27.03.2013 Views

Messinian forced regressions in the Adana Basin: a near ... - Tübitak

Messinian forced regressions in the Adana Basin: a near ... - Tübitak

Messinian forced regressions in the Adana Basin: a near ... - Tübitak

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Turkish Journal of Earth Sciences<br />

http://journals.tubitak.gov.tr/earth/<br />

Research Article<br />

Turkish J Earth Sci<br />

(2013) 22:<br />

© TÜBİTAK<br />

doi:10.3906/yer-1208-3<br />

<strong>Mess<strong>in</strong>ian</strong> <strong>forced</strong> <strong>regressions</strong> <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>: a <strong>near</strong>-co<strong>in</strong>cidence of tectonic and<br />

eustatic forc<strong>in</strong>g<br />

Ayhan ILGAR 1, *, Wojciech NEMEC 2 , Aynur HAKYEMEZ 1 , Erhan KARAKUŞ 1<br />

1 Department of Geological Research, General Directorate of M<strong>in</strong>eral Research and Exploration (MTA), 06520 Ankara, Turkey<br />

2 Department of Earth Science, Faculty of Ma<strong>the</strong>matics and Natural Sciences, University of Bergen, 5007 Bergen, Norway<br />

Received: 10.08.2012 Accepted: 19.12.2012 Published Onl<strong>in</strong>e: 00.00.2013 Pr<strong>in</strong>ted: 00.00.2013<br />

Abstract: This sedimentological and sequence-stratigraphic study focuses on <strong>the</strong> late Miocene deposits <strong>in</strong> one of <strong>the</strong> largest peri-<br />

Mediterranean bas<strong>in</strong>s of sou<strong>the</strong>rn Turkey, <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>, which formed as a Tauride foreland depression accumulat<strong>in</strong>g molasse<br />

deposits. The Tortonian–<strong>Mess<strong>in</strong>ian</strong> shallow-mar<strong>in</strong>e Handere Formation, previously <strong>in</strong>terpreted as a regressive succession, appears to<br />

have recorded several relative sea-level changes. The formation base recorded a <strong>forced</strong> regression attributed to <strong>the</strong> end-Serravalian (Tor-<br />

1) eustatic fall <strong>in</strong> sea level. The lower to middle part of <strong>the</strong> formation is transgressive, culm<strong>in</strong>at<strong>in</strong>g <strong>in</strong> offshore mudstones. The upper part<br />

is regressive and its 3 isolated conglomeratic members represent sharp-based Gilbert-type deltas with <strong>in</strong>cised fluvial valley-fill deposits,<br />

record<strong>in</strong>g a <strong>forced</strong> regression followed by mar<strong>in</strong>e reflood<strong>in</strong>g. The time of this regression is biostratigraphically constra<strong>in</strong>ed to ~7.8 to<br />

6.4 Ma B.P. on <strong>the</strong> basis of planktonic foram<strong>in</strong>ifera <strong>in</strong> delta bottomset deposits. The regression is attributed to <strong>the</strong> tectonic conversion<br />

of <strong>the</strong> <strong>Adana</strong> foreland shelf <strong>in</strong>to a piggyback bas<strong>in</strong>, as <strong>in</strong>dicated by seismic sections and compressional bas<strong>in</strong>-marg<strong>in</strong> deformation. The<br />

reflood<strong>in</strong>g of <strong>the</strong> bas<strong>in</strong> ~6.4 Ma B.P. is ascribed to a postthrust<strong>in</strong>g flexural subsidence of <strong>the</strong> foreland under <strong>in</strong>creased crustal load. The<br />

mar<strong>in</strong>e transgression brought an almost immediate evaporitic sedimentation, which suggests <strong>in</strong>vasion of hypersal<strong>in</strong>e Mediterranean<br />

water. The bas<strong>in</strong> was subsequently emerged and its gypsiferous deposits were extensively eroded due to a second <strong>Mess<strong>in</strong>ian</strong> <strong>forced</strong><br />

regression, attributed to <strong>the</strong> early evaporative drawdown <strong>in</strong> <strong>the</strong> Mediterranean Sea (~6 Ma B.P.). The postorogenic isostatic uplift of<br />

<strong>the</strong> Taurides had meanwhile elevated <strong>the</strong> bas<strong>in</strong> enough to prevent its reflood<strong>in</strong>g by <strong>the</strong> Zanclean regional transgression. Stratigraphic<br />

comparison with coeval peri-Mediterranean bas<strong>in</strong>s to <strong>the</strong> west demonstrates that <strong>in</strong>terbas<strong>in</strong>al correlations are difficult, and that a<br />

superficial l<strong>in</strong>k<strong>in</strong>g of comparable events may be quite mislead<strong>in</strong>g. The local tim<strong>in</strong>g of <strong>the</strong> late Miocene relative sea-level changes and <strong>the</strong><br />

landward extent of <strong>the</strong> Zanclean flood<strong>in</strong>g were apparently determ<strong>in</strong>ed by <strong>the</strong> comb<strong>in</strong>ation of eustasy, tectonics, bas<strong>in</strong> topography, and<br />

sediment supply, whereby <strong>the</strong> eustatic signal was modulated and often obscured by local conditions. However, <strong>the</strong> <strong>in</strong>dividual bas<strong>in</strong>-fill<br />

successions bear a high-resolution record of local events and give unique <strong>in</strong>sights <strong>in</strong>to <strong>the</strong> local role of tectonics, sediment yield, and<br />

sea-level changes.<br />

Key Words: Sedimentology, sequence stratigraphy, Taurides, piggyback bas<strong>in</strong>, Gilbert-type delta, <strong>in</strong>cised valley-fill, <strong>Mess<strong>in</strong>ian</strong> sal<strong>in</strong>ity<br />

crisis, stratigraphic correlation<br />

1. Introduction<br />

The late Miocene Mediterranean event known as <strong>the</strong><br />

<strong>Mess<strong>in</strong>ian</strong> sal<strong>in</strong>ity crisis was triggered by a glacioeustatic<br />

sea-level fall comb<strong>in</strong>ed with <strong>the</strong> region’s tectonic<br />

separation from <strong>the</strong> Atlantic at <strong>the</strong> latest stages of <strong>the</strong><br />

Alp<strong>in</strong>e orogeny (Hsü et al. 1972; Ryan & Cita 1978; Cita &<br />

McKenzie 1986; Ryan 2009; Hüs<strong>in</strong>g et al. 2010). The event<br />

culm<strong>in</strong>ated <strong>in</strong> <strong>the</strong> evaporitic Lago Mare phase of partial or<br />

<strong>near</strong>ly complete desiccation and ended with <strong>the</strong> Zanclean<br />

mar<strong>in</strong>e flood<strong>in</strong>g, when <strong>the</strong> Atlantic waters reclaimed <strong>the</strong><br />

Mediterranean Bas<strong>in</strong>. A consentient 3-phase scenario<br />

for <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> event postulates (Roveri & Manzi<br />

2006): (1) a preevaporitic phase 7.25–5.96 Ma B.P., when<br />

organic-rich eux<strong>in</strong>ic deposits recorded a significantly<br />

* Correspondence: ayhan_ilgar@yahoo.com<br />

reduced circulation of Mediterranean deep waters and<br />

when microbial stromatolitic limestones formed <strong>in</strong> some<br />

peripheral bas<strong>in</strong>s; (2) <strong>the</strong> deposition phase of Lower<br />

Evaporites 5.96–5.60 Ma B.P., when <strong>the</strong> precipitation of<br />

gypsum occurred <strong>in</strong> shallow-water peripheral bas<strong>in</strong>s; and<br />

(3) <strong>the</strong> deposition phase of Upper Evaporites 5.60–5.33<br />

Ma B.P., when <strong>the</strong> nonmar<strong>in</strong>e Lago Mare environment<br />

formed <strong>in</strong> <strong>the</strong> lowest parts of a desiccat<strong>in</strong>g Mediterranean<br />

Bas<strong>in</strong>. The bulk amplitude of relative sea-level fall is<br />

estimated at 2000 to 3000 m (Ryan 2009).<br />

It may thus seem surpris<strong>in</strong>g that a regional event<br />

of such a great magnitude, orig<strong>in</strong>ally recognised from<br />

thick evaporites <strong>in</strong> <strong>the</strong> centre of <strong>the</strong> Mediterranean<br />

Bas<strong>in</strong>, is much less conspicuous at <strong>the</strong> bas<strong>in</strong> marg<strong>in</strong>s,<br />

1


where stratigraphic correlations of relative sea-level<br />

changes are difficult and controversial (Ryan 2009).<br />

One of <strong>the</strong> most contentious issues is <strong>the</strong> tim<strong>in</strong>g of <strong>the</strong><br />

onsets of hypersal<strong>in</strong>ity and evaporative drawdown <strong>in</strong><br />

<strong>the</strong> Mediterranean Sea, with direct implications for <strong>the</strong><br />

negative imbalance between <strong>the</strong> rate of water <strong>in</strong>flux from<br />

<strong>the</strong> Atlantic and <strong>the</strong> regional rate of evaporation. Regional<br />

studies suggest that <strong>the</strong> first precipitates at <strong>the</strong> deep<br />

bottom of <strong>the</strong> Mediterranean Bas<strong>in</strong> were preceded by a<br />

long stepwise advance towards hypersal<strong>in</strong>ity, with gypsum<br />

<strong>in</strong> peripheral bas<strong>in</strong>s precipitated well before <strong>the</strong> nom<strong>in</strong>al<br />

onset of <strong>the</strong> regional sal<strong>in</strong>ity crisis (see review by Ryan<br />

2009). Most researchers also suggest that <strong>the</strong> sal<strong>in</strong>ity crisis<br />

was preceded by a considerable early drawdown, with <strong>the</strong><br />

isolation of peripheral bas<strong>in</strong>s as evaporat<strong>in</strong>g lagoons and<br />

<strong>the</strong>ir eventual emergence (Rouchy 1982; Rouchy & Sa<strong>in</strong>t<br />

Mart<strong>in</strong> 1992; Clauzon et al. 1996; Rid<strong>in</strong>g et al. 1999; Soria<br />

et al. 2005; Maillard & Mauffret 2006; Rouchy & Caruso<br />

2006; Roveri & Manzi 2006). The early drawdown might<br />

not exceed 200 m (Dronkert 1985; Krijgsman et al. 1999),<br />

but would mark a negative water budget and would<br />

expectedly have a major impact on <strong>the</strong> peripheral bas<strong>in</strong>s<br />

and <strong>the</strong>ir stratigraphy. However, <strong>the</strong> peri-Mediterranean<br />

late Miocene stratigraphic record is fuzzy, comb<strong>in</strong><strong>in</strong>g<br />

relative sea-level changes caused by eustatic and local<br />

tectonic forc<strong>in</strong>g.<br />

The diversified tectono-geomorphic conditions<br />

of peripheral bas<strong>in</strong>s resulted <strong>in</strong> <strong>in</strong>tricate stratigraphic<br />

successions that are difficult to correlate and also difficult<br />

to relate to <strong>the</strong> evaporitic successions <strong>in</strong> offshore wells.<br />

Regional correlations are complicated by <strong>the</strong> fact that<br />

evaporites are found <strong>in</strong> only some of <strong>the</strong> peripheral<br />

bas<strong>in</strong>s, where <strong>the</strong>y may ei<strong>the</strong>r predate or postdate <strong>the</strong><br />

Mediterranean desiccation (Rid<strong>in</strong>g et al. 1999). The<br />

key <strong>in</strong>dicator of <strong>the</strong> early evaporative drawdown <strong>in</strong> <strong>the</strong><br />

peripheral bas<strong>in</strong>s might thus be not evaporites, but a<br />

regional surface of erosion (Ryan 2009). However, nei<strong>the</strong>r<br />

feature can easily be recognised and correlated <strong>in</strong> <strong>the</strong> bas<strong>in</strong>s<br />

(Rid<strong>in</strong>g et al. 1991, 1998; Roep et al. 1998; Soria et al. 2005;<br />

Roveri & Manzi 2006). The <strong>Mess<strong>in</strong>ian</strong> surface of subaerial<br />

erosion is highly irregular due to <strong>the</strong> varied rates of local<br />

denudation and it is not marked by any significant climatic<br />

change. It has been elevated by tectonics and overtaken<br />

by Plio–Pleistocene erosion <strong>in</strong> many bas<strong>in</strong>s (Glover et al.<br />

1998; Dilek et al. 1999; Deynoux et al. 2005; Monod et al.<br />

2006), and it splits <strong>in</strong>to 2 or more erosion surfaces towards<br />

<strong>the</strong> deep part of <strong>the</strong> Mediterranean Bas<strong>in</strong> (Ryan 2009) and<br />

commonly also landwards <strong>in</strong> <strong>the</strong> peripheral bas<strong>in</strong>s (Butler<br />

et al. 1995; Clauzon et al. 1996; Rid<strong>in</strong>g et al. 1998; Soria et<br />

al. 2003).<br />

The evidence of late Miocene <strong>regressions</strong>, commonly<br />

multiple, has been recognised <strong>in</strong> virtually all peri-<br />

Mediterranean bas<strong>in</strong>s at both active and passive marg<strong>in</strong>s<br />

2<br />

ILGAR et al. / Turkish J Earth Sci<br />

(Ryan 2009), but <strong>the</strong>se events are difficult to correlate and<br />

have been variously attributed to eustasy, high sediment<br />

supply, or local tectonic uplift (e.g., Clauzon et al. 1996;<br />

Rid<strong>in</strong>g et al. 1999; Karabıyıkoğlu et al. 2000; Larsen 2003;<br />

Soria et al. 2003, 2005; Deynoux et al. 2005; Flecker et al.<br />

2005; Roveri & Manzi 2006; Ç<strong>in</strong>er et al. 2008). Regional<br />

studies have po<strong>in</strong>ted to <strong>the</strong> importance of local tectonics<br />

<strong>in</strong> controll<strong>in</strong>g <strong>the</strong> late Miocene palaeogeography (Butler<br />

et al. 1995; Roveri & Manzi 2006). Many areas of <strong>the</strong><br />

Mediterranean were still subject to <strong>the</strong> f<strong>in</strong>al stages of <strong>the</strong><br />

Alp<strong>in</strong>e orogeny at that time, whereas it is generally difficult<br />

to dist<strong>in</strong>guish between eustatically <strong>forced</strong> and tectonically<br />

<strong>forced</strong> <strong>regressions</strong>, particularly if both factors were<br />

potentially <strong>in</strong>volved. The local tim<strong>in</strong>g of <strong>the</strong> late Miocene<br />

relative sea-level changes and <strong>the</strong> landward extent of<br />

<strong>the</strong> Zanclean mar<strong>in</strong>e reflood<strong>in</strong>g were probably both<br />

determ<strong>in</strong>ed by <strong>the</strong> comb<strong>in</strong>ation of eustasy, local tectonics,<br />

bas<strong>in</strong> topography, and sediment supply.<br />

This regional issue is addressed by <strong>the</strong> present study<br />

from <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> at <strong>the</strong> north-eastern corner of <strong>the</strong><br />

Mediterranean (Figure 1a), where a regression due to<br />

tectonic <strong>in</strong>version of <strong>the</strong> bas<strong>in</strong> <strong>near</strong>ly co<strong>in</strong>cided with <strong>the</strong><br />

<strong>Mess<strong>in</strong>ian</strong> evaporative drawdown. The pr<strong>in</strong>cipal aims of<br />

<strong>the</strong> study are to: (1) give a palaeontologically constra<strong>in</strong>ed<br />

revised sequence stratigraphy of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>, with a<br />

focus on <strong>the</strong> late Miocene part of <strong>the</strong> bas<strong>in</strong>-fill succession;<br />

(2) assess <strong>the</strong> role of tectonics and eustasy <strong>in</strong> forc<strong>in</strong>g <strong>the</strong><br />

<strong>Mess<strong>in</strong>ian</strong> relative sea-level changes <strong>in</strong> <strong>the</strong> bas<strong>in</strong>; and (3)<br />

compare <strong>the</strong> late Miocene stratigraphy of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong><br />

with that of <strong>the</strong> adjacent peri-Mediterranean bas<strong>in</strong>s <strong>in</strong><br />

order to draw regional implications.<br />

2. Term<strong>in</strong>ology<br />

The term “regression” denotes seaward displacement<br />

of shorel<strong>in</strong>e, result<strong>in</strong>g <strong>in</strong> a relative <strong>in</strong>crease of land area<br />

(Posamentier & Vail 1988; Posamentier et al. 1992).<br />

Regression reflects <strong>the</strong> <strong>in</strong>terplay between <strong>the</strong> relative<br />

sea-level change (i.e. <strong>the</strong> available accommodation)<br />

and <strong>the</strong> supply of sediment to <strong>the</strong> shorel<strong>in</strong>e (i.e. <strong>the</strong><br />

accommodation <strong>in</strong>fill<strong>in</strong>g). Their <strong>in</strong>terplay may result <strong>in</strong><br />

a normal or a <strong>forced</strong> regression (Posamentier et al. 1992;<br />

Posamentier & Morris 2000). A normal regression signifies<br />

relative sea-level stillstand or slow rise, with <strong>the</strong> high<br />

sediment supply caus<strong>in</strong>g seaward shorel<strong>in</strong>e displacement.<br />

A <strong>forced</strong> regression signifies a relative sea-level fall, with<br />

<strong>the</strong> latter caus<strong>in</strong>g seaward shorel<strong>in</strong>e displacement, even if<br />

<strong>the</strong> sediment supply to <strong>the</strong> shorel<strong>in</strong>e is negligible. A <strong>forced</strong><br />

regression may be caused by a eustatic sea-level fall, a<br />

tectonic uplift, or a co<strong>in</strong>cidental comb<strong>in</strong>ation of <strong>the</strong>se 2<br />

factors.<br />

The basic sequence-stratigraphic term<strong>in</strong>ology used here<br />

is accord<strong>in</strong>g to Catuneanu (2006). Stratigraphic sequence<br />

is a sedimentary succession deposited dur<strong>in</strong>g a full cycle of


A<br />

AGE FORMATION<br />

Holocene<br />

alluvium<br />

unconformity<br />

Pliocene-<br />

Pleistocene<br />

alluvial terraces<br />

unconformity<br />

Gökkuyu evaporitic mb<br />

Late Miocene<br />

Late Serravallia<strong>near</strong>ly<br />

Tortonian<br />

Middle Miocene<br />

Mesozoic<br />

Handere Fm.<br />

Karaisalı<br />

Fm.<br />

Güvenç<br />

Fm.<br />

deltaic members<br />

Handere Fm.<br />

conglomerates, sandstones<br />

mudstones & gypsum<br />

Kuzgun Fm.<br />

cong.,sst.& mudst<br />

unconformity<br />

Karaisalı Fm.<br />

reefal limestones, marls<br />

Güvenç Fm.<br />

mudstones, sandstones<br />

unconformity<br />

Carbonate bedrock<br />

ILGAR et al. / Turkish J Earth Sci<br />

5<br />

Muratlı<br />

Mb.<br />

7<br />

Middle<br />

Miocene<br />

Middle<br />

Miocene<br />

Lower<br />

Miocene<br />

Oligocene<br />

Palaeozoic<br />

& Mesozoic<br />

bedrock<br />

2<br />

6<br />

Tepeçaylak<br />

Mb.<br />

Taurus Orogenic Belt<br />

map C<br />

EXPLANATIONS<br />

deep-mar<strong>in</strong>e clastics Holocene<br />

fluvial-lagoonal clastics<br />

Pliocene-<br />

Pleistocene<br />

fluvial-lacustr<strong>in</strong>e clastics<br />

Upper<br />

Miocene<br />

lacustr<strong>in</strong>e carbonates<br />

Middle-Upper<br />

Miocene<br />

ophiolitic mélange<br />

limestones & clastics<br />

Middle-Upper<br />

Miocene<br />

Söğütlü<br />

Mb.<br />

alluvial terraces<br />

fluvial-shallow<br />

mar<strong>in</strong>e clastics<br />

mar<strong>in</strong>e<br />

marl-limestones<br />

reefal limestones<br />

Figure 1. (a) Topographic image of Anatolia (90-m resolution SRTM from Jarvis et al. 2008), show<strong>in</strong>g <strong>the</strong> location of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong><br />

and o<strong>the</strong>r ma<strong>in</strong> peri-Mediterranean Miocene bas<strong>in</strong>s and major tectonic l<strong>in</strong>eaments referred to <strong>in</strong> <strong>the</strong> text. (b) Simplified geological<br />

map of <strong>the</strong> sou<strong>the</strong>rn part of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> and <strong>the</strong> adjacent Mut Bas<strong>in</strong> (based on Şenel 2002 and Ulu 2002); note <strong>the</strong> study area <strong>in</strong><br />

<strong>the</strong> former bas<strong>in</strong> (frame) and <strong>the</strong> location of a late Tortonian delta <strong>in</strong> <strong>the</strong> latter bas<strong>in</strong>. (c) Detailed geological map of <strong>the</strong> study area <strong>in</strong><br />

<strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>. Note <strong>the</strong> 3 isolated deltaic members of <strong>the</strong> uppermost Handere Formation. The po<strong>in</strong>ts 1–7 <strong>in</strong> maps B and C <strong>in</strong>dicate<br />

outcrop localities to which <strong>the</strong> paper’s o<strong>the</strong>r figures refer.<br />

1<br />

Çakıt river<br />

Kuzgun<br />

Salbaş<br />

3<br />

5 km<br />

4<br />

alluvium<br />

B<br />

C<br />

3


change <strong>in</strong> accommodation (i.e. its decrease and subsequent<br />

<strong>in</strong>crease), coupled with sediment supply. The term<br />

“sedimentary system” denotes a sedimentary environment<br />

and refers to its specific facies assemblage, whereas a<br />

systems tract is a succession of such palaeoenvironmental<br />

facies assemblages. A sequence is considered to be a<br />

vertical succession of relatively conformable systems<br />

tracts, bounded by unconformities (erosional surfaces<br />

of sediment bypass) that grade seawards <strong>in</strong>to correlative<br />

conformities. A parasequence is a succession of relatively<br />

conformable deposits bounded by flood<strong>in</strong>g surfaces and<br />

lack<strong>in</strong>g evidence of a relative base-level fall.<br />

Follow<strong>in</strong>g Helland-Hansen (2009), we dist<strong>in</strong>guish<br />

