25.03.2013 Views

Magnetism 1

Magnetism 1

Magnetism 1

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Magnetism</strong><br />

<strong>Magnetism</strong> is a relativistic phenomenon. To understand the origin of the<br />

, one needs to look at moving reference<br />

Lorentz-force F = e⋅ [ E+ v× B]<br />

systems.<br />

A magnetic field is always the consequence of an electric charge in motion!<br />

z<br />

y<br />

r { q<br />

q<br />

v<br />

x<br />

Consider the force between the charges in a reference system S′ that moves<br />

with velocity v along x .<br />

in S′ the charges are at rest!<br />

F ′ = 0<br />

x<br />

1<br />

F ′<br />

y =<br />

4πε<br />

F = 0<br />

z<br />

q<br />

2<br />

2 2<br />

r<br />

Coulomb force<br />

Lorentz-transformation: S′ → S (lab frame)<br />

F = F′<br />

= 0<br />

x x<br />

1<br />

2<br />

−<br />

2<br />

1<br />

⎛ v ⎞<br />

Fy = F ′<br />

y γ =⎜1− 2 ⎟<br />

γ<br />

⎝ c ⎠<br />

F = F′<br />

= 0<br />

z z<br />

2<br />

1<br />

2<br />

2<br />

⎛ v ⎞ 1 q<br />

Fy= ⎜1− ⎟<br />

r = r′<br />

⎝ c ⎠ 4πε<br />

r<br />

2 2<br />

0<br />

2 2 2<br />

⎛ ⎞ ⎛ ⎞ ⎛<br />

v q q<br />

= ⎜1− 2 ⎟γ = γ ⋅q 2 ⎜ 2<br />

⎝ c ⎠ 4πε 0r ⎝4πε 0r qv q<br />

− q<br />

2 2 ⎟= γ ⎜ 2<br />

4πε 0c r ⎠ ⎝4πε<br />

0r<br />

µ 0 qv<br />

− 2<br />

4π<br />

r<br />

1<br />

with 2<br />

c<br />

1<br />

=<br />

εµ<br />

0 0<br />

- 1 -<br />

2<br />

⎞<br />

⎟ ⎠


now for vc γ ≈ 1<br />

⎛ q ⎛−µ 0 ⎞ qv⎞<br />

→Fy≈ q⎜ + v⋅<br />

2 ⎜ ⎟⋅<br />

2 ⎟<br />

⎝4πε 0r<br />

⎝ 4π<br />

⎠ r ⎠<br />

<br />

Eel v⋅B<br />

<br />

in vector form: v = v ⋅xˆ<br />

2 ⎡ µ 0qv<br />

⎤<br />

= q⎢Eyˆ− ( xˆ zˆ)<br />

2<br />

4π<br />

r<br />

− × ⎥<br />

⎢⎣ yˆ<br />

⎥⎦<br />

<br />

( <br />

µ<br />

)<br />

0qv<br />

= q E+ v× B , where Bz=<br />

2<br />

4π<br />

r<br />

→ F = q⋅ ( <br />

v× B)<br />

mag<br />

Classical picture<br />

Magnetic moments originate from circular electric currents.<br />

<br />

<br />

1 ⎛ r ⎞<br />

Biot-Savat: δH = ⋅I⋅ δs<br />

2 ⎜ × ⎟<br />

4π<br />

r ⎝ r ⎠<br />

e<br />

ds <br />

magnetic moment originates from a circular current loop<br />

dµ = I⋅d <br />

S<br />

<br />

µ =<br />

<br />

dS =<br />

magnetic moment<br />

surface enclosed by the current<br />

<br />

2<br />

µ = I dA = 4πr<br />

⋅I<br />

∫ <br />

for a circular loop<br />

r<br />

4π<br />

e 2<br />

= r ;<br />

τ<br />

e<br />

I =<br />

τ<br />

for the case of an electron circulating around a ring with period τ<br />

This can be related to the angular momentum of the electron.<br />

<br />

le = r× p = r× ve⋅ me 2π<br />

r<br />

where v=<br />

τ<br />

2<br />

2π<br />

r<br />

= me<br />

τ<br />

e<br />

⇒ µ =− ⋅le 2me<br />

<br />

relation between angular momentum and magnetic moment of a<br />

circulating electron<br />

They are antiparallel because of the negative charge of the electron.<br />

- 2 -


Of course within an atom the orbit of the electron cannot be described in a<br />

