29.03.2013 Views

Lectures on Representations of Quivers by William Crawley-Boevey ...

Lectures on Representations of Quivers by William Crawley-Boevey ...

Lectures on Representations of Quivers by William Crawley-Boevey ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

THE STANDARD RESOLUTION.<br />

¡ ¥ ¡ ¥ ¡ ¡<br />

t(¢ s(¢<br />

Let A=kQ. If X is a left A-module, there is an exact sequence<br />

0<br />

f<br />

Ae e X<br />

) k )<br />

n<br />

g<br />

Ae e X X 0<br />

i k i<br />

¡ ¢<br />

x¡ a¡<br />

¦¢ a¡ x¡ t(¢ s(¢<br />

a¢¡<br />

t(¢ s(¢<br />

Q1 i=1<br />

where g(a x) = ax for Ae , e X, and<br />

i i<br />

f(a x) = x - a x for Ae<br />

)<br />

and e X<br />

)<br />

in ) ) comp<strong>on</strong>ent.<br />

PROOF. Clearly g© f=0 and g is <strong>on</strong>to. If ¢<br />

<strong>of</strong> the sequence, we can write it uniquely in the form<br />

¢<br />

n<br />

is an element <strong>of</strong> the middle term<br />

= ¤ ¤ a x (x ¡ e X almost all zero)<br />

a a s(a)<br />

i=1 paths a with s(a)=i<br />

and define degree( ¢<br />

) = length <strong>of</strong> the l<strong>on</strong>gest path a with x £ 0.<br />

a<br />

If a is a n<strong>on</strong>-trivial path with s(a)=i, then we can express it as a product<br />

a=a¥ ¢ with ¢ an arrow with s(¢ )=i, and a¥ another path. Viewing a¥£ x as an<br />

a<br />

element in the ¢ ’th comp<strong>on</strong>ent <strong>of</strong> left hand term, we have<br />

x ) = a x - a¥£ ¦¢ x .<br />

f(a¥£<br />

a a a<br />

We claim that ¢<br />

¢<br />

has degree d>0, then<br />

¢<br />

n<br />

+ Im(f) always c<strong>on</strong>tains an element <strong>of</strong> degree 0. Namely, if<br />

- f( ¤ ¤ a¥£ x )<br />

a<br />

i=1 paths a with s(a)=i and length d<br />

has degree < d, so the claim follows <strong>by</strong> inducti<strong>on</strong>.<br />

Im(f)=Ker(g): If ¢<br />

¢<br />

+Im(f) have degree zero. Thus<br />

Ker(g), let ¡ ¢ ¡ ¥<br />

0 = g( ¢<br />

) = g( ¢ ) = g(¤ e x¥ ) = ¤ x¥<br />

i i e e<br />

¥<br />

i i<br />

n<br />

Now this bel<strong>on</strong>gs ¥ to X , so each term in the final sum must be zero.<br />

i=1 i<br />

Thus ¢ =0, and the asserti<strong>on</strong> follows.<br />

¥<br />

Ker(f)=0: we can write an element ¢<br />

¡<br />

¢<br />

¢ s(¢ ¡ ¢ s(a)=t(¢ ¢<br />

£ ¢ ¢<br />

Ker(f) in the form<br />

Q<br />

1<br />

paths a with ) ,a ,a )<br />

Let a be a path <strong>of</strong> maximal length such that x 0 (some ). Now<br />

,a<br />

f( ¢<br />

= ¤ ¤ a x (x ¡ e X almost all 0).<br />

) = ¤ ¤ a¢¡ x - ¤ ¤ a ¦¢ x<br />

¢ a ¢ ,a ¢ a ¢ ,a<br />

so the coefficient <strong>of</strong> a¢ in f( ¢<br />

) is x . A c<strong>on</strong>tradicti<strong>on</strong>.<br />

¢ ,a<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!