27.03.2013 Views

Messinian forced regressions in the Adana Basin: a near ... - Tübitak

Messinian forced regressions in the Adana Basin: a near ... - Tübitak

Messinian forced regressions in the Adana Basin: a near ... - Tübitak

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Turkish Journal of Earth Sciences<br />

http://journals.tubitak.gov.tr/earth/<br />

Research Article<br />

Turkish J Earth Sci<br />

(2013) 22:<br />

© TÜBİTAK<br />

doi:10.3906/yer-1208-3<br />

<strong>Mess<strong>in</strong>ian</strong> <strong>forced</strong> <strong>regressions</strong> <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>: a <strong>near</strong>-co<strong>in</strong>cidence of tectonic and<br />

eustatic forc<strong>in</strong>g<br />

Ayhan ILGAR 1, *, Wojciech NEMEC 2 , Aynur HAKYEMEZ 1 , Erhan KARAKUŞ 1<br />

1 Department of Geological Research, General Directorate of M<strong>in</strong>eral Research and Exploration (MTA), 06520 Ankara, Turkey<br />

2 Department of Earth Science, Faculty of Ma<strong>the</strong>matics and Natural Sciences, University of Bergen, 5007 Bergen, Norway<br />

Received: 10.08.2012 Accepted: 19.12.2012 Published Onl<strong>in</strong>e: 00.00.2013 Pr<strong>in</strong>ted: 00.00.2013<br />

Abstract: This sedimentological and sequence-stratigraphic study focuses on <strong>the</strong> late Miocene deposits <strong>in</strong> one of <strong>the</strong> largest peri-<br />

Mediterranean bas<strong>in</strong>s of sou<strong>the</strong>rn Turkey, <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>, which formed as a Tauride foreland depression accumulat<strong>in</strong>g molasse<br />

deposits. The Tortonian–<strong>Mess<strong>in</strong>ian</strong> shallow-mar<strong>in</strong>e Handere Formation, previously <strong>in</strong>terpreted as a regressive succession, appears to<br />

have recorded several relative sea-level changes. The formation base recorded a <strong>forced</strong> regression attributed to <strong>the</strong> end-Serravalian (Tor-<br />

1) eustatic fall <strong>in</strong> sea level. The lower to middle part of <strong>the</strong> formation is transgressive, culm<strong>in</strong>at<strong>in</strong>g <strong>in</strong> offshore mudstones. The upper part<br />

is regressive and its 3 isolated conglomeratic members represent sharp-based Gilbert-type deltas with <strong>in</strong>cised fluvial valley-fill deposits,<br />

record<strong>in</strong>g a <strong>forced</strong> regression followed by mar<strong>in</strong>e reflood<strong>in</strong>g. The time of this regression is biostratigraphically constra<strong>in</strong>ed to ~7.8 to<br />

6.4 Ma B.P. on <strong>the</strong> basis of planktonic foram<strong>in</strong>ifera <strong>in</strong> delta bottomset deposits. The regression is attributed to <strong>the</strong> tectonic conversion<br />

of <strong>the</strong> <strong>Adana</strong> foreland shelf <strong>in</strong>to a piggyback bas<strong>in</strong>, as <strong>in</strong>dicated by seismic sections and compressional bas<strong>in</strong>-marg<strong>in</strong> deformation. The<br />

reflood<strong>in</strong>g of <strong>the</strong> bas<strong>in</strong> ~6.4 Ma B.P. is ascribed to a postthrust<strong>in</strong>g flexural subsidence of <strong>the</strong> foreland under <strong>in</strong>creased crustal load. The<br />

mar<strong>in</strong>e transgression brought an almost immediate evaporitic sedimentation, which suggests <strong>in</strong>vasion of hypersal<strong>in</strong>e Mediterranean<br />

water. The bas<strong>in</strong> was subsequently emerged and its gypsiferous deposits were extensively eroded due to a second <strong>Mess<strong>in</strong>ian</strong> <strong>forced</strong><br />

regression, attributed to <strong>the</strong> early evaporative drawdown <strong>in</strong> <strong>the</strong> Mediterranean Sea (~6 Ma B.P.). The postorogenic isostatic uplift of<br />

<strong>the</strong> Taurides had meanwhile elevated <strong>the</strong> bas<strong>in</strong> enough to prevent its reflood<strong>in</strong>g by <strong>the</strong> Zanclean regional transgression. Stratigraphic<br />

comparison with coeval peri-Mediterranean bas<strong>in</strong>s to <strong>the</strong> west demonstrates that <strong>in</strong>terbas<strong>in</strong>al correlations are difficult, and that a<br />

superficial l<strong>in</strong>k<strong>in</strong>g of comparable events may be quite mislead<strong>in</strong>g. The local tim<strong>in</strong>g of <strong>the</strong> late Miocene relative sea-level changes and <strong>the</strong><br />

landward extent of <strong>the</strong> Zanclean flood<strong>in</strong>g were apparently determ<strong>in</strong>ed by <strong>the</strong> comb<strong>in</strong>ation of eustasy, tectonics, bas<strong>in</strong> topography, and<br />

sediment supply, whereby <strong>the</strong> eustatic signal was modulated and often obscured by local conditions. However, <strong>the</strong> <strong>in</strong>dividual bas<strong>in</strong>-fill<br />

successions bear a high-resolution record of local events and give unique <strong>in</strong>sights <strong>in</strong>to <strong>the</strong> local role of tectonics, sediment yield, and<br />

sea-level changes.<br />

Key Words: Sedimentology, sequence stratigraphy, Taurides, piggyback bas<strong>in</strong>, Gilbert-type delta, <strong>in</strong>cised valley-fill, <strong>Mess<strong>in</strong>ian</strong> sal<strong>in</strong>ity<br />

crisis, stratigraphic correlation<br />

1. Introduction<br />

The late Miocene Mediterranean event known as <strong>the</strong><br />

<strong>Mess<strong>in</strong>ian</strong> sal<strong>in</strong>ity crisis was triggered by a glacioeustatic<br />

sea-level fall comb<strong>in</strong>ed with <strong>the</strong> region’s tectonic<br />

separation from <strong>the</strong> Atlantic at <strong>the</strong> latest stages of <strong>the</strong><br />

Alp<strong>in</strong>e orogeny (Hsü et al. 1972; Ryan & Cita 1978; Cita &<br />

McKenzie 1986; Ryan 2009; Hüs<strong>in</strong>g et al. 2010). The event<br />

culm<strong>in</strong>ated <strong>in</strong> <strong>the</strong> evaporitic Lago Mare phase of partial or<br />

<strong>near</strong>ly complete desiccation and ended with <strong>the</strong> Zanclean<br />

mar<strong>in</strong>e flood<strong>in</strong>g, when <strong>the</strong> Atlantic waters reclaimed <strong>the</strong><br />

Mediterranean Bas<strong>in</strong>. A consentient 3-phase scenario<br />

for <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> event postulates (Roveri & Manzi<br />

2006): (1) a preevaporitic phase 7.25–5.96 Ma B.P., when<br />

organic-rich eux<strong>in</strong>ic deposits recorded a significantly<br />

* Correspondence: ayhan_ilgar@yahoo.com<br />

reduced circulation of Mediterranean deep waters and<br />

when microbial stromatolitic limestones formed <strong>in</strong> some<br />

peripheral bas<strong>in</strong>s; (2) <strong>the</strong> deposition phase of Lower<br />

Evaporites 5.96–5.60 Ma B.P., when <strong>the</strong> precipitation of<br />

gypsum occurred <strong>in</strong> shallow-water peripheral bas<strong>in</strong>s; and<br />

(3) <strong>the</strong> deposition phase of Upper Evaporites 5.60–5.33<br />

Ma B.P., when <strong>the</strong> nonmar<strong>in</strong>e Lago Mare environment<br />

formed <strong>in</strong> <strong>the</strong> lowest parts of a desiccat<strong>in</strong>g Mediterranean<br />

Bas<strong>in</strong>. The bulk amplitude of relative sea-level fall is<br />

estimated at 2000 to 3000 m (Ryan 2009).<br />

It may thus seem surpris<strong>in</strong>g that a regional event<br />

of such a great magnitude, orig<strong>in</strong>ally recognised from<br />

thick evaporites <strong>in</strong> <strong>the</strong> centre of <strong>the</strong> Mediterranean<br />

Bas<strong>in</strong>, is much less conspicuous at <strong>the</strong> bas<strong>in</strong> marg<strong>in</strong>s,<br />

1


where stratigraphic correlations of relative sea-level<br />

changes are difficult and controversial (Ryan 2009).<br />

One of <strong>the</strong> most contentious issues is <strong>the</strong> tim<strong>in</strong>g of <strong>the</strong><br />

onsets of hypersal<strong>in</strong>ity and evaporative drawdown <strong>in</strong><br />

<strong>the</strong> Mediterranean Sea, with direct implications for <strong>the</strong><br />

negative imbalance between <strong>the</strong> rate of water <strong>in</strong>flux from<br />

<strong>the</strong> Atlantic and <strong>the</strong> regional rate of evaporation. Regional<br />

studies suggest that <strong>the</strong> first precipitates at <strong>the</strong> deep<br />

bottom of <strong>the</strong> Mediterranean Bas<strong>in</strong> were preceded by a<br />

long stepwise advance towards hypersal<strong>in</strong>ity, with gypsum<br />

<strong>in</strong> peripheral bas<strong>in</strong>s precipitated well before <strong>the</strong> nom<strong>in</strong>al<br />

onset of <strong>the</strong> regional sal<strong>in</strong>ity crisis (see review by Ryan<br />

2009). Most researchers also suggest that <strong>the</strong> sal<strong>in</strong>ity crisis<br />

was preceded by a considerable early drawdown, with <strong>the</strong><br />

isolation of peripheral bas<strong>in</strong>s as evaporat<strong>in</strong>g lagoons and<br />

<strong>the</strong>ir eventual emergence (Rouchy 1982; Rouchy & Sa<strong>in</strong>t<br />

Mart<strong>in</strong> 1992; Clauzon et al. 1996; Rid<strong>in</strong>g et al. 1999; Soria<br />

et al. 2005; Maillard & Mauffret 2006; Rouchy & Caruso<br />

2006; Roveri & Manzi 2006). The early drawdown might<br />

not exceed 200 m (Dronkert 1985; Krijgsman et al. 1999),<br />

but would mark a negative water budget and would<br />

expectedly have a major impact on <strong>the</strong> peripheral bas<strong>in</strong>s<br />

and <strong>the</strong>ir stratigraphy. However, <strong>the</strong> peri-Mediterranean<br />

late Miocene stratigraphic record is fuzzy, comb<strong>in</strong><strong>in</strong>g<br />

relative sea-level changes caused by eustatic and local<br />

tectonic forc<strong>in</strong>g.<br />

The diversified tectono-geomorphic conditions<br />

of peripheral bas<strong>in</strong>s resulted <strong>in</strong> <strong>in</strong>tricate stratigraphic<br />

successions that are difficult to correlate and also difficult<br />

to relate to <strong>the</strong> evaporitic successions <strong>in</strong> offshore wells.<br />

Regional correlations are complicated by <strong>the</strong> fact that<br />

evaporites are found <strong>in</strong> only some of <strong>the</strong> peripheral<br />

bas<strong>in</strong>s, where <strong>the</strong>y may ei<strong>the</strong>r predate or postdate <strong>the</strong><br />

Mediterranean desiccation (Rid<strong>in</strong>g et al. 1999). The<br />

key <strong>in</strong>dicator of <strong>the</strong> early evaporative drawdown <strong>in</strong> <strong>the</strong><br />

peripheral bas<strong>in</strong>s might thus be not evaporites, but a<br />

regional surface of erosion (Ryan 2009). However, nei<strong>the</strong>r<br />

feature can easily be recognised and correlated <strong>in</strong> <strong>the</strong> bas<strong>in</strong>s<br />

(Rid<strong>in</strong>g et al. 1991, 1998; Roep et al. 1998; Soria et al. 2005;<br />

Roveri & Manzi 2006). The <strong>Mess<strong>in</strong>ian</strong> surface of subaerial<br />

erosion is highly irregular due to <strong>the</strong> varied rates of local<br />

denudation and it is not marked by any significant climatic<br />

change. It has been elevated by tectonics and overtaken<br />

by Plio–Pleistocene erosion <strong>in</strong> many bas<strong>in</strong>s (Glover et al.<br />

1998; Dilek et al. 1999; Deynoux et al. 2005; Monod et al.<br />

2006), and it splits <strong>in</strong>to 2 or more erosion surfaces towards<br />

<strong>the</strong> deep part of <strong>the</strong> Mediterranean Bas<strong>in</strong> (Ryan 2009) and<br />

commonly also landwards <strong>in</strong> <strong>the</strong> peripheral bas<strong>in</strong>s (Butler<br />

et al. 1995; Clauzon et al. 1996; Rid<strong>in</strong>g et al. 1998; Soria et<br />

al. 2003).<br />

The evidence of late Miocene <strong>regressions</strong>, commonly<br />

multiple, has been recognised <strong>in</strong> virtually all peri-<br />

Mediterranean bas<strong>in</strong>s at both active and passive marg<strong>in</strong>s<br />

2<br />

ILGAR et al. / Turkish J Earth Sci<br />

(Ryan 2009), but <strong>the</strong>se events are difficult to correlate and<br />

have been variously attributed to eustasy, high sediment<br />

supply, or local tectonic uplift (e.g., Clauzon et al. 1996;<br />

Rid<strong>in</strong>g et al. 1999; Karabıyıkoğlu et al. 2000; Larsen 2003;<br />

Soria et al. 2003, 2005; Deynoux et al. 2005; Flecker et al.<br />

2005; Roveri & Manzi 2006; Ç<strong>in</strong>er et al. 2008). Regional<br />

studies have po<strong>in</strong>ted to <strong>the</strong> importance of local tectonics<br />

<strong>in</strong> controll<strong>in</strong>g <strong>the</strong> late Miocene palaeogeography (Butler<br />

et al. 1995; Roveri & Manzi 2006). Many areas of <strong>the</strong><br />

Mediterranean were still subject to <strong>the</strong> f<strong>in</strong>al stages of <strong>the</strong><br />

Alp<strong>in</strong>e orogeny at that time, whereas it is generally difficult<br />

to dist<strong>in</strong>guish between eustatically <strong>forced</strong> and tectonically<br />

<strong>forced</strong> <strong>regressions</strong>, particularly if both factors were<br />

potentially <strong>in</strong>volved. The local tim<strong>in</strong>g of <strong>the</strong> late Miocene<br />

relative sea-level changes and <strong>the</strong> landward extent of<br />

<strong>the</strong> Zanclean mar<strong>in</strong>e reflood<strong>in</strong>g were probably both<br />

determ<strong>in</strong>ed by <strong>the</strong> comb<strong>in</strong>ation of eustasy, local tectonics,<br />

bas<strong>in</strong> topography, and sediment supply.<br />

This regional issue is addressed by <strong>the</strong> present study<br />

from <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> at <strong>the</strong> north-eastern corner of <strong>the</strong><br />

Mediterranean (Figure 1a), where a regression due to<br />

tectonic <strong>in</strong>version of <strong>the</strong> bas<strong>in</strong> <strong>near</strong>ly co<strong>in</strong>cided with <strong>the</strong><br />

<strong>Mess<strong>in</strong>ian</strong> evaporative drawdown. The pr<strong>in</strong>cipal aims of<br />

<strong>the</strong> study are to: (1) give a palaeontologically constra<strong>in</strong>ed<br />

revised sequence stratigraphy of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>, with a<br />

focus on <strong>the</strong> late Miocene part of <strong>the</strong> bas<strong>in</strong>-fill succession;<br />

(2) assess <strong>the</strong> role of tectonics and eustasy <strong>in</strong> forc<strong>in</strong>g <strong>the</strong><br />

<strong>Mess<strong>in</strong>ian</strong> relative sea-level changes <strong>in</strong> <strong>the</strong> bas<strong>in</strong>; and (3)<br />

compare <strong>the</strong> late Miocene stratigraphy of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong><br />

with that of <strong>the</strong> adjacent peri-Mediterranean bas<strong>in</strong>s <strong>in</strong><br />

order to draw regional implications.<br />

2. Term<strong>in</strong>ology<br />

The term “regression” denotes seaward displacement<br />

of shorel<strong>in</strong>e, result<strong>in</strong>g <strong>in</strong> a relative <strong>in</strong>crease of land area<br />

(Posamentier & Vail 1988; Posamentier et al. 1992).<br />

Regression reflects <strong>the</strong> <strong>in</strong>terplay between <strong>the</strong> relative<br />

sea-level change (i.e. <strong>the</strong> available accommodation)<br />

and <strong>the</strong> supply of sediment to <strong>the</strong> shorel<strong>in</strong>e (i.e. <strong>the</strong><br />

accommodation <strong>in</strong>fill<strong>in</strong>g). Their <strong>in</strong>terplay may result <strong>in</strong><br />

a normal or a <strong>forced</strong> regression (Posamentier et al. 1992;<br />

Posamentier & Morris 2000). A normal regression signifies<br />

relative sea-level stillstand or slow rise, with <strong>the</strong> high<br />

sediment supply caus<strong>in</strong>g seaward shorel<strong>in</strong>e displacement.<br />

A <strong>forced</strong> regression signifies a relative sea-level fall, with<br />

<strong>the</strong> latter caus<strong>in</strong>g seaward shorel<strong>in</strong>e displacement, even if<br />

<strong>the</strong> sediment supply to <strong>the</strong> shorel<strong>in</strong>e is negligible. A <strong>forced</strong><br />

regression may be caused by a eustatic sea-level fall, a<br />

tectonic uplift, or a co<strong>in</strong>cidental comb<strong>in</strong>ation of <strong>the</strong>se 2<br />

factors.<br />

The basic sequence-stratigraphic term<strong>in</strong>ology used here<br />

is accord<strong>in</strong>g to Catuneanu (2006). Stratigraphic sequence<br />

is a sedimentary succession deposited dur<strong>in</strong>g a full cycle of


A<br />

AGE FORMATION<br />

Holocene<br />

alluvium<br />

unconformity<br />

Pliocene-<br />

Pleistocene<br />

alluvial terraces<br />

unconformity<br />

Gökkuyu evaporitic mb<br />

Late Miocene<br />

Late Serravallia<strong>near</strong>ly<br />

Tortonian<br />

Middle Miocene<br />

Mesozoic<br />

Handere Fm.<br />

Karaisalı<br />

Fm.<br />

Güvenç<br />

Fm.<br />

deltaic members<br />

Handere Fm.<br />

conglomerates, sandstones<br />

mudstones & gypsum<br />

Kuzgun Fm.<br />

cong.,sst.& mudst<br />

unconformity<br />

Karaisalı Fm.<br />

reefal limestones, marls<br />

Güvenç Fm.<br />

mudstones, sandstones<br />

unconformity<br />

Carbonate bedrock<br />

ILGAR et al. / Turkish J Earth Sci<br />

5<br />

Muratlı<br />

Mb.<br />

7<br />

Middle<br />

Miocene<br />

Middle<br />

Miocene<br />

Lower<br />

Miocene<br />

Oligocene<br />

Palaeozoic<br />

& Mesozoic<br />

bedrock<br />

2<br />

6<br />

Tepeçaylak<br />

Mb.<br />

Taurus Orogenic Belt<br />

map C<br />

EXPLANATIONS<br />

deep-mar<strong>in</strong>e clastics Holocene<br />

fluvial-lagoonal clastics<br />

Pliocene-<br />

Pleistocene<br />

fluvial-lacustr<strong>in</strong>e clastics<br />

Upper<br />

Miocene<br />

lacustr<strong>in</strong>e carbonates<br />

Middle-Upper<br />

Miocene<br />

ophiolitic mélange<br />

limestones & clastics<br />

Middle-Upper<br />

Miocene<br />

Söğütlü<br />

Mb.<br />

alluvial terraces<br />

fluvial-shallow<br />

mar<strong>in</strong>e clastics<br />

mar<strong>in</strong>e<br />

marl-limestones<br />

reefal limestones<br />

Figure 1. (a) Topographic image of Anatolia (90-m resolution SRTM from Jarvis et al. 2008), show<strong>in</strong>g <strong>the</strong> location of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong><br />

and o<strong>the</strong>r ma<strong>in</strong> peri-Mediterranean Miocene bas<strong>in</strong>s and major tectonic l<strong>in</strong>eaments referred to <strong>in</strong> <strong>the</strong> text. (b) Simplified geological<br />

map of <strong>the</strong> sou<strong>the</strong>rn part of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> and <strong>the</strong> adjacent Mut Bas<strong>in</strong> (based on Şenel 2002 and Ulu 2002); note <strong>the</strong> study area <strong>in</strong><br />

<strong>the</strong> former bas<strong>in</strong> (frame) and <strong>the</strong> location of a late Tortonian delta <strong>in</strong> <strong>the</strong> latter bas<strong>in</strong>. (c) Detailed geological map of <strong>the</strong> study area <strong>in</strong><br />

<strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>. Note <strong>the</strong> 3 isolated deltaic members of <strong>the</strong> uppermost Handere Formation. The po<strong>in</strong>ts 1–7 <strong>in</strong> maps B and C <strong>in</strong>dicate<br />

outcrop localities to which <strong>the</strong> paper’s o<strong>the</strong>r figures refer.<br />

1<br />

Çakıt river<br />

Kuzgun<br />

Salbaş<br />

3<br />

5 km<br />

4<br />

alluvium<br />

B<br />

C<br />

3


change <strong>in</strong> accommodation (i.e. its decrease and subsequent<br />

<strong>in</strong>crease), coupled with sediment supply. The term<br />

“sedimentary system” denotes a sedimentary environment<br />

and refers to its specific facies assemblage, whereas a<br />

systems tract is a succession of such palaeoenvironmental<br />

facies assemblages. A sequence is considered to be a<br />

vertical succession of relatively conformable systems<br />

tracts, bounded by unconformities (erosional surfaces<br />

of sediment bypass) that grade seawards <strong>in</strong>to correlative<br />

conformities. A parasequence is a succession of relatively<br />

conformable deposits bounded by flood<strong>in</strong>g surfaces and<br />

lack<strong>in</strong>g evidence of a relative base-level fall.<br />

Follow<strong>in</strong>g Helland-Hansen (2009), we dist<strong>in</strong>guish<br />

