25.03.2013 Views

Normal approximation to the hypergeometric distribution in ...

Normal approximation to the hypergeometric distribution in ...

Normal approximation to the hypergeometric distribution in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

S.N. Lahiri et al. / Journal of Statistical Plann<strong>in</strong>g and Inference 137 (2007) 3570 –3590 3581<br />

By similar arguments,<br />

<br />

A2 = Nq(1 − f)(1 + zk,n) + 1<br />

<br />

log(1 + zk,n)<br />

2<br />

=<br />

<br />

Nq(1 − f)+ 1<br />

<br />

zk,n +<br />

2<br />

z2 k,n<br />

2<br />

where for all n, k, satisfy<strong>in</strong>g |zk,n|,<br />

|zk,n|<br />

3<br />

|r3n(k)|Nq(1 − f)<br />

2 +<br />

<br />

<br />

<br />

Nq(1 − f)(1 + zk,n) + 1<br />

<br />

<br />

<br />

2 ·<br />

From, (4.11), (4.12) and (4.14), we have<br />

<br />

(zk,n − yk,n)<br />

log R(k; n, M, N) = ∗ −<br />

+ y2 k,n<br />

2<br />

log(1 − f)<br />

2<br />

<br />

Nq(1 − f)− 1<br />

<br />

+ r3n(k), (4.14)<br />

2<br />

−<br />

2<br />

+ z2 k,n<br />

2<br />

|zk,n| 3<br />

<br />

Np(1 − f)− 1<br />

<br />

<br />

+ r2n(k) + r3n(k)<br />

2<br />

. (4.15)<br />

3 3(1 − )<br />

<br />

Nq(1 − f)− 1<br />

<br />

2<br />

= ∗ − 1<br />

2 log(1 − f)− x2 k,nf 2(1 − f) + r4n(k), (4.16)<br />

where for all n, k satisfy<strong>in</strong>g (|yk,n|∨|zk,n|),<br />

|r4n(k)||r2n(k)|+|r3n(k)|+ 1 2 |yk,n − zk,n|+ 1 4 (y2 k,n + z2 k,n ).<br />

Next us<strong>in</strong>g Stirl<strong>in</strong>g’s formula on <strong>the</strong> b<strong>in</strong>omial term, we have<br />

<br />

n<br />

log p<br />

k<br />

k q n−k<br />

<br />

<br />

e<br />

= log<br />

(n−k−n−k)<br />

<br />

<br />

√ 1<br />

p<br />

√ − nq − xk,n npq + log 1 − xk,n<br />

2npq<br />

2<br />

nq<br />

<br />

<br />

√ 1<br />

q<br />

− np + xk,n npq + log 1 + xk,n<br />

2<br />

np<br />

≡ ∗∗ − log 2npq − A3 − A4 say, (4.17)<br />

where ∗∗ √ √<br />

= n − k − n−k. Next write ˜yk,n = xk,n p/nq and ˜zk,n = xk,n q/np. Then, by arguments similar <strong>to</strong> (4.12)<br />

and (4.14),<br />

<br />

<br />

√ 1<br />

p<br />

A3 = nq − xk,n npq + log 1 − xk,n<br />

2<br />

nq<br />

<br />

=−˜yk,n nq + 1<br />

<br />

+<br />

2<br />

˜y2 <br />

k,n<br />

nq −<br />

2<br />

1<br />

<br />

+ r5n(k)<br />

2<br />

and<br />

<br />

<br />

√ 1<br />

q<br />

A4 = np + xk,n npq + log 1 + xk,n<br />

2<br />

np<br />

<br />

=˜zk,n np + 1<br />

<br />

+<br />

2<br />

˜z2 <br />

k,n<br />

np −<br />

2<br />

1<br />

<br />

+ r6n(k),<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!