classical way.<br />

⇒ Quantum mechanical description of the hydrogen atom<br />

H<br />

E<br />

0<br />

p<br />

e -<br />

pˆ Ze<br />

= −<br />

m r<br />

2 e<br />

2 2<br />

( ) 2<br />

2 4<br />

mZ e Ze<br />

=− =−<br />

2n 2a<br />

⋅n<br />

o<br />

n<br />

e<br />

2 2 2<br />

0<br />

2<br />

<br />

−10<br />

a0=<br />

≈ 0.529× 10<br />

2<br />

me<br />

o o<br />

2<br />

e<br />

1 0<br />

2a0<br />

E − E = = 1 Ry = 13.6 eV<br />

spherical coordinates:<br />

n = 1,2,...<br />

( r, ϑϕ , ) R ( r) Y ( ϑϕ , )<br />

Ψ nlm =<br />

ne <br />

nlm<br />

l = 0,..., n−1<br />

m= - l,..., + l<br />

Laguerre spherical<br />

polynom harmonic<br />

main quantum number<br />

orbital quantum number<br />

magnetic quantum number<br />

n-fold degeneracy of electronic levels<br />

m “Bohr radius”<br />

H ° has sperical symmetry<br />

→Ψ are eigenstates of the orbital angular momentum operator<br />

nlm<br />

lˆ= rˆ× pˆ<br />

Motion in a magnetic field<br />

q <br />

p → ∇− A<br />

i c<br />

H =∇× A<br />

<br />

LˆΨ = l( l+<br />

1)<br />

Ψ<br />

nlm nlm<br />

2 2<br />

LˆΨ = l( l+<br />

1)<br />

Ψ<br />

nlm nlm<br />

LˆΨ = mΨ<br />

z nlm nlm<br />

A magnetic vector potential<br />

magnetic field<br />

<br />

Recall: A is not uniquely defined: A′ = A+∇χ <br />

→∇× A′ =∇× A+∇×∇<br />

<br />

χ<br />

≡0<br />

<br />

= H<br />

<br />

have to chose transverse gauge where ∇ A = 0<br />

- 3 -<br />

χ: scalar field


Also in general we have to watch out because A and ∇ do not commute.<br />

<br />

∇A−A∇≠0 <br />

∇A Ψ −A∇ Ψ ≠0<br />

The good thing is, in the transverse gauge they do commute<br />

2 2<br />

⎛ e ⎞ 2 e <br />

e 2<br />

→⎜ ∇+ A⎟ =−∆+ 2 A∇+<br />

A 2<br />

⎝ i c ⎠<br />

i c c<br />

2 2<br />

− e 1 e 2<br />

<br />

2 Z⋅e ⇒ H = ∆+ A⋅∇+ A − 2<br />

2me i cme 2me<br />

c r<br />

1 <br />

transverse gauge ⇒ A ( <br />

= H× r)<br />

2<br />

2 2<br />

−<br />

e 2<br />

⇒ ( <br />

)<br />

e <br />

H r ( <br />

H r)<br />

Ze<br />

H = ∆+ × ⋅∇+ × −<br />

2<br />

2me i mec 8mc<br />

r<br />

<br />

cyclic property ( <br />

H× r) ⋅∇= ( <br />

r×∇) ⋅H<br />

recognize that r× p = l<br />

op. of angular momentum<br />

<br />

<br />

<br />

r× ∇ = l<br />

i<br />

with the definition<br />

e⋅<br />

<br />

= µ B<br />

2m<br />

e<br />

and p<br />

i ∇→<br />

<br />

µ = 9.274⋅ 10<br />

B<br />

2 nd term:<br />

µ L⋅H <br />

B<br />

“Bohr magneton”<br />

−24<br />

2<br />

Am<br />

paramagnetic term for orbital magnetism<br />

3 rd term:<br />

<br />

assume H zˆ<br />

<br />

( 2<br />

) 2 2 2<br />

H× r = H ( x + y ) diamagnetic term<br />

2 2<br />

−<br />

c Ze<br />

