24.03.2013 Views

If A is a matrix representing a linear operator α with respect to some ...

If A is a matrix representing a linear operator α with respect to some ...

If A is a matrix representing a linear operator α with respect to some ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>If</strong> A <strong>is</strong> a <strong>matrix</strong> <strong>representing</strong> a <strong>linear</strong> <strong>opera<strong>to</strong>r</strong> <strong>α</strong> <strong>with</strong> <strong>respect</strong> <strong>to</strong> <strong>some</strong> bas<strong>is</strong> then we define<br />

the character<strong>is</strong>tic polynomial of <strong>α</strong> <strong>to</strong> be ∆<strong>α</strong>(t) = det (<strong>α</strong>−tid) = det (A−tI). Th<strong>is</strong> doesn’t<br />

depend on the <strong>matrix</strong> that represents <strong>α</strong> and thus th<strong>is</strong> <strong>is</strong> well defined.<br />

(2) Recal that the algebraic multiplicity, am(λ), of an eigenvalue λ <strong>is</strong> the multiplicity<br />

of λ as a root of ∆A(t) (or ∆<strong>α</strong>(t)). The geometric multiplicity of λ <strong>is</strong> the dimension of the<br />

eignspace EA(λ) (or E<strong>α</strong>(λ)). We know that we always have am(λ) ≥ gm(λ).<br />

Example. In the example above we have<br />

<br />

<br />

∆A(t) = det(A − tI) = −t 1 <br />

<br />

1 −t = t2 − 1 = (t − 1)(t + 1) = mA(t).<br />

We will later see that minimal polynomial and the character<strong>is</strong>tic polynomial are strongly<br />

related and that the latter <strong>is</strong> always a multiple of the minimal polynomial. Here am(1) =<br />

am(−1) = gm(1) = gm(−1) = 1.<br />

Lemma 3.1 Let p be a polynomial such that p(<strong>α</strong>) = 0 then every eigenvalue of <strong>α</strong> <strong>is</strong> a<br />

root of p. In particular every eigenvalue of <strong>α</strong> <strong>is</strong> a root of m<strong>α</strong>.<br />

Proof Let v = 0 be an eigenvec<strong>to</strong>r <strong>with</strong> <strong>respect</strong> <strong>to</strong> λ and suppose p(t) = a0+a1t+. . .+akt k .<br />

Then p(<strong>α</strong>) = 0 gives us<br />

0 = p(<strong>α</strong>) v<br />

= (a0id + a1<strong>α</strong> + · · · + ak<strong>α</strong> k )v<br />

= (a0 + a1λ + · · · + akλ k )v<br />

= p(λ)v.<br />

As v = 0 it follows that p(λ) = 0. ✷<br />

We now turn <strong>to</strong> a remarkable fact. It turns out that any <strong>linear</strong> <strong>opera<strong>to</strong>r</strong> <strong>α</strong> : V → V<br />

sat<strong>is</strong>fies the character<strong>is</strong>tic polynomial ∆<strong>α</strong>(t).<br />

Theorem 3.2 (Cayley-Hamil<strong>to</strong>n). For any n × n <strong>matrix</strong> A we have ∆A(A) = 0. Equivalently,<br />

for any <strong>linear</strong> <strong>α</strong> : V → V we have ∆<strong>α</strong>(<strong>α</strong>) = 0.<br />

Proof Suppose<br />

∆A(t) = det (A − tI) = a0 + a1t + · · · + ant n .<br />

We must show that ∆A(A) = a0I + a1A + · · ·+ anA n = 0 as a <strong>matrix</strong>. We begin <strong>with</strong> the<br />

observation that<br />

adj(A − tI) = B0 + B1t + · · · + Bn−1t n−1 ,<br />

where each Bi <strong>is</strong> an n × n <strong>matrix</strong>. Furthermore, the highest power of t on the right hand<br />

side <strong>is</strong> n−1, because each minor <strong>is</strong> an (n−1)×(n−1) determinant. The adjugate formula<br />

tells us that<br />

(A − tI)adj(A − tI) = det (A − tI)I.<br />

39


That <strong>is</strong><br />

(A − tI)(B0 + B1t + · · · + Bn−1t n−1 ) = (a0 + a1t + · · · + ant n )I.<br />

Comparing the coefficients of t i for i = 0, 1, . . ., n we see that<br />

AB0 = a0I,<br />

AB1 − B0 = a1I,<br />

ABn−1 − Bn−2 = an−1I,<br />

−Bn−1 = anI.<br />

Multiplying these equations from the left by I, A, . . .,A n <strong>respect</strong>ively we get<br />