3 basic types of systems tracts as <strong>the</strong> build<strong>in</strong>g blocks<br />

of stratigraphic sequences: a <strong>forced</strong>-regressive systems<br />

tract (FRST) formed dur<strong>in</strong>g a relative sea-level fall; a<br />

transgressive systems tract (TST) formed dur<strong>in</strong>g a relative<br />

sea-level rise; and a normal-regressive systems tract<br />

formed dur<strong>in</strong>g ei<strong>the</strong>r highstand (HST) or lowstand (LST)<br />

and record<strong>in</strong>g sea-level stability or m<strong>in</strong>or relative rise.<br />

The basis for dist<strong>in</strong>guish<strong>in</strong>g systems tracts is <strong>the</strong> vertical<br />

stack<strong>in</strong>g of sedimentary facies assemblages and <strong>the</strong><br />

stratigraphic palaeoshorel<strong>in</strong>e trajectory (Helland-Hansen<br />

& Mart<strong>in</strong>sen 1996). A FRST has a fall<strong>in</strong>g trajectory, but<br />

<strong>the</strong> regressive shorel<strong>in</strong>e shift may <strong>in</strong>volve deposition or be<br />

fully erosional, depend<strong>in</strong>g on <strong>the</strong> sediment supply rate and<br />

<strong>the</strong> rate and magnitude of relative sea-level fall (Pl<strong>in</strong>t 1988;<br />

Helland-Hansen & Gjelberg 1994). With <strong>the</strong> sea-level fall<br />

compensated by tectonic subsidence, some sequences,<br />

referred to as <strong>the</strong> sequences of type 2 (Jervey 1988), may<br />

show no recognisable shorel<strong>in</strong>e fall and masquerade as<br />

parasequences (e.g., Gh<strong>in</strong>assi 2007; Mess<strong>in</strong>a et al. 2007).<br />

Parasequences consist of a TST overla<strong>in</strong> by a HST.<br />

The descriptive sedimentological term<strong>in</strong>ology used<br />

<strong>in</strong> this study is accord<strong>in</strong>g to Harms et al. (1975, 1982)<br />

and Coll<strong>in</strong>son and Thompson (1982). In biostratigraphic<br />

analysis, <strong>the</strong> Mediterranean planktonic foram<strong>in</strong>ifer zones<br />

of Iaccar<strong>in</strong>o et al. (2007) are followed, and <strong>the</strong> def<strong>in</strong>ition<br />

of species is based ma<strong>in</strong>ly on Kennett and Sr<strong>in</strong>ivasan<br />

(1973), Iaccar<strong>in</strong>o (1985), and Bolli and Saunders (1985).<br />

Biostratigraphic age estimates refer to <strong>the</strong> astronomically<br />

tuned ATNTS2004 scale (Lourens et al. 2004).<br />

3. Regional geological sett<strong>in</strong>g<br />

The Tauride orogen of sou<strong>the</strong>rn Turkey is <strong>the</strong> youngest of<br />

<strong>the</strong> eastern peri-Mediterranean Alp<strong>in</strong>e mounta<strong>in</strong> cha<strong>in</strong>s.<br />

It is arbitrarily divided <strong>in</strong>to 3 segments (Figure 1a): <strong>the</strong><br />

Western Taurides, west of <strong>the</strong> Isparta Angle, pass<strong>in</strong>g<br />

westwards <strong>in</strong>to <strong>the</strong> Hellenides and sometimes referred to<br />

as <strong>the</strong> Eastern Hellenides due to <strong>the</strong>ir tectonic l<strong>in</strong>k with<br />

<strong>the</strong> Hellenic subduction arc; <strong>the</strong> Central Taurides between<br />

<strong>the</strong> Isparta Angle and <strong>the</strong> Ecemiş Fault to <strong>the</strong> east; and<br />

<strong>the</strong> Eastern Taurides that pass eastwards <strong>in</strong>to <strong>the</strong> Zagros<br />

Mounta<strong>in</strong>s. The orogeny culm<strong>in</strong>ated at <strong>the</strong> end of <strong>the</strong><br />

4<br />

ILGAR et al. / Turkish J Earth Sci<br />

Eocene (Şengör 1987; Clark & Robertson 2002), but lowrate<br />

plate convergence <strong>in</strong> <strong>the</strong> Central Taurides persisted<br />

until <strong>the</strong> mid-Oligocene (Kell<strong>in</strong>g et al. 1987; Andrew<br />

& Robertson 2002), when <strong>the</strong> Cyprian subduction arc<br />

eventually stepped back to <strong>the</strong> south of Cyprus (Figure 1a).<br />

Orogenic deformation proceeded until <strong>the</strong> late Miocene<br />

<strong>in</strong> <strong>the</strong> Eastern Taurides, where <strong>the</strong> Misis Structural High<br />

popped up by fold<strong>in</strong>g and thrust<strong>in</strong>g (Michard et al. 1984;<br />

Aktaş & Robertson 1990; Dilek & Moores 1990; Yılmaz<br />

1993; Yılmaz et al. 1993; Robertson 2000; Sunal & Tüysüz<br />

2002), and also at <strong>the</strong> transition of <strong>the</strong> Western and<br />

Central Taurides, where <strong>the</strong> Lycian and Hoyran-Hadım<br />

nappe fronts collided north of <strong>the</strong> Isparta Angle (Coll<strong>in</strong>s<br />

& Robertson 1998, 2000; Poisson et al. 2003; Sagular &<br />

Görmüş 2006). The Miocene thus saw <strong>the</strong> last stages of<br />

localised compressional deformation, while <strong>the</strong> Taurides<br />

<strong>in</strong> general had already become subject to postorogenic<br />

isostatic uplift and crustal extension with <strong>the</strong> development<br />

of orogen-collapse bas<strong>in</strong>s (Seyitoğlu & Scott 1991, 1996;<br />

Jaffey & Robertson 2005; Bartol et al. 2011; Koç et al. 2011;<br />

Cosent<strong>in</strong>o et al. 2012).<br />

The peri-Mediterranean bas<strong>in</strong>s <strong>in</strong> sou<strong>the</strong>rn Turkey<br />

formed nonsynchronously dur<strong>in</strong>g <strong>the</strong> early Miocene and<br />

ranged from relatively simple <strong>in</strong>tramontane grabens or<br />

half-grabens (Alçiçek et al. 2005; Alçiçek 2010) to more<br />

complex extensional depressions (Flecker et al. 1995,<br />

2005; Larsen 2003; Şafak et al. 2005; Ç<strong>in</strong>er et al. 2008),<br />

strike-slip pull-apart features (Ilgar & Nemec 2005), and<br />

compressional foreland troughs (Hayward 1984a, 1984b;<br />

Burton-Ferguson et al. 2005; Alçiçek & Ten Veen 2008).<br />

The bas<strong>in</strong>-fill successions of <strong>the</strong>se isolated molasse bas<strong>in</strong>s<br />

are highly diversified <strong>in</strong> terms of sedimentary facies and<br />

sequence stratigraphy, and are difficult to correlate (Tekeli<br />

& Göncüoğlu 1984; Yetiş et al. 1995; Durand et al. 1999;<br />

Bozkurt et al. 2000; Kell<strong>in</strong>g et al. 2005). However, <strong>the</strong>y<br />

provide crucial <strong>in</strong>formation on an early postorogenic<br />

tectono-geomorphic evolution of <strong>the</strong> Tauride belt and its<br />

<strong>in</strong>teraction with <strong>the</strong> Mediterranean Sea. As po<strong>in</strong>ted out<br />

by Kell<strong>in</strong>g et al. (2005, pp. 1–13), <strong>the</strong> palaeogeographical<br />

and chronostratigraphical resolution of <strong>the</strong> local bas<strong>in</strong>-fill<br />

successions far exceeds that of geophysical lithospheric<br />

models and gives unique regional <strong>in</strong>sights <strong>in</strong>to <strong>the</strong> relative<br />

role of tectonics, climate, sediment yield, and sea-level<br />

changes. Detailed palaeogeographical reconstructions and<br />

<strong>the</strong> recognition of major sediment-transfer fairways to<br />

<strong>the</strong> offshore zone (Satur et al. 2005) are vital to regional<br />

hydrocarbon prospect<strong>in</strong>g (Görür & Tüysüz 2001).<br />

The <strong>Adana</strong> Bas<strong>in</strong> is one of <strong>the</strong> largest Miocene<br />

peripheral bas<strong>in</strong>s <strong>in</strong> sou<strong>the</strong>rn Turkey, located between<br />

<strong>the</strong> Taurus orogenic front to <strong>the</strong> north-west and <strong>the</strong> Misis<br />

Structural High to <strong>the</strong> south-east (Figure 1a). The SWtrend<strong>in</strong>g<br />

bas<strong>in</strong> passes offshore <strong>in</strong>to <strong>the</strong> Cilicia Bas<strong>in</strong> north<br />

of Cyprus. The <strong>Adana</strong> Bas<strong>in</strong> and its smaller counterpart,<br />

İskenderun Bas<strong>in</strong> on <strong>the</strong> o<strong>the</strong>r side of <strong>the</strong> Misis High,


form <strong>the</strong> Çukurova Bas<strong>in</strong> Complex at <strong>the</strong> Kahramanmaraş<br />

junction of <strong>the</strong> Afro-Arabian, Anatolian, and Eurasian<br />

plates (Ünlügenç et al. 1990). The structural development<br />

<strong>in</strong> this region <strong>in</strong>volved 3 major tectonic l<strong>in</strong>eaments<br />

(Figure 1a): <strong>the</strong> Bitlis-Zagros Suture Zone separat<strong>in</strong>g <strong>the</strong><br />

Arabian and Anatolian-Eurasian plates; <strong>the</strong> eastern arm<br />

of <strong>the</strong> Cyprian arc of <strong>in</strong>tra-Tethyan plate subduction; and<br />

<strong>the</strong> s<strong>in</strong>istral strike-slip Dead Sea Fault between Africa and<br />

Arabia, pass<strong>in</strong>g to <strong>the</strong> north-east <strong>in</strong>to <strong>the</strong> East Anatolian<br />

Fault (Kell<strong>in</strong>g et al. 1987; Ünlügenç et al. 1990; Williams et<br />

al. 1995; Robertson 2000). The system of <strong>the</strong> East Anatolian<br />

and North Anatolian faults lead <strong>the</strong> neotectonic westward<br />

“expulsion” of <strong>the</strong> compound Anatolian craton (Dewey &<br />

Şengör 1979; Şengör & Yılmaz 1981). Derivatives of this<br />

neotectonic strike-slip system <strong>in</strong>clude <strong>the</strong> Burdur-Fethiye-<br />

Pl<strong>in</strong>y Fault to <strong>the</strong> west and <strong>the</strong> Ecemiş Fault separat<strong>in</strong>g <strong>the</strong><br />

<strong>Adana</strong> Bas<strong>in</strong> from <strong>the</strong> coeval Mut Bas<strong>in</strong> (Figure 1a).<br />

The <strong>Adana</strong> Bas<strong>in</strong> formed <strong>in</strong> <strong>the</strong> early Miocene on<br />

a wedge-shaped sliver of <strong>the</strong> Tethyan shelf that was<br />

structurally entrapped between <strong>the</strong> Anatolian and Arabian<br />

plates and converted <strong>in</strong>to <strong>the</strong> local Tauride foreland. Seismic<br />

<strong>in</strong>terpretation by Burton-Ferguson et al. (2005) suggests<br />

that <strong>the</strong> <strong>Adana</strong> foreland developed by flexural subsidence<br />

under <strong>the</strong> load of a SE-advanc<strong>in</strong>g orogenic front and <strong>the</strong>n<br />

turned <strong>in</strong>to a piggyback bas<strong>in</strong> <strong>in</strong> <strong>the</strong> Tortonian, with <strong>the</strong><br />

Misis High pop-up ridge separat<strong>in</strong>g it from <strong>the</strong> İskenderun<br />

foredeep to <strong>the</strong> south-east (Figures 1a and 1b). The foreland<br />

model expla<strong>in</strong>s <strong>the</strong> Miocene strong subsidence and great<br />

thickness of sediments accumulated <strong>in</strong> <strong>the</strong> bas<strong>in</strong> as well as<br />

<strong>the</strong> bas<strong>in</strong>’s late Miocene compressional tectonic <strong>in</strong>version.<br />

4. Dynamic stratigraphy of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong><br />

The stratigraphy of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> was established by<br />

Schmidt (1961) and ref<strong>in</strong>ed by subsequent studies (Yalçın<br />

& Görür 1984; Kell<strong>in</strong>g et al. 1987; Yetiş 1988; Ünlügenç<br />

et al. 1990; Görür 1992; Yetiş et al. 1995; Nazik 2004;<br />

Satur et al. 2005). The present study contributes fur<strong>the</strong>r<br />

to this topic. The bas<strong>in</strong>-fill succession comprises up to 6<br />

km of Miocene to Quaternary siliciclastic and calcareous<br />

deposits. Bedrock consists of Palaeozoic and Mesozoic<br />

sedimentary rocks, which <strong>in</strong>clude Devonian corall<strong>in</strong>e<br />

limestones and sandstones, Permo-Carbonifereous<br />

limestones, a Late Triassic to Cretaceous thick carbonate<br />

platform, and Late Cretaceous turbidites. These rocks were<br />

postdated by <strong>the</strong> tectonic emplacement of a nappe of Late<br />

Cretaceous ophiolitic mélange (Figure 1b).<br />

Sedimentation <strong>in</strong> <strong>the</strong> bas<strong>in</strong> commenced <strong>in</strong> <strong>the</strong> early<br />

Miocene with deposition of <strong>the</strong> alluvial fan redbeds of <strong>the</strong><br />

Gildirli Formation (Figure 2), <strong>in</strong>clud<strong>in</strong>g conglomerates,<br />

sandstones, and mudstones. The Burdigalian to early<br />

Langhian Kaplankaya Formation recorded <strong>the</strong> first<br />

episode of mar<strong>in</strong>e sedimentation <strong>in</strong> <strong>the</strong> bas<strong>in</strong>, with<br />

sandstones, siltstones, marlstones, and sandy limestones.<br />

ILGAR et al. / Turkish J Earth Sci<br />

This transgressive formation has a broader lateral extent,<br />

particularly northwards, and unconformably overlies<br />

bedrock palaeotopography. Reefal limestones formed<br />

<strong>in</strong> <strong>the</strong> marg<strong>in</strong>al zone of <strong>the</strong> bas<strong>in</strong>, while open-mar<strong>in</strong>e<br />

deep neritic conditions prevailed <strong>in</strong> <strong>the</strong> bas<strong>in</strong> <strong>in</strong>terior.<br />

The Kaplankaya Formation thus passes laterally <strong>in</strong>to and<br />

is partly overla<strong>in</strong> by <strong>the</strong> late Burdigalian–Serravalian<br />

reefal Karaisalı Formation, whose bas<strong>in</strong>al equivalents<br />

are sublittoral tempestitic sandstones of <strong>the</strong> C<strong>in</strong>göz<br />

Formation and offshore mudstones of <strong>the</strong> Güvenç<br />

Formation (Figure 2). There is also evidence of stormgenerated<br />

erosive turbidity currents transferr<strong>in</strong>g abundant<br />

sand across <strong>the</strong> shelf edge to <strong>the</strong> deep-water realm of <strong>the</strong><br />

adjo<strong>in</strong><strong>in</strong>g Cilicia Bas<strong>in</strong> (Satur et al. 2005). The reefal and<br />

coeval <strong>near</strong>shore to offshore deposits show an overall<br />

shallow<strong>in</strong>g-upwards trend, with <strong>the</strong> upper part of <strong>the</strong><br />

Güvenç Formation <strong>in</strong>creas<strong>in</strong>gly richer <strong>in</strong> sandstones<br />

(Figure 2).<br />

The mar<strong>in</strong>e sedimentation was <strong>in</strong>terrupted when<br />

<strong>the</strong> bas<strong>in</strong> emerged due to a relative sea-level fall at <strong>the</strong><br />

end of Serravalian (Figure 2). River valleys were <strong>in</strong>cised<br />

and <strong>the</strong>n filled with <strong>the</strong> fluvial deposits of <strong>the</strong> Kuzgun<br />

Formation, as <strong>the</strong> bas<strong>in</strong> was subsequently reflooded due<br />

to an early Tortonian relative sea-level rise. A transgressive<br />

rav<strong>in</strong>ement surface with a lag of wave-worked oysterbear<strong>in</strong>g<br />

gravel marks <strong>the</strong> mar<strong>in</strong>e reflood<strong>in</strong>g. The<br />

transgression <strong>in</strong>itiated shallow-mar<strong>in</strong>e sedimentation<br />

with a second generation of reefal limestones along<br />

<strong>the</strong> bas<strong>in</strong> marg<strong>in</strong>, <strong>the</strong> Tırtar Formation, superimposed<br />

directly on <strong>the</strong> older limestones of <strong>the</strong> Karaisalı Formation<br />

(Figure 2). The coeval Handere Formation <strong>in</strong> <strong>the</strong> bas<strong>in</strong><br />

<strong>in</strong>terior consists of shoreface sandstones that pass upward<br />

<strong>in</strong>to f<strong>in</strong>er-gra<strong>in</strong>ed sandstones, siltstones, and mudstones of<br />

an offshore-transition environment and fur<strong>the</strong>r <strong>in</strong>to thick<br />

offshore mudstones (Figure 2). The deposition of offshore<br />

mudstones <strong>in</strong> <strong>the</strong> upper part of <strong>the</strong> Handere Formation<br />

marked <strong>the</strong> maximum mar<strong>in</strong>e flood<strong>in</strong>g <strong>in</strong> <strong>the</strong> bas<strong>in</strong>,<br />

reached <strong>in</strong> <strong>the</strong> late Tortonian.<br />

These transgressive deposits are sharply overla<strong>in</strong> by<br />

<strong>the</strong> latest Tortonian–<strong>Mess<strong>in</strong>ian</strong> regressive deposits of<br />

<strong>the</strong> uppermost Handere Formation (Figure 2), which<br />

comprise shallow-mar<strong>in</strong>e sandstones and siltstones<br />

and <strong>in</strong>clude 3 isolated conglomeratic members (see <strong>the</strong><br />

Muratlı, Tepeçaylak, and Sögütlü members <strong>in</strong> Figure 1c).<br />

These conglomeratic deposits, previously <strong>in</strong>terpreted<br />

as fluvial, are <strong>the</strong> ma<strong>in</strong> topic of <strong>the</strong> present study, which<br />

documents <strong>the</strong>m as sharp-based deltas with associated<br />

<strong>in</strong>cised fluvial valley-fills. There are also erosional relics<br />

of <strong>the</strong> uppermost gypsiferous Gökkuyu Member of <strong>the</strong><br />

Handere Formation preserved <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part of<br />

<strong>the</strong> bas<strong>in</strong> (Figures 1c and 2). The evaporites overlie both<br />

<strong>the</strong> deltaic conglomeratic members and offshore clastic<br />

deposits of <strong>the</strong> Handere Formation. However, <strong>the</strong>re is no<br />

evidence of <strong>the</strong> Zanclean regional mar<strong>in</strong>e transgression <strong>in</strong><br />

5


6<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

Chronostratigraphy (Ma)<br />

Epoch Stage<br />

Holocene Tyrrhenian<br />

Ionian<br />

Pleistocene<br />

Pliocene<br />

Early Late<br />

Miocene<br />

Early Middle<br />

Late<br />

Calabrian<br />

1.81<br />

Gelasian<br />

2.59<br />

Piacenzian<br />

3.60<br />

Zanclean<br />

5.33<br />

<strong>Mess<strong>in</strong>ian</strong><br />

7.25<br />

Tortonian<br />

11.61<br />

Serravallian<br />

13.65<br />

Langhian<br />

15.97<br />

Burdigalian<br />

20.43<br />

Aquitanian<br />

Plankt.<br />

foram<br />

zones<br />

Mple2<br />

Mple1<br />

Mpl6<br />

Mpl5<br />

Mpl4<br />

Mpl3<br />

Mpl2<br />

Mpl1<br />

MMi13<br />

MMi12<br />

MMi11<br />

ILGAR et al. / Turkish J Earth Sci<br />

Nannofossil<br />

zones<br />

MNN21<br />

MNN20<br />

MNN19<br />

MNN18<br />

MNN17<br />

MNN16<br />

14-15<br />

MNN13<br />

MNN12<br />

Nondist<strong>in</strong>ctive Zone<br />

MMi10<br />

MMi9<br />

MMi8<br />

c<br />

MMi7 b<br />

a<br />

MMi6<br />

MMi5<br />

MMi4<br />

MMi3<br />

MMi2<br />

MMi1<br />

c<br />

b<br />

a<br />

b<br />

a<br />

MNN11<br />

MNN10<br />

MNN9<br />

MNN8<br />

MNN7<br />

MNN6<br />

MNN5<br />

MNN4<br />

MNN3<br />

MNN2<br />

MNN1<br />

c<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

c<br />

b<br />

a<br />

Tırtar<br />

Fm.<br />

Muratlı<br />

deltaic mb<br />

Karaisalı<br />

Fm.<br />

ADANA BASIN<br />

Gökkuyu<br />

evaporitic mb<br />

Sequence<br />

stratigraphy<br />

?HST + FRST<br />

+ LST<br />

Figure 2. Revised stratigraphy of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> and its <strong>in</strong>terpretation <strong>in</strong> terms of systems tracts. The letter code is as used <strong>in</strong> <strong>the</strong> text<br />

(term<strong>in</strong>ology after Helland-Hansen 2009): LST – normal-regressive lowstand systems tract; TST – transgressive systems tract; HST –<br />

normal-regressive highstand systems tract; and FRST – <strong>forced</strong>-regressive systems tract.<br />