= ∆+ B ⋅ + + −<br />

2<br />

2m 8me<br />

r<br />

→ ˆ z<br />

2 2 2<br />

H µ H L H ( x y )<br />

paramagnetic term<br />

diamagnetic term<br />

- 4 -<br />

2


Operator of orbital magnetic momentum:<br />

∂Hˆ<br />

ˆz<br />

ˆ µ orb =− =−µ BL<br />

−<br />

∂H<br />

2<br />

e 2 2 ( x + y ) H<br />

2<br />

4me<br />

Ψnlm z ˆ µ orb Ψnlm 2<br />

e<br />

2 2<br />

=−µ B ⋅m − ⋅H⋅ 2 Ψ nlm x + y Ψnlm<br />

<br />

4me<br />

permanent<br />

paramagnetic<br />

moment<br />

Zeeman effect<br />

a) assume Lz = 1, 2 2<br />

x + y<br />

2<br />

2 <br />

~ ao; ao<br />

=<br />

me<br />

field-induced diamagnetic moment<br />

2<br />

2 2<br />

2 2 3<br />

Ediam eH 1 x + y <br />

−6<br />

→ ≈ ⋅H ≈10 ⋅H[<br />

Tesla]<br />

2 2 3<br />

E 8mc µ H L 4me<br />

parallel B z<br />

diamagnetic contribution is negligible, only relevant in the absence of a<br />

paramagnetic moment, i.e. for L z = 0 .<br />

b) ratio of paramagnetic term to typical electronic energies:<br />

para<br />

E µ B<br />

= el<br />

E<br />

z<br />

L<br />

2<br />

e<br />

2⋅<br />

a<br />

⋅ H −6<br />

≈210 ⋅ H [ Tesla]<br />

;<br />

2<br />

e<br />

13,6 eV<br />

2a o<br />

=<br />

−5<br />

o<br />

⇒ E ~10 eV ~1K at H = 1Tesla<br />

para<br />

remember: 300K<br />

25meV<br />

1K ≈ˆ<br />

10µ<br />

eV<br />

field dependent term can be treated as weak perturbation with respect to<br />

electronic terms<br />

~> ( ˆ ˆz<br />

o<br />

H 0 + µ BHL ) Ψ nlm = ( En + mH µ B)<br />

Ψnlm<br />

<br />

∆E<br />

nlm<br />

H = 0<br />

Z<br />

H > 0<br />

m=2<br />

1<br />

0<br />

-1<br />

-2<br />

∆ E = µ B ⋅H<br />

Zeeman splitting<br />

The magnetic field lifts the degeneracy of the (n,l) shell.<br />

2l+1 sublevels split by ∆ E = µ B ⋅ H<br />

- 5 -<br />

E<br />

for l=2


In addition to the orbital magnetic momentum there is the magnetic momentum<br />

related to the spin of the electron.<br />

→ derived from a fully relativistic treatment!<br />

<br />

→ electron has an intrinsic angular momentum with quantization, spin ½ .<br />

2<br />

Sˆχs( s 1)<br />

χ<br />

<br />

<br />

z<br />

= + χ = spin part of the electron wave function<br />

or<br />

or ,<br />

( ) ( )<br />

nlm r S χ<br />

+ ½<br />

−½ Ψ = Ψ<br />

<br />

orbital part<br />

S χ = m<br />

χ m = ± ½<br />

s s<br />

2 2 3 2<br />

S χ = S( S+<br />

1)<br />

χ = χ<br />

4<br />

⇒ additional Zeeman term<br />

<br />

para<br />

=− µ ( 2ˆ)<br />

B L+ s H<br />

para<br />

Ψ =+ µ ( m + 2m<br />

) Ψ<br />

B l s<br />

spin part<br />

2 = rel. effect<br />

ms = ± 1/2<br />

Actually the spin is not represented by a vector whose components are scalars<br />

