24.03.2013 Views

Nonlinear Systems of Equations

Nonlinear Systems of Equations

Nonlinear Systems of Equations

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

13.4 <strong>Nonlinear</strong> <strong>Systems</strong><br />

In this final section, we want to learn how to solve systems <strong>of</strong> equations that are not necessarily<br />

all linear. We call these non-linear systems <strong>of</strong> equations.<br />

Definition: Non-linear system <strong>of</strong> equations<br />

A system <strong>of</strong> equations where one or more equations involved is not a line.<br />

We primarily use the substitution method to solve a non-linear system. However, sometimes<br />

elimination will work as well.<br />

Also, just as before, the solution to a non-linear system is all the points <strong>of</strong> intersection <strong>of</strong> the<br />

graphs <strong>of</strong> the equations. Therefore, since we now have more that just lines, we can have a<br />

variety <strong>of</strong> numbers <strong>of</strong> solutions. The graph can intersect once, twice, several times or not at all.<br />

Therefore, we should always verify the solution(s) to a system by looking at the graph.<br />

Example 1:<br />

Solve the system.<br />

2 2<br />

x + y = 100<br />

a.<br />

y − x = 2<br />

2 2<br />

x + y = 25<br />

b.<br />

2<br />

c.<br />

y<br />

= x + 5<br />

x<br />

2<br />

+<br />

2 2<br />

y<br />

xy = 4<br />

= 12<br />

Solution:<br />

a. We will solve this system by substitution. So we start by solving the bottom equation for<br />

y and then substitute it into the top equation. We get<br />

y − x = 2 ⇒ y = x + 2<br />

x<br />

2<br />

2<br />

2<br />

+ y = 100 ⇒ x + x<br />

x<br />

2<br />

2<br />

+ x<br />

2x<br />

2 ( + 2)<br />

= 100<br />

2 ( x + 2x<br />

− 48)<br />

2<br />

+ 4x<br />

+ 4 = 100<br />

+ 4x<br />

− 96 = 0<br />

( x + 8)(<br />

x − 6)<br />

= 0<br />

= 0<br />

x = −8,<br />

6<br />

So we have two different x values. This means we should have two points <strong>of</strong><br />

intersection. Lets now find the y values and verify with a graph.<br />

y = x + 2<br />

y = x + 2<br />

y = −8<br />

+ 2<br />

2<br />

2<br />

y = 6 + 2<br />

y = −6<br />

y = 8<br />

So our solutions are ( − 8, − 6)<br />

and ( 6 , 8)<br />

. We clearly have a circle and a line, thus we<br />

can easily graph them together and get


. Again we will use substitution to solve. This time notice that the bottom equation is<br />

already solved for y 2 and we have a y 2 in the top equation. Thus, that is the substitution<br />

we will make. We get<br />

x<br />

y<br />

2<br />

2<br />

+ y<br />

2<br />

= 25<br />

= x + 5<br />

Now we solve for x and then solve for y.<br />

x<br />

x<br />

2<br />

2<br />

+<br />

2<br />

⇒ x + ( x + 5)<br />

= 25<br />

( x + 5)<br />

+ x − 20 = 0<br />

( x + 5)(<br />

x − 4)<br />

= 25<br />

= 0<br />

x = −5,<br />

4<br />

We substitute these back in to get y. We get<br />

y<br />

y<br />

2<br />

2<br />

= −5<br />

+ 5<br />

= 0<br />

y = 0<br />

y<br />

y<br />

2<br />

2<br />

= 4 + 5<br />

= 9<br />

y = ± 3<br />

5,<br />

0 , 3<br />

So we have three different solutions ( − ) , ( 4 ) and ( , 3)<br />

graph. We have here a parabola and a circle. We get<br />

4 − . Lets verify with a<br />

c. Again, we will use substitution to solve. We need to decide which variable to solve for<br />

first. It seems that x or y on the bottom equation would be easiest. So we will solve for x.<br />

We get<br />

4<br />

xy = 4 ⇒ x =<br />

y<br />

Now we substitute that into the first equation and solve. We have<br />

x<br />

2<br />

2 ⎛ 4 ⎞<br />

+ 2y<br />

= 12 ⇒ ⎜ ⎟ + 2y<br />

⎝ y ⎠<br />

2<br />

2<br />

16 2<br />

= 12<br />

+ 2y<br />

= 12<br />

2<br />

y<br />

We will have to clear the fractions and solve as we did in chapter 10, that is, using a<br />

substitution.