C<strong>in</strong>göz<br />

Fm.<br />

Kaplankaya Fm.<br />

MESOZOIC<br />

BEDROCK<br />

v v v v v v v<br />

v v v v v v v<br />

v v v v v<br />

v v v<br />

Handere Fm.<br />

Kuzgun Fm.<br />

Güvenç Fm.<br />

Gildirli Fm.<br />

Post - Miocene<br />

alluvium<br />

(fluvial terraces)<br />

FRST<br />

HST<br />

TST<br />

TST<br />

FRST + LST<br />

HST<br />

TST<br />

LST


<strong>the</strong> bas<strong>in</strong>. The post-Miocene deposits are fluvial terraces of<br />

coarse-gra<strong>in</strong>ed alluvium with caliche.<br />

The <strong>Mess<strong>in</strong>ian</strong> gypsum evaporites <strong>in</strong> <strong>the</strong> bas<strong>in</strong> are up to<br />

a few metres thick (Figure 3a) and <strong>the</strong>ir ma<strong>in</strong> varieties range<br />

from massive to lam<strong>in</strong>ated and enterolithic (Figure 3b),<br />

micro- to coarse-crystall<strong>in</strong>e (Figures 3c and 3d), nodular<br />

(Figure 3e), and wave-worked gypsarenitic (Figure 3f).<br />

X-ray diffraction data show that selenitic gypsum is <strong>the</strong><br />

sole evaporitic m<strong>in</strong>eral (Karakuş 2011). X-ray fluorescence<br />

analyses of major oxide composition <strong>in</strong>dicate that <strong>the</strong><br />

evaporitic precipitation occurred <strong>in</strong> homogeneous<br />

hydrochemical conditions, with a Sr-signature similar to<br />

<strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> evaporites <strong>in</strong> adjacent peri-Mediterranean<br />

bas<strong>in</strong>s (Karakuş 2011).<br />

5. Facies architecture of deltaic members<br />

The study focuses on <strong>the</strong> 3 isolated conglomeratic members<br />

of <strong>the</strong> Handere Formation: <strong>the</strong> Muratlı, Tepeçaylak, and<br />

Sögütlü members (Figure 1c). They have been exhumed by<br />

Quaternary erosion and are laterally surrounded by sparsely<br />

preserved shallow-mar<strong>in</strong>e sandstones of <strong>the</strong> Handere<br />

Formation, with which <strong>the</strong>y sharply overlie <strong>the</strong> formation’s<br />

offshore mudstones (Figure 2). These conglomeratic<br />

members consist of 2 ma<strong>in</strong> facies associations, Gilberttype<br />

deltaic deposits and fluvial <strong>in</strong>cised valley-fill deposits,<br />

which are described and <strong>in</strong>terpreted <strong>in</strong> <strong>the</strong> present section.<br />

5.1. Gilbert-type delta deposits<br />

These conglomeratic deposits are generally well-bedded,<br />

form<strong>in</strong>g cl<strong>in</strong>oformal wedges that are stacked bas<strong>in</strong>wards<br />

<strong>in</strong> a downstepp<strong>in</strong>g pattern and are up to 15–40 m thick.<br />

The cl<strong>in</strong>oformal architecture consists of <strong>in</strong>cl<strong>in</strong>ed foreset<br />

beds overla<strong>in</strong> by horizontal topset beds (Figure 4a), as<br />

is generally characteristic of Gilbert-type deltas (Barrell<br />

1912; Colella 1988; Postma 1990).<br />

5.1.1. Foreset facies<br />

Foreset deposits are conglomerate and subord<strong>in</strong>ate<br />

sandstone beds <strong>in</strong>cl<strong>in</strong>ed bas<strong>in</strong>wards at up to 25°<br />

(Figure 4b). They show an overall coarsen<strong>in</strong>g-upwards<br />

trend and comprise facies commonly reported from<br />

Gilbert-type deltas (Postma 1984; Nemec et al. 1999;<br />

Lønne & Nemec 2004; Breda et al. 2007). Some outcrops<br />

show <strong>the</strong> foreset beds pass<strong>in</strong>g tangentially downdip <strong>in</strong>to<br />

<strong>the</strong> gently <strong>in</strong>cl<strong>in</strong>ed and f<strong>in</strong>er-gra<strong>in</strong>ed beds of delta toeset<br />

(Figure 4a). Conglomerate beds are 10–75 cm thick, but<br />

ma<strong>in</strong>ly 15–35 cm, and are tabular to mound-shaped. They<br />

consist of granule to coarse-pebble gravel and occasionally<br />

conta<strong>in</strong> scattered cobbles of up to 15 cm <strong>in</strong> size. The gravel<br />

is subrounded to rounded and has ma<strong>in</strong>ly a clast-supported<br />

texture (Figure 4c). Clasts are derived from <strong>the</strong> bedrock<br />

Mesozoic limestones and serpent<strong>in</strong>ite, and from <strong>the</strong> bas<strong>in</strong>marg<strong>in</strong><br />

Miocene reefal limestones. The matrix is moderately<br />

well-sorted sand with granules. Many conglomerate<br />

beds and <strong>the</strong> majority of associated sandstone beds<br />

ILGAR et al. / Turkish J Earth Sci<br />

show planar-parallel stratification (Figure 4b) <strong>in</strong>dicat<strong>in</strong>g<br />

tractional deposition from fully turbulent hyperpycnal<br />

flows (Bornhold & Prior 1990; Nemec 1990), which means<br />

river-generated low-density turbidity currents (sensu<br />

Lowe 1982). Massive conglomerate beds are nongraded or<br />

<strong>in</strong>versely graded (Figure 4d), tabular <strong>in</strong> dip section, and<br />

mound-shaped lenticular <strong>in</strong> strike section, <strong>in</strong>terpreted to<br />

be deposits of cohesionless debris flows (Nemec & Steel<br />

1984; Nemec 1990).<br />

Sandstones predom<strong>in</strong>ate <strong>in</strong> <strong>the</strong> down-dip part of <strong>the</strong><br />

foreset and at its toe, form<strong>in</strong>g tabular or wedge-shaped<br />

beds that are 5–30 cm thick, composed of very coarse- to<br />

f<strong>in</strong>e-gra<strong>in</strong>ed sand and alternat<strong>in</strong>g with th<strong>in</strong> beds of granule<br />

conglomerate (Figure 4a). Common are scattered pebbles<br />

of up to 5 cm <strong>in</strong> size. The sandstone beds show planarparallel<br />

stratification with or without normal grad<strong>in</strong>g<br />

and are often capped by current-ripple cross-lam<strong>in</strong>ation<br />

with down-dip transport direction. Some of <strong>the</strong> foreset<br />

beds, up to 40 cm thick, are isolated backsets of up-slope<br />

dipp<strong>in</strong>g cross-strata composed of coarse sand and/or f<strong>in</strong>epebble<br />

gravel (Figure 4e). They occur on <strong>the</strong> stoss side of<br />

mound-shaped massive conglomerate bodies (debris-flow<br />

deposits) or as <strong>the</strong> <strong>in</strong>fill of trough-shaped scours (deltaslope<br />

chutes). The backsets <strong>in</strong>dicate tractional deposition<br />

by low-density turbidity currents subject to hydraulic jump<br />

(Nemec 1990). There are also sporadic slump deposits of<br />

variable scale and thickness (Figure 4f).<br />

5.1.2. Topset facies<br />

The delta topset deposits (Figures 4a and 5) are pebble<br />

conglomerates and coarse-gra<strong>in</strong>ed sandstones. Their<br />

f<strong>in</strong><strong>in</strong>g-upwards bedsets, 60–140 cm thick, have erosional<br />

bases and are commonly stacked on top of one ano<strong>the</strong>r,<br />

apparently represent<strong>in</strong>g multistorey palaeochannels of<br />

braided streams a few metres wide (Coll<strong>in</strong>son 1996; Miall<br />

1996). Their laterally discont<strong>in</strong>uous basal layers of coarse<br />

clast-supported conglomerate are thought to be channelfloor<br />

lag deposits (Miall 1985; Nemec & Postma 1993).<br />

Planar parallel-stratified and cross-stratified beds, 10–45<br />

cm thick, are <strong>in</strong>terpreted, respectively, to be deposits of<br />

longitud<strong>in</strong>al and transverse or oblique midchannel bars<br />

(Miall 1985; Nemec & Postma 1993).<br />

The deltas suffered erosion and <strong>the</strong>ir topset deposits<br />

are <strong>in</strong>consistently preserved, generally better <strong>in</strong> <strong>the</strong><br />

upstream part (Figure 4a). The sparser downstream<br />

preservation of delta topset may be due to a negative<br />

subaerial accommodation (Bhattacharya & Willis 2001),<br />

or to removal by post-Miocene erosion (Figure 2). The<br />

relationship of <strong>the</strong> delta topset to <strong>the</strong> foreset is <strong>in</strong>variably<br />

oblique (erosional), which supports <strong>the</strong> notion of a fall<strong>in</strong>g<br />

delta-shorel<strong>in</strong>e trajectory (Breda et al. 2007, 2009) based<br />

on evidence that <strong>the</strong> horizontal topset was <strong>in</strong>crementally<br />

stepp<strong>in</strong>g down <strong>in</strong> <strong>the</strong> bas<strong>in</strong>ward direction, as discussed <strong>in</strong><br />

<strong>the</strong> next section.<br />

7


5.1.3. Bottomset facies<br />

The basal deltaic facies are only locally exposed, but are<br />

generally similar. The gently <strong>in</strong>cl<strong>in</strong>ed delta-toe deposits<br />

(Figures 4a and 6) are th<strong>in</strong>ly bedded, f<strong>in</strong>e-gra<strong>in</strong>ed<br />

sandstones and siltstones with plane-parallel stratification<br />

and m<strong>in</strong>or ripple cross-lam<strong>in</strong>ation. Delta bottomset<br />

consists of th<strong>in</strong> siltstone and sandstone beds <strong>in</strong>tercalated<br />

with mudstones (Figure 6). The microfauna content of<br />

<strong>the</strong>se deposits is described <strong>in</strong> a subsequent section.<br />

5.2. Incised valley-fill deposits<br />

This facies assemblage is exposed <strong>in</strong> a chance crosscut<br />

section <strong>in</strong> <strong>the</strong> proximal part of <strong>the</strong> Muratlı Member<br />

(Figures 1c and 5), but similar unexposed deposits<br />

presumably also occur <strong>in</strong> <strong>the</strong> 2 o<strong>the</strong>r coeval deltaic members<br />

8<br />

ILGAR et al. / Turkish J Earth Sci<br />

A B<br />

C<br />

1 m<br />

E F<br />

Figure 3. <strong>Mess<strong>in</strong>ian</strong> evaporites <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>. (a) An example outcrop of <strong>the</strong> evaporites at<br />

<strong>the</strong> top of Handere Formation. (b) Enterolithic gypsum. (c) Crystall<strong>in</strong>e gypsum with a chevron<br />

growth structure. (d) Crystall<strong>in</strong>e gypsum with a grassy growth structure. (e) Nodular gypsum.<br />

(f) Gypsarenite with wave-ripple cross-lam<strong>in</strong>ation. The co<strong>in</strong> (scale) is 2 cm.<br />

D<br />

of <strong>the</strong> Handere Formation, where no similar transverse<br />

sections are available. These deposits are recognisably<br />

coarser-gra<strong>in</strong>ed, compris<strong>in</strong>g pebble conglomerates and<br />

subord<strong>in</strong>ate coarse-gra<strong>in</strong>ed sandstones with scattered<br />

cobbles and boulders (Figure 5). Conglomerates are clastsupported,<br />

with a matrix of medium to coarse sand and<br />

granules. Gravel clasts are moderately sorted, ma<strong>in</strong>ly<br />

subangular to subrounded, and of <strong>the</strong> same provenance<br />

as <strong>the</strong> delta gravel. Scattered boulders are derived from<br />

<strong>the</strong> bas<strong>in</strong>-marg<strong>in</strong> Miocene reefal limestones. The deposits<br />

form erosionally based, vertically stacked f<strong>in</strong><strong>in</strong>g-upwards<br />

bedsets (Figure 5) <strong>in</strong>terpreted to be multistorey braidedstream<br />

palaeochannels (Coll<strong>in</strong>son 1996; Miall 1996),<br />

ma<strong>in</strong>ly 0.8–1.6 m thick and 10–25 m wide. Coarse gravelly<br />

channel-floor lags are poorly developed, but solitary


delta topset<br />

delta foreset<br />

ILGAR et al. / Turkish J Earth Sci<br />

B C<br />

E F<br />

foreset<br />

backset<br />

Figure 4. Outcrop details of <strong>the</strong> Muratlı delta, <strong>Adana</strong> Bas<strong>in</strong>. (a) Longitud<strong>in</strong>al outcrop section show<strong>in</strong>g an<br />

erosional angular contact between <strong>the</strong> delta’s foreset and topset deposits. (b) Conglomeratic foreset deposits<br />

compris<strong>in</strong>g planar parallel-stratified and massive beds. Note <strong>the</strong> rapid upward <strong>in</strong>crease <strong>in</strong> <strong>the</strong> bedd<strong>in</strong>g<br />

<strong>in</strong>cl<strong>in</strong>ation. (c) Close-up detail of <strong>the</strong> delta topset, show<strong>in</strong>g submature gravel composed of bedrock limestone<br />

and serpent<strong>in</strong>ite clasts mixed with large fragments of Miocene corals and reefal limestones. (d) Delta foreset<br />

deposits <strong>in</strong>clud<strong>in</strong>g massive, <strong>in</strong>versely graded, and nongraded conglomerate beds. (e) Delta foreset detail show<strong>in</strong>g<br />

a backset of upslope-dipp<strong>in</strong>g gravelly cross-strata. (f) Slump deposits with<strong>in</strong> <strong>the</strong> delta foreset. Picture A is from<br />

locality 1, pictures B–E from locality 2, and picture F from locality 3 <strong>in</strong> Figure 1c.<br />

D<br />

coral fragment<br />

A<br />

9


10<br />

°<br />

or multiple cross-strata sets, 25–60 cm thick, <strong>in</strong>dicate<br />

transverse or oblique midchannel bars (Miall 1985).<br />

This contrast<strong>in</strong>g facies assemblage <strong>in</strong> <strong>the</strong> Muratlı<br />

Member forms <strong>the</strong> <strong>in</strong>fill of an axial valley that was deeply<br />

<strong>in</strong>cised <strong>in</strong> <strong>the</strong> delta. The top part of <strong>the</strong> valley-fill and <strong>the</strong><br />

surround<strong>in</strong>g host delta are not preserved <strong>in</strong> <strong>the</strong> outcrop<br />

section, but <strong>the</strong> measured depth of <strong>in</strong>cision is at least<br />

15 m and <strong>the</strong> valley width is up to 60 m. The <strong>in</strong>cised<br />

valley is clearly not an <strong>in</strong>tegral part of <strong>the</strong> prograd<strong>in</strong>g<br />

delta’s topset (see discussion by Hampson et al. 1997) and<br />

<strong>in</strong>stead <strong>in</strong>dicates erosional cannibalisation of <strong>the</strong> delta by<br />

a deep <strong>in</strong>cision of its fluvial feeder system <strong>in</strong> response to<br />

pronounced base-level fall (see Mellere et al. 2002; Ilgar<br />

& Nemec 2005; Breda et al. 2009). The high depth/width<br />

ratio of <strong>the</strong> valley and <strong>the</strong> scattered boulders suggest<br />

relatively rapid <strong>in</strong>cision, with a m<strong>in</strong>imal lateral shift<strong>in</strong>g<br />

of <strong>the</strong> fluvial system (see Yoxall 1969; Wood et al. 1993)<br />

and with <strong>the</strong> stream competence significantly <strong>in</strong>creased by<br />

<strong>the</strong> topographic conf<strong>in</strong>ement (Schumm 1993). The valley<br />

<strong>in</strong>cision seems to have occurred concurrently with <strong>the</strong> late<br />

stages of <strong>the</strong> delta progradation, when <strong>the</strong> entrench<strong>in</strong>g<br />

fluvial system acted as a feeder for <strong>the</strong> youngest telescop<strong>in</strong>g<br />

parts of <strong>the</strong> delta (Figure 7a). The down-stepp<strong>in</strong>g pattern<br />

of delta topset (Figure 7b) strongly supports <strong>the</strong> notion of<br />

an <strong>in</strong>cremental fall of <strong>the</strong> delta shorel<strong>in</strong>e trajectory.<br />

The relatively narrow valley filled with fluvial deposits<br />

<strong>in</strong>dicates that <strong>the</strong> <strong>in</strong>fill<strong>in</strong>g of <strong>the</strong> valley was relatively rapid,<br />

under a high rate of sediment supply, with little lateral<br />

wander<strong>in</strong>g of <strong>the</strong> river and no significant valley-side<br />

collapses at <strong>the</strong> sea-level lowstand stage.<br />

ILGAR et al. / Turkish J Earth Sci<br />

Figure 5. An oblique transverse section through <strong>the</strong> Muratlı delta, <strong>Adana</strong> Bas<strong>in</strong>, show<strong>in</strong>g a gravel-filled axial fluvial valley deeply<br />

<strong>in</strong>cised <strong>in</strong> <strong>the</strong> delta deposits. Palaeotransport direction is away from <strong>the</strong> viewer, obliquely to <strong>the</strong> right. Picture from locality 2 <strong>in</strong><br />

Figure 1c.<br />

6. Sequence-stratigraphic <strong>in</strong>terpretation<br />

The late Tortonian shorel<strong>in</strong>e of <strong>the</strong> bas<strong>in</strong> is represented<br />

by <strong>the</strong> reefal limestones of <strong>the</strong> Tırtar Formation, which<br />

were superimposed directly on <strong>the</strong> earlier bas<strong>in</strong>-marg<strong>in</strong><br />

limestones of <strong>the</strong> Karaisalı Formation (Figure 2) and were<br />

later extensively eroded (Figure 1c). The 3 deltas <strong>in</strong> <strong>the</strong>ir<br />

location appear to have been offset bas<strong>in</strong>wards by ~25 km<br />

with respect to <strong>the</strong> late Tortonian shorel<strong>in</strong>e and emplaced<br />

directly onto <strong>the</strong> offshore mudstones of <strong>the</strong> Handere<br />

Formation, which <strong>in</strong>dicates a <strong>forced</strong>-regressive erosional<br />

shift of <strong>the</strong> shorel<strong>in</strong>e.<br />

A <strong>forced</strong> regression is <strong>in</strong>dicated by <strong>the</strong> downstepp<strong>in</strong>g<br />

geometry of <strong>the</strong> delta topset (Figure 7b), <strong>the</strong> cl<strong>in</strong>oformal<br />

foreset wedges that sharply downlapped <strong>the</strong> bas<strong>in</strong> floor<br />

(Figures 4a and 6), and fur<strong>the</strong>r by <strong>the</strong> <strong>in</strong>cision of fluvial<br />

valley along <strong>the</strong> delta axis (Figures 5 and 7a). The sharp,<br />

erosional basal surface of <strong>the</strong> delta marks an abrupt<br />

facies change and passes bas<strong>in</strong>wards <strong>in</strong>to a correlative<br />

depositional conformity (Figure 7a). The aggradational<br />

<strong>in</strong>fill<strong>in</strong>g of <strong>the</strong> <strong>in</strong>cised valley documents a subsequent rise<br />

of relative sea level, and <strong>the</strong> overly<strong>in</strong>g gypsiferous deposits<br />

<strong>in</strong>dicate a brief drown<strong>in</strong>g of <strong>the</strong> deltas. The evaporites<br />

occur as erosional relics of <strong>the</strong> latest mar<strong>in</strong>e deposits<br />

(HST) <strong>in</strong> <strong>the</strong> bas<strong>in</strong>, which implies yet ano<strong>the</strong>r subsequent<br />

<strong>forced</strong> regression (see <strong>the</strong> late <strong>Mess<strong>in</strong>ian</strong> erosional FRST<br />

<strong>in</strong> Figure 2).<br />

The Tortonian–<strong>Mess<strong>in</strong>ian</strong> deposits of <strong>the</strong> Kuzgun<br />

and Handere formations (Figure 2) have previously been<br />

<strong>in</strong>terpreted as a simple regressive succession (Yetiş 1988;<br />

Yetiş et al. 1995), which would imply a normal-regressive


Figure 6. Simplified vertical profile of <strong>the</strong> bottomset part of <strong>the</strong><br />

one of <strong>the</strong> Muratlı delta wedges, show<strong>in</strong>g <strong>the</strong> pattern of sediment<br />

sampl<strong>in</strong>g for biostratigraphic analysis. The dots numbered 1–24<br />

<strong>in</strong>dicate <strong>the</strong> location of samples. Log from locality 2 <strong>in</strong> Figure 1c.<br />

HST. The present study <strong>in</strong>dicates that this sedimentary<br />

succession, <strong>in</strong> reality, bears a high-resolution record of<br />

several major sea-level changes <strong>in</strong> <strong>the</strong> bas<strong>in</strong> and comprises<br />

2 stratigraphic sequences bounded by <strong>the</strong> erosional<br />

surfaces of <strong>forced</strong> regression. The follow<strong>in</strong>g <strong>in</strong>terpretive<br />

stratigraphic scenario is suggested (Figure 2):<br />

• The Kuzgun Formation represents a <strong>forced</strong> regression<br />

that is recognisable around <strong>the</strong> Mediterranean and<br />

attributed to <strong>the</strong> end-Serravalian (Tor-1) eustatic fall <strong>in</strong> sea<br />

level (Haq et al. 1988; Haq 1991); <strong>the</strong> formation’s erosional<br />

basal part is an erosional FRST, whereas <strong>the</strong> bulk of <strong>the</strong><br />

formation comprises a LST and possibly <strong>the</strong> earliest TST.<br />

• The ma<strong>in</strong> Tortonian part of <strong>the</strong> overly<strong>in</strong>g Handere<br />