3 basic types of systems tracts as <strong>the</strong> build<strong>in</strong>g blocks<br />

of stratigraphic sequences: a <strong>forced</strong>-regressive systems<br />

tract (FRST) formed dur<strong>in</strong>g a relative sea-level fall; a<br />

transgressive systems tract (TST) formed dur<strong>in</strong>g a relative<br />

sea-level rise; and a normal-regressive systems tract<br />

formed dur<strong>in</strong>g ei<strong>the</strong>r highstand (HST) or lowstand (LST)<br />

and record<strong>in</strong>g sea-level stability or m<strong>in</strong>or relative rise.<br />

The basis for dist<strong>in</strong>guish<strong>in</strong>g systems tracts is <strong>the</strong> vertical<br />

stack<strong>in</strong>g of sedimentary facies assemblages and <strong>the</strong><br />

stratigraphic palaeoshorel<strong>in</strong>e trajectory (Helland-Hansen<br />

& Mart<strong>in</strong>sen 1996). A FRST has a fall<strong>in</strong>g trajectory, but<br />

<strong>the</strong> regressive shorel<strong>in</strong>e shift may <strong>in</strong>volve deposition or be<br />

fully erosional, depend<strong>in</strong>g on <strong>the</strong> sediment supply rate and<br />

<strong>the</strong> rate and magnitude of relative sea-level fall (Pl<strong>in</strong>t 1988;<br />

Helland-Hansen & Gjelberg 1994). With <strong>the</strong> sea-level fall<br />

compensated by tectonic subsidence, some sequences,<br />

referred to as <strong>the</strong> sequences of type 2 (Jervey 1988), may<br />

show no recognisable shorel<strong>in</strong>e fall and masquerade as<br />

parasequences (e.g., Gh<strong>in</strong>assi 2007; Mess<strong>in</strong>a et al. 2007).<br />

Parasequences consist of a TST overla<strong>in</strong> by a HST.<br />

The descriptive sedimentological term<strong>in</strong>ology used<br />

<strong>in</strong> this study is accord<strong>in</strong>g to Harms et al. (1975, 1982)<br />

and Coll<strong>in</strong>son and Thompson (1982). In biostratigraphic<br />

analysis, <strong>the</strong> Mediterranean planktonic foram<strong>in</strong>ifer zones<br />

of Iaccar<strong>in</strong>o et al. (2007) are followed, and <strong>the</strong> def<strong>in</strong>ition<br />

of species is based ma<strong>in</strong>ly on Kennett and Sr<strong>in</strong>ivasan<br />

(1973), Iaccar<strong>in</strong>o (1985), and Bolli and Saunders (1985).<br />

Biostratigraphic age estimates refer to <strong>the</strong> astronomically<br />

tuned ATNTS2004 scale (Lourens et al. 2004).<br />

3. Regional geological sett<strong>in</strong>g<br />

The Tauride orogen of sou<strong>the</strong>rn Turkey is <strong>the</strong> youngest of<br />

<strong>the</strong> eastern peri-Mediterranean Alp<strong>in</strong>e mounta<strong>in</strong> cha<strong>in</strong>s.<br />

It is arbitrarily divided <strong>in</strong>to 3 segments (Figure 1a): <strong>the</strong><br />

Western Taurides, west of <strong>the</strong> Isparta Angle, pass<strong>in</strong>g<br />

westwards <strong>in</strong>to <strong>the</strong> Hellenides and sometimes referred to<br />

as <strong>the</strong> Eastern Hellenides due to <strong>the</strong>ir tectonic l<strong>in</strong>k with<br />

<strong>the</strong> Hellenic subduction arc; <strong>the</strong> Central Taurides between<br />

<strong>the</strong> Isparta Angle and <strong>the</strong> Ecemiş Fault to <strong>the</strong> east; and<br />

<strong>the</strong> Eastern Taurides that pass eastwards <strong>in</strong>to <strong>the</strong> Zagros<br />

Mounta<strong>in</strong>s. The orogeny culm<strong>in</strong>ated at <strong>the</strong> end of <strong>the</strong><br />

4<br />

ILGAR et al. / Turkish J Earth Sci<br />

Eocene (Şengör 1987; Clark & Robertson 2002), but lowrate<br />

plate convergence <strong>in</strong> <strong>the</strong> Central Taurides persisted<br />

until <strong>the</strong> mid-Oligocene (Kell<strong>in</strong>g et al. 1987; Andrew<br />

& Robertson 2002), when <strong>the</strong> Cyprian subduction arc<br />

eventually stepped back to <strong>the</strong> south of Cyprus (Figure 1a).<br />

Orogenic deformation proceeded until <strong>the</strong> late Miocene<br />

<strong>in</strong> <strong>the</strong> Eastern Taurides, where <strong>the</strong> Misis Structural High<br />

popped up by fold<strong>in</strong>g and thrust<strong>in</strong>g (Michard et al. 1984;<br />

Aktaş & Robertson 1990; Dilek & Moores 1990; Yılmaz<br />

1993; Yılmaz et al. 1993; Robertson 2000; Sunal & Tüysüz<br />

2002), and also at <strong>the</strong> transition of <strong>the</strong> Western and<br />

Central Taurides, where <strong>the</strong> Lycian and Hoyran-Hadım<br />

nappe fronts collided north of <strong>the</strong> Isparta Angle (Coll<strong>in</strong>s<br />

& Robertson 1998, 2000; Poisson et al. 2003; Sagular &<br />

Görmüş 2006). The Miocene thus saw <strong>the</strong> last stages of<br />

localised compressional deformation, while <strong>the</strong> Taurides<br />

<strong>in</strong> general had already become subject to postorogenic<br />

isostatic uplift and crustal extension with <strong>the</strong> development<br />

of orogen-collapse bas<strong>in</strong>s (Seyitoğlu & Scott 1991, 1996;<br />

Jaffey & Robertson 2005; Bartol et al. 2011; Koç et al. 2011;<br />

Cosent<strong>in</strong>o et al. 2012).<br />

The peri-Mediterranean bas<strong>in</strong>s <strong>in</strong> sou<strong>the</strong>rn Turkey<br />

formed nonsynchronously dur<strong>in</strong>g <strong>the</strong> early Miocene and<br />

ranged from relatively simple <strong>in</strong>tramontane grabens or<br />

half-grabens (Alçiçek et al. 2005; Alçiçek 2010) to more<br />

complex extensional depressions (Flecker et al. 1995,<br />

2005; Larsen 2003; Şafak et al. 2005; Ç<strong>in</strong>er et al. 2008),<br />

strike-slip pull-apart features (Ilgar & Nemec 2005), and<br />

compressional foreland troughs (Hayward 1984a, 1984b;<br />

Burton-Ferguson et al. 2005; Alçiçek & Ten Veen 2008).<br />

The bas<strong>in</strong>-fill successions of <strong>the</strong>se isolated molasse bas<strong>in</strong>s<br />

are highly diversified <strong>in</strong> terms of sedimentary facies and<br />

sequence stratigraphy, and are difficult to correlate (Tekeli<br />

& Göncüoğlu 1984; Yetiş et al. 1995; Durand et al. 1999;<br />

Bozkurt et al. 2000; Kell<strong>in</strong>g et al. 2005). However, <strong>the</strong>y<br />

provide crucial <strong>in</strong>formation on an early postorogenic<br />

tectono-geomorphic evolution of <strong>the</strong> Tauride belt and its<br />

<strong>in</strong>teraction with <strong>the</strong> Mediterranean Sea. As po<strong>in</strong>ted out<br />

by Kell<strong>in</strong>g et al. (2005, pp. 1–13), <strong>the</strong> palaeogeographical<br />

and chronostratigraphical resolution of <strong>the</strong> local bas<strong>in</strong>-fill<br />

successions far exceeds that of geophysical lithospheric<br />

models and gives unique regional <strong>in</strong>sights <strong>in</strong>to <strong>the</strong> relative<br />

role of tectonics, climate, sediment yield, and sea-level<br />

changes. Detailed palaeogeographical reconstructions and<br />

<strong>the</strong> recognition of major sediment-transfer fairways to<br />

<strong>the</strong> offshore zone (Satur et al. 2005) are vital to regional<br />

hydrocarbon prospect<strong>in</strong>g (Görür & Tüysüz 2001).<br />

The <strong>Adana</strong> Bas<strong>in</strong> is one of <strong>the</strong> largest Miocene<br />

peripheral bas<strong>in</strong>s <strong>in</strong> sou<strong>the</strong>rn Turkey, located between<br />

<strong>the</strong> Taurus orogenic front to <strong>the</strong> north-west and <strong>the</strong> Misis<br />

Structural High to <strong>the</strong> south-east (Figure 1a). The SWtrend<strong>in</strong>g<br />

bas<strong>in</strong> passes offshore <strong>in</strong>to <strong>the</strong> Cilicia Bas<strong>in</strong> north<br />

of Cyprus. The <strong>Adana</strong> Bas<strong>in</strong> and its smaller counterpart,<br />

İskenderun Bas<strong>in</strong> on <strong>the</strong> o<strong>the</strong>r side of <strong>the</strong> Misis High,


form <strong>the</strong> Çukurova Bas<strong>in</strong> Complex at <strong>the</strong> Kahramanmaraş<br />

junction of <strong>the</strong> Afro-Arabian, Anatolian, and Eurasian<br />

plates (Ünlügenç et al. 1990). The structural development<br />

<strong>in</strong> this region <strong>in</strong>volved 3 major tectonic l<strong>in</strong>eaments<br />

(Figure 1a): <strong>the</strong> Bitlis-Zagros Suture Zone separat<strong>in</strong>g <strong>the</strong><br />

Arabian and Anatolian-Eurasian plates; <strong>the</strong> eastern arm<br />

of <strong>the</strong> Cyprian arc of <strong>in</strong>tra-Tethyan plate subduction; and<br />

<strong>the</strong> s<strong>in</strong>istral strike-slip Dead Sea Fault between Africa and<br />

Arabia, pass<strong>in</strong>g to <strong>the</strong> north-east <strong>in</strong>to <strong>the</strong> East Anatolian<br />

Fault (Kell<strong>in</strong>g et al. 1987; Ünlügenç et al. 1990; Williams et<br />

al. 1995; Robertson 2000). The system of <strong>the</strong> East Anatolian<br />

and North Anatolian faults lead <strong>the</strong> neotectonic westward<br />

“expulsion” of <strong>the</strong> compound Anatolian craton (Dewey &<br />

Şengör 1979; Şengör & Yılmaz 1981). Derivatives of this<br />

neotectonic strike-slip system <strong>in</strong>clude <strong>the</strong> Burdur-Fethiye-<br />

Pl<strong>in</strong>y Fault to <strong>the</strong> west and <strong>the</strong> Ecemiş Fault separat<strong>in</strong>g <strong>the</strong><br />

<strong>Adana</strong> Bas<strong>in</strong> from <strong>the</strong> coeval Mut Bas<strong>in</strong> (Figure 1a).<br />

The <strong>Adana</strong> Bas<strong>in</strong> formed <strong>in</strong> <strong>the</strong> early Miocene on<br />

a wedge-shaped sliver of <strong>the</strong> Tethyan shelf that was<br />

structurally entrapped between <strong>the</strong> Anatolian and Arabian<br />

plates and converted <strong>in</strong>to <strong>the</strong> local Tauride foreland. Seismic<br />

<strong>in</strong>terpretation by Burton-Ferguson et al. (2005) suggests<br />

that <strong>the</strong> <strong>Adana</strong> foreland developed by flexural subsidence<br />

under <strong>the</strong> load of a SE-advanc<strong>in</strong>g orogenic front and <strong>the</strong>n<br />

turned <strong>in</strong>to a piggyback bas<strong>in</strong> <strong>in</strong> <strong>the</strong> Tortonian, with <strong>the</strong><br />

Misis High pop-up ridge separat<strong>in</strong>g it from <strong>the</strong> İskenderun<br />

foredeep to <strong>the</strong> south-east (Figures 1a and 1b). The foreland<br />

model expla<strong>in</strong>s <strong>the</strong> Miocene strong subsidence and great<br />

thickness of sediments accumulated <strong>in</strong> <strong>the</strong> bas<strong>in</strong> as well as<br />

<strong>the</strong> bas<strong>in</strong>’s late Miocene compressional tectonic <strong>in</strong>version.<br />

4. Dynamic stratigraphy of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong><br />

The stratigraphy of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> was established by<br />

Schmidt (1961) and ref<strong>in</strong>ed by subsequent studies (Yalçın<br />

& Görür 1984; Kell<strong>in</strong>g et al. 1987; Yetiş 1988; Ünlügenç<br />

et al. 1990; Görür 1992; Yetiş et al. 1995; Nazik 2004;<br />

Satur et al. 2005). The present study contributes fur<strong>the</strong>r<br />

to this topic. The bas<strong>in</strong>-fill succession comprises up to 6<br />

km of Miocene to Quaternary siliciclastic and calcareous<br />

deposits. Bedrock consists of Palaeozoic and Mesozoic<br />

sedimentary rocks, which <strong>in</strong>clude Devonian corall<strong>in</strong>e<br />

limestones and sandstones, Permo-Carbonifereous<br />

limestones, a Late Triassic to Cretaceous thick carbonate<br />

platform, and Late Cretaceous turbidites. These rocks were<br />

postdated by <strong>the</strong> tectonic emplacement of a nappe of Late<br />

Cretaceous ophiolitic mélange (Figure 1b).<br />

Sedimentation <strong>in</strong> <strong>the</strong> bas<strong>in</strong> commenced <strong>in</strong> <strong>the</strong> early<br />

Miocene with deposition of <strong>the</strong> alluvial fan redbeds of <strong>the</strong><br />

Gildirli Formation (Figure 2), <strong>in</strong>clud<strong>in</strong>g conglomerates,<br />

sandstones, and mudstones. The Burdigalian to early<br />

Langhian Kaplankaya Formation recorded <strong>the</strong> first<br />

episode of mar<strong>in</strong>e sedimentation <strong>in</strong> <strong>the</strong> bas<strong>in</strong>, with<br />

sandstones, siltstones, marlstones, and sandy limestones.<br />

ILGAR et al. / Turkish J Earth Sci<br />

This transgressive formation has a broader lateral extent,<br />

particularly northwards, and unconformably overlies<br />

bedrock palaeotopography. Reefal limestones formed<br />

<strong>in</strong> <strong>the</strong> marg<strong>in</strong>al zone of <strong>the</strong> bas<strong>in</strong>, while open-mar<strong>in</strong>e<br />

deep neritic conditions prevailed <strong>in</strong> <strong>the</strong> bas<strong>in</strong> <strong>in</strong>terior.<br />

The Kaplankaya Formation thus passes laterally <strong>in</strong>to and<br />

is partly overla<strong>in</strong> by <strong>the</strong> late Burdigalian–Serravalian<br />

reefal Karaisalı Formation, whose bas<strong>in</strong>al equivalents<br />

are sublittoral tempestitic sandstones of <strong>the</strong> C<strong>in</strong>göz<br />

Formation and offshore mudstones of <strong>the</strong> Güvenç<br />

Formation (Figure 2). There is also evidence of stormgenerated<br />

erosive turbidity currents transferr<strong>in</strong>g abundant<br />

sand across <strong>the</strong> shelf edge to <strong>the</strong> deep-water realm of <strong>the</strong><br />

adjo<strong>in</strong><strong>in</strong>g Cilicia Bas<strong>in</strong> (Satur et al. 2005). The reefal and<br />

coeval <strong>near</strong>shore to offshore deposits show an overall<br />

shallow<strong>in</strong>g-upwards trend, with <strong>the</strong> upper part of <strong>the</strong><br />

Güvenç Formation <strong>in</strong>creas<strong>in</strong>gly richer <strong>in</strong> sandstones<br />

(Figure 2).<br />

The mar<strong>in</strong>e sedimentation was <strong>in</strong>terrupted when<br />

<strong>the</strong> bas<strong>in</strong> emerged due to a relative sea-level fall at <strong>the</strong><br />

end of Serravalian (Figure 2). River valleys were <strong>in</strong>cised<br />

and <strong>the</strong>n filled with <strong>the</strong> fluvial deposits of <strong>the</strong> Kuzgun<br />

Formation, as <strong>the</strong> bas<strong>in</strong> was subsequently reflooded due<br />

to an early Tortonian relative sea-level rise. A transgressive<br />

rav<strong>in</strong>ement surface with a lag of wave-worked oysterbear<strong>in</strong>g<br />

gravel marks <strong>the</strong> mar<strong>in</strong>e reflood<strong>in</strong>g. The<br />

transgression <strong>in</strong>itiated shallow-mar<strong>in</strong>e sedimentation<br />

with a second generation of reefal limestones along<br />

<strong>the</strong> bas<strong>in</strong> marg<strong>in</strong>, <strong>the</strong> Tırtar Formation, superimposed<br />

directly on <strong>the</strong> older limestones of <strong>the</strong> Karaisalı Formation<br />

(Figure 2). The coeval Handere Formation <strong>in</strong> <strong>the</strong> bas<strong>in</strong><br />

<strong>in</strong>terior consists of shoreface sandstones that pass upward<br />

<strong>in</strong>to f<strong>in</strong>er-gra<strong>in</strong>ed sandstones, siltstones, and mudstones of<br />

an offshore-transition environment and fur<strong>the</strong>r <strong>in</strong>to thick<br />

offshore mudstones (Figure 2). The deposition of offshore<br />

mudstones <strong>in</strong> <strong>the</strong> upper part of <strong>the</strong> Handere Formation<br />

marked <strong>the</strong> maximum mar<strong>in</strong>e flood<strong>in</strong>g <strong>in</strong> <strong>the</strong> bas<strong>in</strong>,<br />

reached <strong>in</strong> <strong>the</strong> late Tortonian.<br />

These transgressive deposits are sharply overla<strong>in</strong> by<br />

<strong>the</strong> latest Tortonian–<strong>Mess<strong>in</strong>ian</strong> regressive deposits of<br />

<strong>the</strong> uppermost Handere Formation (Figure 2), which<br />

comprise shallow-mar<strong>in</strong>e sandstones and siltstones<br />

and <strong>in</strong>clude 3 isolated conglomeratic members (see <strong>the</strong><br />

Muratlı, Tepeçaylak, and Sögütlü members <strong>in</strong> Figure 1c).<br />

These conglomeratic deposits, previously <strong>in</strong>terpreted<br />

as fluvial, are <strong>the</strong> ma<strong>in</strong> topic of <strong>the</strong> present study, which<br />

documents <strong>the</strong>m as sharp-based deltas with associated<br />

<strong>in</strong>cised fluvial valley-fills. There are also erosional relics<br />

of <strong>the</strong> uppermost gypsiferous Gökkuyu Member of <strong>the</strong><br />

Handere Formation preserved <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part of<br />

<strong>the</strong> bas<strong>in</strong> (Figures 1c and 2). The evaporites overlie both<br />

<strong>the</strong> deltaic conglomeratic members and offshore clastic<br />

deposits of <strong>the</strong> Handere Formation. However, <strong>the</strong>re is no<br />

evidence of <strong>the</strong> Zanclean regional mar<strong>in</strong>e transgression <strong>in</strong><br />

5


6<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

Chronostratigraphy (Ma)<br />

Epoch Stage<br />

Holocene Tyrrhenian<br />

Ionian<br />

Pleistocene<br />

Pliocene<br />

Early Late<br />

Miocene<br />

Early Middle<br />

Late<br />

Calabrian<br />

1.81<br />

Gelasian<br />

2.59<br />

Piacenzian<br />

3.60<br />

Zanclean<br />

5.33<br />

<strong>Mess<strong>in</strong>ian</strong><br />

7.25<br />

Tortonian<br />

11.61<br />

Serravallian<br />

13.65<br />

Langhian<br />

15.97<br />

Burdigalian<br />

20.43<br />

Aquitanian<br />

Plankt.<br />

foram<br />

zones<br />

Mple2<br />

Mple1<br />

Mpl6<br />

Mpl5<br />

Mpl4<br />

Mpl3<br />

Mpl2<br />

Mpl1<br />

MMi13<br />

MMi12<br />

MMi11<br />

ILGAR et al. / Turkish J Earth Sci<br />

Nannofossil<br />

zones<br />

MNN21<br />

MNN20<br />

MNN19<br />

MNN18<br />

MNN17<br />

MNN16<br />

14-15<br />

MNN13<br />

MNN12<br />

Nondist<strong>in</strong>ctive Zone<br />

MMi10<br />

MMi9<br />

MMi8<br />

c<br />

MMi7 b<br />

a<br />

MMi6<br />

MMi5<br />

MMi4<br />

MMi3<br />

MMi2<br />

MMi1<br />

c<br />

b<br />

a<br />

b<br />

a<br />

MNN11<br />

MNN10<br />

MNN9<br />

MNN8<br />

MNN7<br />

MNN6<br />

MNN5<br />

MNN4<br />

MNN3<br />

MNN2<br />

MNN1<br />

c<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

c<br />

b<br />

a<br />

Tırtar<br />

Fm.<br />

Muratlı<br />

deltaic mb<br />

Karaisalı<br />

Fm.<br />

ADANA BASIN<br />

Gökkuyu<br />

evaporitic mb<br />

Sequence<br />

stratigraphy<br />

?HST + FRST<br />

+ LST<br />

Figure 2. Revised stratigraphy of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> and its <strong>in</strong>terpretation <strong>in</strong> terms of systems tracts. The letter code is as used <strong>in</strong> <strong>the</strong> text<br />

(term<strong>in</strong>ology after Helland-Hansen 2009): LST – normal-regressive lowstand systems tract; TST – transgressive systems tract; HST –<br />

normal-regressive highstand systems tract; and FRST – <strong>forced</strong>-regressive systems tract.<br />