Example 2:<br />

2 ⎛ 16 2 ⎞<br />

y ⎜ + 2y<br />

=<br />

2 ⎟ y<br />

⎝ y ⎠<br />

2y<br />

2u<br />

2<br />

2<br />

4<br />

16 + 2y<br />

−12y<br />

2<br />

2<br />

+ 16 = 0<br />

−12u<br />

+ 16 = 0<br />

4<br />

2 ( u − 6u<br />

+ 8)<br />

( u − 4)(<br />

u − 2)<br />

y<br />

2<br />

= 4<br />

y = ± 2<br />

= 12y<br />

= 0<br />

= 0<br />

u =<br />

4,<br />

( 12)<br />

2<br />

2<br />

2<br />

y<br />

2<br />

Substitute u = y 2<br />

= 2<br />

y = ±<br />

2<br />

Re-substitute u = y 2<br />

So since we have four different y values we will have to find x for each one. We<br />

substitute these in to<br />

4<br />

x =<br />

2<br />

= 2<br />

x<br />

4<br />

x =<br />

− 2<br />

= −2<br />

4<br />

y<br />

= to get<br />

x =<br />

=<br />

= 2<br />

4<br />

⋅<br />

2<br />

4 2<br />

2<br />

2<br />

2<br />

2<br />

4<br />

x = ⋅<br />

− 2<br />

= −<br />

= −2<br />

4 2<br />

2<br />

So we have four solutions, ( 2, 2)<br />

, ( − 2,<br />

− 2)<br />

, ( 2 2,<br />

2)<br />

and ( 2 2,<br />

− 2)<br />

− .<br />

4<br />

Lets verify with a graph. We have an ellipse and a basic function ( xy = 4 ⇒ y = ).<br />

x<br />

So we have<br />

Solve the system.<br />

x<br />

y = 3<br />

y<br />

= log ( x + 1)<br />

a. b.<br />

y = 3<br />

2x −<br />

2<br />

2<br />

y = 5 − log<br />

2<br />

( x − 3)<br />

2<br />

2<br />

2


Solution:<br />

a. This time solving is a little more complicated. There are a variety <strong>of</strong> direction we could<br />

go, however, we are going to start by noticing ( ) 2<br />

2 x<br />

y = 3<br />

x<br />

x 2<br />

( 3 ) − 2<br />

3<br />

3<br />

x = . So our system really is<br />

y =<br />

We can see clearly we will substitute the top equation into the bottom. That is, put y in<br />

for 3 x . We get<br />

2<br />

y = y − 2<br />

y<br />

2<br />

( y − 2)(<br />

y + 1)<br />

( )<br />

y = y<br />

− y − 2 = 0<br />

= 0<br />

y = 2,<br />

−1<br />

Now we substitute these values back in to get<br />

x<br />

2 = 3<br />

x<br />

−1<br />

= 3<br />

x = log3<br />

2<br />

However, the second equation is impossible (recall, exponential functions are always<br />

positive). Thus, that solution must be omitted. So we have a solution <strong>of</strong> ( 3,<br />

2).<br />

b. Lastly, since these equations are both already solved for y, we can simply set them equal<br />

to one another. Then we are left with a logarithmic equation to solve. We get<br />

log x + 1 = 5 − log x − 3<br />

log<br />

2<br />

2<br />

− 2<br />

2 ( )<br />

( x + 1)<br />

+ log 2 ( x − 3)<br />

= 5<br />

log 2 ( x + 1)(<br />

x − 3)<br />

= 5<br />

5<br />

( x + 1)(<br />

x − 3)<br />

= 2<br />

2 ( )<br />

x<br />

x<br />

2<br />

2<br />

− 2x<br />

− 3 = 32<br />

− 2x<br />

− 35 = 0<br />

( x − 7)(<br />

x + 5)<br />

= 0<br />

log 2<br />

x = 7,<br />

− 5<br />

However, -5 cannot be a solution since is doesn’t even check in the equation. Thus we<br />

only have x = 7. Now we substitute this back into either original equation to get the y<br />

