24.03.2013 Views

Installation of Electrical Heat Trace Flowline by Reel Lay y y 22nd ...

Installation of Electrical Heat Trace Flowline by Reel Lay y y 22nd ...

Installation of Electrical Heat Trace Flowline by Reel Lay y y 22nd ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Installation</strong> <strong>of</strong> <strong>Electrical</strong> <strong>Heat</strong> <strong>Trace</strong> <strong>Flowline</strong><br />

<strong>by</strong> y <strong>Reel</strong> <strong>Lay</strong>y<br />

<strong>22nd</strong> February 2012<br />

Marin Abélanet


Pipe in Pipe Track Record<br />

• 18 Towed Bundle Projects to Date<br />

• Shell Bonga (ITP) & Total CLOV(ITP) (ongoing) - J. <strong>Lay</strong><br />

• Total Tchibelli (ITP), Total Dunbar - S. <strong>Lay</strong><br />

• Including;<br />

– In-place design<br />

1-Mar-12<br />

– Procurement<br />

– Fabrication<br />

– <strong>Installation</strong> & Commissioning<br />

Page 2


Pipe-in-Pipe Pipe in Pipe R&D Program<br />

• Phase 1<br />

– Mechanical Trials<br />

• Phase 2<br />

– Thermal Performance<br />

• Phase 3<br />

– Scalability <strong>of</strong> results from phase 1 & 2<br />

1-Mar-12<br />

Page 3


Technology Development Programme<br />

1-Mar-12<br />

Page 4


Development Programme<br />

1-Mar-12<br />

Page 5<br />

Simulated reeling test rig.<br />

Bend Radius 7.5 mtrs.<br />

Herriot Watt University Scotland.


Enhanced Thermal Performance Pipe-in-pipe Pipe in pipe (PIP)<br />

Cool down Test Results on pre & post<br />

reeled Pipe-in-pipe<br />

1-Mar-12<br />

Page 6<br />

Reduced Pressure<br />

Cooldown 3 times longer for<br />

similar cost in same crosssection


ITP Experience p<br />

1-Mar-12<br />

Page 7


Enhanced Thermal Performance Pipe-in-pipe p pp ( (PIP) )<br />

Non ageing (Silica based - mineral)<br />

Superior thermal performance<br />

Iz<strong>of</strong>lex: U-value = 0,30 W/m 2 .K (on OD)<br />

Aerogels: U-value = 0,74 W/m 2 .K (on OD)<br />

PU Foam: U-value = 1,25 W/m 2 .K (on OD)<br />

Load bearing insulation: No centralizers<br />

Suitable for large range <strong>of</strong> temperature (-196°C + 900°C)<br />

1-Mar-12<br />

Page 8<br />

<strong>Flowline</strong><br />

Sleeve Pipe


The Iz<strong>of</strong>lexTM with reduced pressure advantages<br />

1-Mar-12<br />

Aerogel Iz<strong>of</strong>lex<br />

U = 1,3 W/m2K Cool down to 30 oC = 26 hrs<br />

U = 0.56 W/m 2 K<br />

Cool down to 30 o C = 63 hrs<br />

Enhanced thermal performance for same client provided pipe diameters<br />

Page 9


The Iz<strong>of</strong>lexTM with reduced pressure advantages<br />

Iz<strong>of</strong>lex<br />

OD: 300mm<br />

Aerogels<br />

OD: 340mm<br />

PU Foam<br />

OD: 406mm<br />

Reduced outer pipe diameter for specified thermal performance.<br />

Reduced top tension.<br />

Increased on bottom stability.<br />

L Longer length l th on vessel l reel. l<br />

Pipe-in-pipe benchmark: U = 0.6 W/m 2 2K, Inner Pipe: 236 x 16.3 (Rosa 1500 m WD)<br />

1-Mar-12<br />

Page 10


Drag Test – No centralisers<br />

Assembly <strong>of</strong> 36 mtr. Iz<strong>of</strong>lex test sample Test sample after 5 insertions into<br />

without centralisers 300mtr. outer pipe.(1500mtr. Total)<br />

demonstrating no detrimental impact.<br />

1-Mar-12<br />

Page 11<br />

36 mtr. test sample being positioned<br />

for drag test thru. 300mtr. outer pipe.