C<strong>in</strong>göz<br />

Fm.<br />

Kaplankaya Fm.<br />

MESOZOIC<br />

BEDROCK<br />

v v v v v v v<br />

v v v v v v v<br />

v v v v v<br />

v v v<br />

Handere Fm.<br />

Kuzgun Fm.<br />

Güvenç Fm.<br />

Gildirli Fm.<br />

Post - Miocene<br />

alluvium<br />

(fluvial terraces)<br />

FRST<br />

HST<br />

TST<br />

TST<br />

FRST + LST<br />

HST<br />

TST<br />

LST


<strong>the</strong> bas<strong>in</strong>. The post-Miocene deposits are fluvial terraces of<br />

coarse-gra<strong>in</strong>ed alluvium with caliche.<br />

The <strong>Mess<strong>in</strong>ian</strong> gypsum evaporites <strong>in</strong> <strong>the</strong> bas<strong>in</strong> are up to<br />

a few metres thick (Figure 3a) and <strong>the</strong>ir ma<strong>in</strong> varieties range<br />

from massive to lam<strong>in</strong>ated and enterolithic (Figure 3b),<br />

micro- to coarse-crystall<strong>in</strong>e (Figures 3c and 3d), nodular<br />

(Figure 3e), and wave-worked gypsarenitic (Figure 3f).<br />

X-ray diffraction data show that selenitic gypsum is <strong>the</strong><br />

sole evaporitic m<strong>in</strong>eral (Karakuş 2011). X-ray fluorescence<br />

analyses of major oxide composition <strong>in</strong>dicate that <strong>the</strong><br />

evaporitic precipitation occurred <strong>in</strong> homogeneous<br />

hydrochemical conditions, with a Sr-signature similar to<br />

<strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> evaporites <strong>in</strong> adjacent peri-Mediterranean<br />

bas<strong>in</strong>s (Karakuş 2011).<br />

5. Facies architecture of deltaic members<br />

The study focuses on <strong>the</strong> 3 isolated conglomeratic members<br />

of <strong>the</strong> Handere Formation: <strong>the</strong> Muratlı, Tepeçaylak, and<br />

Sögütlü members (Figure 1c). They have been exhumed by<br />

Quaternary erosion and are laterally surrounded by sparsely<br />

preserved shallow-mar<strong>in</strong>e sandstones of <strong>the</strong> Handere<br />

Formation, with which <strong>the</strong>y sharply overlie <strong>the</strong> formation’s<br />

offshore mudstones (Figure 2). These conglomeratic<br />

members consist of 2 ma<strong>in</strong> facies associations, Gilberttype<br />

deltaic deposits and fluvial <strong>in</strong>cised valley-fill deposits,<br />

which are described and <strong>in</strong>terpreted <strong>in</strong> <strong>the</strong> present section.<br />

5.1. Gilbert-type delta deposits<br />

These conglomeratic deposits are generally well-bedded,<br />

form<strong>in</strong>g cl<strong>in</strong>oformal wedges that are stacked bas<strong>in</strong>wards<br />

<strong>in</strong> a downstepp<strong>in</strong>g pattern and are up to 15–40 m thick.<br />

The cl<strong>in</strong>oformal architecture consists of <strong>in</strong>cl<strong>in</strong>ed foreset<br />

beds overla<strong>in</strong> by horizontal topset beds (Figure 4a), as<br />

is generally characteristic of Gilbert-type deltas (Barrell<br />

1912; Colella 1988; Postma 1990).<br />

5.1.1. Foreset facies<br />

Foreset deposits are conglomerate and subord<strong>in</strong>ate<br />

sandstone beds <strong>in</strong>cl<strong>in</strong>ed bas<strong>in</strong>wards at up to 25°<br />

(Figure 4b). They show an overall coarsen<strong>in</strong>g-upwards<br />

trend and comprise facies commonly reported from<br />

Gilbert-type deltas (Postma 1984; Nemec et al. 1999;<br />

Lønne & Nemec 2004; Breda et al. 2007). Some outcrops<br />

show <strong>the</strong> foreset beds pass<strong>in</strong>g tangentially downdip <strong>in</strong>to<br />

<strong>the</strong> gently <strong>in</strong>cl<strong>in</strong>ed and f<strong>in</strong>er-gra<strong>in</strong>ed beds of delta toeset<br />

(Figure 4a). Conglomerate beds are 10–75 cm thick, but<br />

ma<strong>in</strong>ly 15–35 cm, and are tabular to mound-shaped. They<br />

consist of granule to coarse-pebble gravel and occasionally<br />

conta<strong>in</strong> scattered cobbles of up to 15 cm <strong>in</strong> size. The gravel<br />

is subrounded to rounded and has ma<strong>in</strong>ly a clast-supported<br />

texture (Figure 4c). Clasts are derived from <strong>the</strong> bedrock<br />

Mesozoic limestones and serpent<strong>in</strong>ite, and from <strong>the</strong> bas<strong>in</strong>marg<strong>in</strong><br />

Miocene reefal limestones. The matrix is moderately<br />

well-sorted sand with granules. Many conglomerate<br />

beds and <strong>the</strong> majority of associated sandstone beds<br />

ILGAR et al. / Turkish J Earth Sci<br />

show planar-parallel stratification (Figure 4b) <strong>in</strong>dicat<strong>in</strong>g<br />

tractional deposition from fully turbulent hyperpycnal<br />

flows (Bornhold & Prior 1990; Nemec 1990), which means<br />

river-generated low-density turbidity currents (sensu<br />

Lowe 1982). Massive conglomerate beds are nongraded or<br />

<strong>in</strong>versely graded (Figure 4d), tabular <strong>in</strong> dip section, and<br />

mound-shaped lenticular <strong>in</strong> strike section, <strong>in</strong>terpreted to<br />

be deposits of cohesionless debris flows (Nemec & Steel<br />

1984; Nemec 1990).<br />

Sandstones predom<strong>in</strong>ate <strong>in</strong> <strong>the</strong> down-dip part of <strong>the</strong><br />

foreset and at its toe, form<strong>in</strong>g tabular or wedge-shaped<br />

beds that are 5–30 cm thick, composed of very coarse- to<br />

f<strong>in</strong>e-gra<strong>in</strong>ed sand and alternat<strong>in</strong>g with th<strong>in</strong> beds of granule<br />

conglomerate (Figure 4a). Common are scattered pebbles<br />

of up to 5 cm <strong>in</strong> size. The sandstone beds show planarparallel<br />

stratification with or without normal grad<strong>in</strong>g<br />

and are often capped by current-ripple cross-lam<strong>in</strong>ation<br />

with down-dip transport direction. Some of <strong>the</strong> foreset<br />

beds, up to 40 cm thick, are isolated backsets of up-slope<br />

dipp<strong>in</strong>g cross-strata composed of coarse sand and/or f<strong>in</strong>epebble<br />

gravel (Figure 4e). They occur on <strong>the</strong> stoss side of<br />

mound-shaped massive conglomerate bodies (debris-flow<br />

deposits) or as <strong>the</strong> <strong>in</strong>fill of trough-shaped scours (deltaslope<br />

chutes). The backsets <strong>in</strong>dicate tractional deposition<br />

by low-density turbidity currents subject to hydraulic jump<br />

(Nemec 1990). There are also sporadic slump deposits of<br />

variable scale and thickness (Figure 4f).<br />

5.1.2. Topset facies<br />

The delta topset deposits (Figures 4a and 5) are pebble<br />

conglomerates and coarse-gra<strong>in</strong>ed sandstones. Their<br />

f<strong>in</strong><strong>in</strong>g-upwards bedsets, 60–140 cm thick, have erosional<br />

bases and are commonly stacked on top of one ano<strong>the</strong>r,<br />

apparently represent<strong>in</strong>g multistorey palaeochannels of<br />

braided streams a few metres wide (Coll<strong>in</strong>son 1996; Miall<br />

1996). Their laterally discont<strong>in</strong>uous basal layers of coarse<br />

clast-supported conglomerate are thought to be channelfloor<br />

lag deposits (Miall 1985; Nemec & Postma 1993).<br />

Planar parallel-stratified and cross-stratified beds, 10–45<br />

cm thick, are <strong>in</strong>terpreted, respectively, to be deposits of<br />

longitud<strong>in</strong>al and transverse or oblique midchannel bars<br />

(Miall 1985; Nemec & Postma 1993).<br />

The deltas suffered erosion and <strong>the</strong>ir topset deposits<br />

are <strong>in</strong>consistently preserved, generally better <strong>in</strong> <strong>the</strong><br />

upstream part (Figure 4a). The sparser downstream<br />

preservation of delta topset may be due to a negative<br />

subaerial accommodation (Bhattacharya & Willis 2001),<br />

or to removal by post-Miocene erosion (Figure 2). The<br />

relationship of <strong>the</strong> delta topset to <strong>the</strong> foreset is <strong>in</strong>variably<br />

oblique (erosional), which supports <strong>the</strong> notion of a fall<strong>in</strong>g<br />

delta-shorel<strong>in</strong>e trajectory (Breda et al. 2007, 2009) based<br />

on evidence that <strong>the</strong> horizontal topset was <strong>in</strong>crementally<br />

stepp<strong>in</strong>g down <strong>in</strong> <strong>the</strong> bas<strong>in</strong>ward direction, as discussed <strong>in</strong><br />

<strong>the</strong> next section.<br />

7


5.1.3. Bottomset facies<br />

The basal deltaic facies are only locally exposed, but are<br />

generally similar. The gently <strong>in</strong>cl<strong>in</strong>ed delta-toe deposits<br />

(Figures 4a and 6) are th<strong>in</strong>ly bedded, f<strong>in</strong>e-gra<strong>in</strong>ed<br />

sandstones and siltstones with plane-parallel stratification<br />

and m<strong>in</strong>or ripple cross-lam<strong>in</strong>ation. Delta bottomset<br />

consists of th<strong>in</strong> siltstone and sandstone beds <strong>in</strong>tercalated<br />

with mudstones (Figure 6). The microfauna content of<br />

<strong>the</strong>se deposits is described <strong>in</strong> a subsequent section.<br />

5.2. Incised valley-fill deposits<br />

This facies assemblage is exposed <strong>in</strong> a chance crosscut<br />

section <strong>in</strong> <strong>the</strong> proximal part of <strong>the</strong> Muratlı Member<br />

(Figures 1c and 5), but similar unexposed deposits<br />

presumably also occur <strong>in</strong> <strong>the</strong> 2 o<strong>the</strong>r coeval deltaic members<br />

8<br />

ILGAR et al. / Turkish J Earth Sci<br />

A B<br />

C<br />

1 m<br />

E F<br />

Figure 3. <strong>Mess<strong>in</strong>ian</strong> evaporites <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>. (a) An example outcrop of <strong>the</strong> evaporites at<br />

<strong>the</strong> top of Handere Formation. (b) Enterolithic gypsum. (c) Crystall<strong>in</strong>e gypsum with a chevron<br />

growth structure. (d) Crystall<strong>in</strong>e gypsum with a grassy growth structure. (e) Nodular gypsum.<br />

(f) Gypsarenite with wave-ripple cross-lam<strong>in</strong>ation. The co<strong>in</strong> (scale) is 2 cm.<br />

D<br />

of <strong>the</strong> Handere Formation, where no similar transverse<br />

sections are available. These deposits are recognisably<br />

coarser-gra<strong>in</strong>ed, compris<strong>in</strong>g pebble conglomerates and<br />

subord<strong>in</strong>ate coarse-gra<strong>in</strong>ed sandstones with scattered<br />

cobbles and boulders (Figure 5). Conglomerates are clastsupported,<br />

with a matrix of medium to coarse sand and<br />

granules. Gravel clasts are moderately sorted, ma<strong>in</strong>ly<br />

subangular to subrounded, and of <strong>the</strong> same provenance<br />

as <strong>the</strong> delta gravel. Scattered boulders are derived from<br />

<strong>the</strong> bas<strong>in</strong>-marg<strong>in</strong> Miocene reefal limestones. The deposits<br />

form erosionally based, vertically stacked f<strong>in</strong><strong>in</strong>g-upwards<br />

bedsets (Figure 5) <strong>in</strong>terpreted to be multistorey braidedstream<br />

palaeochannels (Coll<strong>in</strong>son 1996; Miall 1996),<br />

ma<strong>in</strong>ly 0.8–1.6 m thick and 10–25 m wide. Coarse gravelly<br />

channel-floor lags are poorly developed, but solitary


delta topset<br />

delta foreset<br />

ILGAR et al. / Turkish J Earth Sci<br />

B C<br />

E F<br />

foreset<br />

backset<br />

Figure 4. Outcrop details of <strong>the</strong> Muratlı delta, <strong>Adana</strong> Bas<strong>in</strong>. (a) Longitud<strong>in</strong>al outcrop section show<strong>in</strong>g an<br />

erosional angular contact between <strong>the</strong> delta’s foreset and topset deposits. (b) Conglomeratic foreset deposits<br />

compris<strong>in</strong>g planar parallel-stratified and massive beds. Note <strong>the</strong> rapid upward <strong>in</strong>crease <strong>in</strong> <strong>the</strong> bedd<strong>in</strong>g<br />

<strong>in</strong>cl<strong>in</strong>ation. (c) Close-up detail of <strong>the</strong> delta topset, show<strong>in</strong>g submature gravel composed of bedrock limestone<br />

and serpent<strong>in</strong>ite clasts mixed with large fragments of Miocene corals and reefal limestones. (d) Delta foreset<br />

deposits <strong>in</strong>clud<strong>in</strong>g massive, <strong>in</strong>versely graded, and nongraded conglomerate beds. (e) Delta foreset detail show<strong>in</strong>g<br />

a backset of upslope-dipp<strong>in</strong>g gravelly cross-strata. (f) Slump deposits with<strong>in</strong> <strong>the</strong> delta foreset. Picture A is from<br />

locality 1, pictures B–E from locality 2, and picture F from locality 3 <strong>in</strong> Figure 1c.<br />

D<br />

coral fragment<br />

A<br />

9


10<br />

°<br />

or multiple cross-strata sets, 25–60 cm thick, <strong>in</strong>dicate<br />

transverse or oblique midchannel bars (Miall 1985).<br />

This contrast<strong>in</strong>g facies assemblage <strong>in</strong> <strong>the</strong> Muratlı<br />

Member forms <strong>the</strong> <strong>in</strong>fill of an axial valley that was deeply<br />

<strong>in</strong>cised <strong>in</strong> <strong>the</strong> delta. The top part of <strong>the</strong> valley-fill and <strong>the</strong><br />

surround<strong>in</strong>g host delta are not preserved <strong>in</strong> <strong>the</strong> outcrop<br />

section, but <strong>the</strong> measured depth of <strong>in</strong>cision is at least<br />

15 m and <strong>the</strong> valley width is up to 60 m. The <strong>in</strong>cised<br />

valley is clearly not an <strong>in</strong>tegral part of <strong>the</strong> prograd<strong>in</strong>g<br />

delta’s topset (see discussion by Hampson et al. 1997) and<br />

<strong>in</strong>stead <strong>in</strong>dicates erosional cannibalisation of <strong>the</strong> delta by<br />

a deep <strong>in</strong>cision of its fluvial feeder system <strong>in</strong> response to<br />

pronounced base-level fall (see Mellere et al. 2002; Ilgar<br />

& Nemec 2005; Breda et al. 2009). The high depth/width<br />

ratio of <strong>the</strong> valley and <strong>the</strong> scattered boulders suggest<br />

relatively rapid <strong>in</strong>cision, with a m<strong>in</strong>imal lateral shift<strong>in</strong>g<br />

of <strong>the</strong> fluvial system (see Yoxall 1969; Wood et al. 1993)<br />

and with <strong>the</strong> stream competence significantly <strong>in</strong>creased by<br />

<strong>the</strong> topographic conf<strong>in</strong>ement (Schumm 1993). The valley<br />

<strong>in</strong>cision seems to have occurred concurrently with <strong>the</strong> late<br />

stages of <strong>the</strong> delta progradation, when <strong>the</strong> entrench<strong>in</strong>g<br />

fluvial system acted as a feeder for <strong>the</strong> youngest telescop<strong>in</strong>g<br />

parts of <strong>the</strong> delta (Figure 7a). The down-stepp<strong>in</strong>g pattern<br />

of delta topset (Figure 7b) strongly supports <strong>the</strong> notion of<br />

an <strong>in</strong>cremental fall of <strong>the</strong> delta shorel<strong>in</strong>e trajectory.<br />

The relatively narrow valley filled with fluvial deposits<br />

<strong>in</strong>dicates that <strong>the</strong> <strong>in</strong>fill<strong>in</strong>g of <strong>the</strong> valley was relatively rapid,<br />

under a high rate of sediment supply, with little lateral<br />

wander<strong>in</strong>g of <strong>the</strong> river and no significant valley-side<br />

collapses at <strong>the</strong> sea-level lowstand stage.<br />

ILGAR et al. / Turkish J Earth Sci<br />

Figure 5. An oblique transverse section through <strong>the</strong> Muratlı delta, <strong>Adana</strong> Bas<strong>in</strong>, show<strong>in</strong>g a gravel-filled axial fluvial valley deeply<br />

<strong>in</strong>cised <strong>in</strong> <strong>the</strong> delta deposits. Palaeotransport direction is away from <strong>the</strong> viewer, obliquely to <strong>the</strong> right. Picture from locality 2 <strong>in</strong><br />

Figure 1c.<br />

6. Sequence-stratigraphic <strong>in</strong>terpretation<br />

The late Tortonian shorel<strong>in</strong>e of <strong>the</strong> bas<strong>in</strong> is represented<br />

by <strong>the</strong> reefal limestones of <strong>the</strong> Tırtar Formation, which<br />

were superimposed directly on <strong>the</strong> earlier bas<strong>in</strong>-marg<strong>in</strong><br />

limestones of <strong>the</strong> Karaisalı Formation (Figure 2) and were<br />

later extensively eroded (Figure 1c). The 3 deltas <strong>in</strong> <strong>the</strong>ir<br />

location appear to have been offset bas<strong>in</strong>wards by ~25 km<br />

with respect to <strong>the</strong> late Tortonian shorel<strong>in</strong>e and emplaced<br />

directly onto <strong>the</strong> offshore mudstones of <strong>the</strong> Handere<br />

Formation, which <strong>in</strong>dicates a <strong>forced</strong>-regressive erosional<br />

shift of <strong>the</strong> shorel<strong>in</strong>e.<br />

A <strong>forced</strong> regression is <strong>in</strong>dicated by <strong>the</strong> downstepp<strong>in</strong>g<br />

geometry of <strong>the</strong> delta topset (Figure 7b), <strong>the</strong> cl<strong>in</strong>oformal<br />

foreset wedges that sharply downlapped <strong>the</strong> bas<strong>in</strong> floor<br />

(Figures 4a and 6), and fur<strong>the</strong>r by <strong>the</strong> <strong>in</strong>cision of fluvial<br />

valley along <strong>the</strong> delta axis (Figures 5 and 7a). The sharp,<br />

erosional basal surface of <strong>the</strong> delta marks an abrupt<br />

facies change and passes bas<strong>in</strong>wards <strong>in</strong>to a correlative<br />

depositional conformity (Figure 7a). The aggradational<br />

<strong>in</strong>fill<strong>in</strong>g of <strong>the</strong> <strong>in</strong>cised valley documents a subsequent rise<br />

of relative sea level, and <strong>the</strong> overly<strong>in</strong>g gypsiferous deposits<br />

<strong>in</strong>dicate a brief drown<strong>in</strong>g of <strong>the</strong> deltas. The evaporites<br />

occur as erosional relics of <strong>the</strong> latest mar<strong>in</strong>e deposits<br />

(HST) <strong>in</strong> <strong>the</strong> bas<strong>in</strong>, which implies yet ano<strong>the</strong>r subsequent<br />

<strong>forced</strong> regression (see <strong>the</strong> late <strong>Mess<strong>in</strong>ian</strong> erosional FRST<br />

<strong>in</strong> Figure 2).<br />

The Tortonian–<strong>Mess<strong>in</strong>ian</strong> deposits of <strong>the</strong> Kuzgun<br />

and Handere formations (Figure 2) have previously been<br />

<strong>in</strong>terpreted as a simple regressive succession (Yetiş 1988;<br />

Yetiş et al. 1995), which would imply a normal-regressive


Figure 6. Simplified vertical profile of <strong>the</strong> bottomset part of <strong>the</strong><br />

one of <strong>the</strong> Muratlı delta wedges, show<strong>in</strong>g <strong>the</strong> pattern of sediment<br />

sampl<strong>in</strong>g for biostratigraphic analysis. The dots numbered 1–24<br />

<strong>in</strong>dicate <strong>the</strong> location of samples. Log from locality 2 <strong>in</strong> Figure 1c.<br />

HST. The present study <strong>in</strong>dicates that this sedimentary<br />

succession, <strong>in</strong> reality, bears a high-resolution record of<br />

several major sea-level changes <strong>in</strong> <strong>the</strong> bas<strong>in</strong> and comprises<br />

2 stratigraphic sequences bounded by <strong>the</strong> erosional<br />

surfaces of <strong>forced</strong> regression. The follow<strong>in</strong>g <strong>in</strong>terpretive<br />

stratigraphic scenario is suggested (Figure 2):<br />

• The Kuzgun Formation represents a <strong>forced</strong> regression<br />

that is recognisable around <strong>the</strong> Mediterranean and<br />

attributed to <strong>the</strong> end-Serravalian (Tor-1) eustatic fall <strong>in</strong> sea<br />

level (Haq et al. 1988; Haq 1991); <strong>the</strong> formation’s erosional<br />

basal part is an erosional FRST, whereas <strong>the</strong> bulk of <strong>the</strong><br />

formation comprises a LST and possibly <strong>the</strong> earliest TST.<br />

• The ma<strong>in</strong> Tortonian part of <strong>the</strong> overly<strong>in</strong>g Handere<br />