Adding up these n + 1 equations, we get<br />

which <strong>is</strong> the required formula. ✷.<br />

.<br />

AB0 = a0I,<br />

A 2 B1 − AB0 = a1A,<br />

A n Bn−1 − A n−1 Bn−2 = an−1A n−1 ,<br />

−A n Bn−1 = anA n .<br />

0 = a0I + a1A + · · · + anA n ,<br />

Remark. It follows from the Cayley-Hamil<strong>to</strong>n Theorem that m<strong>α</strong>(t) divides ∆<strong>α</strong>(t). Next<br />

we are going <strong>to</strong> see that these have the same roots.<br />

Proposition 3.3 . The roots of m<strong>α</strong> are prec<strong>is</strong>ely the eigenvalues of <strong>α</strong>.<br />

Proof By the remark above, we have that m<strong>α</strong> divides ∆<strong>α</strong> and thus every root of m<strong>α</strong> <strong>is</strong><br />

a root of ∆<strong>α</strong> and therefore an eigenvalue of <strong>α</strong>. The converse follows from Lemma 3.1. ✷<br />

Remark. It follows from th<strong>is</strong> last proposi<strong>to</strong>n and the Cayley-Hamil<strong>to</strong>n Theorem that,<br />

over C, if λ1, . . .,λk are the d<strong>is</strong>tinct eigenvalues of λ and<br />

then<br />

<strong>with</strong> 1 ≤ si ≤ ri for all 1 ≤ i ≤ k.<br />

∆<strong>α</strong>(t) = (λ1 − t) r1 · · ·(λk − t) rk ,<br />

m<strong>α</strong>(t) = (t − λ1) s1 · · ·(t − λk) sk<br />

II. Invariant subspaces and primary decompositions<br />

A. Invariant subspaces<br />

Definition Let <strong>α</strong> : V → V be a <strong>linear</strong> <strong>opera<strong>to</strong>r</strong>. We say that a subspace W of V <strong>is</strong><br />

<strong>α</strong>-invariant if <strong>α</strong>(W) ⊆ W.<br />

40<br />

.


<strong>If</strong> W <strong>is</strong> <strong>α</strong>-invariant, then the restriction of <strong>α</strong> <strong>to</strong> W <strong>is</strong> the <strong>linear</strong> <strong>opera<strong>to</strong>r</strong><br />

<strong>α</strong>|W : W → W : w ↦→ <strong>α</strong>(w).<br />

Examples. (1) The subspaces {0} and V are always <strong>α</strong>-invariant.<br />

(2) Let λ be an eigenvalue of <strong>α</strong> and v <strong>is</strong> an eigenvec<strong>to</strong>rs <strong>with</strong> <strong>respect</strong> <strong>to</strong> λ then the<br />

one dimensional subspace Kv <strong>is</strong> <strong>α</strong>-invariant. Th<strong>is</strong> <strong>is</strong> because <strong>α</strong>(rv) = r<strong>α</strong>(v) = rλv ∈ Kv.<br />

(3) Let <strong>α</strong> : R 3 → R 3 be the <strong>linear</strong> <strong>opera<strong>to</strong>r</strong> that rotates every vec<strong>to</strong>r 30 degrees around<br />

the z-ax<strong>is</strong> (counter clockw<strong>is</strong>e). Here Re3 and Re1 + Re2 are <strong>α</strong>-invariant.<br />

A <strong>linear</strong> <strong>opera<strong>to</strong>r</strong> <strong>α</strong> : V → V <strong>is</strong> diagonal<strong>is</strong>able if there <strong>is</strong> a bas<strong>is</strong> (v1, . . ., vn) for V<br />

cons<strong>is</strong>ting of eigenvec<strong>to</strong>rs. Suppose that eigenvalue of for vi <strong>is</strong> λi. Then<br />

V = Kv1 ⊕ Kv2 ⊕ · · · ⊕ Kvn<br />

and the <strong>matrix</strong> for <strong>α</strong> <strong>with</strong> <strong>respect</strong> <strong>to</strong> the bas<strong>is</strong> (v1, . . .,vn) <strong>is</strong> the diagonal <strong>matrix</strong><br />

⎛<br />

⎞<br />

More generally suppose that<br />

⎜<br />

⎝<br />

λ1<br />

λ2<br />

. ..<br />

λn<br />

⎟<br />

⎠ .<br />

V = V1 ⊕ V2 ⊕ · · · ⊕ Vk<br />

where V1, . . ., Vk are <strong>α</strong>-invariant subspaces. Let Vi be a bas<strong>is</strong> for Vi and let <strong>α</strong>i = <strong>α</strong>|Vi :<br />