Formation and <strong>the</strong> coeval Tırtar Formation (bas<strong>in</strong>-marg<strong>in</strong><br />

reefal platform) constitute a TST, record<strong>in</strong>g <strong>the</strong> subsequent<br />

eustatic sea-level rise (Haq et al. 1988; Haq 1991). Bas<strong>in</strong><br />

subsidence may have enhanced this mar<strong>in</strong>e transgression.<br />

• The upper part of <strong>the</strong> Handere Formation, with<br />

its isolated deltaic members, might have commenced<br />

its deposition as a normal-regressive HST, but <strong>the</strong>re is<br />

ILGAR et al. / Turkish J Earth Sci<br />

no facies evidence to support this notion. The lack of a<br />

recognisable HST suggests that <strong>the</strong> transgression was<br />

<strong>in</strong>terrupted by a relative sea-level fall, which would mean<br />

a TST overla<strong>in</strong> directly by a depositional FRST. This<br />

stratigraphic configuration of systems tracts may <strong>in</strong>dicate<br />

a eustatic transgression term<strong>in</strong>ated by a tectonically <strong>forced</strong><br />

stepwise regression.<br />

• The sharp base of <strong>the</strong> deltaic members and coeval<br />

littoral deposits of <strong>the</strong> Handere Formation (Figure 7a) is<br />

a regressive surface of mar<strong>in</strong>e erosion (Pl<strong>in</strong>t 1988; Pl<strong>in</strong>t<br />

& Nummedal 2000), expectedly pass<strong>in</strong>g bas<strong>in</strong>wards <strong>in</strong>to<br />

a correlative conformity (MacEachern et al. 1999). This<br />

surface was develop<strong>in</strong>g <strong>in</strong>crementally dur<strong>in</strong>g <strong>the</strong> entire<br />

time of <strong>the</strong> stepwise relative sea-level fall and hence is<br />

probably diachronous (Embry 2002).<br />

• The sharp-based gravelly deltas and coeval shallowmar<strong>in</strong>e<br />

deposits would thus represent a depositional <strong>forced</strong><br />

regression (Pl<strong>in</strong>t 1988; Helland-Hansen & Gjelberg 1994;<br />

Pl<strong>in</strong>t & Nummedal 2000). The bas<strong>in</strong>ward advance of <strong>the</strong><br />

deltas (FRST and LST) was followed by a relative sea-level<br />

rise (TST), when <strong>the</strong> <strong>in</strong>cised valleys were filled with fluvial<br />

deposits and <strong>the</strong> deltas were shallowly drowned with an<br />

abrupt landward shift of <strong>the</strong> shorel<strong>in</strong>e and river outlets.<br />

• The mar<strong>in</strong>e transgression brought an almost<br />

immediate deposition of evaporites (HST), which suggests<br />

flood<strong>in</strong>g by hypersal<strong>in</strong>e sea water (Figure 7b). The <strong>Adana</strong><br />

Bas<strong>in</strong> was subsequently emerged and its gypsiferous<br />

deposits were extensively eroded due to ano<strong>the</strong>r <strong>forced</strong><br />

regression (<strong>the</strong> late <strong>Mess<strong>in</strong>ian</strong> FRST, Figure 2). The<br />

evaporitic Gökkuyu Member of <strong>the</strong> uppermost Handere<br />

Formation (Figure 2) is sparsely preserved <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn<br />

part of <strong>the</strong> bas<strong>in</strong>, but its thickness reaches a few hundred<br />

metres <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part and exceeds 1 km <strong>in</strong> <strong>the</strong><br />

adjo<strong>in</strong><strong>in</strong>g <strong>in</strong>ner Cilicia Bas<strong>in</strong> (Aksu et al. 2005; Burton-<br />

Ferguson et al. 2005). It can thus be precluded that <strong>the</strong>se<br />

evaporates are local deposits, formed <strong>in</strong> an isolated coastal<br />

lagoon or sabkha.<br />

It would <strong>the</strong>n appear that 2 consecutive <strong>forced</strong><br />

<strong>regressions</strong> occurred <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> <strong>in</strong> <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong><br />

time, <strong>the</strong> first depositional and possibly <strong>forced</strong> by tectonics<br />

and <strong>the</strong> next erosional and probably eustatic. The key issue<br />

<strong>in</strong> this hypo<strong>the</strong>tical scenario is <strong>the</strong> exact tim<strong>in</strong>g and actual<br />

causes of <strong>the</strong> 2 <strong>regressions</strong>, which apparently followed<br />

each o<strong>the</strong>r closely.<br />

7. Biostratigraphic dat<strong>in</strong>g<br />

The heterolithic, f<strong>in</strong>e-gra<strong>in</strong>ed bottomset deposits of <strong>the</strong><br />

best-exposed Muratlı delta have been systematically<br />

sampled (Figure 6) to estimate <strong>the</strong> time of <strong>the</strong> delta<br />

progradation. The samples of mudstone and silty mudstone<br />

layers were disaggregated <strong>in</strong> a 30% hydrogen peroxide<br />

solution and washed over 63-, 125-, and 425-µm sieves.<br />

In total, 24 samples have been analysed (Figure 6), with a<br />

focus on planktonic foram<strong>in</strong>ifera.<br />

11


Planktonic foram<strong>in</strong>ifera occur throughout <strong>the</strong> studied<br />

section, except for 3 samples from its uppermost part<br />

(samples 18, 21, and 22 <strong>in</strong> Figure 6). The abundance of<br />

foram<strong>in</strong>ifer assemblages varies from medium to low,<br />

whereas <strong>the</strong>ir diversity and degree of preservation are<br />

generally moderate to high. The lowermost part of <strong>the</strong><br />

section (samples 1–5) lacks age-diagnostic species and<br />

12<br />

A<br />

B<br />

reefal limestone<br />

Surface of <strong>forced</strong><br />

regression<br />

Relic evaporitic cover<br />

on term<strong>in</strong>al delta slope<br />

<strong>Mess<strong>in</strong>ian</strong> evaporites<br />

topset<br />

delta wedge<br />

ILGAR et al. / Turkish J Earth Sci<br />

Delta progradation direction<br />

step-down<br />

topset<br />

25 km<br />

step-down<br />

delta wedge<br />

sea-level fall<br />

topset<br />

delta wedge<br />

offshore<br />

mudstones<br />

Figure 7. (a) Schematic model for <strong>the</strong> downstepp<strong>in</strong>g <strong>forced</strong>-regressive progradation of <strong>the</strong> Muratlı delta with concurrent<br />

<strong>in</strong>cision of an axial fluvial valley; diagram not to scale. (b) Panoramic view of <strong>the</strong> Muratlı delta longitud<strong>in</strong>al outcrop show<strong>in</strong>g<br />

<strong>the</strong> downstepp<strong>in</strong>g pattern of cl<strong>in</strong>oformal foreset wedges towards <strong>the</strong> left (SSE direction); picture from locality 2 <strong>in</strong> Figure 1c.<br />

200 m<br />

shows an assemblage of benthic forams (with Ammonia sp.<br />

and Elphidium spp.), ech<strong>in</strong>id sp<strong>in</strong>es, gastropods, and rare<br />

specimens of Globoturborotalita, Globiger<strong>in</strong>a, Orbul<strong>in</strong>a,<br />

Globiger<strong>in</strong>ella, and Globiger<strong>in</strong>oides.<br />

Planktonic foram<strong>in</strong>ifer assemblages are most<br />

diversified <strong>in</strong> <strong>the</strong> middle part of <strong>the</strong> section (samples<br />

6–16, Figure 6), <strong>in</strong>clud<strong>in</strong>g Globorotalia suterae Catalano


a1<br />

d2<br />

i1<br />

a2<br />

ILGAR et al. / Turkish J Earth Sci<br />

i2<br />

l1 l2<br />

r<br />

o<br />

a3<br />

d3 e<br />

s<br />

m2<br />

Figure 8. Selected planktonic foram<strong>in</strong>ifera identified <strong>in</strong> <strong>the</strong> latest Miocene delta bottomset deposits <strong>in</strong> <strong>the</strong> <strong>Adana</strong> and Mut bas<strong>in</strong>s: (a1) Turborotalita multiloba (Romeo) <strong>in</strong><br />

spiral, (a2) umbilical, and (a3) side view, sample 20 from <strong>Adana</strong> Bas<strong>in</strong>; (b) Turborotalita qu<strong>in</strong>queloba (Natland) <strong>in</strong> umbilical view, sample 9 from <strong>Adana</strong> Bas<strong>in</strong>; (c) Tenuilell<strong>in</strong>ata<br />

angustiumbilicata (Bolli) <strong>in</strong> umbilical view, sample 5 from Mut Bas<strong>in</strong>; (d1) Neogloboquadr<strong>in</strong>a acostaensis (Blow) <strong>in</strong> umbilical view and (d3) <strong>in</strong> spiral view, sample 2 from Mut<br />

Bas<strong>in</strong>; (d2) Neogloboquadr<strong>in</strong>a acostaensis (Blow) <strong>in</strong> umbilical view, sample 6 from <strong>Adana</strong> Bas<strong>in</strong>; (e) Globiger<strong>in</strong>ita glut<strong>in</strong>ata (Egger) <strong>in</strong> umbilical view, sample 4 from Mut Bas<strong>in</strong>;<br />

(f) Globiger<strong>in</strong>ita uvula (Ehrenberg) <strong>in</strong> side view, sample 2 from Mut Bas<strong>in</strong>; (g) Catapsydrax parvulus Bolli <strong>in</strong> umbilical view, sample 4 from Mut Bas<strong>in</strong>; (h) Globiger<strong>in</strong>oides<br />

bollii Blow <strong>in</strong> umbilical view, sample 2 from Mut Bas<strong>in</strong>; (i1) Neogloboquadr<strong>in</strong>a cont<strong>in</strong>uosa (Blow) <strong>in</strong> spiral and (i2) umbilical view, samples 4 and 2 from Mut Bas<strong>in</strong>; (j1)<br />

Globoturborotalita woodi (Jenk<strong>in</strong>s) <strong>in</strong> spiral and (j2) umbilical view, sample 13 from <strong>Adana</strong> Bas<strong>in</strong>; (k) Globoturborotalita apertura (Cushman) <strong>in</strong> umbilical view, sample 13 from<br />

<strong>Adana</strong> Bas<strong>in</strong>; (l1) Neogloboquadr<strong>in</strong>a humerosa (Takayanagi & Saito) <strong>in</strong> spiral and (l2) umbilical view, samples 11 and 9 from <strong>Adana</strong> Bas<strong>in</strong>; (m1) Globorotalia suterae Catalano<br />

and Sprovieri <strong>in</strong> oblique and (m2) spiral view, sample 24 from <strong>Adana</strong> Bas<strong>in</strong>; (n) Globoturborotalita decoraperta (Takayanagi & Saito) <strong>in</strong> spiral view, sample 24 from <strong>Adana</strong><br />

Bas<strong>in</strong>; (o) Orbul<strong>in</strong>a universa d’Orbigny, sample 6 from <strong>Adana</strong> Bas<strong>in</strong>; (p) Globiger<strong>in</strong>oides bulloideus Crescenti <strong>in</strong> spiral view, sample 1 from Mut Bas<strong>in</strong>; (q) Globiger<strong>in</strong>a bulloides<br />

d’Orbigny <strong>in</strong> spiral view, sample 6 from <strong>Adana</strong> Bas<strong>in</strong>; (r) Globiger<strong>in</strong>ella obesa (Bolli) <strong>in</strong> umbilical view, sample 13 from <strong>Adana</strong> Bas<strong>in</strong>; (s) Orbul<strong>in</strong>a suturalis Brönnimann,<br />

sample 9 from <strong>Adana</strong> Bas<strong>in</strong>; (t) Globiger<strong>in</strong>ella siphonifera (d’Orbigny) <strong>in</strong> side view, sample 6 from <strong>Adana</strong> Bas<strong>in</strong>; and (u) Globiger<strong>in</strong>oides seigliei Bermudez and Bolli <strong>in</strong> spiral<br />

view, sample 3 from Mut Bas<strong>in</strong>. The scale bar is 75 µm <strong>in</strong> pictures a–d and 100 µm <strong>in</strong> pictures e–u.<br />

j1<br />

m1<br />

b<br />

t<br />

f<br />

j2<br />

p<br />

n<br />

c<br />

g<br />

u<br />

k<br />

q<br />

d1<br />

h<br />

13


14<br />

Age (Ma)<br />

6 6.033<br />

7<br />

8<br />

9<br />

10<br />

11<br />

ATNTS2004<br />

C3A<br />

C3B<br />

and Sprovieri, Globoturborotalita apertura (Cushman), G.<br />

nepen<strong>the</strong>s (Todd), G. decoraperta (Takayanagi & Saito), G.<br />

woodi (Jenk<strong>in</strong>s), Globiger<strong>in</strong>elloides bulloideus Crescenti,<br />

G. obliquus Bolli, G. trilobus (Reuss), G. quadrilobatus<br />

(d’Orbigny), Globiger<strong>in</strong>a bulloides d’Orbigny, G.<br />

falconensis Blow, Globiger<strong>in</strong>ella siphonifera (d’Orbigny),<br />

G. obesa (Bolli), Orbul<strong>in</strong>a suturalis Brönnimann, O.<br />

universa d’Orbigny, Neogloboquadr<strong>in</strong>a acostaensis Blow, N.<br />

humerosa Takayanagi & Saito, Dentoglobiger<strong>in</strong>a altispira<br />

altispira (Cushman & Jarvis), Turborotalita qu<strong>in</strong>queloba<br />

(Natland), Tenuitell<strong>in</strong>ata angustiumbilicata (Bolli), and<br />

Globiger<strong>in</strong>ita uvula (Ehrenberg) (Figure 8). The presence<br />

of Globorotalia suterae Catalano & Sprovieri is particularly<br />

important, because its first stratigraphic occurrence<br />

serves to identify <strong>the</strong> base of subzone MMi12b (i.e. <strong>the</strong><br />

Globorotalia suterae subzone of Iaccar<strong>in</strong>o 1985) and is<br />

astronomically dated to 7.81 Ma B.P. (Figure 9; Sprovieri<br />

et al. 1999; Lourens et al. 2004; Iaccar<strong>in</strong>o et al. 2007).<br />

The coeval occurrence of Globorotalia suterae Catalano<br />

& Sprovieri, Globiger<strong>in</strong>oides bulloideus Crescenti, and<br />

Globoturborotalita woodi (Jenk<strong>in</strong>s) allows this part of<br />

<strong>the</strong> section to be assigned to undifferentiated biozone<br />

MMi12b–MMi13a (Figure 9; D’Onofrio et al. 1975;<br />

Iaccar<strong>in</strong>o 1985; Iaccar<strong>in</strong>o et al. 2007). The lack of <strong>the</strong><br />

Globorotalia miotumida group (particularly Globorotalia<br />

Polarity<br />

Magneto<br />

zones<br />

C3<br />

7.140<br />

7.528<br />

C4<br />

8.699<br />

C4A<br />

9.779<br />

C5<br />

Period<br />

ILGAR et al. / Turkish J Earth Sci<br />

Chronostratigraphy<br />

N E O G E N E<br />

M I O C E N E<br />

Epoch<br />

L A T E<br />

Stage<br />

<strong>Mess<strong>in</strong>ian</strong><br />

7.246<br />

Tortonian<br />

Mediterranean<br />

planktonic<br />

foram<strong>in</strong>iferal<br />

biostratigraphy<br />

Nondist<strong>in</strong>ctive<br />

Zone<br />

MMi11<br />

MMi9<br />

Figure 9. Mediterranean planktonic foram<strong>in</strong>iferal biozones plotted aga<strong>in</strong>st <strong>the</strong><br />

ATNTS2004 magnetic chronostratigraphy, with <strong>the</strong> stratigraphic distribution of<br />

diagnostic species <strong>in</strong> <strong>the</strong> outcrop section sampled <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> (Figure 6).<br />

MMi12 MMi13<br />

MMi10<br />

c<br />

b<br />

a<br />

b<br />

a<br />

Globoturborotalita woodi<br />

Globiger<strong>in</strong>oides bulloideus<br />

Globorotalia suterae<br />

Neogloboquadr<strong>in</strong>a humerosa<br />

Globiger<strong>in</strong>ella siphonifera<br />

conomiozea Kennett, G. sahel<strong>in</strong>a Catalano & Sprovieri,<br />

G. mediterranea Catalano & Sprovieri, and G. miotumida<br />

Jenk<strong>in</strong>s) <strong>in</strong> <strong>the</strong> samples does not permit a more precise<br />

assignment. O<strong>the</strong>r fauna <strong>in</strong> this part of <strong>the</strong> section <strong>in</strong>cludes<br />

scarce Bulim<strong>in</strong>a ech<strong>in</strong>ata d’Orbigny, representatives<br />

of Uviger<strong>in</strong>a and Bulim<strong>in</strong>a, miliolids, ech<strong>in</strong>id sp<strong>in</strong>es,<br />

gastropods, and bivalves.<br />

Sample 18 (Figure 6) bears no planktonic foram<strong>in</strong>ifers,<br />

but conta<strong>in</strong>s some benthic forms, gastropods, bivalves,<br />

and o<strong>the</strong>r shell fragments. The slightly higher sample 20<br />

(Figure 6) shows a planktonic foram<strong>in</strong>ifer assemblage<br />

that consists almost entirely of Turborotalita multiloba<br />

(Romeo), T. qu<strong>in</strong>queloba (Natland), and Tenuitell<strong>in</strong>ata<br />

angustiumbilicata (Bolli), accompanied by Bulim<strong>in</strong>a<br />

ech<strong>in</strong>ata d’Orbigny, miliolids, and ech<strong>in</strong>id sp<strong>in</strong>es. These<br />

foram species are known to have been most common prior<br />

to <strong>the</strong> deposition of <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> Lower Evaporites <strong>in</strong> <strong>the</strong><br />

Mediterranean Sea (Kouwenhoven et al. 2006; Manzi et<br />

al. 2007; Morigi et al. 2007; Iaccar<strong>in</strong>o et al. 2008; Orszag-<br />

Sperber et al. 2009; Di Stefano et al. 2010). Fur<strong>the</strong>rmore,<br />

Turborotalita multiloba (Romeo) is an important marker<br />

species <strong>in</strong> <strong>the</strong> Mediterranean, because its narrow<br />

stratigraphic range shortly predates <strong>the</strong> deposition of <strong>the</strong><br />

Lower Evaporites (D’Onofrio et al. 1975; Iaccar<strong>in</strong>o 1985).<br />

The first brief <strong>in</strong>flux of this taxon is dated to 6.42 Ma B.P.,<br />

Turborotalita multiloba


A<br />

5<br />

4<br />

Middle <strong>Mess<strong>in</strong>ian</strong><br />

ILGAR et al. / Turkish J Earth Sci<br />

NW SE<br />

6 Late <strong>Mess<strong>in</strong>ian</strong><br />

3<br />

2<br />

1<br />

N<br />

Inner<br />

Cilicia Bas<strong>in</strong><br />

Gökkuyu Mb. evaporites<br />

Latest Tortonian–early <strong>Mess<strong>in</strong>ian</strong><br />

Early <strong>Mess<strong>in</strong>ian</strong> erosional unconformity (<strong>forced</strong> regression)<br />

Gravelly deltaic member of Handere F.<br />

(cross-cut by <strong>in</strong>cised fluvial valley)<br />

Handere Fm. Misis High rises<br />

as a pop-up ridge<br />

Tortonian<br />

Late Burdigalian–Serravalian<br />

Karaisalı Fm.<br />

2.0<br />

0.5<br />

1.0<br />

2.5<br />

Late Aquitanian–early Burdigalian<br />

1.5<br />

3.0<br />

3.5<br />

4.0<br />

<strong>Adana</strong><br />

Bas<strong>in</strong><br />

Cross-section l<strong>in</strong>e<br />

C<strong>in</strong>göz Fm. - Güvenç Fm.<br />

Kaplankaya Fm.<br />

Base-Miocene erosional unconformity Gildirli Fm.<br />

0 km 50<br />

Present-day erosional<br />

marg<strong>in</strong> of Miocene bas<strong>in</strong><br />

(outcrop limit)<br />

37 00'N<br />

Modern shorel<strong>in</strong>e<br />

İskenderun<br />

Bas<strong>in</strong><br />

35 00'E 36 00'E<br />

B<br />

Late <strong>Mess<strong>in</strong>ian</strong> erosional unconformity (<strong>forced</strong> regression)<br />

Early Tortonian erosional unconformity<br />

Tırtar Fm. Handere Fm.<br />

Kuzgun Fm.<br />

Proto-Misis High<br />

Figure 10. (a) The relationship of <strong>Adana</strong> Bas<strong>in</strong> to adjacent structural units, with a seismic map of <strong>the</strong> base-Miocene unconformity <strong>in</strong> <strong>the</strong> bas<strong>in</strong> (depths below sea level<br />

<strong>in</strong> seconds of 2-way travel time); modified from Burton-Ferguson et al. (2005, Fig. 8). Note <strong>the</strong> trough-shaped, SW-plung<strong>in</strong>g bas<strong>in</strong>-floor palaeotopography and <strong>the</strong> high<br />

palaeotopographic relief along <strong>the</strong> bas<strong>in</strong>’s eastern marg<strong>in</strong> (Misis High). The NW–SE cross-section l<strong>in</strong>e perta<strong>in</strong>s to <strong>the</strong> cartoon below. (b) Schematic cartoon show<strong>in</strong>g <strong>the</strong><br />

<strong>in</strong>terpreted Miocene tectono-stratigraphic development <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> (based on key features revealed by <strong>the</strong> seismic sections <strong>in</strong> Burton-Ferguson et al. 2005; not<br />

to scale). The successive stages are: 1– The Mesozoic bedrock of <strong>the</strong> Tauride foreland, affected by thrust<strong>in</strong>g and elevated <strong>in</strong> <strong>the</strong> Eocene, is gradually denudated by erosion<br />

and eventually covered with alluvial deposits <strong>in</strong> <strong>the</strong> late Aquitanian to early Burdigalian; 2– The area becomes a foreland shelf zone as a result of mid-Burdigalian mar<strong>in</strong>e<br />

transgression, which drowns <strong>the</strong> bas<strong>in</strong> and is followed by a late Burdigalian to Serravalian normal regression; 3– The bas<strong>in</strong> is emerged by early Tortonian eustatic sea-level fall,<br />

and <strong>the</strong> result<strong>in</strong>g erosional unconformity is covered with alluvial deposits and <strong>the</strong>n drowned by mar<strong>in</strong>e transgression; 4– Orogenic thrust<strong>in</strong>g <strong>in</strong> <strong>the</strong> latest Tortonian to early<br />

