> 12<br />

The evoluti<strong>on</strong> of a system from state a to state b is shown <strong>on</strong> both the p-V<br />

<strong>and</strong> T-S <strong>diagrams</strong> below. About how many moles of gas are in the<br />

system? (Take R = 8.)<br />

p (Nm –2 )<br />

2,000<br />

b<br />

a<br />

1 V (m3 2 )<br />

T (K)<br />

500<br />

250<br />

a) 0.5 b) 1 c) 1.5<br />

d) 2 e) not enough informati<strong>on</strong> to tell<br />

b<br />

10 S (JK –1 30 )<br />

PHYS 1101, Winter 2009, Prof. Clarke 31<br />

a<br />

ΔE int = Q – W<br />

= nC V ΔT<br />

pV = nRT


Clicker questi<strong>on</strong> 12<br />

The evoluti<strong>on</strong> of a system from state a to state b is shown <strong>on</strong> both the p-V<br />

<strong>and</strong> T-S <strong>diagrams</strong> below. About how many moles of gas are in the<br />

system? (Take R = 8.)<br />

p (Nm –2 )<br />

2,000<br />

b<br />

a<br />

1 V (m3 2 )<br />

T (K)<br />

500<br />

250<br />

a) 0.5 b) 1 c) 1.5<br />

d) 2 e) not enough informati<strong>on</strong> to tell<br />

b<br />

10 S (JK –1 30 )<br />

PHYS 1101, Winter 2009, Prof. Clarke 32<br />

a<br />

pV = nRT<br />

at state b:<br />

pV = 2000<br />

RT ~ 2000<br />

⇒ n ~ 1


Clicker questi<strong>on</strong> 13<br />

The evoluti<strong>on</strong> of a system from state a to state b is shown <strong>on</strong> both the p-V<br />

<strong>and</strong> T-S <strong>diagrams</strong> below. With n = 1 <strong>and</strong> ΔE int = –5000 J, this gas is:<br />

p (Nm –2 )<br />

2,000<br />

b<br />

a<br />

1 V (m3 2 )<br />

T (K)<br />

500<br />

250<br />

a) m<strong>on</strong>atomic b) diatomic c) polyatomic<br />

d) not enough informati<strong>on</strong> to tell<br />

b<br />

10 S (JK –1 30 )<br />

PHYS 1101, Winter 2009, Prof. Clarke 33<br />

a<br />

ΔE int = nC V ΔT<br />

C V ~ 12 (m<strong>on</strong>atomic)<br />

C V ~ 21 (diatomic)<br />

C V ~ 25 (polyatomic)


Clicker questi<strong>on</strong> 13<br />

The evoluti<strong>on</strong> of a system from state a to state b is shown <strong>on</strong> both the p-V<br />

<strong>and</strong> T-S <strong>diagrams</strong> below. With n = 1 <strong>and</strong> ΔE int = –5000 J, this gas is:<br />

p (Nm –2 )<br />

2,000<br />

b<br />

a<br />

1 V (m3 2 )<br />

T (K)<br />

500<br />

250<br />

a) m<strong>on</strong>atomic b) diatomic c) polyatomic<br />

d) not enough informati<strong>on</strong> to tell<br />

b<br />

10 S (JK –1 30 )<br />

PHYS 1101, Winter 2009, Prof. Clarke 34<br />

a<br />

ΔE int = nC V ΔT<br />

C V ~ 12 (m<strong>on</strong>atomic)<br />

C V ~ 21 (diatomic)<br />

C V ~ 25 (polyatomic)


p<br />

a<br />

Three pictorial representati<strong>on</strong>s of an engine<br />

Q out<br />

W > 0<br />

Q in<br />

In a complete thermodynamical<br />

cycle, gas<br />

exp<strong>and</strong>s at high pressure<br />

<strong>and</strong> compresses at low<br />

pressure allowing work,<br />

W, to be extracted in<br />

each cycle.<br />

c<br />

V<br />

Q in<br />

a→c<br />

T H<br />

expansi<strong>on</strong><br />

stroke<br />

c→a<br />

T C<br />

compressi<strong>on</strong><br />

stroke<br />

PHYS 1101, Winter 2009, Prof. Clarke 35<br />

Q out<br />

Q H = Q in<br />

Q C = Q out<br />

W out = W


T<br />

T H<br />

T C<br />

a<br />

S 1<br />

Maximum efficiency <strong>and</strong> the Carnot cycle<br />

Q in<br />

Q out<br />

c<br />

S 2<br />

S<br />

T<br />

T H<br />

T C<br />

a<br />

d<br />

S 1<br />

Q in<br />

W > 0 W > 0<br />

n<strong>on</strong>-optimal thermo<br />

-dynamical cycle for<br />

an engine<br />

Q out<br />

PHYS 1101, Winter 2009, Prof. Clarke 36<br />

b<br />

c<br />

S 2<br />

S<br />

optimal thermodyn<br />

-amical cycle for an<br />

engine (Carnot cycle)<br />

p<br />

a<br />

S 1<br />

T C<br />

Q in<br />

S 2<br />

d<br />

adiabats<br />

b<br />

isotherms<br />

T H<br />

c<br />

Qout V<br />

the Carnot engine cycle<br />

<strong>on</strong> a p-V diagram<br />

Note that for an engine, the thermodynamical cycle is always clockwise.


p<br />

a<br />

Q in<br />

W < 0<br />

Q out<br />

For a refrigerator, the<br />

cycle is always<br />

counterclockwise.<br />

Expansi<strong>on</strong> happens at<br />

low pressure,<br />

compressi<strong>on</strong> at high<br />

pressure <strong>and</strong> this takes<br />

work. Heat is drawn in at<br />

T C <strong>and</strong> expelled at T H .<br />

c<br />

V<br />

Refrigerators (heat pumps)<br />

Q C = Q in<br />

Q H = Q out<br />

W in = –W<br />

PHYS 1101, Winter 2009, Prof. Clarke 37<br />

p<br />

a<br />

S 1<br />

T C<br />

S2 Qout d<br />

adiabats<br />

b<br />

isotherms<br />

T H<br />

Q in<br />

c<br />

V<br />

As for an engine, the most<br />

optimal thermodynamical<br />

cycle for a refrigerator is the<br />

Carnot cycle traversed in<br />

the counterclockwise<br />

directi<strong>on</strong> (opposite to the<br />

engine).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!