Attenuating the ice flexural wave on arctic seismic data

Attenuating the ice flexural wave on arctic seismic data Attenuating the ice flexural wave on arctic seismic data

<str<strong>on</strong>g>Attenuating</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>flexural</str<strong>on</strong>g><br />

<str<strong>on</strong>g>wave</str<strong>on</strong>g> <strong>on</strong> <strong>arctic</strong> <strong>seismic</strong> <strong>data</strong><br />

David C. Henley


Summary<br />

• Introducti<strong>on</strong>—What is <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>flexural</str<strong>on</strong>g><br />

<str<strong>on</strong>g>wave</str<strong>on</strong>g>, how is it excited?<br />

• Characteristics of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>flexural</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g><br />

• Noise attenuati<strong>on</strong> methods<br />

• R-T domain techniques—spectral clipping,<br />

Gabor dec<strong>on</strong>voluti<strong>on</strong><br />

• Example—Hansen Harbour<br />

• C<strong>on</strong>clusi<strong>on</strong>s


What is <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>flexural</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g>?<br />

• Flexural <str<strong>on</strong>g>wave</str<strong>on</strong>g> is often observed <strong>on</strong> floating<br />

<str<strong>on</strong>g>ice</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> Arctic<br />

• Flexural <str<strong>on</strong>g>wave</str<strong>on</strong>g> moti<strong>on</strong> is similar to that of a<br />

drum membrane<br />

• Flexural <str<strong>on</strong>g>wave</str<strong>on</strong>g> can be described as P-SV<br />

internally reflected modes (Ewing et al)<br />

• Flexural <str<strong>on</strong>g>wave</str<strong>on</strong>g> is excited by surface vertical<br />

source or internal compressi<strong>on</strong>al source in<br />

a hard layer bounded by fluids


Characteristics of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>flexural</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g><br />

• Very powerful—usually <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>gest <str<strong>on</strong>g>wave</str<strong>on</strong>g>field<br />

<strong>on</strong> a shot record by orders of magnitude<br />

• 2-D <str<strong>on</strong>g>wave</str<strong>on</strong>g>—attenuates as 1/r, not 1/r2 • Highly dispersed—high frequencies can move<br />

at <str<strong>on</strong>g>ice</str<strong>on</strong>g> P-<str<strong>on</strong>g>wave</str<strong>on</strong>g> velocity; low frequencies slower<br />

than air velocity<br />

• C<strong>on</strong>fined to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>ice</str<strong>on</strong>g>—<str<strong>on</strong>g>wave</str<strong>on</strong>g> does not propagate<br />

past edge of floating <str<strong>on</strong>g>ice</str<strong>on</strong>g>, but reflects efficiently<br />

from shore


Noise attenuati<strong>on</strong> methods<br />

• Model noise in R-T domain and subtract in<br />

X-T domain—linear<br />

• Attenuate noise directly in R-T domain<br />

using spectral whitening—linear, or<br />

spectral clipping—n<strong>on</strong>linear


Hansen Harbour CREWES 3-C<br />

• Receiver spread—50 3-C single ph<strong>on</strong>es<br />

15 metres apart<br />

• Colinear shot line centred <strong>on</strong> receiver<br />

spread—203 shots 30 metres apart<br />

• Dynamite and Vibroseis used as sources<br />

to record separate profiles<br />

• Vertical comp<strong>on</strong>ent Vibroseis <strong>data</strong> used<br />

for <str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g> attenuati<strong>on</strong> study


0.0<br />

1.0<br />

sec<br />

2.0<br />

397 771 shoreline<br />

1131<br />

Source-receiver offset--m<br />

Unscaled raw shot ga<str<strong>on</strong>g>the</str<strong>on</strong>g>r: source point <strong>on</strong> floating <str<strong>on</strong>g>ice</str<strong>on</strong>g>