<strong>Mess<strong>in</strong>ian</strong> converts <strong>the</strong> bas<strong>in</strong> <strong>in</strong>to a piggyback feature, with <strong>the</strong> thrust-<strong>in</strong>duced uplift caus<strong>in</strong>g a <strong>forced</strong> regression and progradation of Gilbert-type deltas <strong>in</strong>cised by fluvial<br />

valleys; 5– The foreland subsides under <strong>the</strong> <strong>in</strong>creased load of <strong>the</strong> orogen thrust-sheets, which <strong>in</strong>vites a mar<strong>in</strong>e transgression that br<strong>in</strong>gs <strong>in</strong> hypersal<strong>in</strong>e water; and 6– The bas<strong>in</strong><br />

is emerged and subject to erosion due to <strong>the</strong> late <strong>Mess<strong>in</strong>ian</strong> evaporative drawdown of <strong>the</strong> Mediterranean Sea. Post-Miocene extensional deformation not considered.<br />

37 30'N<br />

36 30'N<br />

15


with<strong>in</strong> subzone MMi13b, before its common occurrence<br />

<strong>in</strong> subzone MMi13c (Sierro et al. 2001; Dr<strong>in</strong>ia et al. 2004;<br />

Lourens et al. 2004; Kouwenhoven et al. 2006; Manzi et<br />

al. 2007). The higher samples show no occurrence of<br />

Turborotalita multiloba (Romeo) and <strong>the</strong> stratigraphic<br />

level of sample 20 is thus tentatively assigned to subzone<br />

MMi13b (Figure 9).<br />

Samples 21 and 22 (Figure 6) bear no planktonic<br />

foram<strong>in</strong>ifera and conta<strong>in</strong> miliolids, gastropods, ostracods,<br />

and ech<strong>in</strong>id sp<strong>in</strong>es. Sample 24 from <strong>the</strong> top of <strong>the</strong> section<br />

is rich <strong>in</strong> planktonic foram<strong>in</strong>ifera (Globorotalia suterae<br />

Catalano & Sprovieri, Globoturborotalita apertura<br />

(Cushman), G. nepen<strong>the</strong>s (Todd), G. decoraperta<br />

(Takayanagi & Saito), Neogloboquadr<strong>in</strong>a acostaensis<br />

(Blow), N. humerosa (Takayanagi & Saito), Globiger<strong>in</strong>a<br />

bulloides d’Orbigny, Orbul<strong>in</strong>a universa d’Orbigny,<br />

16<br />

ILGAR et al. / Turkish J Earth Sci<br />

Figure 11. Schematic <strong>in</strong>terpretation of <strong>the</strong> latest Miocene relative sea-level changes <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> (cf. Figure 2); <strong>the</strong><br />

suggested time <strong>in</strong>tervals are based on biostratigraphic dat<strong>in</strong>g. (a) The late Tortonian tectonic thrust<strong>in</strong>g lifts up <strong>the</strong> bas<strong>in</strong> and<br />

forces a gradual regression with <strong>the</strong> deposition of downstepp<strong>in</strong>g Gilbert-type deltas <strong>in</strong> FRST. (b) The postthrust<strong>in</strong>g foreland<br />

subsidence due to crustal load results <strong>in</strong> shallow reflood<strong>in</strong>g of <strong>the</strong> bas<strong>in</strong> by hypersal<strong>in</strong>e water, with evaporitic TST and HST. (c)<br />

The Mediterranean early evaporative drawdown causes <strong>the</strong> second eustatically <strong>forced</strong> and nondepositional regression (FRST)<br />

<strong>in</strong> <strong>the</strong> bas<strong>in</strong>.<br />

O. suturalis Brönnimann, O. bilobata d’Orbigny, and<br />

Globiger<strong>in</strong>ella siphonifera (d’Orbigny); Figure 8) and also<br />

conta<strong>in</strong>s benthic foram<strong>in</strong>ifers (Ammonia sp., Bulim<strong>in</strong>a<br />

ech<strong>in</strong>ata d’Orbigny, and some miliolids and nodosarids),<br />

gastropods, bivalves, and ech<strong>in</strong>id sp<strong>in</strong>es. However, it<br />

lacks Turborotalita multiloba (Romeo), Globiger<strong>in</strong>oides<br />

bulloideus Crescenti, and Globoturborotalita woodi<br />

(Jenk<strong>in</strong>s), which allows this stratigraphic level to be also<br />

assigned to subzone MMi13b (Figure 9).<br />

8. Discussion<br />

8.1. Interpretation of Miocene events <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong><br />

In this section, <strong>the</strong> chronology and regional causes of<br />

<strong>the</strong> late Miocene relative sea-level changes <strong>in</strong> <strong>the</strong> <strong>Adana</strong><br />

Bas<strong>in</strong> are discussed with reference to <strong>the</strong> bas<strong>in</strong>’s tectonic<br />

development <strong>in</strong>terpreted from multichannel seismic


A<br />

B<br />

1 m<br />

sections by Burton-Ferguson et al. (2005). However, <strong>the</strong><br />

chronostratigraphy of tectonic events suggested by <strong>the</strong>se<br />

latter authors needs to be rectified <strong>in</strong> <strong>the</strong> light of outcropderived<br />

biostratigraphic data. The ma<strong>in</strong> corrections are as<br />

follows:<br />

• The Güvenç Formation was considered by Burton-<br />

Ferguson et al. (2005, Fig. 3) to be of a Langhian to end-<br />

Tortonian age, whereas <strong>in</strong> reality it is no younger than<br />

Serravalian, truncated by <strong>the</strong> base-Tortonian erosional<br />

unconformity (Figure 2). The time-span of <strong>the</strong> Güvenç<br />

Formation is <strong>the</strong> same as that of <strong>the</strong> C<strong>in</strong>göz Formation,<br />

which is its <strong>near</strong>shore time-equivalent.<br />

• The Kuzgun Formation was considered by Burton-<br />

Ferguson et al. (2005, Fig. 3) to be Tortonian to earliest<br />

<strong>Mess<strong>in</strong>ian</strong> <strong>in</strong> age, whereas <strong>in</strong> reality this terrestrial<br />

formation is of an earliest Tortonian age, covered<br />

transgressively by <strong>the</strong> mar<strong>in</strong>e Handere Formation whose<br />

basal part bears planktonic forams of zone MMi10 and<br />

nannofossils of <strong>the</strong> uppermost zone MNN7c (Figure 2).<br />

• The Handere Formation was considered by Burton-<br />

Ferguson et al. (2005, Fig. 3) to be of a Pliocene age and<br />

overly<strong>in</strong>g <strong>Mess<strong>in</strong>ian</strong> evaporites, whereas its actual age is<br />

Tortonian to <strong>Mess<strong>in</strong>ian</strong> and <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> evaporites<br />

occur at its top (Figure 2).<br />

ILGAR et al. / Turkish J Earth Sci<br />

C<br />

1 m 1 m<br />

Figure 12. (a) Late Miocene shallow-mar<strong>in</strong>e deposits folded by compressional tectonic deformation at <strong>the</strong> <strong>in</strong>ner<br />

marg<strong>in</strong> of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>; picture from locality 4 <strong>in</strong> Figure 1b. (b, c) The exhumed planes of extensional normal<br />

faults <strong>in</strong> Miocene limestones at <strong>the</strong> <strong>in</strong>ner marg<strong>in</strong> of <strong>the</strong> Mut Bas<strong>in</strong>; picture from locality 5 and <strong>in</strong> Figure 1b.<br />

SE<br />

Accord<strong>in</strong>gly, <strong>the</strong> tim<strong>in</strong>g of <strong>the</strong> Miocene events <strong>in</strong> <strong>the</strong><br />

bas<strong>in</strong> <strong>in</strong> our <strong>in</strong>terpretation, summarised <strong>in</strong> Figure 10,<br />

differs slightly from <strong>the</strong> chronology suggested by Burton-<br />

Ferguson et al. (2005).<br />

The seismic data <strong>in</strong>dicate that <strong>the</strong> Miocene bas<strong>in</strong> was<br />

<strong>in</strong>itially a trough plung<strong>in</strong>g towards <strong>the</strong> SW and pass<strong>in</strong>g<br />

<strong>in</strong>to <strong>the</strong> Cilicia Bas<strong>in</strong> (Figure 10a). The <strong>in</strong>cipient Misis<br />

Structural High was probably a low-relief horst (Figure 10b;<br />

see Aksu et al. 2005, Fig. 8), perhaps shallowly submerged.<br />

Progressive unconformities on its flanks (Burton-Ferguson<br />

et al. 2005, Fig. 9) <strong>in</strong>dicate that it became gradually elevated<br />

by differential subsidence dur<strong>in</strong>g <strong>the</strong> Langhian–Tortonian<br />

and eventually popped up as a northward extension of<br />

<strong>the</strong> Kyrenia fold-and-thrust ridge <strong>in</strong> <strong>the</strong> latest Tortonian<br />

to early <strong>Mess<strong>in</strong>ian</strong> time (see Aksu et al. 2005, Fig. 12),<br />

when <strong>the</strong> Miocene succession also evidently underwent<br />

thrust<strong>in</strong>g (Figure 10b; see Burton-Ferguson et al. 2005,<br />

Figs. 14 & 15). This event is thought to have marked <strong>the</strong><br />

tectonic conversion of <strong>the</strong> Miocene <strong>Adana</strong> foredeep <strong>in</strong>to a<br />

thrust-soled piggyback bas<strong>in</strong> (Figure 10b).<br />

The biostratigraphic data <strong>in</strong>dicate that <strong>the</strong> <strong>forced</strong><br />

regression which formed <strong>the</strong> Gilbert-type deltas and<br />

caused fluvial valley <strong>in</strong>cision (Figure 11a) occurred <strong>in</strong><br />

<strong>the</strong> latest Tortonian to early <strong>Mess<strong>in</strong>ian</strong>, ~7.8 to 6.4 Ma<br />

17


B.P. (Figure 9), predat<strong>in</strong>g <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> early evaporative<br />

drawdown of <strong>the</strong> Mediterranean Sea (dated to 5.96 ±<br />

0.02 by Krijgsman et al. 1999). The cause of this stepwise<br />

and depositional <strong>forced</strong> regression is thought to have<br />

been <strong>the</strong> late Tortonian tectonic conversion of <strong>the</strong> <strong>Adana</strong><br />

foredeep shelf <strong>in</strong>to a thrust wedge-top (piggyback) bas<strong>in</strong>,<br />

as is also evidenced by <strong>the</strong> compressional deformation<br />

of late Miocene bas<strong>in</strong>-marg<strong>in</strong> deposits (Figure 12a).<br />

The tectonic thrust<strong>in</strong>g would likely cause a stepwise<br />

bas<strong>in</strong>-floor uplift and relative sea-level fall (Figure 7b).<br />

The biostratigraphically constra<strong>in</strong>ed time frame for<br />

18<br />

A<br />

15<br />

10<br />

5<br />

thickness (metres)<br />

0<br />

delta topset<br />

Delta foreset<br />

B<br />

30<br />

25<br />

20<br />

mudstone samples for<br />

planktonic foram<strong>in</strong>ifera<br />

Tırtar Fm.<br />

clay sand gravel<br />

silt<br />

ILGAR et al. / Turkish J Earth Sci<br />

delta foreset<br />

Delta topset<br />

coral and Miocene<br />

limestone blocks<br />

large coral<br />

fragments<br />

upslope-dipp<strong>in</strong>g<br />

backset deposits with<br />

large coral fragments<br />

Delta foreset<br />

bioturbated sandstones<br />

and oyster shells<br />

foreset direction<br />

C<br />

coral and reefal<br />

limestone fragments<br />

D<br />

backset<br />

coral<br />

fragments<br />

Figure 13. (a) Longitud<strong>in</strong>al outcrop section of <strong>the</strong> latest Tortonian Gilbert-type delta <strong>in</strong> <strong>the</strong> Mut Bas<strong>in</strong>. (b) Vertical sedimentological<br />

log of <strong>the</strong> delta deposits, show<strong>in</strong>g a coarsen<strong>in</strong>g-upwards coarse-gra<strong>in</strong>ed succession overly<strong>in</strong>g directly <strong>the</strong> Tırtar limestone. (c) Closeup<br />

view of <strong>the</strong> delta topset conglomerates, rich <strong>in</strong> pebble- to cobble-sized fragments of Miocene reefal limestones and corals. (d) A<br />

backset of upslope-dipp<strong>in</strong>g cross-strata with<strong>in</strong> <strong>the</strong> delta conglomeratic foreset. Pictures and log from locality 7 <strong>in</strong> Figure 1b.<br />

<strong>the</strong> regression thus gives a more accurate tim<strong>in</strong>g of this<br />

tectonic event <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> (cf. Burton-Ferguson et<br />

al. 2005).<br />

The formation of a piggyback bas<strong>in</strong> would signify<br />

<strong>the</strong> climax of <strong>the</strong> structural contraction and thicken<strong>in</strong>g<br />

of <strong>the</strong> orogen, which would normally be followed by a<br />

regulat<strong>in</strong>g flexural subsidence of <strong>the</strong> foreland under <strong>the</strong><br />

<strong>in</strong>creased crustal load (DeCelles & Giles 1996). Such an<br />

episode of postthrust<strong>in</strong>g isostatic subsidence is thought<br />

to have term<strong>in</strong>ated <strong>the</strong> bas<strong>in</strong>ward advance of <strong>the</strong> deltas<br />

(LST) and caused <strong>the</strong>ir shallow mar<strong>in</strong>e drown<strong>in</strong>g (TST)


<strong>in</strong> an estimated period between ~6.4 and ~6.0 Ma B.P.<br />

(Figure 11b). The mar<strong>in</strong>e highstand sedimentation (HST)<br />

was evaporitic, which <strong>in</strong>dicates flood<strong>in</strong>g by hypersal<strong>in</strong>e<br />

water and thus suggests that <strong>the</strong> hypersal<strong>in</strong>ity <strong>in</strong> <strong>the</strong><br />

eastern Mediterranean Sea was reached at least ~6.5<br />

Ma B.P. The deposition of gypsiferous HST was term<strong>in</strong>ated<br />

by <strong>the</strong> regional onset of <strong>the</strong> early evaporative drawdown <strong>in</strong><br />

<strong>the</strong> Mediterranean Sea ~6 Ma B.P. (Krijgsman et al. 1999),<br />

which caused <strong>the</strong> second, erosional <strong>forced</strong> <strong>Mess<strong>in</strong>ian</strong><br />

regression <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> (Figure 11c).<br />

The early evaporative drawdown <strong>in</strong> <strong>the</strong> Mediterranean<br />

Sea might not exceed 200 m (Dronkert 1985; Krijgsman<br />

et al. 1999), but it was more than sufficient to emerge <strong>the</strong><br />

shallow-mar<strong>in</strong>e peripheral bas<strong>in</strong>. Dur<strong>in</strong>g <strong>the</strong> ensu<strong>in</strong>g<br />

desiccation of <strong>the</strong> Mediterranean Sea, <strong>the</strong> postorogenic<br />

regional isostatic uplift (Jaffey & Robertson 2005;<br />

Cosent<strong>in</strong>o et al. 2012) had apparently elevated <strong>the</strong> <strong>Adana</strong><br />

Bas<strong>in</strong> sufficiently high to prevent its reflood<strong>in</strong>g by <strong>the</strong><br />

Zanclean regional transgression dated to 5.3 Ma B.P.<br />

The bas<strong>in</strong> thus rema<strong>in</strong>ed terrestrial and accumulated<br />

a succession of Pliocene–Quaternary fluvial terraces<br />

(Figure 2) <strong>in</strong> response to <strong>the</strong> cont<strong>in</strong>u<strong>in</strong>g uplift of <strong>the</strong><br />

Taurides comb<strong>in</strong>ed with concurrent eustatic sea-level<br />

changes (Haq et al. 1988).<br />

8.2. Comparison with <strong>the</strong> Mut Bas<strong>in</strong><br />

The end-Serravalian fall and rise of relative sea level<br />

recorded <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> (Figure 2) are also well<br />

recognisable <strong>in</strong> <strong>the</strong> o<strong>the</strong>r Mediterranean peripheral bas<strong>in</strong>s<br />

of sou<strong>the</strong>rn Turkey (Kell<strong>in</strong>g et al. 2005), such as <strong>the</strong><br />

adjacent Mut-Ermenek Bas<strong>in</strong> (Atabey et al. 2000; Ilgar &<br />

Nemec 2005) and <strong>the</strong> Antalya Bas<strong>in</strong> far<strong>the</strong>r to <strong>the</strong> west<br />

(Figure 1a; Flecker et al. 1995; Karabıyıkoğlu et al. 2000;<br />

Deynoux et al. 2005; Monod et al. 2006; Ç<strong>in</strong>er et al. 2008).<br />

An array of fan deltas prograded and became drowned<br />

<strong>in</strong> <strong>the</strong> Antalya Bas<strong>in</strong> at that time (Larsen 2003), whereas<br />

an <strong>in</strong>cised fluvial valley filled with a Gilbert-type delta,<br />

stratigraphically equivalent to <strong>the</strong> Kuzgun Formation <strong>in</strong><br />

<strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> (Figure 2), separates <strong>the</strong> amalgamated<br />

Burdigalian–Serravalian and Tortonian reefal platforms <strong>in</strong><br />

<strong>the</strong> Ermenek Bas<strong>in</strong> (Ilgar et al. unpublished data). The great<br />

amplitude of this early Tortonian eustatic cycle (see Haq et<br />

al. 1988) rendered it widely recognisable and correlative.<br />

However, <strong>the</strong> subsequent relative sea-level changes that<br />

occurred <strong>in</strong> <strong>the</strong>se peripheral bas<strong>in</strong>s <strong>in</strong> Tortonian over a<br />

period of <strong>near</strong>ly 4 Ma are by no means correlative.<br />

In contrast to <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>, <strong>the</strong> o<strong>the</strong>r peripheral<br />

bas<strong>in</strong>s formed as postorogenic <strong>in</strong>tramontane collapse<br />

depressions and <strong>the</strong>ir <strong>in</strong>dividual sedimentation history<br />

had recorded <strong>the</strong> <strong>in</strong>terplay between lower-amplitude<br />

eustatic cycles and <strong>the</strong> gradual isostatic uplift of <strong>the</strong><br />

orogen, local extensional tectonics and variable sediment<br />

supply. The gravelly deltas that formed <strong>in</strong> <strong>the</strong>se bas<strong>in</strong>s <strong>in</strong><br />

<strong>the</strong> Tortonian are ma<strong>in</strong>ly noncorrelative local sequences<br />

ILGAR et al. / Turkish J Earth Sci<br />

and parasequences. As an <strong>in</strong>structive example, we discuss<br />

here <strong>the</strong> development of a late Tortonian Gilbert-type<br />

delta <strong>in</strong> <strong>the</strong> <strong>near</strong>by Mut Bas<strong>in</strong> (Figure 13a; see locality <strong>in</strong><br />

Figure 1b).<br />

The late Tortonian deltaic deposits <strong>in</strong> <strong>the</strong> Mut<br />

Bas<strong>in</strong> belong to <strong>the</strong> shallow-mar<strong>in</strong>e Ballı Formation<br />

(stratigraphic equivalent of <strong>the</strong> Handere Formation <strong>in</strong> <strong>the</strong><br />

<strong>Adana</strong> Bas<strong>in</strong>, Figure 2) and overlie sharply an erosional<br />

ramp of <strong>the</strong> bas<strong>in</strong>-marg<strong>in</strong> reefal limestones of <strong>the</strong> Tırtar<br />

Formation. The Gilbert-type delta prograded from <strong>the</strong><br />

bas<strong>in</strong>’s nor<strong>the</strong>rn marg<strong>in</strong> towards <strong>the</strong> SSW and formed a<br />

coarsen<strong>in</strong>g-upwards clastic succession up to 30 m thick<br />

(Figure 13b). The delta’s fluvial topset has an erosional<br />

base and consists of coarse conglomerates and subord<strong>in</strong>ate<br />

sandstones, rich <strong>in</strong> pebble- to cobble-sized coral fragments<br />

and Miocene limestone debris (Figure 13c). The gravel is<br />

ma<strong>in</strong>ly angular to subangular and moderately sorted, with<br />

a clast-supported texture and a matrix of poorly sorted<br />

coarse sand and granules. F<strong>in</strong><strong>in</strong>g-upwards bedsets of planar<br />

parallel-stratified gravel, 40–90 cm thick, are thought to<br />

be multistorey palaeochannels of braided streams filled<br />

ma<strong>in</strong>ly by <strong>the</strong> deposition of longitud<strong>in</strong>al bars (Nemec<br />

& Postma 1993; Miall 1996). Nonstratified gravel beds<br />

relatively richer <strong>in</strong> sand matrix, with or without normal<br />

grad<strong>in</strong>g, are probably deposits of hyperconcentrated flows<br />

and debris flows generated by <strong>the</strong> sediment-sweep<strong>in</strong>g<br />

action of stream floods (Wasson 1977, 1979; Nemec &<br />

Muszyński 1982; Ridgway & DeCelles 1993).<br />

The erosional, oblique contact between <strong>the</strong> topset<br />

and foreset deposits (Figures 13a and 13b) <strong>in</strong>dicates a<br />

nonris<strong>in</strong>g trajectory of <strong>the</strong> delta shorel<strong>in</strong>e (Breda et al.<br />

2007), which may suggest a normal or a <strong>forced</strong> regression.<br />

Foreset beds are ma<strong>in</strong>ly tabular, 10–45 cm thick, and<br />

<strong>in</strong>cl<strong>in</strong>ed at up to 25°, composed of f<strong>in</strong>e- to very coarsegra<strong>in</strong>ed<br />

sandstones rich <strong>in</strong> granules and scattered pebbles<br />

of up to 4 cm <strong>in</strong> size. Scattered oyster shells and isolated<br />

burrows are also common. The beds have erosional bases<br />

and show plane-parallel stratification, with or without<br />

normal grad<strong>in</strong>g. Their tractional deposition is attributed to<br />

fully turbulent hyperpycnal flows, or river-generated lowdensity<br />

turbidity currents (sensu Lowe 1982). Among <strong>the</strong><br />

foreset beds are backsets of upslope-dipp<strong>in</strong>g cross-strata<br />

(Figures 13b and 13d), which occur as <strong>the</strong> <strong>in</strong>fill of deltaslope<br />

chutes, up to 250 cm deep. The chute-fill deposits are<br />

rich <strong>in</strong> large coral fragments and reefal limestone debris,<br />

up to 100 cm <strong>in</strong> size, derived from <strong>the</strong> bas<strong>in</strong>-marg<strong>in</strong><br />