Vi → Vi be the restriction of <strong>α</strong> on Vi. Let Ai be the <strong>matrix</strong> <strong>representing</strong> <strong>α</strong>i <strong>with</strong> <strong>respect</strong> <strong>to</strong><br />

the bas<strong>is</strong> Vi. Then the <strong>matrix</strong> <strong>representing</strong> <strong>α</strong> <strong>with</strong> <strong>respect</strong> <strong>to</strong> the bas<strong>is</strong> V = V1∪V2∪· · ·∪Vk<br />

<strong>is</strong> the <strong>matrix</strong><br />

⎛<br />

⎞<br />

⎜<br />

A = ⎜<br />

⎝<br />

A1<br />

A2<br />

Conversely if we have any <strong>linear</strong> <strong>opera<strong>to</strong>r</strong>s <strong>α</strong>i : Vi → Vi <strong>with</strong> <strong>matrix</strong> Ai <strong>with</strong> <strong>respect</strong> <strong>to</strong><br />

Vi. Then we get a <strong>linear</strong> map (denoted <strong>α</strong>1 ⊕ <strong>α</strong>2 ⊕ · · · ⊕ <strong>α</strong>k) from V <strong>to</strong> V that acts on Vi<br />

like <strong>α</strong>i. Thus for<br />

<strong>α</strong> = <strong>α</strong>1 ⊕ <strong>α</strong>2 ⊕ · · · ⊕ <strong>α</strong>k : V → V<br />

we have <strong>α</strong>(vi) = <strong>α</strong>i(vi) if vi ∈ Vi. So the subspaces V1, . . .,Vk will be <strong>α</strong>-invariant and the<br />

<strong>matrix</strong> for <strong>α</strong> will be the <strong>matrix</strong> A as above that we will often denote by A1 ⊕A2 ⊕· · ·⊕Ak.<br />

Example. Suppose V1 = Fv1 ⊕ Fv2 and V2 = Fv3 ⊕ Fv4. Suppose furthermore that the<br />

<strong>linear</strong> <strong>opera<strong>to</strong>r</strong>s <strong>α</strong>1 : V1 → V1 and <strong>α</strong>2 : V2 → V2 are defined by<br />

. ..<br />

Ak<br />

⎟<br />

⎠ .<br />

<strong>α</strong>1(v1) = 2v1 + v2 <strong>α</strong>1(v2) = v1 − v2<br />

<strong>α</strong>2(v3) = v4 <strong>α</strong>2(v4) = v3.<br />

41


Then <strong>α</strong>1 ⊕ <strong>α</strong>2 : V1 ⊕ V2 → V1 ⊕ V2 has <strong>matrix</strong><br />

⎛ ⎞<br />

2 1 0 0<br />

⎜<br />

A = ⎜ 1 −1 0 0 ⎟<br />

⎝ 0 0 0 1 ⎠<br />

0 0 1 0<br />

=<br />

<br />

A1 0<br />

= A1 ⊕ A2<br />

0 A2<br />

where<br />

A1 =<br />

2 1<br />

1 −1<br />

<br />

0 1<br />

, A2 =<br />

1 0<br />

The aim <strong>is</strong> <strong>to</strong> break V in<strong>to</strong> a direct sum V1 ⊕ V2 ⊕ · · · ⊕ Vk where k <strong>is</strong> as big as possible.<br />

The following lemma <strong>is</strong> going <strong>to</strong> be useful.<br />

Lemma 3.4 Suppose <strong>α</strong>, β : V → V are <strong>linear</strong> <strong>opera<strong>to</strong>r</strong>s such that <strong>α</strong>β = β<strong>α</strong>. Then ker β<br />

and imβ are <strong>α</strong>-invariant.<br />

Proof <strong>If</strong> w ∈ ker β then<br />

β(<strong>α</strong>(w)) = <strong>α</strong>(β(w)) = <strong>α</strong>(0) = 0.<br />

hence <strong>α</strong>(w) ∈ ker β. Th<strong>is</strong> shows that ker β <strong>is</strong> <strong>α</strong>-invariant. To see that imβ <strong>is</strong> <strong>α</strong>-invariant,<br />

notice that if v = β(u) then <strong>α</strong>(v) = <strong>α</strong>(β(u)) = β(<strong>α</strong>(u)) ∈ im β. ✷<br />

