29.03.2013 Views

Lectures on Representations of Quivers by William Crawley-Boevey ...

Lectures on Representations of Quivers by William Crawley-Boevey ...

Lectures on Representations of Quivers by William Crawley-Boevey ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1<br />

LEMMA 1. dim Rep(¤ ) - dim O = dim End (X) - q(¤ ) = dim Ext (X,X).<br />

X A<br />

PROOF. Say X R(x). We have<br />

dim O = dim GL(¤ ) - dim Stab(x) = dim GL(¤ ) - dim Aut (X)<br />

X A<br />

s<br />

Now GL(¤ ) is n<strong>on</strong>-empty and open in ¡ , so dense, so dim GL(¤ ) = s.<br />

Similarly Aut (X) is n<strong>on</strong>-empty and open in End (X), so dense, so<br />

A A<br />

dim Aut(x) = dim End(X). The asserti<strong>on</strong> follows.<br />

CONSEQUENCES.<br />

(1) If ¤ £ 0 and q(¤ )¤ 0, then there are infinitely many orbits in Rep(¤ ).<br />

PROOF. End (X)£ 0 so dim O < dim Rep(¤ ).<br />

A X<br />

(2) O is open X has no self-extensi<strong>on</strong>s.<br />

X<br />

1<br />

PROOF. By the lemma, Ext (X,X)=0 dim O Rep(¤ =dim ) dim O Rep(¤ =dim ).<br />

X X<br />

If dim O Rep(¤ =dim ) then =Rep(¤ O ), since a proper closed subset <strong>of</strong> an<br />

X X<br />

irreducible subset has strictly smaller dimensi<strong>on</strong>. Now O is open Rep(¤ in )<br />

X<br />

since it is locally closed. C<strong>on</strong>versely, if O is open Rep(¤ in ) then<br />

X<br />

=Rep(¤ O ) Rep(¤ since ) is irreducible. Thus their dimensi<strong>on</strong>s are certainly<br />

X<br />

equal.<br />

(3) There is at most <strong>on</strong>e module without self-extensi<strong>on</strong>s <strong>of</strong> dimensi<strong>on</strong> ¤ (up<br />

to isomorphism).<br />

PROOF. If O £ O are open, then O Rep(¤ )\O , and so O Rep(¤ )\O , which<br />

X Y X Y X Y<br />

c<strong>on</strong>tradicts the irreducibility <strong>of</strong> Rep(¤ ).<br />

LEMMA 2. If ¢<br />

O O \O .<br />

U¥ V X X<br />

:0 ¡ U ¡ X ¡ V ¡ 0 is a n<strong>on</strong>-split exact sequence, then<br />

¨<br />

©<br />

¢<br />

PROOF. For each vertex i, identify U<br />

i<br />

as a subspace <strong>of</strong> X . Choose bases <strong>of</strong><br />

i<br />

the U<br />

i<br />

and extend to bases <strong>of</strong> X . Then X R(x) with<br />

i<br />

u w<br />

x =<br />

0 v<br />

¢<br />

0£<br />

¨ ¡<br />

© ¡<br />

¢<br />

with U R(u) and V R(v). For<br />

u w<br />

(g x) =<br />

0 v<br />

¢ ¢<br />

¢ ¢<br />

¡<br />

¡ ¡<br />

¨¢¡<br />

0©<br />

1 0<br />

¡ k define g ¡ GL(¤ ) via (g ) = . Then<br />

¢<br />

so the closure <strong>of</strong> O c<strong>on</strong>tains the point with matrices<br />

X<br />

13<br />

¢

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!