Miocene carbonate platform. Delta bottomset consists of<br />

th<strong>in</strong> siltstone and f<strong>in</strong>e-gra<strong>in</strong>ed sandstone beds <strong>in</strong>tercalated<br />

with mudstones (Figure 13b).<br />

The delta, thus built out directly on a wave-cut<br />

carbonate ramp, shows an erosional topset/foreset contact<br />

and conta<strong>in</strong>s debris derived from denudation of <strong>the</strong> bas<strong>in</strong>marg<strong>in</strong><br />

reefal limestones. Fur<strong>the</strong>rmore, <strong>the</strong> delta <strong>in</strong> its distal<br />

19


part is covered with th<strong>in</strong>ly bedded reefal limestones, which<br />

<strong>in</strong>dicates a shallow drown<strong>in</strong>g, cessation of fluvial supply,<br />

and thus a considerable landward shift of <strong>the</strong> shorel<strong>in</strong>e.<br />

There are no younger mar<strong>in</strong>e deposits <strong>in</strong> <strong>the</strong> bas<strong>in</strong>, which<br />

implies its subsequent emergence. Taken toge<strong>the</strong>r, <strong>the</strong><br />

evidence <strong>in</strong>dicates a <strong>forced</strong> regression followed by limited<br />

mar<strong>in</strong>e reflood<strong>in</strong>g, and <strong>the</strong> delta’s association with <strong>the</strong><br />

upper part of <strong>the</strong> Tırtar Formation might thus render it<br />

correlative with <strong>the</strong> deltas <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>. In reality,<br />

<strong>the</strong> delta <strong>in</strong> <strong>the</strong> Mut Bas<strong>in</strong> is significantly older than <strong>the</strong><br />

deltas <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>, as evidenced by biostratigraphic<br />

data.<br />

The age of <strong>the</strong> deltaic deposits <strong>in</strong> <strong>the</strong> Mut Bas<strong>in</strong> has<br />

been determ<strong>in</strong>ed on <strong>the</strong> basis of planktonic foram<strong>in</strong>ifera<br />

<strong>in</strong> 10 mudstone samples from a vertical outcrop section<br />

of <strong>the</strong> delta bottomset deposits. Planktonic foram<strong>in</strong>ifera<br />

are abundant and well preserved, but show a relatively low<br />

to moderate diversity and are accompanied by benthic<br />

foram<strong>in</strong>ifers (representatives of Ammonia, Elphidium,<br />

Bulim<strong>in</strong>a, Boliv<strong>in</strong>a, Uviger<strong>in</strong>a, Nonion, miliolids, and<br />

nodosarids), gastropods, bivalves, ostracods, and<br />

ech<strong>in</strong>id sp<strong>in</strong>es. The dom<strong>in</strong>ant planktonic species are<br />

Globiger<strong>in</strong>a and Globiger<strong>in</strong>oides, accompanied by<br />

abundant globoturborotalids, neogloboquadr<strong>in</strong>ids, and<br />

orbul<strong>in</strong>ids. All samples consistently conta<strong>in</strong> Globiger<strong>in</strong>a<br />

bulloides d’Orbigny, Globiger<strong>in</strong>oides trilobus (Reuss), G.<br />

quadrilobatus (d’Orbigny), G. obliquus Bolli, G. bulloideus<br />

Crescenti, Globiger<strong>in</strong>ella obesa (Bolli), Neogloboquadr<strong>in</strong>a<br />

acostaensis (Blow), N. cont<strong>in</strong>uosa (Blow), and<br />

Globoturborotalita woodi (Jenk<strong>in</strong>s). Species that are less<br />

consistently present or rare <strong>in</strong>clude Globoturborotalita<br />

decoraperta (Takayanagi & Saito), Tenuitell<strong>in</strong>ata<br />

angustiumbilicata (Bolli), Catapsydrax parvulus Bolli,<br />

Loeblich & Tappan, Globorotalia scitula (Brady),<br />

Globiger<strong>in</strong>ita uvula (Ehrenberg), Globiger<strong>in</strong>ita <strong>in</strong>crusta<br />

Akers, G. glut<strong>in</strong>ata (Egger), and Globiger<strong>in</strong>oides seigliei<br />

Bermudez & Bolli. The majority are long-range species,<br />

but <strong>the</strong> cooccurrence of Neogloboquadr<strong>in</strong>a cont<strong>in</strong>uosa<br />

(Blow), N. acostaensis (Blow), Globiger<strong>in</strong>oides bollii Blow,<br />

and G. seigliei Bermudez & Bolli <strong>in</strong>dicates a Tortonian age<br />

of <strong>the</strong> deposits. The cooccurrence of <strong>the</strong>se last 3 species<br />

suggests an age probably not older than biozone MMi11<br />

(Figure 9; D’Onofrio et al. 1975; Iaccar<strong>in</strong>o 1985; Iaccar<strong>in</strong>o<br />

et al. 2007). The age can be constra<strong>in</strong>ed fur<strong>the</strong>r by <strong>the</strong><br />

presence of Neogloboquadr<strong>in</strong>a cont<strong>in</strong>uosa Blow, whose last<br />

stratigraphic occurrence <strong>in</strong> <strong>the</strong> Mediterranean is <strong>in</strong> <strong>the</strong><br />

subzone Globiger<strong>in</strong>oides obliquus extremus/G. bulloideus<br />

(Iaccar<strong>in</strong>o 1985) or subzone MMi12a of Iaccar<strong>in</strong>o et<br />

al. (2007). The deltaic bottomset deposits, coeval with<br />

<strong>the</strong> delta built-out, can thus be assigned to <strong>the</strong> biozone<br />

<strong>in</strong>terval MMi11–MMi12a (Figure 9; D’Onofrio et al.<br />

1975; Iaccar<strong>in</strong>o 1985; Iaccar<strong>in</strong>o et al. 2007). The delta<br />

thus appears to have prograded <strong>in</strong> an approximate time of<br />

20<br />

ILGAR et al. / Turkish J Earth Sci<br />

8.5–7.8 Ma B.P., which corresponds to <strong>the</strong> regressive part<br />

(8.3–7.8 Ma B.P.) of <strong>the</strong> third-order eustatic sea-level cycle<br />

TB3.2 of Haq et al. (1988).<br />

In summary, <strong>the</strong> isolated late Tortonian delta <strong>in</strong> <strong>the</strong> Mut<br />

Bas<strong>in</strong>, although seem<strong>in</strong>gly correlative with similar deltas <strong>in</strong><br />

<strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>, is significantly older. Its development and<br />

drown<strong>in</strong>g were apparently related to a third-order eustatic<br />

sea-level cycle, ra<strong>the</strong>r than local tectonics. There was no<br />

compressional Neogene deformation <strong>in</strong> <strong>the</strong> Mut Bas<strong>in</strong>,<br />

whose marg<strong>in</strong> <strong>in</strong>stead shows normal faults <strong>in</strong>dicat<strong>in</strong>g<br />

postorogenic tectonic extension (Figures 12b and 12c).<br />

The amplitude of eustatic cycle TB3.2 did not exceed 30 m<br />

(Haq et al. 1988), but <strong>the</strong> sea-level change was recognised<br />

<strong>in</strong> several o<strong>the</strong>r peri-Mediterranean bas<strong>in</strong>s (e.g., Rouchy<br />

& Sa<strong>in</strong>t Mart<strong>in</strong> 1992; Larsen 2003; Roveri & Manzi 2006).<br />

However, this eustatic cycle was also modulated by<br />

local tectonics and became recorded differently <strong>in</strong> different<br />

bas<strong>in</strong>s. The mar<strong>in</strong>e reflood<strong>in</strong>g of <strong>the</strong> Mut Bas<strong>in</strong> was<br />

probably outpaced by <strong>the</strong> regional isostatic uplift of <strong>the</strong><br />

Central Taurides, whereby <strong>the</strong> bas<strong>in</strong> became emerged well<br />

before <strong>the</strong> hypersal<strong>in</strong>ity state and evaporative drawdown<br />

of <strong>the</strong> Mediterranean Sea. In <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>, this<br />

eustatic cycle went unrecognisable (Figure 2), probably<br />

because <strong>the</strong> low-amplitude eustatic sea-level fall was fully<br />

compensated by <strong>the</strong> postthrust<strong>in</strong>g isostatic subsidence of<br />

<strong>the</strong> foreland bas<strong>in</strong>. In <strong>the</strong> Antalya Bas<strong>in</strong>, <strong>in</strong> contrast, <strong>the</strong><br />

Tortonian succession as a whole is regressive (Flecker et<br />

al. 1995; Deynoux et al. 2005; Ç<strong>in</strong>er et al. 2008), yet shows<br />

no less than 4 cycles of a mar<strong>in</strong>e drown<strong>in</strong>g and renewed<br />

progradation of <strong>the</strong> bas<strong>in</strong>-marg<strong>in</strong> fan deltas (Larsen<br />

2003). Their exact tim<strong>in</strong>g is uncerta<strong>in</strong> and none of <strong>the</strong>se<br />

cyclo<strong>the</strong>ms is recognisably <strong>forced</strong>-regressive, but at least<br />

some of <strong>the</strong>m may be third-order eustatic sequences of<br />

type 2.<br />

These regional comparisons illustrate <strong>the</strong> difficulty<br />

with <strong>in</strong>terbas<strong>in</strong>al stratigraphic correlations and serve as a<br />

warn<strong>in</strong>g aga<strong>in</strong>st a superficial l<strong>in</strong>k<strong>in</strong>g of seem<strong>in</strong>gly similar<br />

events <strong>in</strong> <strong>the</strong> late Miocene peri-Mediterranean bas<strong>in</strong>s (see<br />

also discussions by Clauzon et al. 1996; Soria et al. 2003;<br />

Roveri & Manzi 2006). Reliable stratigraphic correlations<br />

require biostratigraphic constra<strong>in</strong>ts, a good understand<strong>in</strong>g<br />

of <strong>the</strong> bas<strong>in</strong>’s bathymetric conditions and sedimentary<br />

systems, and a careful account of <strong>the</strong> bas<strong>in</strong>’s tectonic<br />

development. False hypo<strong>the</strong>tical correlations of regional<br />

events lead to mistaken regional <strong>in</strong>terpretations.<br />

9. Conclusions<br />

This comb<strong>in</strong>ed sedimentological, sequence-stratigraphic,<br />

and biostratigraphic study of <strong>the</strong> late Miocene deposits<br />

<strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> has shown that <strong>the</strong> shallow-mar<strong>in</strong>e<br />

Handere Formation of Tortonian–<strong>Mess<strong>in</strong>ian</strong> age,<br />

previously <strong>in</strong>terpreted as a simple regressive succession,<br />

bears a high-resolution record of several major relative


sea-level changes <strong>in</strong> <strong>the</strong> bas<strong>in</strong>. The base of this formation<br />

recorded a <strong>forced</strong> regression correspond<strong>in</strong>g to <strong>the</strong> end-<br />

Serravalian (Tor-1) eustatic fall <strong>in</strong> sea level. The lower to<br />

middle part of <strong>the</strong> formation is transgressive, culm<strong>in</strong>at<strong>in</strong>g<br />

<strong>in</strong> offshore mudstones. The upper part is regressive and<br />

its 3 isolated conglomeratic members represent sharpbased<br />

Gilbert-type deltas with axially <strong>in</strong>cised fluvial<br />

valleys that recorded a depositional <strong>forced</strong> regression,<br />

biostratigraphically dated to ~7.8 to 6.4 Ma B.P. on <strong>the</strong> basis<br />

of planktonic foram<strong>in</strong>ifera <strong>in</strong> delta bottomset deposits.<br />

This latest Tortonian–early <strong>Mess<strong>in</strong>ian</strong> regression is<br />

attributed to <strong>the</strong> tectonic conversion of <strong>the</strong> <strong>Adana</strong> foredeep<br />

shelf <strong>in</strong>to a piggyback bas<strong>in</strong>, as is <strong>in</strong>dependently <strong>in</strong>dicated<br />

by seismic profiles and compressional bas<strong>in</strong>-marg<strong>in</strong><br />

deformation. The mar<strong>in</strong>e reflood<strong>in</strong>g of <strong>the</strong> bas<strong>in</strong>, estimated<br />

at ~6.4 to 6 Ma B.P., is ascribed to a postthrust<strong>in</strong>g flexural<br />

subsidence of <strong>the</strong> foreland under <strong>in</strong>creased crustal load.<br />

The transgression brought <strong>in</strong> evaporitic sedimentation,<br />

which suggests <strong>in</strong>vasion of hypersal<strong>in</strong>e Mediterranean<br />

water. The Mediterranean Sea <strong>in</strong> its eastern part would thus<br />

appear to have reached hypersal<strong>in</strong>ity around 6.5 Ma B.P.<br />

The bas<strong>in</strong> was subsequently emerged and its<br />

gypsiferous deposits were extensively eroded due to<br />

ano<strong>the</strong>r <strong>Mess<strong>in</strong>ian</strong> <strong>forced</strong> regression, which is attributed<br />

to <strong>the</strong> early evaporative drawdown of <strong>the</strong> Mediterranean<br />

Sea, regionally dated to ~6 Ma B.P. The Mediterranean<br />

Sea <strong>the</strong>n desiccated. The postorogenic regional isostatic<br />

uplift of <strong>the</strong> Taurides had meanwhile elevated <strong>the</strong> <strong>Adana</strong><br />

Bas<strong>in</strong> sufficiently to prevent its reflood<strong>in</strong>g by <strong>the</strong> Zanclean<br />

regional transgression at 5.3 Ma B.P. The bas<strong>in</strong> rema<strong>in</strong>ed<br />

terrestrial <strong>in</strong> <strong>the</strong> post-Miocene time, accumulat<strong>in</strong>g a<br />

References<br />

Aksu, A.E., Calon, T.J., Hall, J., Mansfield, S. & Yaşar, D. 2005.<br />

The Cilicia–<strong>Adana</strong> bas<strong>in</strong> complex, Eastern Mediterranean:<br />

Neogene evolution of an active fore-arc bas<strong>in</strong> <strong>in</strong> an obliquely<br />

convergent marg<strong>in</strong>. Mar<strong>in</strong>e Geology 221, 121–159.<br />

Aktaş, G. & Robertson, A.H.F. 1990. Tectonic evolution of <strong>the</strong><br />

Tethys suture zone <strong>in</strong> SE Turkey: evidence from <strong>the</strong> petrology<br />

and geochemistry of Late Cretaceous and Middle Eocene<br />

extrusives. In: Malpas, J., Moores, E.M., Panayiotou, A. &<br />

Xenophontos, C. (eds), Ophiolites – Oceanic Crustal Analogues.<br />

Proceed<strong>in</strong>gs of <strong>the</strong> International Symposium Troodos 1987,<br />

Cyprus Geological Survey, Nicosia, pp. 311–328.<br />

Alçiçek, H. 2010. Stratigraphic correlation of <strong>the</strong> Neogene bas<strong>in</strong>s<br />

<strong>in</strong> southwestern Anatolia: regional palaeogeographical,<br />

palaeoclimatic and tectonic implications. Palaeogeography<br />

Palaeoclimatology Palaeoecology 291, 297–318.<br />

Alçiçek, M.C., Kazancı, N. & Özkul, M. 2005. Multiple rift<strong>in</strong>g pulses<br />

and sedimentation pattern <strong>in</strong> <strong>the</strong> Çameli Bas<strong>in</strong>, southwestern<br />

Anatolia, Turkey. Sedimentary Geology 173, 409–431.<br />

ILGAR et al. / Turkish J Earth Sci<br />

succession of fluvial terraces <strong>in</strong> response to <strong>the</strong> cont<strong>in</strong>u<strong>in</strong>g<br />

slow uplift of <strong>the</strong> Taurides and eustatic sea-level changes.<br />

Comparison with <strong>the</strong> late Miocene deposits <strong>in</strong> <strong>the</strong><br />

adjacent Mut Bas<strong>in</strong> and <strong>the</strong> Antalya Bas<strong>in</strong> far<strong>the</strong>r to <strong>the</strong><br />

west demonstrates that <strong>in</strong>terbas<strong>in</strong>al correlations <strong>in</strong> <strong>the</strong><br />

peri-Mediterranean zone of Turkey are difficult and that<br />

a superficial l<strong>in</strong>k<strong>in</strong>g of comparable events may be quite<br />

mislead<strong>in</strong>g. It would appear that <strong>the</strong> local tim<strong>in</strong>g of <strong>the</strong> late<br />

Miocene relative sea-level changes and <strong>the</strong> landward extent<br />

of <strong>the</strong> Zanclean mar<strong>in</strong>e reflood<strong>in</strong>g were both determ<strong>in</strong>ed<br />

by <strong>the</strong> comb<strong>in</strong>ation of eustasy, local tectonics, bas<strong>in</strong><br />

topography, and sediment supply. The <strong>in</strong>dividual bas<strong>in</strong>fill<br />

successions, <strong>in</strong>stead of be<strong>in</strong>g averaged by superficial<br />

correlation, should ra<strong>the</strong>r be analysed <strong>in</strong> detail as <strong>the</strong>y bear<br />

a valuable high-resolution record of local events and give<br />

unique <strong>in</strong>sights <strong>in</strong>to <strong>the</strong> local role of tectonics, sediment<br />

yield, and sea-level changes. The eustatic signal <strong>in</strong> <strong>the</strong> peri-<br />

Mediterranean bas<strong>in</strong>s was variously modulated and often<br />

obscured by <strong>the</strong> local conditions, and its decipher<strong>in</strong>g thus<br />

requires much caution.<br />

Acknowledgments<br />

The field study was funded by <strong>the</strong> General Directorate of<br />

M<strong>in</strong>eral Research and Exploration (MTA). We thank Tolga<br />

Esirtgen, Serap Demirkaya, Serap Akpınar, and Banu<br />

Türkmen for <strong>the</strong>ir valuable field assistance. The manuscript<br />

was first commented upon by Yavuz Hakyemez and <strong>the</strong>n<br />

critically reviewed by Massimiliano Gh<strong>in</strong>assi, Mustafa<br />

Karabıyıkoğlu, and Olivier Monod, whose <strong>in</strong>sightful and<br />

constructive comments are much appreciated. This paper<br />

is dedicated to Carlo Mess<strong>in</strong>a.<br />

Alçiçek, M.C. & Ten Veen, J.H. 2008. The late Early Miocene<br />

Acıpayam piggy-back bas<strong>in</strong>: ref<strong>in</strong><strong>in</strong>g <strong>the</strong> last stages of Lycian<br />

nappe emplacement <strong>in</strong> SW Turkey. Sedimentary Geology 208,<br />

101–113.<br />

Andrew, T. & Robertson, A.H.F. 2002. The Beyşehir-Hoyran-Hadım<br />

nappes: genesis and emplacement of Mesozoic marg<strong>in</strong>al and<br />

oceanic units of <strong>the</strong> nor<strong>the</strong>rn Neotethys <strong>in</strong> sou<strong>the</strong>rn Turkey.<br />

Journal of <strong>the</strong> Geological Society of London 159, 529–543.<br />

Atabey, E., Atabey, N., Hakyemez, A., İslamoğlu, Y., Sözeri, Ş., Özçelik,<br />

N.N., Saraç¸ G., Ünay, E. & Babayiğit, S. 2000. Mut-Karaman<br />

arası Miyosen havzasının litosratigrafisi ve sedimantolojisi.<br />

Bullet<strong>in</strong> of M<strong>in</strong>eral Research and Exploration 122, 53–72.<br />

Barrell, J. 1912. Criteria for <strong>the</strong> recognition of ancient delta deposits.<br />

Bullet<strong>in</strong> of <strong>the</strong> Geological Society of America 23, 377–446.<br />

Bartol, J., Govers, R. & Wortel, R. 2011. The Central Anatolian<br />

Plateau: relative tim<strong>in</strong>g of uplift and magmatism. EGU2011<br />

Geophysical Research Abstracts 13, 10326.<br />

21


Bhatacharya, J.P. & Willis, B.J. 2001. Lowstand deltas <strong>in</strong> <strong>the</strong> Frontier<br />

Formation, Powder River Bas<strong>in</strong>, Wyom<strong>in</strong>g: implications<br />

for sequence stratigraphic models. Bullet<strong>in</strong> of <strong>the</strong> American<br />

Association of Petroleum Geologists 85, 261–294.<br />

Bolli, H.M. & Saunders, J.B. 1985. Oligocene to Holocene low<br />

latitude planktonic foram<strong>in</strong>ifera. In: Bolli, H.M., Saunders, J.B.<br />

& Perch-Nielsen, K. (eds), Plankton Stratigraphy. Cambridge<br />

University Press, Cambridge, pp. 155–262.<br />

Bornhold, B.D. & Prior, D.B. 1990. Morphology and sedimentary<br />

processes of <strong>the</strong> subaqueous Noeick River delta, British<br />

Columbia, Canada. In: Colella, A. & Prior, D.B. (eds), Coarsegra<strong>in</strong>ed<br />

Deltas. International Association of Sedimentologists,<br />

Special Publication 10, 169–181.<br />

Bozkurt, E., W<strong>in</strong>chester, J.A. & Piper, J.D.A. (eds) 2000. Tectonics and<br />

Magmatism <strong>in</strong> Turkey and <strong>the</strong> Surround<strong>in</strong>g Area. Geological<br />

Society of London, Special Publication 173.<br />

Breda, A., Mellere, D. & Massari, F. 2007. Facies and processes <strong>in</strong><br />

a Gilbert-delta-filled <strong>in</strong>cised valley (Pliocene of Ventimiglia,<br />

NW Italy). Sedimentary Geology 200, 31–55.<br />

Breda, A, Mellere, D., Massari, F. & Asioli, A. 2009. Vertically stacked<br />

Gilbert-type deltas of Ventimiglia (NW Italy): The Pliocene<br />

record of an overfilled <strong>Mess<strong>in</strong>ian</strong> <strong>in</strong>cised valley. Sedimentary<br />