Formation and <strong>the</strong> coeval Tırtar Formation (bas<strong>in</strong>-marg<strong>in</strong><br />

reefal platform) constitute a TST, record<strong>in</strong>g <strong>the</strong> subsequent<br />

eustatic sea-level rise (Haq et al. 1988; Haq 1991). Bas<strong>in</strong><br />

subsidence may have enhanced this mar<strong>in</strong>e transgression.<br />

• The upper part of <strong>the</strong> Handere Formation, with<br />

its isolated deltaic members, might have commenced<br />

its deposition as a normal-regressive HST, but <strong>the</strong>re is<br />

ILGAR et al. / Turkish J Earth Sci<br />

no facies evidence to support this notion. The lack of a<br />

recognisable HST suggests that <strong>the</strong> transgression was<br />

<strong>in</strong>terrupted by a relative sea-level fall, which would mean<br />

a TST overla<strong>in</strong> directly by a depositional FRST. This<br />

stratigraphic configuration of systems tracts may <strong>in</strong>dicate<br />

a eustatic transgression term<strong>in</strong>ated by a tectonically <strong>forced</strong><br />

stepwise regression.<br />

• The sharp base of <strong>the</strong> deltaic members and coeval<br />

littoral deposits of <strong>the</strong> Handere Formation (Figure 7a) is<br />

a regressive surface of mar<strong>in</strong>e erosion (Pl<strong>in</strong>t 1988; Pl<strong>in</strong>t<br />

& Nummedal 2000), expectedly pass<strong>in</strong>g bas<strong>in</strong>wards <strong>in</strong>to<br />

a correlative conformity (MacEachern et al. 1999). This<br />

surface was develop<strong>in</strong>g <strong>in</strong>crementally dur<strong>in</strong>g <strong>the</strong> entire<br />

time of <strong>the</strong> stepwise relative sea-level fall and hence is<br />

probably diachronous (Embry 2002).<br />

• The sharp-based gravelly deltas and coeval shallowmar<strong>in</strong>e<br />

deposits would thus represent a depositional <strong>forced</strong><br />

regression (Pl<strong>in</strong>t 1988; Helland-Hansen & Gjelberg 1994;<br />

Pl<strong>in</strong>t & Nummedal 2000). The bas<strong>in</strong>ward advance of <strong>the</strong><br />

deltas (FRST and LST) was followed by a relative sea-level<br />

rise (TST), when <strong>the</strong> <strong>in</strong>cised valleys were filled with fluvial<br />

deposits and <strong>the</strong> deltas were shallowly drowned with an<br />

abrupt landward shift of <strong>the</strong> shorel<strong>in</strong>e and river outlets.<br />

• The mar<strong>in</strong>e transgression brought an almost<br />

immediate deposition of evaporites (HST), which suggests<br />

flood<strong>in</strong>g by hypersal<strong>in</strong>e sea water (Figure 7b). The <strong>Adana</strong><br />

Bas<strong>in</strong> was subsequently emerged and its gypsiferous<br />

deposits were extensively eroded due to ano<strong>the</strong>r <strong>forced</strong><br />

regression (<strong>the</strong> late <strong>Mess<strong>in</strong>ian</strong> FRST, Figure 2). The<br />

evaporitic Gökkuyu Member of <strong>the</strong> uppermost Handere<br />

Formation (Figure 2) is sparsely preserved <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn<br />

part of <strong>the</strong> bas<strong>in</strong>, but its thickness reaches a few hundred<br />

metres <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part and exceeds 1 km <strong>in</strong> <strong>the</strong><br />

adjo<strong>in</strong><strong>in</strong>g <strong>in</strong>ner Cilicia Bas<strong>in</strong> (Aksu et al. 2005; Burton-<br />

Ferguson et al. 2005). It can thus be precluded that <strong>the</strong>se<br />

evaporates are local deposits, formed <strong>in</strong> an isolated coastal<br />

lagoon or sabkha.<br />

It would <strong>the</strong>n appear that 2 consecutive <strong>forced</strong><br />

<strong>regressions</strong> occurred <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> <strong>in</strong> <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong><br />

time, <strong>the</strong> first depositional and possibly <strong>forced</strong> by tectonics<br />

and <strong>the</strong> next erosional and probably eustatic. The key issue<br />

<strong>in</strong> this hypo<strong>the</strong>tical scenario is <strong>the</strong> exact tim<strong>in</strong>g and actual<br />

causes of <strong>the</strong> 2 <strong>regressions</strong>, which apparently followed<br />

each o<strong>the</strong>r closely.<br />

7. Biostratigraphic dat<strong>in</strong>g<br />

The heterolithic, f<strong>in</strong>e-gra<strong>in</strong>ed bottomset deposits of <strong>the</strong><br />

best-exposed Muratlı delta have been systematically<br />

sampled (Figure 6) to estimate <strong>the</strong> time of <strong>the</strong> delta<br />

progradation. The samples of mudstone and silty mudstone<br />

layers were disaggregated <strong>in</strong> a 30% hydrogen peroxide<br />

solution and washed over 63-, 125-, and 425-µm sieves.<br />

In total, 24 samples have been analysed (Figure 6), with a<br />

focus on planktonic foram<strong>in</strong>ifera.<br />

11


Planktonic foram<strong>in</strong>ifera occur throughout <strong>the</strong> studied<br />

section, except for 3 samples from its uppermost part<br />

(samples 18, 21, and 22 <strong>in</strong> Figure 6). The abundance of<br />

foram<strong>in</strong>ifer assemblages varies from medium to low,<br />

whereas <strong>the</strong>ir diversity and degree of preservation are<br />

generally moderate to high. The lowermost part of <strong>the</strong><br />

section (samples 1–5) lacks age-diagnostic species and<br />

12<br />

A<br />

B<br />

reefal limestone<br />

Surface of <strong>forced</strong><br />

regression<br />

Relic evaporitic cover<br />

on term<strong>in</strong>al delta slope<br />

<strong>Mess<strong>in</strong>ian</strong> evaporites<br />

topset<br />

delta wedge<br />

ILGAR et al. / Turkish J Earth Sci<br />

Delta progradation direction<br />

step-down<br />

topset<br />

25 km<br />

step-down<br />

delta wedge<br />

sea-level fall<br />

topset<br />

delta wedge<br />

offshore<br />

mudstones<br />

Figure 7. (a) Schematic model for <strong>the</strong> downstepp<strong>in</strong>g <strong>forced</strong>-regressive progradation of <strong>the</strong> Muratlı delta with concurrent<br />

<strong>in</strong>cision of an axial fluvial valley; diagram not to scale. (b) Panoramic view of <strong>the</strong> Muratlı delta longitud<strong>in</strong>al outcrop show<strong>in</strong>g<br />

<strong>the</strong> downstepp<strong>in</strong>g pattern of cl<strong>in</strong>oformal foreset wedges towards <strong>the</strong> left (SSE direction); picture from locality 2 <strong>in</strong> Figure 1c.<br />

200 m<br />

shows an assemblage of benthic forams (with Ammonia sp.<br />

and Elphidium spp.), ech<strong>in</strong>id sp<strong>in</strong>es, gastropods, and rare<br />

specimens of Globoturborotalita, Globiger<strong>in</strong>a, Orbul<strong>in</strong>a,<br />

Globiger<strong>in</strong>ella, and Globiger<strong>in</strong>oides.<br />

Planktonic foram<strong>in</strong>ifer assemblages are most<br />

diversified <strong>in</strong> <strong>the</strong> middle part of <strong>the</strong> section (samples<br />

6–16, Figure 6), <strong>in</strong>clud<strong>in</strong>g Globorotalia suterae Catalano


a1<br />

d2<br />

i1<br />

a2<br />

ILGAR et al. / Turkish J Earth Sci<br />

i2<br />

l1 l2<br />

r<br />

o<br />

a3<br />

d3 e<br />

s<br />

m2<br />

Figure 8. Selected planktonic foram<strong>in</strong>ifera identified <strong>in</strong> <strong>the</strong> latest Miocene delta bottomset deposits <strong>in</strong> <strong>the</strong> <strong>Adana</strong> and Mut bas<strong>in</strong>s: (a1) Turborotalita multiloba (Romeo) <strong>in</strong><br />

spiral, (a2) umbilical, and (a3) side view, sample 20 from <strong>Adana</strong> Bas<strong>in</strong>; (b) Turborotalita qu<strong>in</strong>queloba (Natland) <strong>in</strong> umbilical view, sample 9 from <strong>Adana</strong> Bas<strong>in</strong>; (c) Tenuilell<strong>in</strong>ata<br />

angustiumbilicata (Bolli) <strong>in</strong> umbilical view, sample 5 from Mut Bas<strong>in</strong>; (d1) Neogloboquadr<strong>in</strong>a acostaensis (Blow) <strong>in</strong> umbilical view and (d3) <strong>in</strong> spiral view, sample 2 from Mut<br />

Bas<strong>in</strong>; (d2) Neogloboquadr<strong>in</strong>a acostaensis (Blow) <strong>in</strong> umbilical view, sample 6 from <strong>Adana</strong> Bas<strong>in</strong>; (e) Globiger<strong>in</strong>ita glut<strong>in</strong>ata (Egger) <strong>in</strong> umbilical view, sample 4 from Mut Bas<strong>in</strong>;<br />

(f) Globiger<strong>in</strong>ita uvula (Ehrenberg) <strong>in</strong> side view, sample 2 from Mut Bas<strong>in</strong>; (g) Catapsydrax parvulus Bolli <strong>in</strong> umbilical view, sample 4 from Mut Bas<strong>in</strong>; (h) Globiger<strong>in</strong>oides<br />

bollii Blow <strong>in</strong> umbilical view, sample 2 from Mut Bas<strong>in</strong>; (i1) Neogloboquadr<strong>in</strong>a cont<strong>in</strong>uosa (Blow) <strong>in</strong> spiral and (i2) umbilical view, samples 4 and 2 from Mut Bas<strong>in</strong>; (j1)<br />

Globoturborotalita woodi (Jenk<strong>in</strong>s) <strong>in</strong> spiral and (j2) umbilical view, sample 13 from <strong>Adana</strong> Bas<strong>in</strong>; (k) Globoturborotalita apertura (Cushman) <strong>in</strong> umbilical view, sample 13 from<br />

<strong>Adana</strong> Bas<strong>in</strong>; (l1) Neogloboquadr<strong>in</strong>a humerosa (Takayanagi & Saito) <strong>in</strong> spiral and (l2) umbilical view, samples 11 and 9 from <strong>Adana</strong> Bas<strong>in</strong>; (m1) Globorotalia suterae Catalano<br />

and Sprovieri <strong>in</strong> oblique and (m2) spiral view, sample 24 from <strong>Adana</strong> Bas<strong>in</strong>; (n) Globoturborotalita decoraperta (Takayanagi & Saito) <strong>in</strong> spiral view, sample 24 from <strong>Adana</strong><br />

Bas<strong>in</strong>; (o) Orbul<strong>in</strong>a universa d’Orbigny, sample 6 from <strong>Adana</strong> Bas<strong>in</strong>; (p) Globiger<strong>in</strong>oides bulloideus Crescenti <strong>in</strong> spiral view, sample 1 from Mut Bas<strong>in</strong>; (q) Globiger<strong>in</strong>a bulloides<br />

d’Orbigny <strong>in</strong> spiral view, sample 6 from <strong>Adana</strong> Bas<strong>in</strong>; (r) Globiger<strong>in</strong>ella obesa (Bolli) <strong>in</strong> umbilical view, sample 13 from <strong>Adana</strong> Bas<strong>in</strong>; (s) Orbul<strong>in</strong>a suturalis Brönnimann,<br />

sample 9 from <strong>Adana</strong> Bas<strong>in</strong>; (t) Globiger<strong>in</strong>ella siphonifera (d’Orbigny) <strong>in</strong> side view, sample 6 from <strong>Adana</strong> Bas<strong>in</strong>; and (u) Globiger<strong>in</strong>oides seigliei Bermudez and Bolli <strong>in</strong> spiral<br />

view, sample 3 from Mut Bas<strong>in</strong>. The scale bar is 75 µm <strong>in</strong> pictures a–d and 100 µm <strong>in</strong> pictures e–u.<br />

j1<br />

m1<br />

b<br />

t<br />

f<br />

j2<br />

p<br />

n<br />

c<br />

g<br />

u<br />

k<br />

q<br />

d1<br />

h<br />

13


14<br />

Age (Ma)<br />

6 6.033<br />

7<br />

8<br />

9<br />

10<br />

11<br />

ATNTS2004<br />

C3A<br />

C3B<br />

and Sprovieri, Globoturborotalita apertura (Cushman), G.<br />

nepen<strong>the</strong>s (Todd), G. decoraperta (Takayanagi & Saito), G.<br />

woodi (Jenk<strong>in</strong>s), Globiger<strong>in</strong>elloides bulloideus Crescenti,<br />

G. obliquus Bolli, G. trilobus (Reuss), G. quadrilobatus<br />

(d’Orbigny), Globiger<strong>in</strong>a bulloides d’Orbigny, G.<br />

falconensis Blow, Globiger<strong>in</strong>ella siphonifera (d’Orbigny),<br />

G. obesa (Bolli), Orbul<strong>in</strong>a suturalis Brönnimann, O.<br />

universa d’Orbigny, Neogloboquadr<strong>in</strong>a acostaensis Blow, N.<br />

humerosa Takayanagi & Saito, Dentoglobiger<strong>in</strong>a altispira<br />

altispira (Cushman & Jarvis), Turborotalita qu<strong>in</strong>queloba<br />

(Natland), Tenuitell<strong>in</strong>ata angustiumbilicata (Bolli), and<br />

Globiger<strong>in</strong>ita uvula (Ehrenberg) (Figure 8). The presence<br />

of Globorotalia suterae Catalano & Sprovieri is particularly<br />

important, because its first stratigraphic occurrence<br />

serves to identify <strong>the</strong> base of subzone MMi12b (i.e. <strong>the</strong><br />

Globorotalia suterae subzone of Iaccar<strong>in</strong>o 1985) and is<br />

astronomically dated to 7.81 Ma B.P. (Figure 9; Sprovieri<br />

et al. 1999; Lourens et al. 2004; Iaccar<strong>in</strong>o et al. 2007).<br />

The coeval occurrence of Globorotalia suterae Catalano<br />

& Sprovieri, Globiger<strong>in</strong>oides bulloideus Crescenti, and<br />

Globoturborotalita woodi (Jenk<strong>in</strong>s) allows this part of<br />

<strong>the</strong> section to be assigned to undifferentiated biozone<br />

MMi12b–MMi13a (Figure 9; D’Onofrio et al. 1975;<br />

Iaccar<strong>in</strong>o 1985; Iaccar<strong>in</strong>o et al. 2007). The lack of <strong>the</strong><br />

Globorotalia miotumida group (particularly Globorotalia<br />

Polarity<br />

Magneto<br />

zones<br />

C3<br />

7.140<br />

7.528<br />

C4<br />

8.699<br />

C4A<br />

9.779<br />

C5<br />

Period<br />

ILGAR et al. / Turkish J Earth Sci<br />

Chronostratigraphy<br />

N E O G E N E<br />

M I O C E N E<br />

Epoch<br />

L A T E<br />

Stage<br />

<strong>Mess<strong>in</strong>ian</strong><br />

7.246<br />

Tortonian<br />

Mediterranean<br />

planktonic<br />

foram<strong>in</strong>iferal<br />

biostratigraphy<br />

Nondist<strong>in</strong>ctive<br />

Zone<br />

MMi11<br />

MMi9<br />

Figure 9. Mediterranean planktonic foram<strong>in</strong>iferal biozones plotted aga<strong>in</strong>st <strong>the</strong><br />

ATNTS2004 magnetic chronostratigraphy, with <strong>the</strong> stratigraphic distribution of<br />

diagnostic species <strong>in</strong> <strong>the</strong> outcrop section sampled <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> (Figure 6).<br />

MMi12 MMi13<br />

MMi10<br />

c<br />

b<br />

a<br />

b<br />

a<br />

Globoturborotalita woodi<br />

Globiger<strong>in</strong>oides bulloideus<br />

Globorotalia suterae<br />

Neogloboquadr<strong>in</strong>a humerosa<br />

Globiger<strong>in</strong>ella siphonifera<br />

conomiozea Kennett, G. sahel<strong>in</strong>a Catalano & Sprovieri,<br />

G. mediterranea Catalano & Sprovieri, and G. miotumida<br />

Jenk<strong>in</strong>s) <strong>in</strong> <strong>the</strong> samples does not permit a more precise<br />

assignment. O<strong>the</strong>r fauna <strong>in</strong> this part of <strong>the</strong> section <strong>in</strong>cludes<br />

scarce Bulim<strong>in</strong>a ech<strong>in</strong>ata d’Orbigny, representatives<br />

of Uviger<strong>in</strong>a and Bulim<strong>in</strong>a, miliolids, ech<strong>in</strong>id sp<strong>in</strong>es,<br />

gastropods, and bivalves.<br />

Sample 18 (Figure 6) bears no planktonic foram<strong>in</strong>ifers,<br />

but conta<strong>in</strong>s some benthic forms, gastropods, bivalves,<br />

and o<strong>the</strong>r shell fragments. The slightly higher sample 20<br />

(Figure 6) shows a planktonic foram<strong>in</strong>ifer assemblage<br />

that consists almost entirely of Turborotalita multiloba<br />

(Romeo), T. qu<strong>in</strong>queloba (Natland), and Tenuitell<strong>in</strong>ata<br />

angustiumbilicata (Bolli), accompanied by Bulim<strong>in</strong>a<br />

ech<strong>in</strong>ata d’Orbigny, miliolids, and ech<strong>in</strong>id sp<strong>in</strong>es. These<br />

foram species are known to have been most common prior<br />

to <strong>the</strong> deposition of <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> Lower Evaporites <strong>in</strong> <strong>the</strong><br />

Mediterranean Sea (Kouwenhoven et al. 2006; Manzi et<br />

al. 2007; Morigi et al. 2007; Iaccar<strong>in</strong>o et al. 2008; Orszag-<br />

Sperber et al. 2009; Di Stefano et al. 2010). Fur<strong>the</strong>rmore,<br />

Turborotalita multiloba (Romeo) is an important marker<br />

species <strong>in</strong> <strong>the</strong> Mediterranean, because its narrow<br />

stratigraphic range shortly predates <strong>the</strong> deposition of <strong>the</strong><br />

Lower Evaporites (D’Onofrio et al. 1975; Iaccar<strong>in</strong>o 1985).<br />

The first brief <strong>in</strong>flux of this taxon is dated to 6.42 Ma B.P.,<br />

Turborotalita multiloba


A<br />

5<br />

4<br />

Middle <strong>Mess<strong>in</strong>ian</strong><br />

ILGAR et al. / Turkish J Earth Sci<br />

NW SE<br />

6 Late <strong>Mess<strong>in</strong>ian</strong><br />

3<br />

2<br />

1<br />

N<br />

Inner<br />

Cilicia Bas<strong>in</strong><br />

Gökkuyu Mb. evaporites<br />

Latest Tortonian–early <strong>Mess<strong>in</strong>ian</strong><br />

Early <strong>Mess<strong>in</strong>ian</strong> erosional unconformity (<strong>forced</strong> regression)<br />

Gravelly deltaic member of Handere F.<br />

(cross-cut by <strong>in</strong>cised fluvial valley)<br />

Handere Fm. Misis High rises<br />

as a pop-up ridge<br />

Tortonian<br />

Late Burdigalian–Serravalian<br />

Karaisalı Fm.<br />

2.0<br />

0.5<br />

1.0<br />

2.5<br />

Late Aquitanian–early Burdigalian<br />

1.5<br />

3.0<br />

3.5<br />

4.0<br />

<strong>Adana</strong><br />

Bas<strong>in</strong><br />

Cross-section l<strong>in</strong>e<br />

C<strong>in</strong>göz Fm. - Güvenç Fm.<br />

Kaplankaya Fm.<br />

Base-Miocene erosional unconformity Gildirli Fm.<br />

0 km 50<br />

Present-day erosional<br />

marg<strong>in</strong> of Miocene bas<strong>in</strong><br />

(outcrop limit)<br />

37 00'N<br />

Modern shorel<strong>in</strong>e<br />

İskenderun<br />

Bas<strong>in</strong><br />

35 00'E 36 00'E<br />

B<br />

Late <strong>Mess<strong>in</strong>ian</strong> erosional unconformity (<strong>forced</strong> regression)<br />

Early Tortonian erosional unconformity<br />

Tırtar Fm. Handere Fm.<br />

Kuzgun Fm.<br />

Proto-Misis High<br />

Figure 10. (a) The relationship of <strong>Adana</strong> Bas<strong>in</strong> to adjacent structural units, with a seismic map of <strong>the</strong> base-Miocene unconformity <strong>in</strong> <strong>the</strong> bas<strong>in</strong> (depths below sea level<br />

<strong>in</strong> seconds of 2-way travel time); modified from Burton-Ferguson et al. (2005, Fig. 8). Note <strong>the</strong> trough-shaped, SW-plung<strong>in</strong>g bas<strong>in</strong>-floor palaeotopography and <strong>the</strong> high<br />

palaeotopographic relief along <strong>the</strong> bas<strong>in</strong>’s eastern marg<strong>in</strong> (Misis High). The NW–SE cross-section l<strong>in</strong>e perta<strong>in</strong>s to <strong>the</strong> cartoon below. (b) Schematic cartoon show<strong>in</strong>g <strong>the</strong><br />

<strong>in</strong>terpreted Miocene tectono-stratigraphic development <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> (based on key features revealed by <strong>the</strong> seismic sections <strong>in</strong> Burton-Ferguson et al. 2005; not<br />

to scale). The successive stages are: 1– The Mesozoic bedrock of <strong>the</strong> Tauride foreland, affected by thrust<strong>in</strong>g and elevated <strong>in</strong> <strong>the</strong> Eocene, is gradually denudated by erosion<br />

and eventually covered with alluvial deposits <strong>in</strong> <strong>the</strong> late Aquitanian to early Burdigalian; 2– The area becomes a foreland shelf zone as a result of mid-Burdigalian mar<strong>in</strong>e<br />

transgression, which drowns <strong>the</strong> bas<strong>in</strong> and is followed by a late Burdigalian to Serravalian normal regression; 3– The bas<strong>in</strong> is emerged by early Tortonian eustatic sea-level fall,<br />

and <strong>the</strong> result<strong>in</strong>g erosional unconformity is covered with alluvial deposits and <strong>the</strong>n drowned by mar<strong>in</strong>e transgression; 4– Orogenic thrust<strong>in</strong>g <strong>in</strong> <strong>the</strong> latest Tortonian to early<br />