value. We choose the first equation.<br />

y = log 7 + 1<br />

So the solution is .<br />

13.4 Exercises<br />

Solve the systems.<br />

( 7,<br />

3)<br />

= log<br />

= 3<br />

2<br />

2<br />

( )<br />

8


1. 2. 3.<br />

2<br />

2<br />

2<br />

2<br />

=<br />

+<br />

=<br />

+<br />

y<br />

x<br />

y<br />

x<br />

1<br />

25<br />

2<br />

2<br />

=<br />

−<br />

=<br />

+<br />

x<br />

y<br />

y<br />

x<br />

15<br />

3<br />

5<br />

225<br />

9<br />

25<br />

2<br />

2<br />

=<br />

+<br />

=<br />

+<br />

y<br />

x<br />

y<br />

x<br />

4. 5. 6.<br />

6<br />

2<br />

3<br />

36<br />

4<br />

9<br />

2<br />

2<br />

=<br />

+<br />

=<br />

+<br />

y<br />

x<br />

y<br />

x<br />

4<br />

2<br />

3<br />

2<br />

+<br />

=<br />

+<br />

=<br />

x<br />

y<br />

x<br />

y<br />

2<br />

3<br />

2<br />

+<br />

=<br />

=<br />

y<br />

x<br />

x<br />

y<br />

7. 8. 9.<br />

1<br />

2<br />

16<br />

2<br />

2<br />

=<br />

−<br />

=<br />

−<br />

y<br />

x<br />

y<br />

x<br />

7<br />

2<br />

25<br />

4 2<br />

2<br />

=<br />

+<br />

=<br />

+<br />

y<br />

x<br />

y<br />

x<br />

3<br />

2<br />

18<br />

2<br />

2<br />

=<br />

+<br />

=<br />

+<br />

y<br />

x<br />

y<br />

x<br />

10. 11.<br />

2<br />

12.<br />

3<br />

2<br />

3<br />

2<br />

=<br />

−<br />

=<br />

−<br />

y<br />

x<br />

y<br />

x<br />

2<br />

2<br />

20<br />

x<br />

y<br />

y<br />

x<br />

=<br />

=<br />

+<br />

3<br />

3<br />

2<br />

2<br />

2<br />

−<br />

=<br />

=<br />

−<br />

x<br />

y<br />

y<br />

x<br />

13. 14. 15.<br />

0<br />

3<br />

4<br />

2<br />

2<br />

=<br />

−<br />

=<br />

−<br />

−<br />

y<br />

x<br />

y<br />

x<br />

x<br />

6<br />

2<br />

8<br />

2<br />

2<br />

2<br />

2<br />

=<br />

+<br />

=<br />

+<br />

−<br />

y<br />

x<br />

y<br />

x<br />

x<br />

1<br />

13<br />

2<br />

2<br />

2<br />

−<br />

=<br />

=<br />

+<br />

x<br />

y<br />

y<br />

x<br />

16. 17. 18.<br />

25<br />

5<br />

2<br />

2<br />

2<br />

=<br />

+<br />

=<br />

−<br />

y<br />

x<br />

y<br />

x<br />

5<br />

3<br />

2<br />

25<br />

2<br />

2<br />

2<br />

2<br />

=<br />

−<br />

=<br />

+<br />

y<br />

x<br />

y<br />

x<br />

144<br />

16<br />

9<br />

4<br />

2<br />

2<br />

2<br />

2<br />

=<br />

+<br />

=<br />

+<br />

y<br />

x<br />

y<br />

x<br />

19. 20. 21.<br />

16<br />

13<br />

2<br />

2<br />

2<br />

2<br />

−<br />

=<br />

−<br />

=<br />

+<br />

y<br />

x<br />

y<br />

x<br />

10<br />

2<br />

16<br />

2<br />

2<br />

2<br />

2<br />

=<br />

−<br />

=<br />

+<br />

y<br />

y<br />

y<br />

x<br />

12<br />

20<br />

2<br />

2<br />

2<br />

2<br />

−<br />

=<br />

−<br />

=<br />

+<br />

y<br />

x<br />

y<br />

x<br />

22. 23.<br />

4<br />

14<br />

2<br />

2<br />

2<br />

2<br />

=<br />

−<br />

=<br />

+<br />

y<br />

x<br />

y<br />

x<br />

6<br />

2<br />

3<br />

5<br />

9<br />

=<br />

+<br />

−<br />

=<br />

y<br />

x<br />

xy<br />

24.<br />

7<br />

6<br />

−<br />

=<br />

−<br />

=<br />

+<br />

xy<br />

y<br />

x<br />

25. 26. 27.<br />

16<br />

4<br />

2<br />

2<br />

2<br />

−<br />

=<br />