but rather by 2x2 matrices ⇒ the “Pauli-spin” matrices.<br />

⎛0 ˆ σ x = ⎜<br />

⎝1 1⎞ ⎟, 0⎠ ⎛0 σ y = ⎜<br />

⎝i −i<br />

⎞<br />

⎟, 0 ⎠<br />

⎛1 σz = ⎜<br />

⎝0 0 ⎞<br />

⎟,<br />

−1⎠<br />

ˆ σ = ( σx, σ y, σ z)<br />

be a a vector<br />

⎛ a3 ˆ σ ⋅ a =⎜<br />

⎝a1+ ia2 a1−ia2⎞ ⎟<br />

−a3<br />

⎠<br />

such matrices can be multiplied together leading to<br />

2<br />

ˆ σ ⋅ a σb = a⋅ b + iσ a× b and σa<br />

= a show in exercise<br />

( ) ( ) ( ) ( ) 2<br />

The spin angular momentum is determined as<br />

1<br />

sˆ<br />

= ˆ σ<br />

2<br />

⎛0 1⎞ ⎛0 −i<br />

⎞ ⎛1<br />

0 ⎞<br />

Sx = ⎜ ⎟, Sy = ⎜ ⎟, Sz<br />

= ⎜ ⎟<br />

2⎝1 0⎠ 2⎝i0 ⎠ 2⎝0<br />

−1⎠<br />

only Sz<br />

is diagonal<br />

↑z ⎛1⎞ = ⎜ ⎟<br />

⎝0⎠ Sˆ<br />

z ↑z 1<br />

= <br />

2<br />

↑<br />

↓z ⎛0⎞ = ⎜ ⎟<br />

⎝1⎠ ˆ 1<br />

Sz<br />

↓ = − <br />

z ↓<br />

2<br />

ms<br />

- 6 -


The eigenstates concerning spin parallel to x-axis are<br />

↑x =<br />

1 ⎛1⎞ ⎜ ⎟<br />

2 ⎝1⎠ ↓x<br />

=<br />

1<br />

2<br />

⎛ 1 ⎞<br />

⎜ ⎟<br />

⎝−1⎠ ↑y =<br />

1 ⎛1⎞ ⎜ ⎟<br />

2 ⎝i⎠ ↓y<br />

=<br />

1 ⎛ 1 ⎞<br />

⎜ ⎟<br />

2 ⎝−i⎠ ⎛1⎞ ˆ σ x ⎜ ⎟<br />

⎝1⎠ ⎛0 = ⎜<br />

⎝1 1⎞ ⎛1⎞ ⎟ ⎜ ⎟<br />

0⎠ ⎝1⎠ ⎛1⎞ = ⎜ ⎟<br />

⎝1⎠ ⎛ 1 ⎞ ⎛0 ˆ σ x′<br />

⎜ ⎟= ⎜<br />

⎝−1⎠ ⎝1 1⎞ ⎛ 1 ⎞<br />

⎟ ⎜ ⎟<br />

0⎠ ⎝− 1⎠ ⎛−1⎞ = ⎜ ⎟<br />

⎝+ 1⎠ ⎛ 1 ⎞<br />

= ( −1)<br />

⎜ ⎟<br />

⎝− 1⎠<br />

⎛1⎞ ˆ σ y ⎜ ⎟<br />

⎝i⎠ ⎛0 = ⎜<br />

⎝i −i<br />

⎞ ⎛1⎞ ⎟ ⎜ ⎟<br />

0 ⎠ ⎝i⎠ ⎛1⎞ = ⎜ ⎟<br />

⎝i⎠ ⎛ 1 ⎞ ⎛0 σ y ⎜ ⎟ = ⎜<br />

⎝−i⎠ ⎝i −i⎞ ⎛ 1 ⎞<br />

⎟ ⎜ ⎟<br />

0 ⎠ ⎝−i⎠ ⎛−1⎞ = ⎜ ⎟<br />

⎝ i ⎠<br />

⎛1⎞ = ( −1)<br />

⎜ ⎟<br />

⎝i⎠ → This two-component representation of the spin wave functions is known as a<br />

