29.03.2013 Views

Lectures on Representations of Quivers by William Crawley-Boevey ...

Lectures on Representations of Quivers by William Crawley-Boevey ...

Lectures on Representations of Quivers by William Crawley-Boevey ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

INDECOMPOSABLE PROJECTIVES AND INJECTIVES.<br />

¥<br />

(1) The modules P(i) = Ae<br />

i<br />

are a complete set <strong>of</strong> n<strong>on</strong>-isomorphic<br />

indecomposable projective left A-modules.<br />

PROOF. The e<br />

i<br />

are inequivalent primitive idempotents and A =<br />

n<br />

Ae . Now<br />

i=1 i<br />

use Krull-Schmidt.<br />

(2) The modules I(i) = (P(i)) = D(e A) are a complete set <strong>of</strong><br />

i<br />

n<strong>on</strong>-isomorphic indecomposable injective left A-modules.<br />

PROOF. Use Hom(-,A) and D.<br />

(3) = ¤ = for any ¤ .<br />

i<br />

PROOF. If X has dimensi<strong>on</strong> ¤ , then<br />

1<br />

= dim Hom(P(i),X) - dim Ext (P(i),X) = dim e X = ¤ .<br />

i i<br />

= dim Hom(X,I(i)) = dim Hom(P(i),X) = ¤ .<br />

i<br />

n n<br />

(4) The vectors dim P(i) are a basis <strong>of</strong> ¦ . The dim I(i) are a basis <strong>of</strong> ¦ .<br />

PROOF. The module S(i) with dimensi<strong>on</strong> vector has a projective resoluti<strong>on</strong><br />

i<br />

0 ¡ P ¡ P ¡ S(i) ¡ 0 and an injective resoluti<strong>on</strong> 0 ¡ S(i) ¡ I ¡ I ¡ 0.<br />

1 0 0 1<br />

c:¦ ¡ ¦<br />

COXETER TRANSFORMATION.<br />

n<br />

(1) There is an automorphism<br />

n<br />

with dim P = - c(dim P) for P<br />

projective.<br />

PROOF. Define c via c(dim P(i)) = - dim I(i).<br />

(2) If X is indecomposable and n<strong>on</strong>-projective then dim X = c(dim X).<br />

PROOF. Let 0 ¡ P ¡ Q ¡ X ¡ 0 be a projective resoluti<strong>on</strong>. We have an exact<br />

sequence 0 ¡ X ¡ P ¡ Q ¡ 0 and so<br />

dim X = dim P - dim Q = -c(dim P - dim Q) = -c(dim X).<br />

(3) = - = .<br />

PROOF. = = -.<br />

(4) c¤ =¤ ¢¤ ¡ rad(q).<br />

PROOF. =-=(¥ ,¤ ).<br />

REMARK. When is written as a product <strong>of</strong> reflecti<strong>on</strong>s, <strong>on</strong>e sees that the<br />

Coxeter transformati<strong>on</strong> is a Coxeter element in the sense <strong>of</strong> Coxeter groups.<br />

24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!