−<br />

−<br />

=<br />

y<br />

x<br />

x<br />

y<br />

5<br />

25<br />

2<br />

2<br />

2<br />

+<br />

=<br />

=<br />

+<br />

x<br />

y<br />

y<br />

x<br />

xy<br />

x<br />

y<br />

xy<br />

5<br />

6<br />

1<br />

=<br />

+<br />

=<br />

28.<br />

xy<br />

y<br />

x<br />

xy<br />

7<br />

12<br />

1<br />

=<br />

+<br />

=<br />

29. 30.<br />

5<br />

2<br />

7<br />

2 2<br />

2<br />

=<br />

−<br />

=<br />

+<br />

+<br />

y<br />

x<br />

y<br />

xy<br />

x<br />

2<br />

27<br />

3 2<br />

2<br />

=<br />

−<br />

=<br />

+<br />

−<br />

y<br />

x<br />

y<br />

xy<br />

x<br />

31. 32. 33.<br />

2<br />

5<br />

2<br />

2<br />

=<br />

=<br />

+<br />

xy<br />

y<br />

x<br />

8<br />

20<br />

2<br />

2<br />

=<br />

=<br />

+<br />

xy<br />

y<br />

x<br />

8<br />

3<br />

2<br />

34<br />

3<br />

2<br />

2<br />

=<br />

−<br />

=<br />

+<br />

x<br />

xy<br />

x<br />

xy<br />

34. 35.<br />

4<br />

2<br />

3<br />

7<br />

3<br />

2<br />

2<br />

2<br />

=<br />

−<br />

=<br />

+<br />

y<br />

xy<br />

y<br />

xy<br />

3<br />

1<br />

1<br />

5<br />

1<br />

1<br />

−<br />

=<br />

−<br />

=<br />

+<br />

y<br />

x<br />

y<br />

x<br />

36.<br />

2<br />

1<br />

1<br />

4<br />

1<br />

1<br />

−<br />

=<br />

+<br />

=<br />

−<br />

y<br />

x<br />

y<br />

x


37.<br />

1<br />

2<br />

3<br />

3<br />

5<br />

2<br />

2<br />

2<br />

2<br />

2<br />

=<br />

−<br />

=<br />

+<br />

y<br />

x<br />

y<br />

x<br />

38.<br />

35<br />

1<br />

2<br />

14<br />

3<br />

1<br />

2<br />

2<br />

2<br />

2<br />

=<br />

+<br />

=<br />

−<br />

y<br />

x<br />

y<br />

x<br />

39.<br />

0<br />

1<br />

3<br />

1<br />

2<br />

4<br />

=<br />

+<br />

−<br />

−<br />

=<br />

x<br />

y<br />

y<br />

x<br />

40. 41.<br />

0<br />

16<br />

0<br />

3<br />

=<br />

−<br />

=<br />

−<br />

xy<br />

y<br />

x<br />

( ) 4<br />

3<br />

2<br />

2<br />

=<br />

+<br />

−<br />

−<br />

=<br />

y<br />

x<br />

x<br />

y<br />

42.<br />

( ) 1<br />

2<br />

2<br />

2<br />

=<br />

+<br />

+<br />

=<br />

y<br />

x<br />

x<br />

y<br />

43. 44. 45.<br />

12<br />

2<br />

2<br />

2 −<br />

=<br />

=<br />

x<br />

x<br />

y<br />

y<br />

1<br />

5<br />

5<br />

2 −<br />

=<br />

=<br />

x<br />

x<br />

y<br />

y<br />

6<br />

2<br />

4<br />

+<br />

=<br />

=<br />

x<br />

x<br />

e<br />

y<br />

e<br />

y<br />

46. 47.<br />

1<br />

2 2<br />

−<br />

=<br />

=<br />

x<br />

x<br />

e<br />

y<br />

e<br />

y ( )<br />

( 1<br />

log<br />

2<br />

4<br />

log<br />

2<br />

2<br />

+<br />

−<br />

= )<br />

+<br />

=<br />

x<br />

y<br />

x<br />

y<br />

48.<br />

( )<br />

1<br />

log<br />

log<br />

6<br />

6<br />

+<br />

−<br />

=<br />

=<br />

x<br />

y<br />

x<br />

y<br />

49.<br />

( )<br />

2<br />

1<br />

9<br />

9<br />

log<br />

1<br />

log<br />

+<br />

=<br />

+<br />

=<br />

x<br />

y<br />

x<br />

y<br />

50.<br />

( )<br />

( ) 2<br />

1<br />

16<br />

16<br />

1<br />

log<br />

3<br />

log<br />

+<br />

−<br />

=<br />

+<br />

=<br />

x<br />

y<br />

x<br />

y

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!