<strong>Mess<strong>in</strong>ian</strong> converts <strong>the</strong> bas<strong>in</strong> <strong>in</strong>to a piggyback feature, with <strong>the</strong> thrust-<strong>in</strong>duced uplift caus<strong>in</strong>g a <strong>forced</strong> regression and progradation of Gilbert-type deltas <strong>in</strong>cised by fluvial<br />

valleys; 5– The foreland subsides under <strong>the</strong> <strong>in</strong>creased load of <strong>the</strong> orogen thrust-sheets, which <strong>in</strong>vites a mar<strong>in</strong>e transgression that br<strong>in</strong>gs <strong>in</strong> hypersal<strong>in</strong>e water; and 6– The bas<strong>in</strong><br />

is emerged and subject to erosion due to <strong>the</strong> late <strong>Mess<strong>in</strong>ian</strong> evaporative drawdown of <strong>the</strong> Mediterranean Sea. Post-Miocene extensional deformation not considered.<br />

37 30'N<br />

36 30'N<br />

15


with<strong>in</strong> subzone MMi13b, before its common occurrence<br />

<strong>in</strong> subzone MMi13c (Sierro et al. 2001; Dr<strong>in</strong>ia et al. 2004;<br />

Lourens et al. 2004; Kouwenhoven et al. 2006; Manzi et<br />

al. 2007). The higher samples show no occurrence of<br />

Turborotalita multiloba (Romeo) and <strong>the</strong> stratigraphic<br />

level of sample 20 is thus tentatively assigned to subzone<br />

MMi13b (Figure 9).<br />

Samples 21 and 22 (Figure 6) bear no planktonic<br />

foram<strong>in</strong>ifera and conta<strong>in</strong> miliolids, gastropods, ostracods,<br />

and ech<strong>in</strong>id sp<strong>in</strong>es. Sample 24 from <strong>the</strong> top of <strong>the</strong> section<br />

is rich <strong>in</strong> planktonic foram<strong>in</strong>ifera (Globorotalia suterae<br />

Catalano & Sprovieri, Globoturborotalita apertura<br />

(Cushman), G. nepen<strong>the</strong>s (Todd), G. decoraperta<br />

(Takayanagi & Saito), Neogloboquadr<strong>in</strong>a acostaensis<br />

(Blow), N. humerosa (Takayanagi & Saito), Globiger<strong>in</strong>a<br />

bulloides d’Orbigny, Orbul<strong>in</strong>a universa d’Orbigny,<br />

16<br />

ILGAR et al. / Turkish J Earth Sci<br />

Figure 11. Schematic <strong>in</strong>terpretation of <strong>the</strong> latest Miocene relative sea-level changes <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> (cf. Figure 2); <strong>the</strong><br />

suggested time <strong>in</strong>tervals are based on biostratigraphic dat<strong>in</strong>g. (a) The late Tortonian tectonic thrust<strong>in</strong>g lifts up <strong>the</strong> bas<strong>in</strong> and<br />

forces a gradual regression with <strong>the</strong> deposition of downstepp<strong>in</strong>g Gilbert-type deltas <strong>in</strong> FRST. (b) The postthrust<strong>in</strong>g foreland<br />

subsidence due to crustal load results <strong>in</strong> shallow reflood<strong>in</strong>g of <strong>the</strong> bas<strong>in</strong> by hypersal<strong>in</strong>e water, with evaporitic TST and HST. (c)<br />

The Mediterranean early evaporative drawdown causes <strong>the</strong> second eustatically <strong>forced</strong> and nondepositional regression (FRST)<br />

<strong>in</strong> <strong>the</strong> bas<strong>in</strong>.<br />

O. suturalis Brönnimann, O. bilobata d’Orbigny, and<br />

Globiger<strong>in</strong>ella siphonifera (d’Orbigny); Figure 8) and also<br />

conta<strong>in</strong>s benthic foram<strong>in</strong>ifers (Ammonia sp., Bulim<strong>in</strong>a<br />

ech<strong>in</strong>ata d’Orbigny, and some miliolids and nodosarids),<br />

gastropods, bivalves, and ech<strong>in</strong>id sp<strong>in</strong>es. However, it<br />

lacks Turborotalita multiloba (Romeo), Globiger<strong>in</strong>oides<br />

bulloideus Crescenti, and Globoturborotalita woodi<br />

(Jenk<strong>in</strong>s), which allows this stratigraphic level to be also<br />

assigned to subzone MMi13b (Figure 9).<br />

8. Discussion<br />

8.1. Interpretation of Miocene events <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong><br />

In this section, <strong>the</strong> chronology and regional causes of<br />

<strong>the</strong> late Miocene relative sea-level changes <strong>in</strong> <strong>the</strong> <strong>Adana</strong><br />

Bas<strong>in</strong> are discussed with reference to <strong>the</strong> bas<strong>in</strong>’s tectonic<br />

development <strong>in</strong>terpreted from multichannel seismic


A<br />

B<br />

1 m<br />

sections by Burton-Ferguson et al. (2005). However, <strong>the</strong><br />

chronostratigraphy of tectonic events suggested by <strong>the</strong>se<br />

latter authors needs to be rectified <strong>in</strong> <strong>the</strong> light of outcropderived<br />

biostratigraphic data. The ma<strong>in</strong> corrections are as<br />

follows:<br />

• The Güvenç Formation was considered by Burton-<br />

Ferguson et al. (2005, Fig. 3) to be of a Langhian to end-<br />

Tortonian age, whereas <strong>in</strong> reality it is no younger than<br />

Serravalian, truncated by <strong>the</strong> base-Tortonian erosional<br />

unconformity (Figure 2). The time-span of <strong>the</strong> Güvenç<br />

Formation is <strong>the</strong> same as that of <strong>the</strong> C<strong>in</strong>göz Formation,<br />

which is its <strong>near</strong>shore time-equivalent.<br />

• The Kuzgun Formation was considered by Burton-<br />

Ferguson et al. (2005, Fig. 3) to be Tortonian to earliest<br />

<strong>Mess<strong>in</strong>ian</strong> <strong>in</strong> age, whereas <strong>in</strong> reality this terrestrial<br />

formation is of an earliest Tortonian age, covered<br />

transgressively by <strong>the</strong> mar<strong>in</strong>e Handere Formation whose<br />

basal part bears planktonic forams of zone MMi10 and<br />

nannofossils of <strong>the</strong> uppermost zone MNN7c (Figure 2).<br />

• The Handere Formation was considered by Burton-<br />

Ferguson et al. (2005, Fig. 3) to be of a Pliocene age and<br />

overly<strong>in</strong>g <strong>Mess<strong>in</strong>ian</strong> evaporites, whereas its actual age is<br />

Tortonian to <strong>Mess<strong>in</strong>ian</strong> and <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> evaporites<br />

occur at its top (Figure 2).<br />

ILGAR et al. / Turkish J Earth Sci<br />

C<br />

1 m 1 m<br />

Figure 12. (a) Late Miocene shallow-mar<strong>in</strong>e deposits folded by compressional tectonic deformation at <strong>the</strong> <strong>in</strong>ner<br />

marg<strong>in</strong> of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>; picture from locality 4 <strong>in</strong> Figure 1b. (b, c) The exhumed planes of extensional normal<br />

faults <strong>in</strong> Miocene limestones at <strong>the</strong> <strong>in</strong>ner marg<strong>in</strong> of <strong>the</strong> Mut Bas<strong>in</strong>; picture from locality 5 and <strong>in</strong> Figure 1b.<br />

SE<br />

Accord<strong>in</strong>gly, <strong>the</strong> tim<strong>in</strong>g of <strong>the</strong> Miocene events <strong>in</strong> <strong>the</strong><br />

bas<strong>in</strong> <strong>in</strong> our <strong>in</strong>terpretation, summarised <strong>in</strong> Figure 10,<br />

differs slightly from <strong>the</strong> chronology suggested by Burton-<br />

Ferguson et al. (2005).<br />

The seismic data <strong>in</strong>dicate that <strong>the</strong> Miocene bas<strong>in</strong> was<br />

<strong>in</strong>itially a trough plung<strong>in</strong>g towards <strong>the</strong> SW and pass<strong>in</strong>g<br />

<strong>in</strong>to <strong>the</strong> Cilicia Bas<strong>in</strong> (Figure 10a). The <strong>in</strong>cipient Misis<br />

Structural High was probably a low-relief horst (Figure 10b;<br />

see Aksu et al. 2005, Fig. 8), perhaps shallowly submerged.<br />

Progressive unconformities on its flanks (Burton-Ferguson<br />

et al. 2005, Fig. 9) <strong>in</strong>dicate that it became gradually elevated<br />

by differential subsidence dur<strong>in</strong>g <strong>the</strong> Langhian–Tortonian<br />

and eventually popped up as a northward extension of<br />

<strong>the</strong> Kyrenia fold-and-thrust ridge <strong>in</strong> <strong>the</strong> latest Tortonian<br />

to early <strong>Mess<strong>in</strong>ian</strong> time (see Aksu et al. 2005, Fig. 12),<br />

when <strong>the</strong> Miocene succession also evidently underwent<br />

thrust<strong>in</strong>g (Figure 10b; see Burton-Ferguson et al. 2005,<br />

Figs. 14 & 15). This event is thought to have marked <strong>the</strong><br />

tectonic conversion of <strong>the</strong> Miocene <strong>Adana</strong> foredeep <strong>in</strong>to a<br />

thrust-soled piggyback bas<strong>in</strong> (Figure 10b).<br />

The biostratigraphic data <strong>in</strong>dicate that <strong>the</strong> <strong>forced</strong><br />

regression which formed <strong>the</strong> Gilbert-type deltas and<br />

caused fluvial valley <strong>in</strong>cision (Figure 11a) occurred <strong>in</strong><br />

<strong>the</strong> latest Tortonian to early <strong>Mess<strong>in</strong>ian</strong>, ~7.8 to 6.4 Ma<br />

17


B.P. (Figure 9), predat<strong>in</strong>g <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> early evaporative<br />

drawdown of <strong>the</strong> Mediterranean Sea (dated to 5.96 ±<br />

0.02 by Krijgsman et al. 1999). The cause of this stepwise<br />

and depositional <strong>forced</strong> regression is thought to have<br />

been <strong>the</strong> late Tortonian tectonic conversion of <strong>the</strong> <strong>Adana</strong><br />

foredeep shelf <strong>in</strong>to a thrust wedge-top (piggyback) bas<strong>in</strong>,<br />

as is also evidenced by <strong>the</strong> compressional deformation<br />

of late Miocene bas<strong>in</strong>-marg<strong>in</strong> deposits (Figure 12a).<br />

The tectonic thrust<strong>in</strong>g would likely cause a stepwise<br />

bas<strong>in</strong>-floor uplift and relative sea-level fall (Figure 7b).<br />

The biostratigraphically constra<strong>in</strong>ed time frame for<br />

18<br />

A<br />

15<br />

10<br />

5<br />

thickness (metres)<br />

0<br />

delta topset<br />

Delta foreset<br />

B<br />

30<br />

25<br />

20<br />

mudstone samples for<br />

planktonic foram<strong>in</strong>ifera<br />

Tırtar Fm.<br />

clay sand gravel<br />

silt<br />

ILGAR et al. / Turkish J Earth Sci<br />

delta foreset<br />

Delta topset<br />

coral and Miocene<br />

limestone blocks<br />

large coral<br />

fragments<br />

upslope-dipp<strong>in</strong>g<br />

backset deposits with<br />

large coral fragments<br />

Delta foreset<br />

bioturbated sandstones<br />

and oyster shells<br />

foreset direction<br />

C<br />

coral and reefal<br />

limestone fragments<br />

D<br />

backset<br />

coral<br />

fragments<br />

Figure 13. (a) Longitud<strong>in</strong>al outcrop section of <strong>the</strong> latest Tortonian Gilbert-type delta <strong>in</strong> <strong>the</strong> Mut Bas<strong>in</strong>. (b) Vertical sedimentological<br />

log of <strong>the</strong> delta deposits, show<strong>in</strong>g a coarsen<strong>in</strong>g-upwards coarse-gra<strong>in</strong>ed succession overly<strong>in</strong>g directly <strong>the</strong> Tırtar limestone. (c) Closeup<br />

view of <strong>the</strong> delta topset conglomerates, rich <strong>in</strong> pebble- to cobble-sized fragments of Miocene reefal limestones and corals. (d) A<br />

backset of upslope-dipp<strong>in</strong>g cross-strata with<strong>in</strong> <strong>the</strong> delta conglomeratic foreset. Pictures and log from locality 7 <strong>in</strong> Figure 1b.<br />

<strong>the</strong> regression thus gives a more accurate tim<strong>in</strong>g of this<br />

tectonic event <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> (cf. Burton-Ferguson et<br />

al. 2005).<br />

The formation of a piggyback bas<strong>in</strong> would signify<br />

<strong>the</strong> climax of <strong>the</strong> structural contraction and thicken<strong>in</strong>g<br />

of <strong>the</strong> orogen, which would normally be followed by a<br />

regulat<strong>in</strong>g flexural subsidence of <strong>the</strong> foreland under <strong>the</strong><br />

<strong>in</strong>creased crustal load (DeCelles & Giles 1996). Such an<br />

episode of postthrust<strong>in</strong>g isostatic subsidence is thought<br />

to have term<strong>in</strong>ated <strong>the</strong> bas<strong>in</strong>ward advance of <strong>the</strong> deltas<br />

(LST) and caused <strong>the</strong>ir shallow mar<strong>in</strong>e drown<strong>in</strong>g (TST)


<strong>in</strong> an estimated period between ~6.4 and ~6.0 Ma B.P.<br />

(Figure 11b). The mar<strong>in</strong>e highstand sedimentation (HST)<br />

was evaporitic, which <strong>in</strong>dicates flood<strong>in</strong>g by hypersal<strong>in</strong>e<br />

water and thus suggests that <strong>the</strong> hypersal<strong>in</strong>ity <strong>in</strong> <strong>the</strong><br />

eastern Mediterranean Sea was reached at least ~6.5<br />

Ma B.P. The deposition of gypsiferous HST was term<strong>in</strong>ated<br />

by <strong>the</strong> regional onset of <strong>the</strong> early evaporative drawdown <strong>in</strong><br />

<strong>the</strong> Mediterranean Sea ~6 Ma B.P. (Krijgsman et al. 1999),<br />

which caused <strong>the</strong> second, erosional <strong>forced</strong> <strong>Mess<strong>in</strong>ian</strong><br />

regression <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> (Figure 11c).<br />

The early evaporative drawdown <strong>in</strong> <strong>the</strong> Mediterranean<br />

Sea might not exceed 200 m (Dronkert 1985; Krijgsman<br />

et al. 1999), but it was more than sufficient to emerge <strong>the</strong><br />

shallow-mar<strong>in</strong>e peripheral bas<strong>in</strong>. Dur<strong>in</strong>g <strong>the</strong> ensu<strong>in</strong>g<br />

desiccation of <strong>the</strong> Mediterranean Sea, <strong>the</strong> postorogenic<br />

regional isostatic uplift (Jaffey & Robertson 2005;<br />

Cosent<strong>in</strong>o et al. 2012) had apparently elevated <strong>the</strong> <strong>Adana</strong><br />

Bas<strong>in</strong> sufficiently high to prevent its reflood<strong>in</strong>g by <strong>the</strong><br />

Zanclean regional transgression dated to 5.3 Ma B.P.<br />

The bas<strong>in</strong> thus rema<strong>in</strong>ed terrestrial and accumulated<br />

a succession of Pliocene–Quaternary fluvial terraces<br />

(Figure 2) <strong>in</strong> response to <strong>the</strong> cont<strong>in</strong>u<strong>in</strong>g uplift of <strong>the</strong><br />

Taurides comb<strong>in</strong>ed with concurrent eustatic sea-level<br />

changes (Haq et al. 1988).<br />

8.2. Comparison with <strong>the</strong> Mut Bas<strong>in</strong><br />

The end-Serravalian fall and rise of relative sea level<br />

recorded <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> (Figure 2) are also well<br />

recognisable <strong>in</strong> <strong>the</strong> o<strong>the</strong>r Mediterranean peripheral bas<strong>in</strong>s<br />

of sou<strong>the</strong>rn Turkey (Kell<strong>in</strong>g et al. 2005), such as <strong>the</strong><br />

adjacent Mut-Ermenek Bas<strong>in</strong> (Atabey et al. 2000; Ilgar &<br />

Nemec 2005) and <strong>the</strong> Antalya Bas<strong>in</strong> far<strong>the</strong>r to <strong>the</strong> west<br />

(Figure 1a; Flecker et al. 1995; Karabıyıkoğlu et al. 2000;<br />

Deynoux et al. 2005; Monod et al. 2006; Ç<strong>in</strong>er et al. 2008).<br />

An array of fan deltas prograded and became drowned<br />

<strong>in</strong> <strong>the</strong> Antalya Bas<strong>in</strong> at that time (Larsen 2003), whereas<br />

an <strong>in</strong>cised fluvial valley filled with a Gilbert-type delta,<br />

stratigraphically equivalent to <strong>the</strong> Kuzgun Formation <strong>in</strong><br />

<strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> (Figure 2), separates <strong>the</strong> amalgamated<br />

Burdigalian–Serravalian and Tortonian reefal platforms <strong>in</strong><br />

<strong>the</strong> Ermenek Bas<strong>in</strong> (Ilgar et al. unpublished data). The great<br />

amplitude of this early Tortonian eustatic cycle (see Haq et<br />

al. 1988) rendered it widely recognisable and correlative.<br />

However, <strong>the</strong> subsequent relative sea-level changes that<br />

occurred <strong>in</strong> <strong>the</strong>se peripheral bas<strong>in</strong>s <strong>in</strong> Tortonian over a<br />

period of <strong>near</strong>ly 4 Ma are by no means correlative.<br />

In contrast to <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>, <strong>the</strong> o<strong>the</strong>r peripheral<br />

bas<strong>in</strong>s formed as postorogenic <strong>in</strong>tramontane collapse<br />

depressions and <strong>the</strong>ir <strong>in</strong>dividual sedimentation history<br />

had recorded <strong>the</strong> <strong>in</strong>terplay between lower-amplitude<br />

eustatic cycles and <strong>the</strong> gradual isostatic uplift of <strong>the</strong><br />

orogen, local extensional tectonics and variable sediment<br />

supply. The gravelly deltas that formed <strong>in</strong> <strong>the</strong>se bas<strong>in</strong>s <strong>in</strong><br />

<strong>the</strong> Tortonian are ma<strong>in</strong>ly noncorrelative local sequences<br />

ILGAR et al. / Turkish J Earth Sci<br />

and parasequences. As an <strong>in</strong>structive example, we discuss<br />

here <strong>the</strong> development of a late Tortonian Gilbert-type<br />

delta <strong>in</strong> <strong>the</strong> <strong>near</strong>by Mut Bas<strong>in</strong> (Figure 13a; see locality <strong>in</strong><br />

Figure 1b).<br />

The late Tortonian deltaic deposits <strong>in</strong> <strong>the</strong> Mut<br />

Bas<strong>in</strong> belong to <strong>the</strong> shallow-mar<strong>in</strong>e Ballı Formation<br />

(stratigraphic equivalent of <strong>the</strong> Handere Formation <strong>in</strong> <strong>the</strong><br />

<strong>Adana</strong> Bas<strong>in</strong>, Figure 2) and overlie sharply an erosional<br />

ramp of <strong>the</strong> bas<strong>in</strong>-marg<strong>in</strong> reefal limestones of <strong>the</strong> Tırtar<br />

Formation. The Gilbert-type delta prograded from <strong>the</strong><br />

bas<strong>in</strong>’s nor<strong>the</strong>rn marg<strong>in</strong> towards <strong>the</strong> SSW and formed a<br />

coarsen<strong>in</strong>g-upwards clastic succession up to 30 m thick<br />

(Figure 13b). The delta’s fluvial topset has an erosional<br />

base and consists of coarse conglomerates and subord<strong>in</strong>ate<br />

sandstones, rich <strong>in</strong> pebble- to cobble-sized coral fragments<br />

and Miocene limestone debris (Figure 13c). The gravel is<br />

ma<strong>in</strong>ly angular to subangular and moderately sorted, with<br />

a clast-supported texture and a matrix of poorly sorted<br />

coarse sand and granules. F<strong>in</strong><strong>in</strong>g-upwards bedsets of planar<br />

parallel-stratified gravel, 40–90 cm thick, are thought to<br />

be multistorey palaeochannels of braided streams filled<br />

ma<strong>in</strong>ly by <strong>the</strong> deposition of longitud<strong>in</strong>al bars (Nemec<br />

& Postma 1993; Miall 1996). Nonstratified gravel beds<br />

relatively richer <strong>in</strong> sand matrix, with or without normal<br />

grad<strong>in</strong>g, are probably deposits of hyperconcentrated flows<br />

and debris flows generated by <strong>the</strong> sediment-sweep<strong>in</strong>g<br />

action of stream floods (Wasson 1977, 1979; Nemec &<br />

Muszyński 1982; Ridgway & DeCelles 1993).<br />

The erosional, oblique contact between <strong>the</strong> topset<br />

and foreset deposits (Figures 13a and 13b) <strong>in</strong>dicates a<br />

nonris<strong>in</strong>g trajectory of <strong>the</strong> delta shorel<strong>in</strong>e (Breda et al.<br />

2007), which may suggest a normal or a <strong>forced</strong> regression.<br />

Foreset beds are ma<strong>in</strong>ly tabular, 10–45 cm thick, and<br />

<strong>in</strong>cl<strong>in</strong>ed at up to 25°, composed of f<strong>in</strong>e- to very coarsegra<strong>in</strong>ed<br />

sandstones rich <strong>in</strong> granules and scattered pebbles<br />

of up to 4 cm <strong>in</strong> size. Scattered oyster shells and isolated<br />

burrows are also common. The beds have erosional bases<br />

and show plane-parallel stratification, with or without<br />

normal grad<strong>in</strong>g. Their tractional deposition is attributed to<br />

fully turbulent hyperpycnal flows, or river-generated lowdensity<br />

turbidity currents (sensu Lowe 1982). Among <strong>the</strong><br />

foreset beds are backsets of upslope-dipp<strong>in</strong>g cross-strata<br />

(Figures 13b and 13d), which occur as <strong>the</strong> <strong>in</strong>fill of deltaslope<br />

chutes, up to 250 cm deep. The chute-fill deposits are<br />

rich <strong>in</strong> large coral fragments and reefal limestone debris,<br />

up to 100 cm <strong>in</strong> size, derived from <strong>the</strong> bas<strong>in</strong>-marg<strong>in</strong><br />

