28.03.2013 Views

Cement-Stabilized Base Courses Cement Stabilized Base Courses

Cement-Stabilized Base Courses Cement Stabilized Base Courses

Cement-Stabilized Base Courses Cement Stabilized Base Courses

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Concrete Airport Pavement Workshop, Nov 4-5, 09<br />

<strong>Cement</strong>-<strong>Stabilized</strong> <strong>Cement</strong> <strong>Stabilized</strong> <strong>Base</strong> <strong>Courses</strong><br />

Fares Y. Abdo, P.E.<br />

,<br />

Market Manager, Pavements<br />

Portland <strong>Cement</strong> Association


<strong>Cement</strong>-Treated <strong>Base</strong> <strong>Courses</strong><br />

Fundamentals<br />

Materials<br />

Mix Design<br />

Thickness Design g<br />

Construction<br />

Case Studies


<strong>Cement</strong>-<strong>Base</strong>d Pavement Materials<br />

Roller Roller-Compacted<br />

Compacted<br />

Pervious<br />

Conventional<br />

Concrete<br />

Concrete<br />

Concrete<br />

FAA<br />

Econocrete<br />

P-306<br />

FAA<br />

C<strong>Cement</strong>-Treated t T t d<br />

<strong>Base</strong>/Subbase<br />

P-301 &<br />

Soil-<strong>Cement</strong><br />

<strong>Cement</strong>-<br />

Treated<br />

<strong>Base</strong><br />

P-304 Flowable Fill<br />

<strong>Cement</strong><br />

Conteent<br />

Full-Depth<br />

Reclamation<br />

<strong>Cement</strong>-Modified<br />

Soil<br />

Water Content


Definition<br />

<strong>Cement</strong>-Treated <strong>Base</strong> – a intimate mixture of<br />

native and/or manufactured aggregates with<br />

measured amounts of portland cement (and<br />

possibly other cementitious materials) and<br />

water that hardens after compaction and curing<br />

to form a strong durable paving material


What materials can be treated with cement?<br />

Soils (sand, silt, clay)<br />

Gravel<br />

Shale<br />

CCrushed h d stone t<br />

Slag<br />

Recycled HMA<br />

Recycled concrete


Are all materials suitable for CTB?<br />

Problem Soils<br />

Organic soils<br />

Acid soils<br />

Sulfate Sulfate soils<br />

Uniform sands


Why Use CTB?<br />

Economical pavement base<br />

Decreased base thickness compared to<br />

unbound aggregate base<br />

Structural properties maintained under varying<br />

moisture conditions<br />

High stiffness inhibits fatigue cracking and<br />

rutting of asphalt surface<br />

Sustainable paving option


FAA <strong>Base</strong>/Subbase Approved<br />

FAA <strong>Base</strong>/Subbase Approved<br />

Materials


P Purpose of f <strong>Base</strong>/Subbase B /S bb <strong>Courses</strong> C<br />

Flexible pavements<br />

(FAA AC 150/5320-6E)<br />

Asphalt<br />

Principal structural components <strong>Base</strong><br />

Principal structural components<br />

Distribute the loads to the<br />

f d ti<br />

Subbase<br />

(Req. if CBR


Improved Performance in Rutting and Fatigue Cracking<br />

P P<br />

Unstabilized Granular <strong>Base</strong><br />

<strong>Cement</strong>-Treated <strong>Base</strong>


P Purpose of f <strong>Base</strong>/Subbase B /S bb <strong>Courses</strong> C<br />