spinor representation. The eigenstates are referred to as spinors.<br />

⎛a⎞ A general spin state can be written as χ = ⎜ ⎟=<br />

a ↑ + b z ↓z<br />

⎝b⎠ 2 2<br />

normalization → a + b = 1<br />

The total angular spin operator is determined as Sˆ ( Sˆ , ˆ , ˆ<br />

x Sy Sz)<br />

vector of 2x2 matrices!<br />

2<br />

→ Sˆ= S<br />

2<br />

+ S<br />

2<br />

+ S<br />

2<br />

( x y z )<br />

( x y z )<br />

2<br />

S χ =<br />

2 2 2<br />

S + S + S<br />

⎛1 1 1⎞ χ = ⎜ + + ⎟<br />

⎝4 4 4⎠ 3<br />

χ = χ<br />

4<br />

2<br />

→ S<br />

3<br />

χ = χ = s( s+ 1)<br />

χ<br />

4<br />

1⎛1 ⎞ 3<br />

⎜ + 1⎟=<br />

2⎝2 ⎠ 4<br />

= . This is a<br />

Commutation relations<br />

⎡Sˆ , ˆ ˆ ˆ ˆ ˆ ˆ<br />

x S ⎤ y = SxSy − SySx = iS<br />

you have to watch out which operator is first<br />

⎣ ⎦<br />

z<br />

applied to the wave function.<br />

ˆ 2<br />

and ⎡⎣S , S ⎤ z ⎦ = 0<br />

The components do not commute with each other; each component commutes<br />

with ˆS<br />

2<br />

.<br />

- 7 -


Raising and lowering operators<br />

The origin of the spin degree of freedom: relativistic energy–momentum<br />

relationship<br />

2 2 2 2 4<br />

E = c p + m c<br />

1<br />

2<br />

−<br />

2<br />

⎛ v ⎞<br />

p= γ ⋅ mv,<br />

γ = ⎜1− 2 ⎟<br />

⎝ c ⎠<br />

∂<br />

E →i, ∂t<br />

<br />

p→<br />

∇<br />

i<br />

correspondence principle<br />

4-dimensional covariant form (treat time and space the same way)<br />

<br />

P → iδµ<br />

4-dimensional vector<br />

µ<br />

⎛ E ⎞<br />

Pµ = ⎜γmv, ⎟<br />

⎝ c ⎠<br />

⎛ 1 ∂ ⎞<br />

∂ µ = ⎜−∇, c γ t<br />

⎟<br />

⎝ ⎠<br />

→ Klein–Gordon equation:<br />

2 2 4<br />

⎛ ⎞<br />

1 ∂ mc<br />

⎜∆−<br />

− Ψ= 0<br />

2 2 2 ⎟<br />

⎝ c ∂t<br />

⎠<br />

This is a differential equation of the second kind in time and space<br />

∂Ψ<br />

→ the solution requires starting values for Ψ and<br />

γ t<br />

Conclusion: This cannot be!<br />

Dirac’s idea: linearize the equation<br />

2 2<br />

E−c α 0<br />

( ipi − βmc ⎛E c α )<br />

jpj βmc<br />

⎞<br />

⎜<br />

+ +<br />

⎟<br />

i ⎝ j<br />

⎠<br />

this agrees with the Klein–Gordon equation if<br />

α α + α α = 2δij<br />

2<br />

∑ ∑ = i, j ε { x, yz , }<br />

i j j i<br />

αβ+ βa<br />

= 0<br />

i i<br />

relativistic counterpart of<br />

Schrödinger equation<br />

β = 1<br />

cannot be fulfilled with ordinary numbers. Need to consider certain 4x4 matrices.<br />