Geology 219, 58–76.<br />

Burton-Ferguson, R., Aksu, A.E., Calon, T.J. & Hall, J. 2005. Seismic<br />

stratigraphy and structural evolution of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>,<br />

eastern Mediterranean. Mar<strong>in</strong>e Geology 221, 153–183.<br />

Butler, R.W.H., Lickorish, W.H., Grasso, M., Pedley, H.M. &<br />

Ramberti, L. 1995. Tectonics and sequence stratigraphy <strong>in</strong><br />

<strong>Mess<strong>in</strong>ian</strong> bas<strong>in</strong>s, Sicily: constra<strong>in</strong>ts on <strong>the</strong> <strong>in</strong>itiation and<br />

term<strong>in</strong>ation of <strong>the</strong> Mediterranean sal<strong>in</strong>ity crisis. Bullet<strong>in</strong> of <strong>the</strong><br />

Geological Society of America 107, 425–439.<br />

Catuneanu, O. 2006. Pr<strong>in</strong>ciples of Sequence Stratigraphy. Elsevier,<br />

Amsterdam.<br />

Ç<strong>in</strong>er, A., Karabıyıkoğlu, M., Monod, O., Deynoux, M. & Tuzcu,<br />

S. 2008. Late Cenozoic sedimentary evolution of <strong>the</strong> Antalya<br />

Bas<strong>in</strong>, sou<strong>the</strong>rn Turkey. Turkish Journal of Earth Sciences 17,<br />

1–41.<br />

Cita, M.B. & McKenzie, J.A. 1986. The term<strong>in</strong>al Miocene event. In:<br />

Hsü, K.J. (ed.) Mesozoic and Ca<strong>in</strong>ozoic Oceans. Geodynamics<br />

Series, American Geophysical Union, Wash<strong>in</strong>gton, DC, pp.<br />

123–140.<br />

Clark, M. & Robertson, A.H.F. 2005. Uppermost Cretaceous–Lower<br />

Tertiary Ulukışla Bas<strong>in</strong>, south-central Turkey: sedimentary<br />

evolution of part of a unified bas<strong>in</strong> complex with<strong>in</strong> an evolv<strong>in</strong>g<br />

Neotethyan suture zone. Sedimentary Geology 173, 15–51.<br />

Clauzon, G., Suc, J.P., Gautier, F., Berger, A. & Loutre, M.F. 1996.<br />

Alternative <strong>in</strong>terpretation of <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> sal<strong>in</strong>ity crisis:<br />

Controversy resolved? Geology 24, 363–366.<br />

Colella, A. 1988. Pliocene–Holocene fan deltas and braid deltas<br />

<strong>in</strong> <strong>the</strong> Crati Bas<strong>in</strong>, sou<strong>the</strong>rn Italy: a consequence of vary<strong>in</strong>g<br />

tectonic conditions. In: Nemec, W. & Steel, R.J. (eds), Fan<br />

Deltas – Sedimentology and Tectonic Sett<strong>in</strong>gs. Blackie, London,<br />

pp. 50–74.<br />

22<br />

ILGAR et al. / Turkish J Earth Sci<br />

Coll<strong>in</strong>s, A.S. & Robertson, A.H.F. 1998. Processes of Late Cretaceous<br />

to Late Miocene episodic thrust sheet translation <strong>in</strong> <strong>the</strong> Lycian<br />

Taurides, SW Turkey. Journal of <strong>the</strong> Geological Society of<br />

London 155, 759–772.<br />

Coll<strong>in</strong>s, A.S. & Robertson, A.H.F. 2000. Evolution of <strong>the</strong> Lycian<br />

allochthon, western Turkey, as a north-fac<strong>in</strong>g Late Palaeozoic<br />

to Mesozoic rift and passive marg<strong>in</strong>. Geological Journal 34,<br />

107–138.<br />

Coll<strong>in</strong>son, J.D. 1996. Alluvial sediments. In: Read<strong>in</strong>g, H.G. (ed.),<br />

Sedimentary Environments: Processes, Facies and Stratigraphy.<br />

Blackwell Science, Oxford, pp. 37–82.<br />

Coll<strong>in</strong>son, J.D. & Thompson, D.B. 1982. Sedimentary Structures.<br />

Allen and Unw<strong>in</strong>, London.<br />

Cosent<strong>in</strong>o, D., Schildgen, T.F., Cipollari, P., Faranda, C., Gliozzi,<br />

E., Hudáčková, N., Lucifora, S. & Strecker, M.R. 2012. Late<br />

Miocene surface uplift of <strong>the</strong> sou<strong>the</strong>rn marg<strong>in</strong> of <strong>the</strong> Central<br />

Anatolian plateau, Central Taurides, Turkey. Bullet<strong>in</strong> of <strong>the</strong><br />

Geological Society of America 124, 133–145.<br />

DeCelles, G.P. & Giles, A.K. 1996. Foreland bas<strong>in</strong> systems. Bas<strong>in</strong><br />

Research 8, 105–123.<br />

Dewey, J.F. & Şengör, A.M.C. 1979. Aegean and surround<strong>in</strong>g regions:<br />

complex multiplate and cont<strong>in</strong>uum tectonics <strong>in</strong> a convergent<br />

zone. Bullet<strong>in</strong> of <strong>the</strong> Geological Society of America 190, 84–92.<br />

Deynoux, M., Ç<strong>in</strong>er, A., Monod, O., Karabıyıkoğlu, M., Manatschel,<br />

G. & Tuzcu, S. 2005. Facies architecture and depositional<br />

evolution of alluvial fan to fan-delta complexes <strong>in</strong> <strong>the</strong><br />

tectonically active Miocene Köprüçay Bas<strong>in</strong>, Isparta Angle,<br />

Turkey. Sedimentary Geology 173, 315–343.<br />

Dilek, Y. & Moores, E.M. 1990. Regional tectonics of <strong>the</strong> eastern<br />

Mediterranean ophiolites. In: Malpas, J., Moores, E.M.,<br />

Panayiotou, A. & Xenophotos, C. (eds), Ophiolites – Oceanic<br />

Crustal Analogues. Proceed<strong>in</strong>gs of <strong>the</strong> International Symposium<br />

Trodos 1987. Cyprus Geological Survey Department, Nicosia,<br />

pp. 295–309.<br />

Dilek, Y., Whitney, D. & Tekeli, O. 1999. L<strong>in</strong>ks between tectonics<br />

processes and landscape morphology <strong>in</strong> an Alp<strong>in</strong>e collision<br />

zone, south-central Turkey. Zeitschrift für Geomorphologie 118,<br />

147–164.<br />

Di Stefano, A., Verducci, M., Lirer, F., Ferraro, L., Iaccar<strong>in</strong>o, S.M.,<br />

Hüs<strong>in</strong>g, S.K. & Hilgen, F.J. 2010. Paleoenvironmental conditions<br />

preced<strong>in</strong>g <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> Sal<strong>in</strong>ity Crisis <strong>in</strong> <strong>the</strong> Central<br />

Mediterranean: <strong>in</strong>tegrated data from <strong>the</strong> Upper Miocene<br />

Trave section (Italy). Palaeogeography Palaeoclimatology<br />

Palaeoecology 297, 37–53.<br />

D’Onofrio, S., Giannelli, L., Iaccar<strong>in</strong>o, S., Morlotti, E., Romeo, M.,<br />

Salvator<strong>in</strong>i, G., Sampò, M. & Sprovieri, R. 1975. Planktonic<br />

foram<strong>in</strong>ifera of <strong>the</strong> Upper Miocene from some Italian sections<br />

and <strong>the</strong> problem of <strong>the</strong> lower boundary of <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong>.<br />

Bollett<strong>in</strong>o della Società Paleontologica Italiana 14, 177–196.<br />

Dr<strong>in</strong>ia, H., Antonarakou, A., Tsaparas, N., Dermitzakis, M.D. &<br />

Kontakiotis, G. 2004. Foram<strong>in</strong>iferal record of environmental<br />

changes: preevaporitic diatomaceous sediments from Gavdos<br />

Island, sou<strong>the</strong>rn Greece. Bullet<strong>in</strong> of <strong>the</strong> Geological Society of<br />

Greece 36, 782–791.


Dronkert, H. 1985. Evaporite models and sedimentology of<br />

<strong>Mess<strong>in</strong>ian</strong> and recent evaporites. GUA Papers <strong>in</strong> Geology, Series<br />

1, 24.<br />

Durand, B., Jolivet, L., Horváth, F. & Séranne, M. (eds) 1999. The<br />

Mediterranean Bas<strong>in</strong>s: Tertiary Extension with<strong>in</strong> <strong>the</strong> Alp<strong>in</strong>e<br />

Orogen. Geological Society of London, Special Publication 156.<br />

Embry, A.F. 2002. Transgressive-regressive (T-R) sequence<br />

stratigraphy. In: Armentrout, J. & Rosen, N. (eds), Sequence<br />

Stratigraphic Models for Exploration and Production: Gulf<br />

Coast. Society of Economic Paleontologists and M<strong>in</strong>eralogists,<br />

Gulf Coast Division Conference Proceed<strong>in</strong>gs, Houston, pp.<br />

151–172.<br />

Flecker, R., Poisson, A. & Robertson, A.H.F. 2005. Facies and<br />

palaeogeographic evidence for <strong>the</strong> Miocene evolution of <strong>the</strong><br />

Isparta Angle <strong>in</strong> its regional eastern Mediterranean context.<br />

Sedimentary Geology 173, 277–314.<br />

Flecker, R., Robertson, A.H.F., Poisson, A. & Müller, C. 1995. Facies<br />

and tectonic significance of two contrast<strong>in</strong>g Miocene bas<strong>in</strong>s <strong>in</strong><br />

south coastal Turkey. Terra Nova 7, 221–232.<br />

Gh<strong>in</strong>assi, M. 2007. The effects of differential subsidence and coastal<br />

topography on high-order transgressive-regressive cycles:<br />

Pliocene <strong>near</strong>shore deposits of <strong>the</strong> Val d’Orcia Bas<strong>in</strong>, Nor<strong>the</strong>rn<br />

Apenn<strong>in</strong>es, Italy. Sedimentary Geology 202, 677–701.<br />

Görür, N. 1992. A tectonically controlled alluvial fan which developed<br />

<strong>in</strong>to a mar<strong>in</strong>e fan-delta at a complex triple junction: Miocene<br />

Gildirli Formation of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>, Turkey. Sedimentary<br />

Geology 81, 243–252.<br />

Görür, N. & Tüysüz, O. 2001. Cretaceous to Miocene palaeogeographic<br />

evolution of Turkey: implications for hydrocarbon potential.<br />

Journal of Petroleum Geology 24, 119–146.<br />

Hampson, G.J., Elliott, T. & Davies, S.J. 1997. The application of<br />

sequence stratigraphy to Upper Carboniferous fluvio-deltaic<br />

strata of <strong>the</strong> onshore UK and Ireland: implications for <strong>the</strong><br />

sou<strong>the</strong>rn North Sea. Journal of <strong>the</strong> Geological Society of London<br />

154, 719–733.<br />

Haq, B.U. 1991. Sequence stratigraphy, sea-level change, and<br />

significance for <strong>the</strong> deep sea. In: MacDonald, D.I.M. (ed.),<br />

Sedimentation, Tectonics and Eustasy: Sea-Level Changes at<br />

Active Marg<strong>in</strong>s. International Association of Sedimentologists,<br />

Special Publication 12, 3–39.<br />

Haq, B.U., Hardenbol, J. & Vail, P.R. 1988. Mesozoic and Cenozoic<br />

chronostratigraphy and eustatic cycles. In: Wilgus, C.K.,<br />

Hast<strong>in</strong>gs, B.S., Posamentier, H.W., Van Wagoner, J.C., Ross,<br />

C.A. & Kendall, C.G.S.C. (eds), Sea-Level Changes: An<br />

Integrated Approach. Society of Economic Paleontologists and<br />

M<strong>in</strong>eralogists, Special Publication 42, 71–108.<br />

Harms, J.C., Southard, J.B., Spear<strong>in</strong>g, D.R. & Walker, R.G. 1975.<br />

Depositional Environments as Interpreted from Primary<br />

Sedimentary Structures and Stratification Sequences. Society<br />

of Economic Paleontologists and M<strong>in</strong>eralogists, Short Course<br />

No. 2 Lecture Notes.<br />

Harms, J.C., Southard, J.B. & Walker, R.G. 1982. Structures and<br />

Sequences <strong>in</strong> Clastic Rocks. Society of Economic Paleontologists<br />

and M<strong>in</strong>eralogists, Short Course No. 9 Lecture Notes.<br />

ILGAR et al. / Turkish J Earth Sci<br />

Hayward, A.B. 1984a. Sedimentation and bas<strong>in</strong> formation related<br />

to ophiolite nappe emplacement, Miocene, SW Turkey.<br />

Sedimentary Geology 40, 105–129.<br />

Hayward, A.B. 1984b. Miocene clastic sedimentation related to <strong>the</strong><br />

emplacement of <strong>the</strong> Lycian Nappes and <strong>the</strong> Antalya Complex,<br />

S.W. Turkey. In: Dixon, J.E. & Robertson, A.H.F. (eds.), The<br />

Geological Evolution of <strong>the</strong> Eastern Mediterranean. Geological<br />

Society of London, Special Publication 17, 403–414.<br />

Helland-Hansen, W. 2009. Towards <strong>the</strong> standardization of sequence<br />

stratigraphy: discussion. Earth-Science Reviews 94, 95–97.<br />

Helland-Hansen, W. & Gjelberg, J.G. 1994. Conceptual basis and<br />

variability <strong>in</strong> sequence stratigraphy: a different perspective.<br />

Sedimentary Geology 92, 31–52.<br />

Helland-Hansen, W. & Mart<strong>in</strong>sen, O.J. 1996. Shorel<strong>in</strong>e trajectories<br />

and sequences: description of variable depositional-dip<br />

scenarios. Journal of Sedimentary Research 66, 670–688.<br />

Hsü, K.J., Ryan, W.B.F. & Cita, M.B., 1972. Late Miocene desiccation<br />

of <strong>the</strong> Mediterranean. Nature 242, 240–244.<br />

Hüs<strong>in</strong>g, S.K., Oms, O., Agusti, J., Garcés, M., Kouwenhoven,<br />

T.J., Krijsman, W. & Zachariasse, W.J. 2010. On <strong>the</strong> late<br />

Miocene closure of <strong>the</strong> Mediterranean-Atlantic gateway<br />

through <strong>the</strong> Guadix Bas<strong>in</strong> (sou<strong>the</strong>rn Spa<strong>in</strong>). Palaeogeography<br />

Palaeoclimatology Palaeoecology 291, 167–179.<br />

Iaccar<strong>in</strong>o, S.M. 1985. Mediterranean Miocene and Pliocene planktic<br />

foram<strong>in</strong>ifera. In: Bolli, H.M., Saunders, J.B. & Perch-Nielsen,<br />

K. (eds), Plankton Stratigraphy. Cambridge University Press,<br />

Cambridge, pp. 283–314.<br />

Iaccar<strong>in</strong>o, S.M., Premoli Silva, I., Biolzi, M., Foresi, L.M., Lirer, F.,<br />

Turco, E. & Petrizzo, M.R. 2007. Practical Manual of Neogene<br />

Planktonic Foram<strong>in</strong>ifera. International School on Planktonic<br />

Foram<strong>in</strong>ifera 6th Course, Università di Perugia Press, Perugia.<br />

Ilgar, A. & Nemec, W. 2005. Early Miocene lacustr<strong>in</strong>e deposits and<br />

sequence stratigraphy of <strong>the</strong> Ermenek Bas<strong>in</strong>, Central Taurides,<br />

Turkey. Sedimentary Geology 173, 233–275.<br />

Jaffey, N. & Robertson, A.H.F. 2005. Non-mar<strong>in</strong>e sedimentation<br />

associated with Oligocene-Recent exhumation and uplift of<br />

<strong>the</strong> Central Taurus Mounta<strong>in</strong>s, S. Turkey. Sedimentary Geology<br />

173, 53–89.<br />

Jarvis, A., Reuter, H.I., Nelson, A. & Guevara, E. 2008. Hole-filled<br />

SRTM for <strong>the</strong> Globe, Version 4. CGIAR-CSI SRTM 90m<br />

Database, http://srtm.csi.cgiar.org.<br />

Jervey, M.T. 1988. Quantitative geological model<strong>in</strong>g of siliciclastic<br />

rock sequences and <strong>the</strong>ir seismic expression. In: Wilgus,<br />

C.K., Hast<strong>in</strong>gs, B.S., Posamentier, H.W., Van Wagoner, J.C.,<br />

Ross, C.A. & Kendall, C.G.S.C. (eds), Sea-Level Changes: An<br />

Integrated Approach. Society of Economic Paleontologists and<br />

M<strong>in</strong>eralogists, Special Publication 42, 47–69.<br />

Karabıyıkoğlu, M., Ç<strong>in</strong>er, A., Monod, O., Deynoux, M., Tuzcu, S. &<br />

Örçen, S. 2000. Tectonosedimentary evolution of <strong>the</strong> Miocene<br />

Manavgat Bas<strong>in</strong>, western Taurides, Turkey. In: Bozkurt, E.,<br />

W<strong>in</strong>chester, J.A. & Piper, J.D.A. (eds), Tectonics and Magmatism<br />

<strong>in</strong> Turkey and <strong>the</strong> Surround<strong>in</strong>g Area. Geological Society of<br />

London, Special Publication 173, 271–294.<br />

23


Karakuş, E. 2011. Sedimentology of <strong>Mess<strong>in</strong>ian</strong> Evaporites <strong>in</strong> <strong>the</strong> Tarsus<br />

(Mers<strong>in</strong>) Area. Unpublished MSc Thesis, Ankara University.<br />

Kell<strong>in</strong>g, G., Gökçen, S., Floyd, P. & Gökçen, N. 1987. Neogene<br />

tectonics and plate convergence <strong>in</strong> <strong>the</strong> eastern Mediterranean:<br />

new data from sou<strong>the</strong>rn Turkey. Geology 15, 425–429.<br />

Kell<strong>in</strong>g, G., Robertson, A.H.F. & Van Buchem, F. (eds) 2005. Cenozoic<br />

Sedimentary Bas<strong>in</strong>s of Sou<strong>the</strong>rn Turkey. Sedimentary Geology<br />

173 (Special Issue), 1–405.<br />

Kennett, J.P. & Sr<strong>in</strong>ivasan, M.S. 1983. Neogene Planktonic<br />

Foram<strong>in</strong>ifera: A Phylogenetic Atlas. Hutch<strong>in</strong>son & Ross,<br />

Stroudsburg, Pennsylvania, USA.<br />

Koç, A., Kaymakçı, N., Van H<strong>in</strong>sbergen, D.J.J., Kuiper, K.F. &<br />

Vissers, R.L.M. 2012. Tectono-sedimentary evolution and<br />

geochronology of <strong>the</strong> Middle Miocene Altınapa Bas<strong>in</strong>,<br />

and implications for <strong>the</strong> Late Cenozoic uplift history of <strong>the</strong><br />

Taurides, sou<strong>the</strong>rn Turkey. Tectonophysics 532, 134–155.<br />

Kouwenhoven, T.J., Morigi, C., Negri, A., Giunta, S., Krijgsman, W.<br />

& Rouchy, J.M. 2006. Paleoenvironmental evolution of <strong>the</strong><br />

eastern Mediterranean dur<strong>in</strong>g <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong>: constra<strong>in</strong>ts from<br />

<strong>in</strong>tegrated microfossil data of <strong>the</strong> Pissouri Bas<strong>in</strong> (Cyprus).<br />

Mar<strong>in</strong>e Micropaleontology 60, 17–44.<br />

Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J. & Wilson, D.S. 1999.<br />

Chronology, causes and progression of <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> sal<strong>in</strong>ity<br />

crisis. Nature 400, 652–655.<br />

Krijgsman, W. & Meijer, P.T. 2008. Depositional environments of <strong>the</strong><br />

Mediterranean “Lower Evaporites” of <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> sal<strong>in</strong>ity<br />

crisis: constra<strong>in</strong>ts from quantitative analyses. Mar<strong>in</strong>e Geology<br />

253, 73–81.<br />

Larsen, E. 2003. Stratigraphic Architecture of Littoral to Neritic Clastic<br />

Wedges: Sedimentology, Morphodynamics and Implications for<br />

Spatial Lithofacies Predictions. Dr. Sc. Dissertation, Bergen<br />

University, Bergen.<br />

Lønne, I. & Nemec, W. 2004. High-arctic fan delta record<strong>in</strong>g<br />

deglaciation and environment disequilibrium. Sedimentology<br />

51, 553–589.<br />

Lourens, L.J., Hilgen, F.J., Laskar, J., Shackleton, N.J. & Wilson, D.<br />

2004. The Neogene Period. In: Gradste<strong>in</strong> F.M., Ogg J.G. &<br />

Smith A.G. (eds), A Geologic Time Scale. Cambridge University<br />

Press, Cambridge, pp. 409–440.<br />

Lowe, D.R. 1982. Sediment gravity flows, II. Depositional models<br />

with special reference to <strong>the</strong> deposits of high-density turbidity<br />

currents. Journal of Sedimentary Petrology 52, 279–297.<br />

MacEachern, J.A., Zaitl<strong>in</strong>, B.A. & Pemberton, S.G. 1999. A sharpbased<br />

sandstone succession of <strong>the</strong> Vik<strong>in</strong>g Formation, Joffre<br />

Field, Alberta, Canada: criteria for recognition of transgressively<br />

<strong>in</strong>cised shoreface complexes. Journal of Sedimentary Research<br />

69, 876–892.<br />

Maillard, A. & Mauffret, A. 2006. Relationships between erosion<br />

surfaces and Late Miocene Sal<strong>in</strong>ity Crisis deposits <strong>in</strong> <strong>the</strong><br />

Valencia Bas<strong>in</strong> (northwestern Mediterranean): evidences for<br />

an early sea-level fall. Terra Nova 18, 321–329.<br />

24<br />

ILGAR et al. / Turkish J Earth Sci<br />

Manzi, V., Roveri, M., gennari, R., Bert<strong>in</strong>i, A., Biffi, U., Giunta, S.,<br />