Miocene carbonate platform. Delta bottomset consists of<br />

th<strong>in</strong> siltstone and f<strong>in</strong>e-gra<strong>in</strong>ed sandstone beds <strong>in</strong>tercalated<br />

with mudstones (Figure 13b).<br />

The delta, thus built out directly on a wave-cut<br />

carbonate ramp, shows an erosional topset/foreset contact<br />

and conta<strong>in</strong>s debris derived from denudation of <strong>the</strong> bas<strong>in</strong>marg<strong>in</strong><br />

reefal limestones. Fur<strong>the</strong>rmore, <strong>the</strong> delta <strong>in</strong> its distal<br />

19


part is covered with th<strong>in</strong>ly bedded reefal limestones, which<br />

<strong>in</strong>dicates a shallow drown<strong>in</strong>g, cessation of fluvial supply,<br />

and thus a considerable landward shift of <strong>the</strong> shorel<strong>in</strong>e.<br />

There are no younger mar<strong>in</strong>e deposits <strong>in</strong> <strong>the</strong> bas<strong>in</strong>, which<br />

implies its subsequent emergence. Taken toge<strong>the</strong>r, <strong>the</strong><br />

evidence <strong>in</strong>dicates a <strong>forced</strong> regression followed by limited<br />

mar<strong>in</strong>e reflood<strong>in</strong>g, and <strong>the</strong> delta’s association with <strong>the</strong><br />

upper part of <strong>the</strong> Tırtar Formation might thus render it<br />

correlative with <strong>the</strong> deltas <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>. In reality,<br />

<strong>the</strong> delta <strong>in</strong> <strong>the</strong> Mut Bas<strong>in</strong> is significantly older than <strong>the</strong><br />

deltas <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>, as evidenced by biostratigraphic<br />

data.<br />

The age of <strong>the</strong> deltaic deposits <strong>in</strong> <strong>the</strong> Mut Bas<strong>in</strong> has<br />

been determ<strong>in</strong>ed on <strong>the</strong> basis of planktonic foram<strong>in</strong>ifera<br />

<strong>in</strong> 10 mudstone samples from a vertical outcrop section<br />

of <strong>the</strong> delta bottomset deposits. Planktonic foram<strong>in</strong>ifera<br />

are abundant and well preserved, but show a relatively low<br />

to moderate diversity and are accompanied by benthic<br />

foram<strong>in</strong>ifers (representatives of Ammonia, Elphidium,<br />

Bulim<strong>in</strong>a, Boliv<strong>in</strong>a, Uviger<strong>in</strong>a, Nonion, miliolids, and<br />

nodosarids), gastropods, bivalves, ostracods, and<br />

ech<strong>in</strong>id sp<strong>in</strong>es. The dom<strong>in</strong>ant planktonic species are<br />

Globiger<strong>in</strong>a and Globiger<strong>in</strong>oides, accompanied by<br />

abundant globoturborotalids, neogloboquadr<strong>in</strong>ids, and<br />

orbul<strong>in</strong>ids. All samples consistently conta<strong>in</strong> Globiger<strong>in</strong>a<br />

bulloides d’Orbigny, Globiger<strong>in</strong>oides trilobus (Reuss), G.<br />

quadrilobatus (d’Orbigny), G. obliquus Bolli, G. bulloideus<br />

Crescenti, Globiger<strong>in</strong>ella obesa (Bolli), Neogloboquadr<strong>in</strong>a<br />

acostaensis (Blow), N. cont<strong>in</strong>uosa (Blow), and<br />

Globoturborotalita woodi (Jenk<strong>in</strong>s). Species that are less<br />

consistently present or rare <strong>in</strong>clude Globoturborotalita<br />

decoraperta (Takayanagi & Saito), Tenuitell<strong>in</strong>ata<br />

angustiumbilicata (Bolli), Catapsydrax parvulus Bolli,<br />

Loeblich & Tappan, Globorotalia scitula (Brady),<br />

Globiger<strong>in</strong>ita uvula (Ehrenberg), Globiger<strong>in</strong>ita <strong>in</strong>crusta<br />

Akers, G. glut<strong>in</strong>ata (Egger), and Globiger<strong>in</strong>oides seigliei<br />

Bermudez & Bolli. The majority are long-range species,<br />

but <strong>the</strong> cooccurrence of Neogloboquadr<strong>in</strong>a cont<strong>in</strong>uosa<br />

(Blow), N. acostaensis (Blow), Globiger<strong>in</strong>oides bollii Blow,<br />

and G. seigliei Bermudez & Bolli <strong>in</strong>dicates a Tortonian age<br />

of <strong>the</strong> deposits. The cooccurrence of <strong>the</strong>se last 3 species<br />

suggests an age probably not older than biozone MMi11<br />

(Figure 9; D’Onofrio et al. 1975; Iaccar<strong>in</strong>o 1985; Iaccar<strong>in</strong>o<br />

et al. 2007). The age can be constra<strong>in</strong>ed fur<strong>the</strong>r by <strong>the</strong><br />

presence of Neogloboquadr<strong>in</strong>a cont<strong>in</strong>uosa Blow, whose last<br />

stratigraphic occurrence <strong>in</strong> <strong>the</strong> Mediterranean is <strong>in</strong> <strong>the</strong><br />

subzone Globiger<strong>in</strong>oides obliquus extremus/G. bulloideus<br />

(Iaccar<strong>in</strong>o 1985) or subzone MMi12a of Iaccar<strong>in</strong>o et<br />

al. (2007). The deltaic bottomset deposits, coeval with<br />

<strong>the</strong> delta built-out, can thus be assigned to <strong>the</strong> biozone<br />

<strong>in</strong>terval MMi11–MMi12a (Figure 9; D’Onofrio et al.<br />

1975; Iaccar<strong>in</strong>o 1985; Iaccar<strong>in</strong>o et al. 2007). The delta<br />

thus appears to have prograded <strong>in</strong> an approximate time of<br />

20<br />

ILGAR et al. / Turkish J Earth Sci<br />

8.5–7.8 Ma B.P., which corresponds to <strong>the</strong> regressive part<br />

(8.3–7.8 Ma B.P.) of <strong>the</strong> third-order eustatic sea-level cycle<br />

TB3.2 of Haq et al. (1988).<br />

In summary, <strong>the</strong> isolated late Tortonian delta <strong>in</strong> <strong>the</strong> Mut<br />

Bas<strong>in</strong>, although seem<strong>in</strong>gly correlative with similar deltas <strong>in</strong><br />

<strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>, is significantly older. Its development and<br />

drown<strong>in</strong>g were apparently related to a third-order eustatic<br />

sea-level cycle, ra<strong>the</strong>r than local tectonics. There was no<br />

compressional Neogene deformation <strong>in</strong> <strong>the</strong> Mut Bas<strong>in</strong>,<br />

whose marg<strong>in</strong> <strong>in</strong>stead shows normal faults <strong>in</strong>dicat<strong>in</strong>g<br />

postorogenic tectonic extension (Figures 12b and 12c).<br />

The amplitude of eustatic cycle TB3.2 did not exceed 30 m<br />

(Haq et al. 1988), but <strong>the</strong> sea-level change was recognised<br />

<strong>in</strong> several o<strong>the</strong>r peri-Mediterranean bas<strong>in</strong>s (e.g., Rouchy<br />

& Sa<strong>in</strong>t Mart<strong>in</strong> 1992; Larsen 2003; Roveri & Manzi 2006).<br />

However, this eustatic cycle was also modulated by<br />

local tectonics and became recorded differently <strong>in</strong> different<br />

bas<strong>in</strong>s. The mar<strong>in</strong>e reflood<strong>in</strong>g of <strong>the</strong> Mut Bas<strong>in</strong> was<br />

probably outpaced by <strong>the</strong> regional isostatic uplift of <strong>the</strong><br />

Central Taurides, whereby <strong>the</strong> bas<strong>in</strong> became emerged well<br />

before <strong>the</strong> hypersal<strong>in</strong>ity state and evaporative drawdown<br />

of <strong>the</strong> Mediterranean Sea. In <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>, this<br />

eustatic cycle went unrecognisable (Figure 2), probably<br />

because <strong>the</strong> low-amplitude eustatic sea-level fall was fully<br />

compensated by <strong>the</strong> postthrust<strong>in</strong>g isostatic subsidence of<br />

<strong>the</strong> foreland bas<strong>in</strong>. In <strong>the</strong> Antalya Bas<strong>in</strong>, <strong>in</strong> contrast, <strong>the</strong><br />

Tortonian succession as a whole is regressive (Flecker et<br />

al. 1995; Deynoux et al. 2005; Ç<strong>in</strong>er et al. 2008), yet shows<br />

no less than 4 cycles of a mar<strong>in</strong>e drown<strong>in</strong>g and renewed<br />

progradation of <strong>the</strong> bas<strong>in</strong>-marg<strong>in</strong> fan deltas (Larsen<br />

2003). Their exact tim<strong>in</strong>g is uncerta<strong>in</strong> and none of <strong>the</strong>se<br />

cyclo<strong>the</strong>ms is recognisably <strong>forced</strong>-regressive, but at least<br />

some of <strong>the</strong>m may be third-order eustatic sequences of<br />

type 2.<br />

These regional comparisons illustrate <strong>the</strong> difficulty<br />

with <strong>in</strong>terbas<strong>in</strong>al stratigraphic correlations and serve as a<br />

warn<strong>in</strong>g aga<strong>in</strong>st a superficial l<strong>in</strong>k<strong>in</strong>g of seem<strong>in</strong>gly similar<br />

events <strong>in</strong> <strong>the</strong> late Miocene peri-Mediterranean bas<strong>in</strong>s (see<br />

also discussions by Clauzon et al. 1996; Soria et al. 2003;<br />

Roveri & Manzi 2006). Reliable stratigraphic correlations<br />

require biostratigraphic constra<strong>in</strong>ts, a good understand<strong>in</strong>g<br />

of <strong>the</strong> bas<strong>in</strong>’s bathymetric conditions and sedimentary<br />

systems, and a careful account of <strong>the</strong> bas<strong>in</strong>’s tectonic<br />

development. False hypo<strong>the</strong>tical correlations of regional<br />

events lead to mistaken regional <strong>in</strong>terpretations.<br />

9. Conclusions<br />

This comb<strong>in</strong>ed sedimentological, sequence-stratigraphic,<br />

and biostratigraphic study of <strong>the</strong> late Miocene deposits<br />

<strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong> has shown that <strong>the</strong> shallow-mar<strong>in</strong>e<br />

Handere Formation of Tortonian–<strong>Mess<strong>in</strong>ian</strong> age,<br />

previously <strong>in</strong>terpreted as a simple regressive succession,<br />

bears a high-resolution record of several major relative


sea-level changes <strong>in</strong> <strong>the</strong> bas<strong>in</strong>. The base of this formation<br />

recorded a <strong>forced</strong> regression correspond<strong>in</strong>g to <strong>the</strong> end-<br />

Serravalian (Tor-1) eustatic fall <strong>in</strong> sea level. The lower to<br />

middle part of <strong>the</strong> formation is transgressive, culm<strong>in</strong>at<strong>in</strong>g<br />

<strong>in</strong> offshore mudstones. The upper part is regressive and<br />

its 3 isolated conglomeratic members represent sharpbased<br />

Gilbert-type deltas with axially <strong>in</strong>cised fluvial<br />

valleys that recorded a depositional <strong>forced</strong> regression,<br />

biostratigraphically dated to ~7.8 to 6.4 Ma B.P. on <strong>the</strong> basis<br />

of planktonic foram<strong>in</strong>ifera <strong>in</strong> delta bottomset deposits.<br />

This latest Tortonian–early <strong>Mess<strong>in</strong>ian</strong> regression is<br />

attributed to <strong>the</strong> tectonic conversion of <strong>the</strong> <strong>Adana</strong> foredeep<br />

shelf <strong>in</strong>to a piggyback bas<strong>in</strong>, as is <strong>in</strong>dependently <strong>in</strong>dicated<br />

by seismic profiles and compressional bas<strong>in</strong>-marg<strong>in</strong><br />

deformation. The mar<strong>in</strong>e reflood<strong>in</strong>g of <strong>the</strong> bas<strong>in</strong>, estimated<br />

at ~6.4 to 6 Ma B.P., is ascribed to a postthrust<strong>in</strong>g flexural<br />

subsidence of <strong>the</strong> foreland under <strong>in</strong>creased crustal load.<br />

The transgression brought <strong>in</strong> evaporitic sedimentation,<br />

which suggests <strong>in</strong>vasion of hypersal<strong>in</strong>e Mediterranean<br />

water. The Mediterranean Sea <strong>in</strong> its eastern part would thus<br />

appear to have reached hypersal<strong>in</strong>ity around 6.5 Ma B.P.<br />

The bas<strong>in</strong> was subsequently emerged and its<br />

gypsiferous deposits were extensively eroded due to<br />

ano<strong>the</strong>r <strong>Mess<strong>in</strong>ian</strong> <strong>forced</strong> regression, which is attributed<br />

to <strong>the</strong> early evaporative drawdown of <strong>the</strong> Mediterranean<br />

Sea, regionally dated to ~6 Ma B.P. The Mediterranean<br />

Sea <strong>the</strong>n desiccated. The postorogenic regional isostatic<br />

uplift of <strong>the</strong> Taurides had meanwhile elevated <strong>the</strong> <strong>Adana</strong><br />

Bas<strong>in</strong> sufficiently to prevent its reflood<strong>in</strong>g by <strong>the</strong> Zanclean<br />

regional transgression at 5.3 Ma B.P. The bas<strong>in</strong> rema<strong>in</strong>ed<br />

terrestrial <strong>in</strong> <strong>the</strong> post-Miocene time, accumulat<strong>in</strong>g a<br />

References<br />

Aksu, A.E., Calon, T.J., Hall, J., Mansfield, S. & Yaşar, D. 2005.<br />

The Cilicia–<strong>Adana</strong> bas<strong>in</strong> complex, Eastern Mediterranean:<br />

Neogene evolution of an active fore-arc bas<strong>in</strong> <strong>in</strong> an obliquely<br />

convergent marg<strong>in</strong>. Mar<strong>in</strong>e Geology 221, 121–159.<br />

Aktaş, G. & Robertson, A.H.F. 1990. Tectonic evolution of <strong>the</strong><br />

Tethys suture zone <strong>in</strong> SE Turkey: evidence from <strong>the</strong> petrology<br />

and geochemistry of Late Cretaceous and Middle Eocene<br />

extrusives. In: Malpas, J., Moores, E.M., Panayiotou, A. &<br />

Xenophontos, C. (eds), Ophiolites – Oceanic Crustal Analogues.<br />

Proceed<strong>in</strong>gs of <strong>the</strong> International Symposium Troodos 1987,<br />

Cyprus Geological Survey, Nicosia, pp. 311–328.<br />

Alçiçek, H. 2010. Stratigraphic correlation of <strong>the</strong> Neogene bas<strong>in</strong>s<br />

<strong>in</strong> southwestern Anatolia: regional palaeogeographical,<br />

palaeoclimatic and tectonic implications. Palaeogeography<br />

Palaeoclimatology Palaeoecology 291, 297–318.<br />

Alçiçek, M.C., Kazancı, N. & Özkul, M. 2005. Multiple rift<strong>in</strong>g pulses<br />

and sedimentation pattern <strong>in</strong> <strong>the</strong> Çameli Bas<strong>in</strong>, southwestern<br />

Anatolia, Turkey. Sedimentary Geology 173, 409–431.<br />

ILGAR et al. / Turkish J Earth Sci<br />

succession of fluvial terraces <strong>in</strong> response to <strong>the</strong> cont<strong>in</strong>u<strong>in</strong>g<br />

slow uplift of <strong>the</strong> Taurides and eustatic sea-level changes.<br />

Comparison with <strong>the</strong> late Miocene deposits <strong>in</strong> <strong>the</strong><br />

adjacent Mut Bas<strong>in</strong> and <strong>the</strong> Antalya Bas<strong>in</strong> far<strong>the</strong>r to <strong>the</strong><br />

west demonstrates that <strong>in</strong>terbas<strong>in</strong>al correlations <strong>in</strong> <strong>the</strong><br />

peri-Mediterranean zone of Turkey are difficult and that<br />

a superficial l<strong>in</strong>k<strong>in</strong>g of comparable events may be quite<br />

mislead<strong>in</strong>g. It would appear that <strong>the</strong> local tim<strong>in</strong>g of <strong>the</strong> late<br />

Miocene relative sea-level changes and <strong>the</strong> landward extent<br />

of <strong>the</strong> Zanclean mar<strong>in</strong>e reflood<strong>in</strong>g were both determ<strong>in</strong>ed<br />

by <strong>the</strong> comb<strong>in</strong>ation of eustasy, local tectonics, bas<strong>in</strong><br />

topography, and sediment supply. The <strong>in</strong>dividual bas<strong>in</strong>fill<br />

successions, <strong>in</strong>stead of be<strong>in</strong>g averaged by superficial<br />

correlation, should ra<strong>the</strong>r be analysed <strong>in</strong> detail as <strong>the</strong>y bear<br />

a valuable high-resolution record of local events and give<br />

unique <strong>in</strong>sights <strong>in</strong>to <strong>the</strong> local role of tectonics, sediment<br />

yield, and sea-level changes. The eustatic signal <strong>in</strong> <strong>the</strong> peri-<br />

Mediterranean bas<strong>in</strong>s was variously modulated and often<br />

obscured by <strong>the</strong> local conditions, and its decipher<strong>in</strong>g thus<br />

requires much caution.<br />

Acknowledgments<br />

The field study was funded by <strong>the</strong> General Directorate of<br />

M<strong>in</strong>eral Research and Exploration (MTA). We thank Tolga<br />

Esirtgen, Serap Demirkaya, Serap Akpınar, and Banu<br />

Türkmen for <strong>the</strong>ir valuable field assistance. The manuscript<br />

was first commented upon by Yavuz Hakyemez and <strong>the</strong>n<br />

critically reviewed by Massimiliano Gh<strong>in</strong>assi, Mustafa<br />

Karabıyıkoğlu, and Olivier Monod, whose <strong>in</strong>sightful and<br />

constructive comments are much appreciated. This paper<br />

is dedicated to Carlo Mess<strong>in</strong>a.<br />

Alçiçek, M.C. & Ten Veen, J.H. 2008. The late Early Miocene<br />

Acıpayam piggy-back bas<strong>in</strong>: ref<strong>in</strong><strong>in</strong>g <strong>the</strong> last stages of Lycian<br />

nappe emplacement <strong>in</strong> SW Turkey. Sedimentary Geology 208,<br />

101–113.<br />

Andrew, T. & Robertson, A.H.F. 2002. The Beyşehir-Hoyran-Hadım<br />

nappes: genesis and emplacement of Mesozoic marg<strong>in</strong>al and<br />

oceanic units of <strong>the</strong> nor<strong>the</strong>rn Neotethys <strong>in</strong> sou<strong>the</strong>rn Turkey.<br />

Journal of <strong>the</strong> Geological Society of London 159, 529–543.<br />

Atabey, E., Atabey, N., Hakyemez, A., İslamoğlu, Y., Sözeri, Ş., Özçelik,<br />

N.N., Saraç¸ G., Ünay, E. & Babayiğit, S. 2000. Mut-Karaman<br />

arası Miyosen havzasının litosratigrafisi ve sedimantolojisi.<br />

Bullet<strong>in</strong> of M<strong>in</strong>eral Research and Exploration 122, 53–72.<br />

Barrell, J. 1912. Criteria for <strong>the</strong> recognition of ancient delta deposits.<br />

Bullet<strong>in</strong> of <strong>the</strong> Geological Society of America 23, 377–446.<br />

Bartol, J., Govers, R. & Wortel, R. 2011. The Central Anatolian<br />

Plateau: relative tim<strong>in</strong>g of uplift and magmatism. EGU2011<br />

Geophysical Research Abstracts 13, 10326.<br />

21


Bhatacharya, J.P. & Willis, B.J. 2001. Lowstand deltas <strong>in</strong> <strong>the</strong> Frontier<br />

Formation, Powder River Bas<strong>in</strong>, Wyom<strong>in</strong>g: implications<br />

for sequence stratigraphic models. Bullet<strong>in</strong> of <strong>the</strong> American<br />

Association of Petroleum Geologists 85, 261–294.<br />

Bolli, H.M. & Saunders, J.B. 1985. Oligocene to Holocene low<br />

latitude planktonic foram<strong>in</strong>ifera. In: Bolli, H.M., Saunders, J.B.<br />

& Perch-Nielsen, K. (eds), Plankton Stratigraphy. Cambridge<br />

University Press, Cambridge, pp. 155–262.<br />

Bornhold, B.D. & Prior, D.B. 1990. Morphology and sedimentary<br />

processes of <strong>the</strong> subaqueous Noeick River delta, British<br />

Columbia, Canada. In: Colella, A. & Prior, D.B. (eds), Coarsegra<strong>in</strong>ed<br />

Deltas. International Association of Sedimentologists,<br />

Special Publication 10, 169–181.<br />

Bozkurt, E., W<strong>in</strong>chester, J.A. & Piper, J.D.A. (eds) 2000. Tectonics and<br />

Magmatism <strong>in</strong> Turkey and <strong>the</strong> Surround<strong>in</strong>g Area. Geological<br />

Society of London, Special Publication 173.<br />

Breda, A., Mellere, D. & Massari, F. 2007. Facies and processes <strong>in</strong><br />

a Gilbert-delta-filled <strong>in</strong>cised valley (Pliocene of Ventimiglia,<br />

NW Italy). Sedimentary Geology 200, 31–55.<br />

Breda, A, Mellere, D., Massari, F. & Asioli, A. 2009. Vertically stacked<br />

Gilbert-type deltas of Ventimiglia (NW Italy): The Pliocene<br />

record of an overfilled <strong>Mess<strong>in</strong>ian</strong> <strong>in</strong>cised valley. Sedimentary<br />