Flexible pavements<br />

(FAA AC 150/5320-6E)<br />

Asphalt<br />

Principal structural component <strong>Base</strong><br />

Principal structural component<br />

Distribute the loads to the<br />

ffoundation d ti<br />

Rigid pavements<br />

Provide uniform stable support<br />

Subbase<br />

(Req. if CBR


Materials for <strong>Base</strong> Course<br />

FAA AC 150/5320-6E Flexible Pavement Design<br />

IItem B <strong>Base</strong> CCourse M Max. G Gross LLoad, d<br />

lbs.<br />

P-208 P 208 Aggregate <strong>Base</strong> 60 60,000 000<br />

P-209 Crushed Aggregate <strong>Base</strong> 100,000<br />

P-211 Lime Rock <strong>Base</strong> N/A /<br />

P-219 Recycled Concrete Aggregate <strong>Base</strong> 100,000<br />

P-304 <strong>Cement</strong> Treated <strong>Base</strong> N/A /<br />

P-306 Econocrete Subbase N/A<br />

P-401 Plant Mix Bituminous Pavements N/A<br />

P-403 HMA <strong>Base</strong> N/A


Materials for Subbase Course<br />

FAA AC 150/5320-6E Flexible Pavement Design<br />

IItem SSubbase bb CCourse1 F P i<br />

1 Frost Penetrating<br />

Subbase<br />

P-154 P 154 Subbase Course<br />

<br />

P-210 Caliche <strong>Base</strong> Course <br />

P-212 Shell <strong>Base</strong> Course <br />

P-213 Sand Clay <strong>Base</strong> Course X<br />

P-301 Soil <strong>Cement</strong> <strong>Base</strong> Course X<br />

1. Materials acceptable for base course can also be used for subbase course


Materials for Sbbase Course<br />

FAA AC 150/5320-6E Rigid Pavement Design<br />

IItem SSubbase bb CCourse M Max. G Gross LLoad, d<br />

lbs.<br />

P-154 Subbase Course 100,000 ,<br />

P-208 Aggregate <strong>Base</strong> Course 100,000<br />

P-209 Crushed Aggregate <strong>Base</strong> Course 100,000<br />

P-211 Lime Rock <strong>Base</strong> Course 100,000<br />

P-301 Soil <strong>Cement</strong> <strong>Base</strong> Course 100,000<br />

PP-304 304 <strong>Cement</strong> Treated <strong>Base</strong> Course N/A<br />

P-306 Econocrete Subbase Course N/A<br />

P-401 Plant Mix Bituminous Pavements N/A<br />

P-403 HMA <strong>Base</strong> Course N/A


Engineering Properties of CTB<br />

PProperty1 FAA P 301 FAA P 304 PCA CTB<br />

1 FAA P-301 FAA P-304 PCA CTB<br />

(Soil <strong>Cement</strong>)<br />

(CTB)<br />

7-Day Compressive N/A2 Under PCC: 300 min.;<br />

Strength, psi 500 min.; 1000 max.<br />

Under HMA:<br />

750 min.; 1000 max.<br />

800 max.<br />

Elastic Modulus, ksi 250 500 600-1000<br />

Poisson’s Ratio 0.20 0.20 0.15<br />

1. Refer to FAA AC 150/5320-6E for durability requirements<br />

2. FAA recommendations for P-301 are based on wet-dry and freeze-thaw tests<br />

and strength should increase with age


CTB Mix Design


St Strive i for f a Balance B l Between B t<br />

Strength g<br />

and Performance


Mixture Design-Step 1<br />

Determine moisture-density relationship<br />

Select expected median cement content<br />

(e.g. 6% by estimated dry weight)<br />

Perform standard or modified Proctor test<br />

(ASTM D558 or ASTM D1557)<br />

Construct moisture-density curve<br />

Determine optimum moisture content and<br />

maximum dry density


Moisture-Density Relationship


Mix Design-Step 2<br />

Mold specimens for compressive strength testing<br />

Select range of cement contents<br />

( (e.g. 4% 4%, 6% and d 8% b by d dry weight i ht of f material) t i l)<br />

Use percent OMC from Step 1 and Mold two<br />

specimens per cement content (ASTM<br />

D559/560 or ASTM D1632)<br />

Perform compressive strength testing<br />

(ASTM D1633)<br />

Plot cement content versus compressive<br />

Plot cement content versus compressive<br />

strength


Strength Testing


7-dayy<br />

Compresssive<br />

Strenngth,<br />

psi<br />

Strength vs. <strong>Cement</strong> Content<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

3 4 5 6 7 8 9<br />

<strong>Cement</strong> Content, %


Mix Design-Step 3<br />

Determine moisture-density relationship of target<br />

cement content<br />

Perform standard or modified Proctor test<br />

(ASTM D558 or ASTM D1557)<br />

Construct moisture-density curve<br />

Determine optimum moisture content and<br />

Determine optimum moisture content and<br />

maximum dry density


Durability Testing<br />

Specimens containing various cementitious<br />

contents molded per ASTM D558 and tested per:<br />

ASTM D559; wet-dry cycles<br />

ASTM D560; freeze-thaw freeze thaw cycles<br />

Select min. cement content that meets weight<br />

loss limits set by agency having jurisdiction


Thickness Design


Thickness Design<br />

■ FAA: FAARFIELD Computer Program<br />

■ PCA Methods of Thickness Design<br />

■ Experience<br />

■ MMechanistic-Empirical h i ti E i i l MMethods th d<br />

■ AASHTO MEPDG (guide accepted)<br />

■ PCA-Pave (near completion)