0.0<br />

1.0<br />

sec<br />

2.0<br />

397 771 shoreline<br />

1131<br />

Source-receiver offset--m<br />

Scaled raw shot ga<str<strong>on</strong>g>the</str<strong>on</strong>g>r: source point <strong>on</strong> floating <str<strong>on</strong>g>ice</str<strong>on</strong>g>


0.0<br />

1.0<br />

sec<br />

2.0<br />

-1671 -1296 Shoreline<br />

-937<br />

Source-receiver offset--m<br />

Scaled raw shot ga<str<strong>on</strong>g>the</str<strong>on</strong>g>r: source point <strong>on</strong> land


Dispersi<strong>on</strong> and aliasing<br />

• Dispersi<strong>on</strong> provides unique separati<strong>on</strong> of<br />

<str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g> frequency comp<strong>on</strong>ents in R-T<br />

domain<br />

• Spatial aliasing compromises<br />

effectiveness of frequency separati<strong>on</strong> by<br />

moving comp<strong>on</strong>ents up into <strong>seismic</strong> band<br />

• Ideal acquisiti<strong>on</strong> would sample <str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g><br />

with no aliasing at any frequency


Aliasing of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>flexural</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g><br />

300 m/s<br />

1000 m/s<br />

No NMO—Ice <str<strong>on</strong>g>wave</str<strong>on</strong>g> aliased at all frequencies


Aliasing of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>flexural</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g><br />

1000 m/s linear NMO—lower frequencies still aliased


Aliasing of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>flexural</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g><br />

250 m/s linear NMO—higher frequencies aliased


0.0<br />

1.0<br />

sec<br />

2.0<br />

397 771 shoreline<br />

1131<br />

Source-receiver offset--m<br />

R-T trajectories<br />

Unscaled raw shot ga<str<strong>on</strong>g>the</str<strong>on</strong>g>r: source point <strong>on</strong> floating <str<strong>on</strong>g>ice</str<strong>on</strong>g>. R-T<br />

trajectories encounter m<strong>on</strong>ochromatic noise, due to<br />

dispersi<strong>on</strong> of <str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g>


0.0<br />

1.0<br />

sec<br />

2.0<br />

200 1500 3000<br />

R-T velocity—m/s<br />

Ice <str<strong>on</strong>g>wave</str<strong>on</strong>g><br />

Radial trace<br />

Reflecti<strong>on</strong>s<br />

R-T fan transform of raw shot ga<str<strong>on</strong>g>the</str<strong>on</strong>g>r—<str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g> <strong>on</strong><br />

radial trace is m<strong>on</strong>ochromatic


0<br />

-40<br />

dB<br />

-80<br />

0 20 40 60 80 100 120<br />

Hz<br />

Ice <str<strong>on</strong>g>wave</str<strong>on</strong>g> peaks<br />

Spectrum of radial trace with <str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g> noise


Editing <str<strong>on</strong>g>the</str<strong>on</strong>g> spectrum<br />

• Gabor dec<strong>on</strong>voluti<strong>on</strong>—linear, more<br />

effective <strong>on</strong> weaker, less m<strong>on</strong>ochromatic<br />

noise<br />

• Spectral clipping—n<strong>on</strong>linear, most<br />

effective <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>gest, most<br />

m<strong>on</strong>ochromatic noise


t<br />

F.T.<br />

Seismic trace c<strong>on</strong>taminated with m<strong>on</strong>ochromatic noise is<br />

transformed to frequency domain<br />

A<br />

+<br />

φ<br />

-<br />

f


A<br />

(dB)<br />

M<strong>on</strong>ochromatic noise<br />

Median spectrum<br />

Wings<br />

Peak width<br />

Lower threshold<br />

Upper threshold<br />

Median spectrum computed from raw spectrum; threshold curves<br />

placed parallel to median; peaks in raw spectrum exceeding<br />

threshold are flagged


A<br />

(dB)<br />

Median spectrum<br />

Edited regi<strong>on</strong>--peak + wings<br />

Flagged raw spectral amplitudes are replaced with median values,<br />

phase is unaltered


A<br />

+<br />

φ<br />

-<br />

f<br />

F.T.<br />

Edited spectrum is transformed back to <strong>seismic</strong> trace, sans<br />

m<strong>on</strong>ochromatic noise<br />

t


0<br />

-40<br />

dB<br />

-80<br />

0 20 40 60 80 100 120<br />

Hz<br />

Ice <str<strong>on</strong>g>wave</str<strong>on</strong>g> peaks<br />

Spectrum of radial trace with <str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g> noise


