24.03.2013 Views

Chapter 1 LINEAR COMPLEMENTARITY PROBLEM, ITS ...

Chapter 1 LINEAR COMPLEMENTARITY PROBLEM, ITS ...

Chapter 1 LINEAR COMPLEMENTARITY PROBLEM, ITS ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

14 <strong>Chapter</strong> 1. Linear Complementarity Problem, Its Geometry, and Applications<br />

where a 0<br />

ij = aij ; (arjais)=ars, fori = r +1tom, j =1ton. As an example consider<br />

the Gaussian pivot step in the following matrix with row 2 as the pivot row and column<br />

3 as the pivot column. The pivot element is inside a box.<br />

8<br />

>:<br />

1 ;2 10 ;4 ;1<br />

4 6 2 ;8 ;4<br />

;3 1 ; 1 2 3<br />

1 ;4 2 3 0<br />

This Gaussian pivot step transforms this matrix into<br />

8<br />

>:<br />

1 ; 2 10 ; 4 ;1<br />

4 6 2 ; 8 ;4<br />

;1 4 0 ; 2 1<br />

;3 ;10 0 11 4<br />

Result 1.8 Let D be a square symmetric matrix of order n > = 2. Suppose D is PD.<br />

Subtract suitable multiples of row 1fromeach of the other rows so that all the entries<br />

in column 1 except the rst is transformed into zero. That is, transform<br />

D =<br />

2<br />

6<br />

4<br />

d11 ::: d1n<br />

d21 ::: d2n<br />

.<br />

.<br />

dn1 ::: dnn<br />

3<br />

7<br />

5 into D1 =<br />

2<br />

6<br />

4<br />

9<br />

><br />

9<br />

><br />

d11 ::: d1n<br />

0 d22<br />

~ ::: d2n<br />

~<br />

.<br />

.<br />

.<br />

0 dn2<br />

~ ::: dnn<br />

~<br />

by a Gaussian pivot step with row 1 as pivot row and column 1 as pivot column, clearly<br />

~dij = dij ; d1jdi1=d11 for all i j > = 2. E1, the matrix obtained by striking o the rst<br />

row and the rst column from D1, isalso symmetric and PD.<br />

Also, if D is an arbitrary square symmetric matrix, it is PD i d11 > 0 and the<br />

matrix E1 obtained as above is PD.<br />

Proof. Since D is symmetric dij = dji for all i j. Therefore,<br />

y T Dy =<br />

nX<br />

nX<br />

i=1 j=1<br />

= d11 y1 +<br />

yiyjdij = d11y 2 1 +2y1<br />

nX<br />

j=2<br />

d1jyj =d11<br />

2<br />

nX<br />

j=2<br />

+ X<br />

ij> = 2<br />

d1jyj + X<br />

ij> = 2<br />

yi ~ dijyj :<br />

3<br />

7<br />

5<br />

yiyjdij<br />

Letting y1 = ;( P n<br />

j=2 d1jyj)=d11, weverify that if D is PD, then P ij> = 2 yi ~ dijyj > 0 for<br />

all (y2:::yn) 6= 0,which implies that E1 is PD. The fact that E1 is also symmetric<br />

is clear since ~ dij = dij ; d1jdi1=d11 = ~ dji by the symmetry of D. If D is an arbitrary<br />

symmetric matrix, the above equation clearly implies that D is PD i d11 > 0 and E1<br />

is PD.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!