Thickness Design<br />

■ Factors<br />

■ Subgrade Strength<br />

■ Pavement Design Period<br />

■ TTraffic ffi<br />

■ Typical Thickness<br />

■ Heavy traffic: 6 to 9 inches<br />

■ Highways and airport runways and<br />

g y p y<br />

taxiways: 6 to 12 inches


Construction


Construction<br />

■ Two methods<br />

■ Plant Mix<br />

■ Road Mix (in (in-place)<br />

place)


Plant Mix: Puggmill<br />

High production<br />

Usually close or on-site<br />

Mob/demob cost


Continuous Pugmill Mixing Chamber


Plant Mix: Central Concrete Batch Plant<br />

■ Highly accurate<br />

proportioning<br />

■ Local availability<br />

■ Smaller output<br />

capacity<br />

■ Longer mix times than<br />

conventional concrete<br />

■ Frequent cleaning<br />

■ Dedicated production


Plant Mix: Dry Concrete Batch Plant<br />

■ Highest local availability<br />

■ Desirable method for the<br />

smaller-sized jobs<br />

■ 2-step process<br />

■ Feed into transit mixers<br />

■ Discharge into dumps<br />

■ Low production<br />

■ Frequent cleaning<br />

■ SSegregation i


Construction - Road Mix<br />

■ In-situ or mixed in place materials<br />

■ Wider variety of materials<br />

■ Dry yo or slurry su yce cement e tapp application cato method et od


Road Mix Method<br />

1. Spread cement<br />

2. Add water if necessary and mix<br />

3. Compact p<br />

4. Grade<br />

55. Cure


Portland <strong>Cement</strong> Addition<br />

Slurry spread<br />

Dry spread


Addition of Water<br />

Via drum of mixer<br />

Gravity dump and mix


Road Mixing<br />

Without water<br />

With water


Plant vs. Road Mix Considerations<br />

Traffic loading/agency requirements<br />

FAA P-304 spec includes plant mix only<br />

Quality Q yof<br />

in-situ materials<br />

Cost<br />

Haul distances: material sources, plant, p jjobsite<br />

Design thickness (one or multiple lifts)<br />

Sustainable considerations (Reduce, Reuse and Recycling)


Plant vs. Road Mix Considerations<br />

Dust controls/location of project<br />

Tuscaloosa, AL Palo Verde, AZ


Spreading/Placing


Grading/Compaction


Compaction<br />

■ High density is critical<br />

for strength and<br />

durability<br />

■ Steel-drum<br />

■ Rubber-tire roller<br />

■ Sheepsfoot roller


Curing<br />

■ Required for surface durability and normal strength<br />

gain g<br />

■ Needed to retain moisture<br />

■ Three methods:<br />

▪ Moist Cure<br />

▪ Concrete Curing Compound<br />

▪ Asphalt Emulsion


Moist Cure<br />

■ Continuous<br />

operation<br />

P t i<br />

■ Prevent excessive<br />

drying


Concrete Curing Compound<br />

■ White-pigmented<br />

concrete curing<br />

compounds<br />

■ Provide adequate<br />

coverage<br />

■ May form a bond<br />

breaker


Bituminous Curing Compound<br />

■ EExcellent ll t<br />

moisture barrier<br />

G d f h lt<br />

■ Good for asphalt<br />

cap


Applications


Where are stabilized materials used?<br />

L Low volume l roadways r d<br />

Residential streets<br />

State routes<br />

Interstate highways<br />

Airport runways and taxiways<br />

Parking lots<br />

Industrial storage facilities<br />

Port facilities<br />

Truck terminals<br />

Commercial sites<br />

In other words…<br />

any pavement structure!