0<br />

-40<br />

dB<br />

-80<br />

0 20 40 60 80 100 120<br />

Hz<br />

Spectrum of radial trace with <str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g> noise after<br />

spectral clipping


0.0<br />

1.0<br />

sec<br />

2.0<br />

200 1500 3000<br />

R-T velocity—m/s<br />

Ice <str<strong>on</strong>g>wave</str<strong>on</strong>g><br />

Radial trace<br />

Reflecti<strong>on</strong>s<br />

R-T fan transform of raw shot ga<str<strong>on</strong>g>the</str<strong>on</strong>g>r after spectral<br />

clipping—m<strong>on</strong>ochromatic noise greatly attenuated


0.0<br />

1.0<br />

sec<br />

2.0<br />

397 771 shoreline<br />

1131<br />

Source-receiver offset--m<br />

Spectral clipping applied in R-T domain


0.0<br />

1.0<br />

sec<br />

2.0<br />

397 771 shoreline<br />

1131<br />

Source-receiver offset--m<br />

Gabor dec<strong>on</strong>voluti<strong>on</strong> applied in R-T domain


0.0<br />

1.0<br />

sec<br />

2.0<br />

397 771 shoreline<br />

1131<br />

Source-receiver offset--m<br />

Gabor dec<strong>on</strong>voluti<strong>on</strong> applied in X-T domain—no R-T<br />

processing


0.0<br />

1.0<br />

sec<br />

2.0<br />

397 771 shoreline<br />

1131<br />

Source-receiver offset--m<br />

Gabor dec<strong>on</strong>voluti<strong>on</strong> applied in X-T domain—R-T<br />

domain Gabor dec<strong>on</strong>voluti<strong>on</strong>


0.0<br />

1.0<br />

sec<br />

2.0<br />

397 771 shoreline<br />

1131<br />

Source-receiver offset--m<br />

Gabor dec<strong>on</strong>voluti<strong>on</strong> applied in X-T domain—R-T<br />

domain spectral clipping


0.0<br />

1.0<br />

sec<br />

2.0<br />

3.0<br />

1 450<br />

CDP<br />

Brute stack of Hansen Harbour line with no <str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g><br />

filtering


0.0<br />

1.0<br />

sec<br />

2.0<br />

3.0<br />

1 450<br />

CDP<br />

Brute stack of Hansen Harbour line after <str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g><br />

filtering


C<strong>on</strong>clusi<strong>on</strong>s<br />

• Stacking al<strong>on</strong>e is not sufficient to<br />

attenuate <str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g> noise<br />

• Ice <str<strong>on</strong>g>wave</str<strong>on</strong>g> should be properly spatially<br />

sampled during acquisiti<strong>on</strong><br />

• R-T domain more effective than X-T<br />

domain for <str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g> attenuati<strong>on</strong><br />

• Spectral clipping marginally more effective<br />

than Gabor dec<strong>on</strong> for str<strong>on</strong>g <str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g>


Acknowledgements<br />

• Thanks to Sp<strong>on</strong>sors and staff of CREWES<br />

for support and assistance<br />

• Thanks also to Natalia Soubotcheva for<br />

focussing my attenti<strong>on</strong> <strong>on</strong> Hansen Harbour<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>ice</str<strong>on</strong>g> <str<strong>on</strong>g>wave</str<strong>on</strong>g> problem

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!