EHTF - Full scale tests<br />

Joint Industry Project : 2000/2001<br />

Achievements : Validation <strong>of</strong> the concept (PREVENTION & RESTART<br />

conditions)<br />

U-value = 0,45 W/m 2 K<br />

7 W/m required for temperature maintenance above typical HAT<br />

10 W/m required for restart conditions<br />

1-Mar-12<br />

EHTF fabrication<br />

Page 12<br />

Glycol Jacket at Humble (TX)<br />

Other tests: Rosa pre-feed (2002), pre-feed review <strong>by</strong> JPK (2003), SS7 tests (2006-8)


EHTF System design<br />

Philosophy :<br />

• Optimize p the ppower efficiency y<br />

• High Passive insulation<br />

• Low power indirect heating<br />

Advantages for the Operator<br />

• Reduce power consumption<br />

• Lower CAPEX (no dedicated generator, payload, procurement)<br />

• Lower OPEX<br />

• More flexible in operation p<br />

System limits<br />

1-Mar-12<br />

• 20-50 km/power inlet (total length unlimited)<br />

• 250°C 250 C<br />

Page 13


EHTF design<br />

1-Mar-12<br />

Power<br />

supply<br />

φ1 φ2 φ3 Iz<strong>of</strong>lex<br />

Page 14<br />

Outer pipe<br />

STAR CONNECTION<br />

Neutral point<br />

Potential = 0V


Operational use <strong>of</strong> active flowlines: flowlines<br />

Preventative action during operation<br />

Low flow rate<br />

Varied effluent composition<br />

Longer shutdowns<br />

Restart capacity<br />

After long shutdown and wax formation Time<br />

Reduce chemical consumption<br />

1-Mar-12<br />

Page 15<br />

WAT<br />

HAT<br />

T°C<br />

Shutdown


System design process<br />

1-Mar-12<br />

Input parameters<br />

Output<br />

Notes<br />

• Critical temperatures p ( (HAT, , WAT) )<br />

• <strong>Heat</strong>-up requirements<br />

• Redundancy<br />

• Pipe OD, OD WT, WT Length<br />

• U-value<br />

• Voltage<br />

• Total copper cross section<br />

• Number <strong>of</strong> wires for redundancy<br />

• No interaction with cathodic protection<br />

• No interaction with pipe electrical or magnetic properties<br />

• Applicable up to to 250°C<br />

Page 16


EHT OPERATIONS & THERMAL MODELLING<br />

Hydrate dissociation<br />

<strong>Heat</strong>-up as a function <strong>of</strong> pipeline contents and power.<br />

With resistive heating, power supply is uniform along pipe<br />

no risk <strong>of</strong> local overheating<br />

1-Mar-12<br />

Page 17<br />

Same asymptote


EHTF DESIGN: main elements<br />

1-Mar-12<br />

Wires<br />

Page 18<br />

<strong>Electrical</strong> connectors<br />

Insulation<br />

Production Pipe<br />

Girth Weld<br />

<strong>Electrical</strong> Penetrators <strong>Electrical</strong> Cables<br />

Bulkhead (end-pieces)<br />

<strong>Electrical</strong> <strong>Heat</strong>ing Wires


FEA Results<br />

1-Mar-12<br />

Page 19<br />

<strong>Reel</strong>ing impact ca. 10%


BULKHEAD AND END PIECES<br />

Standard Subsea 1 kV connector: 1700 installed on Pazflor, 30,000+ worldwide<br />

1-Mar-12<br />

Page 20


FULL SCALE TESTS<br />

1-Mar-12<br />

Page 21


Conclusions<br />

• System defined<br />

• U value <strong>of</strong> 0.5 W/(m².K) after reeling is validated<br />

• Wire integrity after reeling and 25 years at 100°C verified and validated<br />

• Double barrier power feedthrough system available<br />

• Low voltage operation<br />

• High redundancy<br />

• EHTF in-situ in situ tests do not impact production<br />

• System can be completely tested onshore before installation<br />

1-Mar-12<br />

Page 22


<strong>Electrical</strong>ly y <strong>Trace</strong> <strong>Heat</strong>ed Pipe p in Pipe p<br />

• EHTF is an effective alternative to DEH.<br />

• Low Power requirement<br />

• Long distance applications<br />

• Technically Qualified <strong>by</strong> Total for Islay<br />

• DNV Qualified Q<br />

1-Mar-12<br />

Page 23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!