Residential Streets<br />

Bells Crossing, Mooresville, NC, 2008


Example: County Road Original<br />

■ Upgrade 2-lane to 4-lane route<br />

■ Value Value-Engineered Engineered Option<br />

■ $900,000 savings on<br />

238,000 SY ($3.78/SY)<br />

Design<br />

Asphalt Int. &<br />

Surface<br />

■ Faster construction (5 ( months<br />

savings)<br />

3.5” Asphalt <strong>Base</strong><br />

■ Less mined and processed<br />

materials<br />

8” 8<br />

Crushed<br />

Stone <strong>Base</strong><br />

Subgrade<br />

8”<br />

VValue- l<br />

Engineered<br />

Option<br />

Asphalt Int. &<br />

Surface<br />

Crushed C<strong>Cement</strong>- t<br />

Treated Stone <strong>Base</strong> <strong>Base</strong><br />

Subgrade<br />

SC County Road 5


4” 4<br />

Parking Areas<br />

Design/Bid As<br />

Section Constructed<br />

Asphalt<br />

12” Crushed<br />

12” Crushed<br />

12” Stone<br />

<strong>Base</strong><br />

Subgrade<br />

6” 6”-8” 8”<br />

6” 6<br />

RCC<br />

Soil-<strong>Cement</strong><br />

<strong>Base</strong><br />

Subgrade<br />

BMW, SC, 2009<br />

Sustainable Contributions<br />

■ Reduced<br />

export/import/fuel use<br />

■ Less mined and<br />

processed materials<br />

■ Reduced excavation<br />

■ Faster construction<br />

■ Cooler pavement<br />

■ Used in in-situ situ materials<br />

■ Less damage to area<br />

roads


Washington Dulles<br />

Airport p Runway y 4, , 2008<br />

18” PCC w/<br />

dowelled transverse<br />

jjoints i t at t 20 ft<br />

6” CTB, 6% cement<br />

12” <strong>Cement</strong>-<br />

<strong>Stabilized</strong> Subgrade,<br />

5% cement


Washington Dulles<br />

Airport p Runway y 4<br />

■ Runway 4 completed in 2008<br />

■ Runway 12 was completed in<br />

2004


FedEx Hub at Alliance<br />

Airport Fort Worth, TX,<br />

1997<br />

Taxiway & Ramp<br />

Truck Terminal &<br />

14” PCC CContainer t i St Storage g<br />

9” CTB<br />

9” <strong>Cement</strong>-Treated<br />

Subgrade<br />

10” JRCP<br />

6” <strong>Cement</strong>-Treated<br />

Subgrade


FedEx Hub at Alliance Airport Fort Worth, TX<br />

■ 50-yr design life<br />

■ CCompleted l t d in i 1997<br />

■ 330,000 yd 2<br />

■ <strong>Cement</strong>-treated subgrade<br />

■ 7 % cement, 250 psi,<br />

reduced PI from 38 to less<br />

than 12<br />

■ <strong>Cement</strong> –treated treated base<br />

■ 750 psi at 28 days


DFW SE Perimeter<br />

Taxiway, y, 2008<br />

■ First perimeter taxiway in U.S.<br />

■ Built for safety and reduce<br />

congestion delays<br />

18” 18 CRCP<br />

12” CTB<br />

12” Lime-Treated<br />

Subgrade


DFW SE Perimeter<br />

Taxiway<br />

■ Completed in 2008<br />

■ 225,000 yd 2<br />

■ Data will be analyzed before<br />

building the remaining 3 loops


McGhee Tyson Airport<br />

Knoxville, TN, 2008<br />

■ Completed in 2008<br />

■ 9,000 yd2 ■ CTB per FAA PP-304 304<br />

16” PCC<br />

6” CTB, 5% (C+FA)<br />

8” Lime-Treated<br />

Subgrade


Charlotte-Douglas<br />

Airport, 2008<br />

■ Completed in 2008<br />

■ 256,000 yd2 ■ CTB per FAA PP-304 304


Dover AFB, Delaware,<br />

2008<br />

■ Old concrete and asphalt<br />

crushed and recycled<br />

■ 50% recycled l d and d 50% iin-situ i<br />

soil; sandy clays and clear<br />

sand<br />

■ CTB 12 12” thick<br />

■ 42 to 80 lb/SY depending on<br />

the in-situ and recycled<br />

materials<br />

■ 300,000 SY<br />

■ 58 days


M More Information<br />

I f ti<br />

www.cement.org/pavements<br />

fabdo@cement.org

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!