Iaccar<strong>in</strong>o, S.M., Lanci, L., Lugli, S., Negri, A., Riva, A., Rossi,<br />

M.E. & Taviani, M. 2007. The deep water counterpart of<br />

<strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> Lower Evaporites <strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>e foredeep:<br />

<strong>the</strong> Fanantello section (Nor<strong>the</strong>rn Apenn<strong>in</strong>es, Italy).<br />

Palaeogeography Palaeoclimatology Palaeoecology 251, 470–<br />

499.<br />

Mellere, D., Pl<strong>in</strong>k-Bjőrklund, P. & Steel, R.J. 2002. Anatomy of<br />

shelf deltas at <strong>the</strong> edge of a prograd<strong>in</strong>g Eocene shelf marg<strong>in</strong>,<br />

Spitsbergen. Sedimentology 49, 1181–1206.<br />

Mess<strong>in</strong>a, C., Rosso, A., Sciuto, F., Di Geronimo, I., Nemec, W., Di<br />

Dio, T., Di Geronimo, R., Maniscalco, R. & Sanfilippo, R.<br />

2007. Anatomy of a transgressive systems tract revealed by<br />

<strong>in</strong>tegrated sedimentological and palaeoecological study: <strong>the</strong><br />

Barcellona Pozzo di Gotto Bas<strong>in</strong>, nor<strong>the</strong>astern Sicily, Italy.<br />

In: Nichols, G., Paola, C. & Williams, E.A. (eds), Sedimentary<br />

Processes, Environments and Bas<strong>in</strong>s – A Tribute to Peter<br />

Friend. International Association of Sedimentologists, Special<br />

Publication 38, 367–400.<br />

Miall, A.D. 1985. Architectural-element analysis: a new method<br />

of facies analysis applied to fluvial deposits. Earth-Science<br />

Reviews 22, 261–308.<br />

Miall, A.D. 1996. The Geology of Fluvial Deposits. Spr<strong>in</strong>ger-Verlag,<br />

Heidelberg.<br />

Michard, A., Whitechurch, H., Ricou, L.E., Montigny, R. & Yazgan,<br />

E. 1984. Tauric subduction (Malatya–Elazığ prov<strong>in</strong>ces) and its<br />

bear<strong>in</strong>g on tectonics of <strong>the</strong> Tethyan realm <strong>in</strong> Turkey. In: Dixon,<br />

J.E. & Robertson, A.H.F. (eds), The Geological Evolution of <strong>the</strong><br />

Eastern Mediterranean. Geological Society of London, Special<br />

Publication 17, 361–373.<br />

Monod, O., Kuzucuoğlu, C. & Okay, A.İ., 2006. A Miocene<br />

palaeovalley network <strong>in</strong> <strong>the</strong> Western Taurus (Turkey). Turkish<br />

Journal of Earth Sciences 15, 1–23.<br />

Morigi, C., Negri, A., Giunta, S., Kouwenhoven, T.J., Krijgsman, W.,<br />

Blanc-Valleron, M.M., Orszag-Sperber, F. & Rouchy, J.M. 2007.<br />

Integrated quantitative biostratigraphy of <strong>the</strong> latest Tortonian–<br />

early <strong>Mess<strong>in</strong>ian</strong> Pissouri section (Cyprus): An evaluation of<br />

calcareous plankton bioevents. Geobios 40, 267–279.<br />

Nazik, A. 2004. Planktonic foram<strong>in</strong>iferal biostratigraphy of <strong>the</strong><br />

Neogene sequence <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>, Turkey, and its<br />

correlation with standard biozones. Geological Magaz<strong>in</strong>e 141,<br />

379–387.<br />

Nemec, W. 1990. Aspects of sediment movement on steep delta<br />

slopes. In: Colella, A. & Prior, D.B. (eds), Coarse-gra<strong>in</strong>ed<br />

Deltas. International Association of Sedimentologists, Special<br />

Publication 10, 29–73.<br />

Nemec, W., Lønne, I. & Blikra, L.H. 1999. The Kregnes mora<strong>in</strong>e <strong>in</strong><br />

Gauldalen, west-central Norway: anatomy of a Younger Dryas<br />

proglacial delta <strong>in</strong> a palaeofjord bas<strong>in</strong>. Boreas 28, 454–476.<br />

Nemec, W. & Muszyński, A. 1982. Volcaniclastic alluvial aprons <strong>in</strong><br />

<strong>the</strong> Tertiary of <strong>the</strong> Sofia district (Bulgaria). Annales Societatis<br />

Geologorum Poloniae 52, 239–303.


Nemec, W. & Postma, G. 1993. Quaternary alluvial fans <strong>in</strong><br />

southwestern Crete: sedimentation processes and geomorphic<br />

evolution. In: Marzo, M. & Puigdefábregas, C. (eds), Alluvial<br />

Sedimentation. International Association of Sedimentologists,<br />

Special Publication 17, 235–276.<br />

Nemec, W. & Steel, R.J. 1984. Alluvial and coastal conglomerates:<br />

<strong>the</strong>ir significant features and some comments on gravelly mass<br />

flow deposits. In: Koster, E.H. & Steel, R.J. (eds), Sedimentology<br />

of Gravels and Conglomerates. Canadian Society of Petroleum<br />

Geologists, Memoir 10, 1–31.<br />

Orszag-Sperber, F., Caruso, A., Blanc-Valleron, M.M., Merle, D. &<br />

Rouchy, J.M. 2009. The onset of <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> sal<strong>in</strong>ity crisis:<br />

<strong>in</strong>sights from Cyprus sections. Sedimentary Geology 217, 52–<br />

64.<br />

Pl<strong>in</strong>t, A.G. 1988. Sharp-based shoreface sequences and ‘offshore bars’<br />

<strong>in</strong> <strong>the</strong> Cardium Formation of Alberta: <strong>the</strong>ir relationship to<br />

relative changes <strong>in</strong> sea level. In: Wilgus, C.K., Hast<strong>in</strong>gs, B.S.,<br />

Posamentier, H.W., Van Wagoner, J.C., Ross, C.A. & Kendall,<br />

C.G.S.C. (eds), Sea-Level Changes: An Integrated Approach.<br />

Society of Economic Paleontologists and M<strong>in</strong>eralogists, Special<br />

Publication 42, 357–370.<br />

Pl<strong>in</strong>t, A.G. & Nummedal, D. 2000. The fall<strong>in</strong>g stage systems tract:<br />

recognition and importance <strong>in</strong> sequence stratigraphic analysis.<br />

In: Hunt, D. & Gawthorpe, R.L. (eds), Sedimentary Responses<br />

to Forced Regression. Geological Society of London, Special<br />

Publication 172, 1–17.<br />

Poisson, A., Yağmurlu, F., Bozcu, M. & Şentürk, M. 2003. New<br />

<strong>in</strong>sights on <strong>the</strong> tectonic sett<strong>in</strong>g and evolution around <strong>the</strong> apex<br />

of <strong>the</strong> Isparta Angle (SW Turkey). Geological Journal 38, 257–<br />

282.<br />

Posamentier, H.W., Allen, G.P., James, D.P. & Tesson, M. 1992.<br />

Forced <strong>regressions</strong> <strong>in</strong> a sequence stratigraphic framework:<br />

concepts, examples, and exploration significance. Bullet<strong>in</strong> of <strong>the</strong><br />

American Association of Petroleum Geologists 76, 1687–1709.<br />

Posamentier, H.W. & Morris, W.R. 2000. Aspects of <strong>the</strong> stratal<br />

architecture of <strong>forced</strong> regressive deposits. In: Hunt, D. &<br />

Gawthorpe, R.L. (eds), Sedimentary Responses to Forced<br />

Regression. Geological Society of London, Special Publication<br />

172, 19–46.<br />

Posamentier, H.W. & Vail, P.R. 1988. Eustatic controls on clastic<br />

deposition: II. Sequence and systems tract models. In: Wilgus,<br />

C.K., Hast<strong>in</strong>gs, B.S., Posamentier, H.W., Van Wagoner, J.C.,<br />

Ross, C.A. & Kendall, C.G.S.C. (eds), Sea-Level Changes: An<br />

Integrated Approach. Society of Economic Paleontologists and<br />

M<strong>in</strong>eralogists, Special Publication 42, 125–154.<br />

Postma, G. 1984. Mass-flow conglomerates <strong>in</strong> a submar<strong>in</strong>e canyon:<br />

Abrioja fan-delta, Pliocene, sou<strong>the</strong>ast Spa<strong>in</strong>. In: Koster, E.H. &<br />

Steel, R.J. (eds), Sedimentology of Gravels and Conglomerates.<br />

Canadian Society of Petroleum Geologists, Memoir 10, 237–<br />

258.<br />

Postma, G. 1990. An analysis of <strong>the</strong> variation <strong>in</strong> delta architecture.<br />

Terra Nova 2, 124–130.<br />

ILGAR et al. / Turkish J Earth Sci<br />

Ridgway, K.D. & DeCelles, P.G. 1993. Petrology of mid-Cenozoic<br />

strike–slip bas<strong>in</strong>s <strong>in</strong> an accretionary orogen, St. Elias<br />

Mounta<strong>in</strong>s, Yukon Territory, Canada. In: Johnsson, M.J. &<br />

Basu, A. (eds), Processes Controll<strong>in</strong>g <strong>the</strong> Composition of Clastic<br />

Sediments. Geological Society of America, Special Paper 284,<br />

67–89.<br />

Rid<strong>in</strong>g, R., Braga, J.C. & Martín, J.M. 1999. Late Miocene<br />

Mediterranean desiccation: topography and significance.<br />

Sedimentary Geology 123, 1–7.<br />

Rid<strong>in</strong>g, R., Braga, J.C., Martín, J.M. & SÁnchez-Almazo, I.M. 1998.<br />

Mediterranean <strong>Mess<strong>in</strong>ian</strong> Sal<strong>in</strong>ity Crisis: constra<strong>in</strong>ts from a<br />

coeval marg<strong>in</strong>al bas<strong>in</strong>, Sorbas, SE Spa<strong>in</strong>. Mar<strong>in</strong>e Geology 146,<br />

1–20.<br />

Rid<strong>in</strong>g, R., Martín, J.M. & Braga, J.C. 1991. Coral–stromatolite reef<br />

framework, Upper Miocene, Almería, Spa<strong>in</strong>. Sedimentology 38,<br />

799–818.<br />

Robertson, A.H.F. 2000. Mesozoic-Tertiary tectonic-sedimentary<br />

evolution of a south Tethyan oceanic bas<strong>in</strong> and its marg<strong>in</strong>s<br />

<strong>in</strong> sou<strong>the</strong>rn Turkey. In: Bozkurt, E., W<strong>in</strong>chester, J.A. & Piper,<br />

J.D.A. (eds), Tectonics and Magmatism <strong>in</strong> Turkey and <strong>the</strong><br />

Surround<strong>in</strong>g Area. Geological Society of London, Special<br />

Publication 173, 97–138.<br />

Roep, T.B., Dabrio, C.J., Fortu<strong>in</strong>, A.R. & Polo, M.D. 1998. Late<br />

highstand patterns of shift<strong>in</strong>g and stepp<strong>in</strong>g coastal barriers<br />

and washover fans (late <strong>Mess<strong>in</strong>ian</strong>, Sorbas Bas<strong>in</strong>, SE Spa<strong>in</strong>).<br />

Sedimentary Geology 116, 27–56.<br />

Rouchy, J.M. 1982. La genèse des èvaporites mess<strong>in</strong>iennes de<br />

Méditerrannée. Mémoirs du Museum d’Histoire Naturelle de<br />

Paris 50.<br />

Rouchy, J.M. & Caruso, A. 2006. The <strong>Mess<strong>in</strong>ian</strong> sal<strong>in</strong>ity crisis <strong>in</strong><br />

<strong>the</strong> Mediterranean bas<strong>in</strong>: a reassessment of <strong>the</strong> data and an<br />

<strong>in</strong>tegrated scenario. Sedimentary Geology 188, 35–67.<br />

Rouchy, J.M. & Sa<strong>in</strong>t Mart<strong>in</strong>, J.P. 1992. Late Miocene events <strong>in</strong> <strong>the</strong><br />

Mediterranean as recorded by carbonate-evaporitic relations.<br />

Geology 20, 629–632.<br />

Roveri, M. & Manzi, V. 2006. The <strong>Mess<strong>in</strong>ian</strong> sal<strong>in</strong>ity crisis: look<strong>in</strong>g<br />

for a new paradigm? Palaeogeography Palaeoclimatology<br />

Palaeoecology 238, 386–398.<br />

Ryan, W.B.F. 2009. Decod<strong>in</strong>g <strong>the</strong> Mediterranean sal<strong>in</strong>ity crisis.<br />

Sedimentology 56, 95–136.<br />

Ryan, W.B.F. & Cita, M.B. 1978. The nature and distribution of<br />

<strong>Mess<strong>in</strong>ian</strong> erosion surfaces, <strong>in</strong>dicators of a several kilometerdeep<br />

Mediterranean <strong>in</strong> <strong>the</strong> Miocene. Mar<strong>in</strong>e Geology 27, 193–<br />

230.<br />

Şafak, Ü., Kell<strong>in</strong>g, G., Gökçen, N.S. & Gürbüz, K. 2005. The mid-<br />

Cenozoic succession and evolution of <strong>the</strong> Mut bas<strong>in</strong>, sou<strong>the</strong>rn<br />

Turkey, and its regional significance. Sedimentary Geology 173,<br />

121–150.<br />

Sagular, E.K. & Görmüş, M. 2006. New stratigraphical results and<br />

significance of rework<strong>in</strong>g based on nannofossil, foram<strong>in</strong>iferal<br />

and sedimentological records <strong>in</strong> <strong>the</strong> Lower Tertiary sequence<br />

from <strong>the</strong> nor<strong>the</strong>rn Isparta Angle, Eastern Mediterranean.<br />

Journal of Asian Earth Sciences 27, 78–98.<br />

25


Satur, N., Kell<strong>in</strong>g, G., Cron<strong>in</strong>, B.T., Hurst, A. & Gürbüz, K. 2005.<br />

Sedimentary architecture of a canyon-style fairway feed<strong>in</strong>g<br />

a deep-water clastic system, <strong>the</strong> Miocene C<strong>in</strong>göz Formation,<br />

sou<strong>the</strong>rn Turkey: significance for reservoir characterisation<br />

and modell<strong>in</strong>g. Sedimentary Geology 173, 91–119.<br />

Schmidt, G.C. 1961. Stratigraphic nomenclature for <strong>the</strong> <strong>Adana</strong> region<br />

petroleum district VII. Petroleum Adm<strong>in</strong>istration Bullet<strong>in</strong> 6,<br />

47–63.<br />

Schumm, S.A. 1993 River response to base level change: implications<br />

for sequence stratigraphy. Journal of Geology 101, 279–294.<br />

Şenel, M. 2002. Geological Map of Turkey, 1:500 000, Sheet No. 14<br />

(Konya). Maden Tetkik ve Arama Genel Müdürlüğü (MTA),<br />

Ankara.<br />

Şengör, A.M.C. 1987. Tectonics of <strong>the</strong> Tethysides: orogenic collage<br />

development <strong>in</strong> a collisional sett<strong>in</strong>g. Annual Review of Earth<br />

and Planetary Sciences 15, 213–244.<br />

Şengör, A.M.C. & Yılmaz, Y. 1981. Tethyan evolution of Turkey: a<br />

plate tectonic approach. Tectonophysics 75, 181–241.<br />

Seyitoğlu, G. & Scott, B.C. 1991. Late Cenozoic crustal extension<br />

and bas<strong>in</strong> formation <strong>in</strong> west Turkey. Geological Magaz<strong>in</strong>e 128,<br />

155–166.<br />

Seyitoğlu, G. & Scott, B.C. 1996. The cause of N-S extensional<br />

tectonics <strong>in</strong> western Turkey: tectonic escape vs back-arc<br />

spread<strong>in</strong>g vs orogenic collapse. Journal of Geodynamics 22,<br />

145–153.<br />

Sierro, F.J., Hilgen, F.J., Krijgsman, W. & Flores, J.A. 2001. The<br />

Abad composite (SE Spa<strong>in</strong>): a <strong>Mess<strong>in</strong>ian</strong> reference section<br />

for <strong>the</strong> Mediterranean and <strong>the</strong> APTS. Palaeogeography<br />

Palaeoclimatology Palaeoecology 168, 141–169.<br />

Soria, J.M., Caracuel, J.E., Yébenes, A., Fernández, J. & Viseras, C.<br />

2005. The stratigraphic record of <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> sal<strong>in</strong>ity crisis<br />

<strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn marg<strong>in</strong> of <strong>the</strong> Bajo Segura Bas<strong>in</strong> (SE Spa<strong>in</strong>).<br />

Sedimentary Geology 179, 225–247.<br />

Soria, J.M., Fernández, J., García, F. & Viseras, C., 2003. Correlative<br />

lowstand deltaic and shelf systems <strong>in</strong> <strong>the</strong> Guadix Bas<strong>in</strong> (late<br />

Miocene, Betic Cordillera, Spa<strong>in</strong>): <strong>the</strong> stratigraphic record of<br />

<strong>forced</strong> and normal <strong>regressions</strong>. Journal of Sedimentary Research<br />

73, 912–925.<br />

Sprovieri, M., Bellanca, A., Neri, R., Mazzola, S., Bonanno, A.,<br />

Patti, B. & Sorgente, R. 1999. Astronomical calibration of late<br />

Miocene stratigraphic events and analysis of precessionally<br />

driven paleoceanographic changes <strong>in</strong> <strong>the</strong> Mediterranean bas<strong>in</strong>.<br />

Memorie Società Geologica Italiana 54, 7–24.<br />

Sunal, G. & Tüysüz, O. 2002. Palaeostress analysis of Tertiary postcollisional<br />

structures <strong>in</strong> <strong>the</strong> Western Pontides, nor<strong>the</strong>rn<br />

Turkey. Geological Magaz<strong>in</strong>e 139, 343–359.<br />

26<br />

ILGAR et al. / Turkish J Earth Sci<br />

Tekeli, O. & Göncüoğlu, M.C. (eds) 1984. Geology of <strong>the</strong> Taurus Belt.<br />

Proceed<strong>in</strong>gs of International Symposium, MTA, Ankara.<br />

Ulu, Ü. 2002. Geological Map of Turkey, 1:500 000, Sheet No. 15<br />

(<strong>Adana</strong>). Maden Tetkik ve Arama Genel Müdürlüğü (MTA),<br />

Ankara.<br />

Ünlügenç, U.C., Kell<strong>in</strong>g, G. & Demirkol, C. 1990. Aspects of bas<strong>in</strong><br />

evolution <strong>in</strong> <strong>the</strong> Neogene <strong>Adana</strong> Bas<strong>in</strong>, SE Turkey. Proceed<strong>in</strong>gs<br />

of <strong>the</strong> International Earth Sciences Congress on Aegean Regions,<br />

İzmir, pp. 353–369.<br />

Wasson, R.J. 1977. Last-glacial alluvial fan sedimentation <strong>in</strong> <strong>the</strong><br />

Lower Derwent Valley, Tasmania. Sedimentology 24, 781–799.<br />

Wasson, R.J. 1979. Sedimentation history of <strong>the</strong> Mundi-Mundi<br />

alluvial fans, western New South Wales. Sedimentary Geology<br />

22, 21–51.<br />

Williams, G., Ünlügenç, U., Kell<strong>in</strong>g, G. & Demirkol, C. 1995. Tectonic<br />

controls on stratigraphic evolution of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>, Turkey.<br />

Journal of <strong>the</strong> Geological Society of London 152, 873–882.<br />

Wood, L.J., Ethridge, F.G. & Schumm, S.A. 1993. The effects of<br />

rate of base-level fluctuation on coastal pla<strong>in</strong>, shelf and<br />

slope depositional systems: an experimental approach. In:<br />

Posamentier, H.W., Summerhayes, C.P., Haq, B.V. & Allen,<br />

C.P. (eds), Sequence Stratigraphy and Facies Associations.<br />

International Association of Sedimentologists, Special<br />

Publication 18, 43–53.<br />

Yalçın, M.N. & Görür, N., 1984. Sedimentological evolution of <strong>the</strong><br />

<strong>Adana</strong> Bas<strong>in</strong>. In: Tekeli, O. & Göncüoğlu, M.C. (eds), Geology<br />

of <strong>the</strong> Taurus Belt. Proceed<strong>in</strong>gs of International Symposium,<br />

MTA, Ankara, pp. 165–172.<br />

Yetiş, C. 1988. Reorganization of <strong>the</strong> Tertiary stratigraphy <strong>in</strong> <strong>the</strong><br />

<strong>Adana</strong> Bas<strong>in</strong>, sou<strong>the</strong>rn Turkey. Newsletters <strong>in</strong> Stratigraphy 20,<br />

42–58.<br />

Yetiş, C., Kell<strong>in</strong>g, G., Gökçen, S. & Baroz, F. 1995. A revised<br />

stratigraphic framework for Later Cenozoic sequences <strong>in</strong> <strong>the</strong><br />

nor<strong>the</strong>astern Mediterranean region. Geologische Rundschau<br />

84, 794–812.<br />

Yılmaz, Y. 1993. New evidence and model on <strong>the</strong> evolution of <strong>the</strong><br />

sou<strong>the</strong>ast Anatolian orogen. Bullet<strong>in</strong> of <strong>the</strong> Geological Society of<br />

America 105, 251–271.<br />

Yılmaz, Y., Yiğitbaş, E. & Genç, Ş.C. 1993. Ophiolitic and<br />

metamorphic assemblages of sou<strong>the</strong>ast Anatolia and <strong>the</strong>ir<br />

significance <strong>in</strong> <strong>the</strong> geological evolution of <strong>the</strong> orogenic belt.<br />

Tectonics 12, 1280–1297.<br />

Yoxall, W.H. 1969. The relationship between fall<strong>in</strong>g base level<br />

and lateral erosion <strong>in</strong> experimental streams. Bullet<strong>in</strong> of <strong>the</strong><br />

Geological Society of America 80, 1379–1384.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!