Geology 219, 58–76.<br />

Burton-Ferguson, R., Aksu, A.E., Calon, T.J. & Hall, J. 2005. Seismic<br />

stratigraphy and structural evolution of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>,<br />

eastern Mediterranean. Mar<strong>in</strong>e Geology 221, 153–183.<br />

Butler, R.W.H., Lickorish, W.H., Grasso, M., Pedley, H.M. &<br />

Ramberti, L. 1995. Tectonics and sequence stratigraphy <strong>in</strong><br />

<strong>Mess<strong>in</strong>ian</strong> bas<strong>in</strong>s, Sicily: constra<strong>in</strong>ts on <strong>the</strong> <strong>in</strong>itiation and<br />

term<strong>in</strong>ation of <strong>the</strong> Mediterranean sal<strong>in</strong>ity crisis. Bullet<strong>in</strong> of <strong>the</strong><br />

Geological Society of America 107, 425–439.<br />

Catuneanu, O. 2006. Pr<strong>in</strong>ciples of Sequence Stratigraphy. Elsevier,<br />

Amsterdam.<br />

Ç<strong>in</strong>er, A., Karabıyıkoğlu, M., Monod, O., Deynoux, M. & Tuzcu,<br />

S. 2008. Late Cenozoic sedimentary evolution of <strong>the</strong> Antalya<br />

Bas<strong>in</strong>, sou<strong>the</strong>rn Turkey. Turkish Journal of Earth Sciences 17,<br />

1–41.<br />

Cita, M.B. & McKenzie, J.A. 1986. The term<strong>in</strong>al Miocene event. In:<br />

Hsü, K.J. (ed.) Mesozoic and Ca<strong>in</strong>ozoic Oceans. Geodynamics<br />

Series, American Geophysical Union, Wash<strong>in</strong>gton, DC, pp.<br />

123–140.<br />

Clark, M. & Robertson, A.H.F. 2005. Uppermost Cretaceous–Lower<br />

Tertiary Ulukışla Bas<strong>in</strong>, south-central Turkey: sedimentary<br />

evolution of part of a unified bas<strong>in</strong> complex with<strong>in</strong> an evolv<strong>in</strong>g<br />

Neotethyan suture zone. Sedimentary Geology 173, 15–51.<br />

Clauzon, G., Suc, J.P., Gautier, F., Berger, A. & Loutre, M.F. 1996.<br />

Alternative <strong>in</strong>terpretation of <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> sal<strong>in</strong>ity crisis:<br />

Controversy resolved? Geology 24, 363–366.<br />

Colella, A. 1988. Pliocene–Holocene fan deltas and braid deltas<br />

<strong>in</strong> <strong>the</strong> Crati Bas<strong>in</strong>, sou<strong>the</strong>rn Italy: a consequence of vary<strong>in</strong>g<br />

tectonic conditions. In: Nemec, W. & Steel, R.J. (eds), Fan<br />

Deltas – Sedimentology and Tectonic Sett<strong>in</strong>gs. Blackie, London,<br />

pp. 50–74.<br />

22<br />

ILGAR et al. / Turkish J Earth Sci<br />

Coll<strong>in</strong>s, A.S. & Robertson, A.H.F. 1998. Processes of Late Cretaceous<br />

to Late Miocene episodic thrust sheet translation <strong>in</strong> <strong>the</strong> Lycian<br />

Taurides, SW Turkey. Journal of <strong>the</strong> Geological Society of<br />

London 155, 759–772.<br />

Coll<strong>in</strong>s, A.S. & Robertson, A.H.F. 2000. Evolution of <strong>the</strong> Lycian<br />

allochthon, western Turkey, as a north-fac<strong>in</strong>g Late Palaeozoic<br />

to Mesozoic rift and passive marg<strong>in</strong>. Geological Journal 34,<br />

107–138.<br />

Coll<strong>in</strong>son, J.D. 1996. Alluvial sediments. In: Read<strong>in</strong>g, H.G. (ed.),<br />

Sedimentary Environments: Processes, Facies and Stratigraphy.<br />

Blackwell Science, Oxford, pp. 37–82.<br />

Coll<strong>in</strong>son, J.D. & Thompson, D.B. 1982. Sedimentary Structures.<br />

Allen and Unw<strong>in</strong>, London.<br />

Cosent<strong>in</strong>o, D., Schildgen, T.F., Cipollari, P., Faranda, C., Gliozzi,<br />

E., Hudáčková, N., Lucifora, S. & Strecker, M.R. 2012. Late<br />

Miocene surface uplift of <strong>the</strong> sou<strong>the</strong>rn marg<strong>in</strong> of <strong>the</strong> Central<br />

Anatolian plateau, Central Taurides, Turkey. Bullet<strong>in</strong> of <strong>the</strong><br />

Geological Society of America 124, 133–145.<br />

DeCelles, G.P. & Giles, A.K. 1996. Foreland bas<strong>in</strong> systems. Bas<strong>in</strong><br />

Research 8, 105–123.<br />

Dewey, J.F. & Şengör, A.M.C. 1979. Aegean and surround<strong>in</strong>g regions:<br />

complex multiplate and cont<strong>in</strong>uum tectonics <strong>in</strong> a convergent<br />

zone. Bullet<strong>in</strong> of <strong>the</strong> Geological Society of America 190, 84–92.<br />

Deynoux, M., Ç<strong>in</strong>er, A., Monod, O., Karabıyıkoğlu, M., Manatschel,<br />

G. & Tuzcu, S. 2005. Facies architecture and depositional<br />

evolution of alluvial fan to fan-delta complexes <strong>in</strong> <strong>the</strong><br />

tectonically active Miocene Köprüçay Bas<strong>in</strong>, Isparta Angle,<br />

Turkey. Sedimentary Geology 173, 315–343.<br />

Dilek, Y. & Moores, E.M. 1990. Regional tectonics of <strong>the</strong> eastern<br />

Mediterranean ophiolites. In: Malpas, J., Moores, E.M.,<br />

Panayiotou, A. & Xenophotos, C. (eds), Ophiolites – Oceanic<br />

Crustal Analogues. Proceed<strong>in</strong>gs of <strong>the</strong> International Symposium<br />

Trodos 1987. Cyprus Geological Survey Department, Nicosia,<br />

pp. 295–309.<br />

Dilek, Y., Whitney, D. & Tekeli, O. 1999. L<strong>in</strong>ks between tectonics<br />

processes and landscape morphology <strong>in</strong> an Alp<strong>in</strong>e collision<br />

zone, south-central Turkey. Zeitschrift für Geomorphologie 118,<br />

147–164.<br />

Di Stefano, A., Verducci, M., Lirer, F., Ferraro, L., Iaccar<strong>in</strong>o, S.M.,<br />

Hüs<strong>in</strong>g, S.K. & Hilgen, F.J. 2010. Paleoenvironmental conditions<br />

preced<strong>in</strong>g <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> Sal<strong>in</strong>ity Crisis <strong>in</strong> <strong>the</strong> Central<br />

Mediterranean: <strong>in</strong>tegrated data from <strong>the</strong> Upper Miocene<br />

Trave section (Italy). Palaeogeography Palaeoclimatology<br />

Palaeoecology 297, 37–53.<br />

D’Onofrio, S., Giannelli, L., Iaccar<strong>in</strong>o, S., Morlotti, E., Romeo, M.,<br />

Salvator<strong>in</strong>i, G., Sampò, M. & Sprovieri, R. 1975. Planktonic<br />

foram<strong>in</strong>ifera of <strong>the</strong> Upper Miocene from some Italian sections<br />

and <strong>the</strong> problem of <strong>the</strong> lower boundary of <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong>.<br />

Bollett<strong>in</strong>o della Società Paleontologica Italiana 14, 177–196.<br />

Dr<strong>in</strong>ia, H., Antonarakou, A., Tsaparas, N., Dermitzakis, M.D. &<br />

Kontakiotis, G. 2004. Foram<strong>in</strong>iferal record of environmental<br />

changes: preevaporitic diatomaceous sediments from Gavdos<br />

Island, sou<strong>the</strong>rn Greece. Bullet<strong>in</strong> of <strong>the</strong> Geological Society of<br />

Greece 36, 782–791.


Dronkert, H. 1985. Evaporite models and sedimentology of<br />

<strong>Mess<strong>in</strong>ian</strong> and recent evaporites. GUA Papers <strong>in</strong> Geology, Series<br />

1, 24.<br />

Durand, B., Jolivet, L., Horváth, F. & Séranne, M. (eds) 1999. The<br />

Mediterranean Bas<strong>in</strong>s: Tertiary Extension with<strong>in</strong> <strong>the</strong> Alp<strong>in</strong>e<br />

Orogen. Geological Society of London, Special Publication 156.<br />

Embry, A.F. 2002. Transgressive-regressive (T-R) sequence<br />

stratigraphy. In: Armentrout, J. & Rosen, N. (eds), Sequence<br />

Stratigraphic Models for Exploration and Production: Gulf<br />

Coast. Society of Economic Paleontologists and M<strong>in</strong>eralogists,<br />

Gulf Coast Division Conference Proceed<strong>in</strong>gs, Houston, pp.<br />

151–172.<br />

Flecker, R., Poisson, A. & Robertson, A.H.F. 2005. Facies and<br />

palaeogeographic evidence for <strong>the</strong> Miocene evolution of <strong>the</strong><br />

Isparta Angle <strong>in</strong> its regional eastern Mediterranean context.<br />

Sedimentary Geology 173, 277–314.<br />

Flecker, R., Robertson, A.H.F., Poisson, A. & Müller, C. 1995. Facies<br />

and tectonic significance of two contrast<strong>in</strong>g Miocene bas<strong>in</strong>s <strong>in</strong><br />

south coastal Turkey. Terra Nova 7, 221–232.<br />

Gh<strong>in</strong>assi, M. 2007. The effects of differential subsidence and coastal<br />

topography on high-order transgressive-regressive cycles:<br />

Pliocene <strong>near</strong>shore deposits of <strong>the</strong> Val d’Orcia Bas<strong>in</strong>, Nor<strong>the</strong>rn<br />

Apenn<strong>in</strong>es, Italy. Sedimentary Geology 202, 677–701.<br />

Görür, N. 1992. A tectonically controlled alluvial fan which developed<br />

<strong>in</strong>to a mar<strong>in</strong>e fan-delta at a complex triple junction: Miocene<br />

Gildirli Formation of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>, Turkey. Sedimentary<br />

Geology 81, 243–252.<br />

Görür, N. & Tüysüz, O. 2001. Cretaceous to Miocene palaeogeographic<br />

evolution of Turkey: implications for hydrocarbon potential.<br />

Journal of Petroleum Geology 24, 119–146.<br />

Hampson, G.J., Elliott, T. & Davies, S.J. 1997. The application of<br />

sequence stratigraphy to Upper Carboniferous fluvio-deltaic<br />

strata of <strong>the</strong> onshore UK and Ireland: implications for <strong>the</strong><br />

sou<strong>the</strong>rn North Sea. Journal of <strong>the</strong> Geological Society of London<br />

154, 719–733.<br />

Haq, B.U. 1991. Sequence stratigraphy, sea-level change, and<br />

significance for <strong>the</strong> deep sea. In: MacDonald, D.I.M. (ed.),<br />

Sedimentation, Tectonics and Eustasy: Sea-Level Changes at<br />

Active Marg<strong>in</strong>s. International Association of Sedimentologists,<br />

Special Publication 12, 3–39.<br />

Haq, B.U., Hardenbol, J. & Vail, P.R. 1988. Mesozoic and Cenozoic<br />

chronostratigraphy and eustatic cycles. In: Wilgus, C.K.,<br />

Hast<strong>in</strong>gs, B.S., Posamentier, H.W., Van Wagoner, J.C., Ross,<br />

C.A. & Kendall, C.G.S.C. (eds), Sea-Level Changes: An<br />

Integrated Approach. Society of Economic Paleontologists and<br />

M<strong>in</strong>eralogists, Special Publication 42, 71–108.<br />

Harms, J.C., Southard, J.B., Spear<strong>in</strong>g, D.R. & Walker, R.G. 1975.<br />

Depositional Environments as Interpreted from Primary<br />

Sedimentary Structures and Stratification Sequences. Society<br />

of Economic Paleontologists and M<strong>in</strong>eralogists, Short Course<br />

No. 2 Lecture Notes.<br />

Harms, J.C., Southard, J.B. & Walker, R.G. 1982. Structures and<br />

Sequences <strong>in</strong> Clastic Rocks. Society of Economic Paleontologists<br />

and M<strong>in</strong>eralogists, Short Course No. 9 Lecture Notes.<br />

ILGAR et al. / Turkish J Earth Sci<br />

Hayward, A.B. 1984a. Sedimentation and bas<strong>in</strong> formation related<br />

to ophiolite nappe emplacement, Miocene, SW Turkey.<br />

Sedimentary Geology 40, 105–129.<br />

Hayward, A.B. 1984b. Miocene clastic sedimentation related to <strong>the</strong><br />

emplacement of <strong>the</strong> Lycian Nappes and <strong>the</strong> Antalya Complex,<br />

S.W. Turkey. In: Dixon, J.E. & Robertson, A.H.F. (eds.), The<br />

Geological Evolution of <strong>the</strong> Eastern Mediterranean. Geological<br />

Society of London, Special Publication 17, 403–414.<br />

Helland-Hansen, W. 2009. Towards <strong>the</strong> standardization of sequence<br />

stratigraphy: discussion. Earth-Science Reviews 94, 95–97.<br />

Helland-Hansen, W. & Gjelberg, J.G. 1994. Conceptual basis and<br />

variability <strong>in</strong> sequence stratigraphy: a different perspective.<br />

Sedimentary Geology 92, 31–52.<br />

Helland-Hansen, W. & Mart<strong>in</strong>sen, O.J. 1996. Shorel<strong>in</strong>e trajectories<br />

and sequences: description of variable depositional-dip<br />

scenarios. Journal of Sedimentary Research 66, 670–688.<br />

Hsü, K.J., Ryan, W.B.F. & Cita, M.B., 1972. Late Miocene desiccation<br />

of <strong>the</strong> Mediterranean. Nature 242, 240–244.<br />

Hüs<strong>in</strong>g, S.K., Oms, O., Agusti, J., Garcés, M., Kouwenhoven,<br />

T.J., Krijsman, W. & Zachariasse, W.J. 2010. On <strong>the</strong> late<br />

Miocene closure of <strong>the</strong> Mediterranean-Atlantic gateway<br />

through <strong>the</strong> Guadix Bas<strong>in</strong> (sou<strong>the</strong>rn Spa<strong>in</strong>). Palaeogeography<br />

Palaeoclimatology Palaeoecology 291, 167–179.<br />

Iaccar<strong>in</strong>o, S.M. 1985. Mediterranean Miocene and Pliocene planktic<br />

foram<strong>in</strong>ifera. In: Bolli, H.M., Saunders, J.B. & Perch-Nielsen,<br />

K. (eds), Plankton Stratigraphy. Cambridge University Press,<br />

Cambridge, pp. 283–314.<br />

Iaccar<strong>in</strong>o, S.M., Premoli Silva, I., Biolzi, M., Foresi, L.M., Lirer, F.,<br />

Turco, E. & Petrizzo, M.R. 2007. Practical Manual of Neogene<br />

Planktonic Foram<strong>in</strong>ifera. International School on Planktonic<br />

Foram<strong>in</strong>ifera 6th Course, Università di Perugia Press, Perugia.<br />

Ilgar, A. & Nemec, W. 2005. Early Miocene lacustr<strong>in</strong>e deposits and<br />

sequence stratigraphy of <strong>the</strong> Ermenek Bas<strong>in</strong>, Central Taurides,<br />

Turkey. Sedimentary Geology 173, 233–275.<br />

Jaffey, N. & Robertson, A.H.F. 2005. Non-mar<strong>in</strong>e sedimentation<br />

associated with Oligocene-Recent exhumation and uplift of<br />

<strong>the</strong> Central Taurus Mounta<strong>in</strong>s, S. Turkey. Sedimentary Geology<br />

173, 53–89.<br />

Jarvis, A., Reuter, H.I., Nelson, A. & Guevara, E. 2008. Hole-filled<br />

SRTM for <strong>the</strong> Globe, Version 4. CGIAR-CSI SRTM 90m<br />

Database, http://srtm.csi.cgiar.org.<br />

Jervey, M.T. 1988. Quantitative geological model<strong>in</strong>g of siliciclastic<br />

rock sequences and <strong>the</strong>ir seismic expression. In: Wilgus,<br />

C.K., Hast<strong>in</strong>gs, B.S., Posamentier, H.W., Van Wagoner, J.C.,<br />

Ross, C.A. & Kendall, C.G.S.C. (eds), Sea-Level Changes: An<br />

Integrated Approach. Society of Economic Paleontologists and<br />

M<strong>in</strong>eralogists, Special Publication 42, 47–69.<br />

Karabıyıkoğlu, M., Ç<strong>in</strong>er, A., Monod, O., Deynoux, M., Tuzcu, S. &<br />

Örçen, S. 2000. Tectonosedimentary evolution of <strong>the</strong> Miocene<br />

Manavgat Bas<strong>in</strong>, western Taurides, Turkey. In: Bozkurt, E.,<br />

W<strong>in</strong>chester, J.A. & Piper, J.D.A. (eds), Tectonics and Magmatism<br />

<strong>in</strong> Turkey and <strong>the</strong> Surround<strong>in</strong>g Area. Geological Society of<br />

London, Special Publication 173, 271–294.<br />

23


Karakuş, E. 2011. Sedimentology of <strong>Mess<strong>in</strong>ian</strong> Evaporites <strong>in</strong> <strong>the</strong> Tarsus<br />

(Mers<strong>in</strong>) Area. Unpublished MSc Thesis, Ankara University.<br />

Kell<strong>in</strong>g, G., Gökçen, S., Floyd, P. & Gökçen, N. 1987. Neogene<br />

tectonics and plate convergence <strong>in</strong> <strong>the</strong> eastern Mediterranean:<br />

new data from sou<strong>the</strong>rn Turkey. Geology 15, 425–429.<br />

Kell<strong>in</strong>g, G., Robertson, A.H.F. & Van Buchem, F. (eds) 2005. Cenozoic<br />

Sedimentary Bas<strong>in</strong>s of Sou<strong>the</strong>rn Turkey. Sedimentary Geology<br />

173 (Special Issue), 1–405.<br />

Kennett, J.P. & Sr<strong>in</strong>ivasan, M.S. 1983. Neogene Planktonic<br />

Foram<strong>in</strong>ifera: A Phylogenetic Atlas. Hutch<strong>in</strong>son & Ross,<br />

Stroudsburg, Pennsylvania, USA.<br />

Koç, A., Kaymakçı, N., Van H<strong>in</strong>sbergen, D.J.J., Kuiper, K.F. &<br />

Vissers, R.L.M. 2012. Tectono-sedimentary evolution and<br />

geochronology of <strong>the</strong> Middle Miocene Altınapa Bas<strong>in</strong>,<br />

and implications for <strong>the</strong> Late Cenozoic uplift history of <strong>the</strong><br />

Taurides, sou<strong>the</strong>rn Turkey. Tectonophysics 532, 134–155.<br />

Kouwenhoven, T.J., Morigi, C., Negri, A., Giunta, S., Krijgsman, W.<br />

& Rouchy, J.M. 2006. Paleoenvironmental evolution of <strong>the</strong><br />

eastern Mediterranean dur<strong>in</strong>g <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong>: constra<strong>in</strong>ts from<br />

<strong>in</strong>tegrated microfossil data of <strong>the</strong> Pissouri Bas<strong>in</strong> (Cyprus).<br />

Mar<strong>in</strong>e Micropaleontology 60, 17–44.<br />

Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J. & Wilson, D.S. 1999.<br />

Chronology, causes and progression of <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> sal<strong>in</strong>ity<br />

crisis. Nature 400, 652–655.<br />

Krijgsman, W. & Meijer, P.T. 2008. Depositional environments of <strong>the</strong><br />

Mediterranean “Lower Evaporites” of <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> sal<strong>in</strong>ity<br />

crisis: constra<strong>in</strong>ts from quantitative analyses. Mar<strong>in</strong>e Geology<br />

253, 73–81.<br />

Larsen, E. 2003. Stratigraphic Architecture of Littoral to Neritic Clastic<br />

Wedges: Sedimentology, Morphodynamics and Implications for<br />

Spatial Lithofacies Predictions. Dr. Sc. Dissertation, Bergen<br />

University, Bergen.<br />

Lønne, I. & Nemec, W. 2004. High-arctic fan delta record<strong>in</strong>g<br />

deglaciation and environment disequilibrium. Sedimentology<br />

51, 553–589.<br />

Lourens, L.J., Hilgen, F.J., Laskar, J., Shackleton, N.J. & Wilson, D.<br />

2004. The Neogene Period. In: Gradste<strong>in</strong> F.M., Ogg J.G. &<br />

Smith A.G. (eds), A Geologic Time Scale. Cambridge University<br />

Press, Cambridge, pp. 409–440.<br />

Lowe, D.R. 1982. Sediment gravity flows, II. Depositional models<br />

with special reference to <strong>the</strong> deposits of high-density turbidity<br />

currents. Journal of Sedimentary Petrology 52, 279–297.<br />

MacEachern, J.A., Zaitl<strong>in</strong>, B.A. & Pemberton, S.G. 1999. A sharpbased<br />

sandstone succession of <strong>the</strong> Vik<strong>in</strong>g Formation, Joffre<br />

Field, Alberta, Canada: criteria for recognition of transgressively<br />

<strong>in</strong>cised shoreface complexes. Journal of Sedimentary Research<br />

69, 876–892.<br />

Maillard, A. & Mauffret, A. 2006. Relationships between erosion<br />

surfaces and Late Miocene Sal<strong>in</strong>ity Crisis deposits <strong>in</strong> <strong>the</strong><br />

Valencia Bas<strong>in</strong> (northwestern Mediterranean): evidences for<br />

an early sea-level fall. Terra Nova 18, 321–329.<br />

24<br />

ILGAR et al. / Turkish J Earth Sci<br />

Manzi, V., Roveri, M., gennari, R., Bert<strong>in</strong>i, A., Biffi, U., Giunta, S.,<br />