⎛0 α = ⎜<br />

⎝σ <br />

σ ⎞ ⎛1 ⎟β =<br />

1<br />

⎜<br />

⎠ ⎝0 0⎞ ⎛0 ⎟ with σx = ⎜<br />

1⎠ ⎝1 1⎞ ⎛0 ⎟, σ y = ⎜<br />

0⎠ ⎝i −i<br />

⎞ ⎛1<br />

⎟, σz<br />

= ⎜<br />

0 ⎠ ⎝0<br />

0 ⎞<br />

⎟<br />

−1⎠<br />

2<br />

→ each solution to E∓c 0<br />

( ∑αipi<br />

∓ β mc = is thus also a solution to the Klein–<br />

)<br />

Gordon equation.<br />

→ Dirac’s equation for rel. free particle<br />

⎛ ∂ ⎞<br />

⎜i−cαp−βmc⎟Ψ = 0<br />

⎝ ∂t<br />

⎠<br />

i<br />

- 8 -


The wave function now takes four components:<br />

⎛Ψ1⎞ ⎫<br />

↑<br />

⎜ ⎟ ⎬particle<br />

Ψ2 ⎭<br />

↓<br />

Ψ= ⎜ ⎟<br />

⎜Ψ⎟ 3 ⎫<br />

↑<br />

⎜ ⎟ ⎬anti-particles<br />

Ψ ↓<br />

⎝ 4 ⎠ ⎭<br />

Return to the ordinary Schrödinger equation when the spin is introduced “ad<br />

hoc” as an additional paramagnetic term<br />

→ still need to consider additional velocity effects.<br />

Spin-Orbit-Coupling<br />

<br />

<br />

⎛r ⎞dφ<br />

Electric field of nucleus E =−∇ φ =−⎜ ⎟ .<br />

⎝r ⎠ dr<br />

As seen by the electron, the nucleus is orbiting around it with velocity v → thus<br />

it creates a magnetic field that acts on the electron spin.<br />

<br />

−1<br />

( <br />

<br />

H )<br />

nuc = v× E<br />

∂B<br />

2<br />

c<br />

Faraday law: ∇× E =−<br />

γ t<br />

↓<br />

<br />

so<br />

∆ E = 2µ<br />

BS⋅Hnuc e1dφ =− S( <br />

v× r) 2<br />

mc r dr<br />

recall (<br />

<br />

m v× r) = î<br />

2<br />

e =− 2 2<br />

mc<br />

1 dφ<br />

s⋅l r dr<br />

= spin-orbit-coupling term<br />

This classical estimate is still wrong by a factor of 2.<br />

2<br />

so<br />

⇒ = 2 2<br />

2mc<br />

2<br />

Ze<br />

s⋅l 3<br />

r<br />

<br />

<br />

H<br />

<br />

2<br />

Ze<br />

φ =<br />

r<br />

2<br />

dφZe =−<br />

dr r<br />

<br />

→ s and l are no longer decoupled, they are no longer separately conserved<br />

quantities<br />

<br />

→ introduce total angular momentum j = l + s<br />

j = l− s , ..., l+ s , 2 j+<br />

1 values<br />

<br />

2 2 2 2 2 2<br />

J = L + S + 2SL→ 2SL<br />

= J −L −S<br />

so λ<br />

→ ( 2 2 2<br />

H = J −L −S<br />

)<br />

2<br />

2 2<br />

Ze<br />

λ = 2 2 3<br />

mc r<br />

<br />

= spin-orbit-coupling constant<br />

large Z → λ is very large, even larger than the paramagnetic terms in lab fields<br />

for very large Z (heavy elements).<br />

so<br />

∆ E ~1K for Z = 1, but ~ Z<br />

2<br />

- 9 -


( )<br />

0 so Z Z<br />

B µ<br />

H = H + H + J + S H L+ 2 S = J + S since J = L+ S<br />

→ the problem is that s mixes states with different .<br />

<br />

ml, ms<br />

<br />

l, s⋅ l = i l × s)<br />

, only the Z-components are conserved.<br />

[ ] (<br />

⇒ the spin-orbit interaction lifts the degeneracy between different levels with<br />

s and l (without a magnetic field), it leads to a different kind of splitting than the<br />

<br />

Zeeman-splitting → levels with the same j-value are degenerate for some<br />

s , l .<br />

E( J) −E( J − 1) λ<br />

= ( J( J + 1) ) −<br />

2<br />

= λ ⋅J<br />

L( L+ 1) − S( S+ 1) 1<br />

−<br />

2<br />

J −1 J − L L+ 1 − S S+<br />

1<br />

for same<br />

s , l , J = l±½<br />

( ) ( ( ) ( ) ( ) )<br />

- 10 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!