Iaccar<strong>in</strong>o, S.M., Lanci, L., Lugli, S., Negri, A., Riva, A., Rossi,<br />

M.E. & Taviani, M. 2007. The deep water counterpart of<br />

<strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> Lower Evaporites <strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>e foredeep:<br />

<strong>the</strong> Fanantello section (Nor<strong>the</strong>rn Apenn<strong>in</strong>es, Italy).<br />

Palaeogeography Palaeoclimatology Palaeoecology 251, 470–<br />

499.<br />

Mellere, D., Pl<strong>in</strong>k-Bjőrklund, P. & Steel, R.J. 2002. Anatomy of<br />

shelf deltas at <strong>the</strong> edge of a prograd<strong>in</strong>g Eocene shelf marg<strong>in</strong>,<br />

Spitsbergen. Sedimentology 49, 1181–1206.<br />

Mess<strong>in</strong>a, C., Rosso, A., Sciuto, F., Di Geronimo, I., Nemec, W., Di<br />

Dio, T., Di Geronimo, R., Maniscalco, R. & Sanfilippo, R.<br />

2007. Anatomy of a transgressive systems tract revealed by<br />

<strong>in</strong>tegrated sedimentological and palaeoecological study: <strong>the</strong><br />

Barcellona Pozzo di Gotto Bas<strong>in</strong>, nor<strong>the</strong>astern Sicily, Italy.<br />

In: Nichols, G., Paola, C. & Williams, E.A. (eds), Sedimentary<br />

Processes, Environments and Bas<strong>in</strong>s – A Tribute to Peter<br />

Friend. International Association of Sedimentologists, Special<br />

Publication 38, 367–400.<br />

Miall, A.D. 1985. Architectural-element analysis: a new method<br />

of facies analysis applied to fluvial deposits. Earth-Science<br />

Reviews 22, 261–308.<br />

Miall, A.D. 1996. The Geology of Fluvial Deposits. Spr<strong>in</strong>ger-Verlag,<br />

Heidelberg.<br />

Michard, A., Whitechurch, H., Ricou, L.E., Montigny, R. & Yazgan,<br />

E. 1984. Tauric subduction (Malatya–Elazığ prov<strong>in</strong>ces) and its<br />

bear<strong>in</strong>g on tectonics of <strong>the</strong> Tethyan realm <strong>in</strong> Turkey. In: Dixon,<br />

J.E. & Robertson, A.H.F. (eds), The Geological Evolution of <strong>the</strong><br />

Eastern Mediterranean. Geological Society of London, Special<br />

Publication 17, 361–373.<br />

Monod, O., Kuzucuoğlu, C. & Okay, A.İ., 2006. A Miocene<br />

palaeovalley network <strong>in</strong> <strong>the</strong> Western Taurus (Turkey). Turkish<br />

Journal of Earth Sciences 15, 1–23.<br />

Morigi, C., Negri, A., Giunta, S., Kouwenhoven, T.J., Krijgsman, W.,<br />

Blanc-Valleron, M.M., Orszag-Sperber, F. & Rouchy, J.M. 2007.<br />

Integrated quantitative biostratigraphy of <strong>the</strong> latest Tortonian–<br />

early <strong>Mess<strong>in</strong>ian</strong> Pissouri section (Cyprus): An evaluation of<br />

calcareous plankton bioevents. Geobios 40, 267–279.<br />

Nazik, A. 2004. Planktonic foram<strong>in</strong>iferal biostratigraphy of <strong>the</strong><br />

Neogene sequence <strong>in</strong> <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>, Turkey, and its<br />

correlation with standard biozones. Geological Magaz<strong>in</strong>e 141,<br />

379–387.<br />

Nemec, W. 1990. Aspects of sediment movement on steep delta<br />

slopes. In: Colella, A. & Prior, D.B. (eds), Coarse-gra<strong>in</strong>ed<br />

Deltas. International Association of Sedimentologists, Special<br />

Publication 10, 29–73.<br />

Nemec, W., Lønne, I. & Blikra, L.H. 1999. The Kregnes mora<strong>in</strong>e <strong>in</strong><br />

Gauldalen, west-central Norway: anatomy of a Younger Dryas<br />

proglacial delta <strong>in</strong> a palaeofjord bas<strong>in</strong>. Boreas 28, 454–476.<br />

Nemec, W. & Muszyński, A. 1982. Volcaniclastic alluvial aprons <strong>in</strong><br />

<strong>the</strong> Tertiary of <strong>the</strong> Sofia district (Bulgaria). Annales Societatis<br />

Geologorum Poloniae 52, 239–303.


Nemec, W. & Postma, G. 1993. Quaternary alluvial fans <strong>in</strong><br />

southwestern Crete: sedimentation processes and geomorphic<br />

evolution. In: Marzo, M. & Puigdefábregas, C. (eds), Alluvial<br />

Sedimentation. International Association of Sedimentologists,<br />

Special Publication 17, 235–276.<br />

Nemec, W. & Steel, R.J. 1984. Alluvial and coastal conglomerates:<br />

<strong>the</strong>ir significant features and some comments on gravelly mass<br />

flow deposits. In: Koster, E.H. & Steel, R.J. (eds), Sedimentology<br />

of Gravels and Conglomerates. Canadian Society of Petroleum<br />

Geologists, Memoir 10, 1–31.<br />

Orszag-Sperber, F., Caruso, A., Blanc-Valleron, M.M., Merle, D. &<br />

Rouchy, J.M. 2009. The onset of <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> sal<strong>in</strong>ity crisis:<br />

<strong>in</strong>sights from Cyprus sections. Sedimentary Geology 217, 52–<br />

64.<br />

Pl<strong>in</strong>t, A.G. 1988. Sharp-based shoreface sequences and ‘offshore bars’<br />

<strong>in</strong> <strong>the</strong> Cardium Formation of Alberta: <strong>the</strong>ir relationship to<br />

relative changes <strong>in</strong> sea level. In: Wilgus, C.K., Hast<strong>in</strong>gs, B.S.,<br />

Posamentier, H.W., Van Wagoner, J.C., Ross, C.A. & Kendall,<br />

C.G.S.C. (eds), Sea-Level Changes: An Integrated Approach.<br />

Society of Economic Paleontologists and M<strong>in</strong>eralogists, Special<br />

Publication 42, 357–370.<br />

Pl<strong>in</strong>t, A.G. & Nummedal, D. 2000. The fall<strong>in</strong>g stage systems tract:<br />

recognition and importance <strong>in</strong> sequence stratigraphic analysis.<br />

In: Hunt, D. & Gawthorpe, R.L. (eds), Sedimentary Responses<br />

to Forced Regression. Geological Society of London, Special<br />

Publication 172, 1–17.<br />

Poisson, A., Yağmurlu, F., Bozcu, M. & Şentürk, M. 2003. New<br />

<strong>in</strong>sights on <strong>the</strong> tectonic sett<strong>in</strong>g and evolution around <strong>the</strong> apex<br />

of <strong>the</strong> Isparta Angle (SW Turkey). Geological Journal 38, 257–<br />

282.<br />

Posamentier, H.W., Allen, G.P., James, D.P. & Tesson, M. 1992.<br />

Forced <strong>regressions</strong> <strong>in</strong> a sequence stratigraphic framework:<br />

concepts, examples, and exploration significance. Bullet<strong>in</strong> of <strong>the</strong><br />

American Association of Petroleum Geologists 76, 1687–1709.<br />

Posamentier, H.W. & Morris, W.R. 2000. Aspects of <strong>the</strong> stratal<br />

architecture of <strong>forced</strong> regressive deposits. In: Hunt, D. &<br />

Gawthorpe, R.L. (eds), Sedimentary Responses to Forced<br />

Regression. Geological Society of London, Special Publication<br />

172, 19–46.<br />

Posamentier, H.W. & Vail, P.R. 1988. Eustatic controls on clastic<br />

deposition: II. Sequence and systems tract models. In: Wilgus,<br />

C.K., Hast<strong>in</strong>gs, B.S., Posamentier, H.W., Van Wagoner, J.C.,<br />

Ross, C.A. & Kendall, C.G.S.C. (eds), Sea-Level Changes: An<br />

Integrated Approach. Society of Economic Paleontologists and<br />

M<strong>in</strong>eralogists, Special Publication 42, 125–154.<br />

Postma, G. 1984. Mass-flow conglomerates <strong>in</strong> a submar<strong>in</strong>e canyon:<br />

Abrioja fan-delta, Pliocene, sou<strong>the</strong>ast Spa<strong>in</strong>. In: Koster, E.H. &<br />

Steel, R.J. (eds), Sedimentology of Gravels and Conglomerates.<br />

Canadian Society of Petroleum Geologists, Memoir 10, 237–<br />

258.<br />

Postma, G. 1990. An analysis of <strong>the</strong> variation <strong>in</strong> delta architecture.<br />

Terra Nova 2, 124–130.<br />

ILGAR et al. / Turkish J Earth Sci<br />

Ridgway, K.D. & DeCelles, P.G. 1993. Petrology of mid-Cenozoic<br />

strike–slip bas<strong>in</strong>s <strong>in</strong> an accretionary orogen, St. Elias<br />

Mounta<strong>in</strong>s, Yukon Territory, Canada. In: Johnsson, M.J. &<br />

Basu, A. (eds), Processes Controll<strong>in</strong>g <strong>the</strong> Composition of Clastic<br />

Sediments. Geological Society of America, Special Paper 284,<br />

67–89.<br />

Rid<strong>in</strong>g, R., Braga, J.C. & Martín, J.M. 1999. Late Miocene<br />

Mediterranean desiccation: topography and significance.<br />

Sedimentary Geology 123, 1–7.<br />

Rid<strong>in</strong>g, R., Braga, J.C., Martín, J.M. & SÁnchez-Almazo, I.M. 1998.<br />

Mediterranean <strong>Mess<strong>in</strong>ian</strong> Sal<strong>in</strong>ity Crisis: constra<strong>in</strong>ts from a<br />

coeval marg<strong>in</strong>al bas<strong>in</strong>, Sorbas, SE Spa<strong>in</strong>. Mar<strong>in</strong>e Geology 146,<br />

1–20.<br />

Rid<strong>in</strong>g, R., Martín, J.M. & Braga, J.C. 1991. Coral–stromatolite reef<br />

framework, Upper Miocene, Almería, Spa<strong>in</strong>. Sedimentology 38,<br />

799–818.<br />

Robertson, A.H.F. 2000. Mesozoic-Tertiary tectonic-sedimentary<br />

evolution of a south Tethyan oceanic bas<strong>in</strong> and its marg<strong>in</strong>s<br />

<strong>in</strong> sou<strong>the</strong>rn Turkey. In: Bozkurt, E., W<strong>in</strong>chester, J.A. & Piper,<br />

J.D.A. (eds), Tectonics and Magmatism <strong>in</strong> Turkey and <strong>the</strong><br />

Surround<strong>in</strong>g Area. Geological Society of London, Special<br />

Publication 173, 97–138.<br />

Roep, T.B., Dabrio, C.J., Fortu<strong>in</strong>, A.R. & Polo, M.D. 1998. Late<br />

highstand patterns of shift<strong>in</strong>g and stepp<strong>in</strong>g coastal barriers<br />

and washover fans (late <strong>Mess<strong>in</strong>ian</strong>, Sorbas Bas<strong>in</strong>, SE Spa<strong>in</strong>).<br />

Sedimentary Geology 116, 27–56.<br />

Rouchy, J.M. 1982. La genèse des èvaporites mess<strong>in</strong>iennes de<br />

Méditerrannée. Mémoirs du Museum d’Histoire Naturelle de<br />

Paris 50.<br />

Rouchy, J.M. & Caruso, A. 2006. The <strong>Mess<strong>in</strong>ian</strong> sal<strong>in</strong>ity crisis <strong>in</strong><br />

<strong>the</strong> Mediterranean bas<strong>in</strong>: a reassessment of <strong>the</strong> data and an<br />

<strong>in</strong>tegrated scenario. Sedimentary Geology 188, 35–67.<br />

Rouchy, J.M. & Sa<strong>in</strong>t Mart<strong>in</strong>, J.P. 1992. Late Miocene events <strong>in</strong> <strong>the</strong><br />

Mediterranean as recorded by carbonate-evaporitic relations.<br />

Geology 20, 629–632.<br />

Roveri, M. & Manzi, V. 2006. The <strong>Mess<strong>in</strong>ian</strong> sal<strong>in</strong>ity crisis: look<strong>in</strong>g<br />

for a new paradigm? Palaeogeography Palaeoclimatology<br />

Palaeoecology 238, 386–398.<br />

Ryan, W.B.F. 2009. Decod<strong>in</strong>g <strong>the</strong> Mediterranean sal<strong>in</strong>ity crisis.<br />

Sedimentology 56, 95–136.<br />

Ryan, W.B.F. & Cita, M.B. 1978. The nature and distribution of<br />

<strong>Mess<strong>in</strong>ian</strong> erosion surfaces, <strong>in</strong>dicators of a several kilometerdeep<br />

Mediterranean <strong>in</strong> <strong>the</strong> Miocene. Mar<strong>in</strong>e Geology 27, 193–<br />

230.<br />

Şafak, Ü., Kell<strong>in</strong>g, G., Gökçen, N.S. & Gürbüz, K. 2005. The mid-<br />

Cenozoic succession and evolution of <strong>the</strong> Mut bas<strong>in</strong>, sou<strong>the</strong>rn<br />

Turkey, and its regional significance. Sedimentary Geology 173,<br />

121–150.<br />

Sagular, E.K. & Görmüş, M. 2006. New stratigraphical results and<br />

significance of rework<strong>in</strong>g based on nannofossil, foram<strong>in</strong>iferal<br />

and sedimentological records <strong>in</strong> <strong>the</strong> Lower Tertiary sequence<br />

from <strong>the</strong> nor<strong>the</strong>rn Isparta Angle, Eastern Mediterranean.<br />

Journal of Asian Earth Sciences 27, 78–98.<br />

25


Satur, N., Kell<strong>in</strong>g, G., Cron<strong>in</strong>, B.T., Hurst, A. & Gürbüz, K. 2005.<br />

Sedimentary architecture of a canyon-style fairway feed<strong>in</strong>g<br />

a deep-water clastic system, <strong>the</strong> Miocene C<strong>in</strong>göz Formation,<br />

sou<strong>the</strong>rn Turkey: significance for reservoir characterisation<br />

and modell<strong>in</strong>g. Sedimentary Geology 173, 91–119.<br />

Schmidt, G.C. 1961. Stratigraphic nomenclature for <strong>the</strong> <strong>Adana</strong> region<br />

petroleum district VII. Petroleum Adm<strong>in</strong>istration Bullet<strong>in</strong> 6,<br />

47–63.<br />

Schumm, S.A. 1993 River response to base level change: implications<br />

for sequence stratigraphy. Journal of Geology 101, 279–294.<br />

Şenel, M. 2002. Geological Map of Turkey, 1:500 000, Sheet No. 14<br />

(Konya). Maden Tetkik ve Arama Genel Müdürlüğü (MTA),<br />

Ankara.<br />

Şengör, A.M.C. 1987. Tectonics of <strong>the</strong> Tethysides: orogenic collage<br />

development <strong>in</strong> a collisional sett<strong>in</strong>g. Annual Review of Earth<br />

and Planetary Sciences 15, 213–244.<br />

Şengör, A.M.C. & Yılmaz, Y. 1981. Tethyan evolution of Turkey: a<br />

plate tectonic approach. Tectonophysics 75, 181–241.<br />

Seyitoğlu, G. & Scott, B.C. 1991. Late Cenozoic crustal extension<br />

and bas<strong>in</strong> formation <strong>in</strong> west Turkey. Geological Magaz<strong>in</strong>e 128,<br />

155–166.<br />

Seyitoğlu, G. & Scott, B.C. 1996. The cause of N-S extensional<br />

tectonics <strong>in</strong> western Turkey: tectonic escape vs back-arc<br />

spread<strong>in</strong>g vs orogenic collapse. Journal of Geodynamics 22,<br />

145–153.<br />

Sierro, F.J., Hilgen, F.J., Krijgsman, W. & Flores, J.A. 2001. The<br />

Abad composite (SE Spa<strong>in</strong>): a <strong>Mess<strong>in</strong>ian</strong> reference section<br />

for <strong>the</strong> Mediterranean and <strong>the</strong> APTS. Palaeogeography<br />

Palaeoclimatology Palaeoecology 168, 141–169.<br />

Soria, J.M., Caracuel, J.E., Yébenes, A., Fernández, J. & Viseras, C.<br />

2005. The stratigraphic record of <strong>the</strong> <strong>Mess<strong>in</strong>ian</strong> sal<strong>in</strong>ity crisis<br />

<strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn marg<strong>in</strong> of <strong>the</strong> Bajo Segura Bas<strong>in</strong> (SE Spa<strong>in</strong>).<br />

Sedimentary Geology 179, 225–247.<br />

Soria, J.M., Fernández, J., García, F. & Viseras, C., 2003. Correlative<br />

lowstand deltaic and shelf systems <strong>in</strong> <strong>the</strong> Guadix Bas<strong>in</strong> (late<br />

Miocene, Betic Cordillera, Spa<strong>in</strong>): <strong>the</strong> stratigraphic record of<br />

<strong>forced</strong> and normal <strong>regressions</strong>. Journal of Sedimentary Research<br />

73, 912–925.<br />

Sprovieri, M., Bellanca, A., Neri, R., Mazzola, S., Bonanno, A.,<br />

Patti, B. & Sorgente, R. 1999. Astronomical calibration of late<br />

Miocene stratigraphic events and analysis of precessionally<br />

driven paleoceanographic changes <strong>in</strong> <strong>the</strong> Mediterranean bas<strong>in</strong>.<br />

Memorie Società Geologica Italiana 54, 7–24.<br />

Sunal, G. & Tüysüz, O. 2002. Palaeostress analysis of Tertiary postcollisional<br />

structures <strong>in</strong> <strong>the</strong> Western Pontides, nor<strong>the</strong>rn<br />

Turkey. Geological Magaz<strong>in</strong>e 139, 343–359.<br />

26<br />

ILGAR et al. / Turkish J Earth Sci<br />

Tekeli, O. & Göncüoğlu, M.C. (eds) 1984. Geology of <strong>the</strong> Taurus Belt.<br />

Proceed<strong>in</strong>gs of International Symposium, MTA, Ankara.<br />

Ulu, Ü. 2002. Geological Map of Turkey, 1:500 000, Sheet No. 15<br />

(<strong>Adana</strong>). Maden Tetkik ve Arama Genel Müdürlüğü (MTA),<br />

Ankara.<br />

Ünlügenç, U.C., Kell<strong>in</strong>g, G. & Demirkol, C. 1990. Aspects of bas<strong>in</strong><br />

evolution <strong>in</strong> <strong>the</strong> Neogene <strong>Adana</strong> Bas<strong>in</strong>, SE Turkey. Proceed<strong>in</strong>gs<br />

of <strong>the</strong> International Earth Sciences Congress on Aegean Regions,<br />

İzmir, pp. 353–369.<br />

Wasson, R.J. 1977. Last-glacial alluvial fan sedimentation <strong>in</strong> <strong>the</strong><br />

Lower Derwent Valley, Tasmania. Sedimentology 24, 781–799.<br />

Wasson, R.J. 1979. Sedimentation history of <strong>the</strong> Mundi-Mundi<br />

alluvial fans, western New South Wales. Sedimentary Geology<br />

22, 21–51.<br />

Williams, G., Ünlügenç, U., Kell<strong>in</strong>g, G. & Demirkol, C. 1995. Tectonic<br />

controls on stratigraphic evolution of <strong>the</strong> <strong>Adana</strong> Bas<strong>in</strong>, Turkey.<br />

Journal of <strong>the</strong> Geological Society of London 152, 873–882.<br />

Wood, L.J., Ethridge, F.G. & Schumm, S.A. 1993. The effects of<br />

rate of base-level fluctuation on coastal pla<strong>in</strong>, shelf and<br />

slope depositional systems: an experimental approach. In:<br />

Posamentier, H.W., Summerhayes, C.P., Haq, B.V. & Allen,<br />

C.P. (eds), Sequence Stratigraphy and Facies Associations.<br />

International Association of Sedimentologists, Special<br />

Publication 18, 43–53.<br />

Yalçın, M.N. & Görür, N., 1984. Sedimentological evolution of <strong>the</strong><br />

<strong>Adana</strong> Bas<strong>in</strong>. In: Tekeli, O. & Göncüoğlu, M.C. (eds), Geology<br />

of <strong>the</strong> Taurus Belt. Proceed<strong>in</strong>gs of International Symposium,<br />

MTA, Ankara, pp. 165–172.<br />

Yetiş, C. 1988. Reorganization of <strong>the</strong> Tertiary stratigraphy <strong>in</strong> <strong>the</strong><br />

<strong>Adana</strong> Bas<strong>in</strong>, sou<strong>the</strong>rn Turkey. Newsletters <strong>in</strong> Stratigraphy 20,<br />

42–58.<br />

Yetiş, C., Kell<strong>in</strong>g, G., Gökçen, S. & Baroz, F. 1995. A revised<br />

stratigraphic framework for Later Cenozoic sequences <strong>in</strong> <strong>the</strong><br />

nor<strong>the</strong>astern Mediterranean region. Geologische Rundschau<br />

84, 794–812.<br />

Yılmaz, Y. 1993. New evidence and model on <strong>the</strong> evolution of <strong>the</strong><br />

sou<strong>the</strong>ast Anatolian orogen. Bullet<strong>in</strong> of <strong>the</strong> Geological Society of<br />

America 105, 251–271.<br />

Yılmaz, Y., Yiğitbaş, E. & Genç, Ş.C. 1993. Ophiolitic and<br />

metamorphic assemblages of sou<strong>the</strong>ast Anatolia and <strong>the</strong>ir<br />

significance <strong>in</strong> <strong>the</strong> geological evolution of <strong>the</strong> orogenic belt.<br />

Tectonics 12, 1280–1297.<br />

Yoxall, W.H. 1969. The relationship between fall<strong>in</strong>g base level<br />

and lateral erosion <strong>in</strong> experimental streams. Bullet<strong>in</strong> of <strong>the</strong><br />

Geological Society of America 80, 1379–1384.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!