B. Primary Decompositions<br />

Suppose that <strong>α</strong> : V → V has a decomposition<br />

<strong>α</strong> = <strong>α</strong>1 ⊕ · · · ⊕ <strong>α</strong>k<br />

<strong>with</strong> <strong>respect</strong> <strong>to</strong> decomposition V = V1 ⊕ · · · ⊕ Vk where V1, . . .,Vk are <strong>α</strong>-invariant. As<br />

before, we pick for each Vi a bas<strong>is</strong> Vi and we let Ai be the <strong>matrix</strong> <strong>representing</strong> <strong>α</strong>i <strong>with</strong><br />

<strong>respect</strong> <strong>to</strong> Vi. Then<br />

⎛<br />

⎞<br />

⎜<br />

A = A1 ⊕ · · · ⊕ Ak = ⎜<br />

⎝<br />

<strong>is</strong> the <strong>matrix</strong> repsenting <strong>α</strong> <strong>with</strong> <strong>respect</strong> <strong>to</strong> V = V1 ∪ · · · ∪ Vk. Notice that if f <strong>is</strong> any<br />

polynomial in K[t] then<br />

⎛<br />

⎞<br />

f(A1)<br />

⎜ f(A2) ⎟<br />

f(A) = ⎜<br />

⎝<br />

. ..<br />

⎟<br />

⎠<br />

f(Ak)<br />

= f(A1) ⊕ · · · ⊕ f(Ak).<br />

Thus f(A) = 0 if and only if mAi |f for all i = 1, . . .,k. Th<strong>is</strong> implies that the mA <strong>is</strong> the<br />

42<br />

A1<br />

A2<br />

. ..<br />

<br />

.<br />

Ak<br />

⎟<br />


least common multiple of mA1, . . .,mAk . Equivalently m<strong>α</strong> <strong>is</strong> the least common multiple<br />

of m<strong>α</strong>1, . . .,m<strong>α</strong>k . In particular if m<strong>α</strong>1, . . .,m<strong>α</strong>k are pairw<strong>is</strong>e comprime, then<br />

m<strong>α</strong> = m<strong>α</strong>1 · · ·m<strong>α</strong>k .<br />

Thus a decomposition of V in<strong>to</strong> <strong>α</strong>-invariant subspaces leads <strong>to</strong> a fac<strong>to</strong>rization of the<br />

minimal polynomial. Our next aim <strong>is</strong> <strong>to</strong> see that one can reverse th<strong>is</strong> procedure so a<br />

fac<strong>to</strong>rization of the minimal polynomial leads <strong>to</strong> a decomposition of V in<strong>to</strong> <strong>α</strong>-invariant<br />

subspaces.<br />

Lemma 3.5 Let <strong>α</strong> : V → V be a <strong>linear</strong> <strong>opera<strong>to</strong>r</strong> whose minimal polynomial has a fac<strong>to</strong>rization<br />

m<strong>α</strong>(t) = p1(t)p2(t)<br />

where p1 and p2 are monic polynomials that are coprime. Let V1 = imp2(<strong>α</strong>) and V2 =<br />

imp1(<strong>α</strong>). Then<br />

(1) The subspaces V1 and V2 are <strong>α</strong>-invariant.<br />

(2) V = V1 ⊕ V2.<br />

(3) The minimal polynomial of <strong>α</strong>i = <strong>α</strong>|Vi <strong>is</strong> pi(t).<br />

(4) V1 = kerp1(<strong>α</strong>) and V2 = kerp2(<strong>α</strong>).<br />

Proof (1) Notice that p1(<strong>α</strong>) and p2(<strong>α</strong>) commute <strong>with</strong> <strong>α</strong> and thus V1, V2 are <strong>α</strong>-invariant<br />

by Lemma 3.4.<br />

(2) As p1 and p2 are coprime, there are polynomials a1, a2 ∈ K[t] such that 1 = a1(t)p1(t)+<br />

a2(t)p2(t). Hence<br />

id = p2(<strong>α</strong>)a2(<strong>α</strong>) + p1(<strong>α</strong>)a1(<strong>α</strong>)<br />

Thus for any v ∈ V , we have<br />

v = id(v) = [p2(<strong>α</strong>)a2(<strong>α</strong>)](v) + [p1(<strong>α</strong>)a1(<strong>α</strong>)](v) ∈ im p2(<strong>α</strong>) + imp1(<strong>α</strong>) = V1 + V2.<br />

Th<strong>is</strong> shows that V = V1 + V2. To see that the sum <strong>is</strong> direct, suppose v ∈ V1 ∩ V2, say<br />

v = p2(<strong>α</strong>)(v2) = p1(<strong>α</strong>)(v1). Then<br />

v = a1(<strong>α</strong>)(p1(<strong>α</strong>)(v) + a2(<strong>α</strong>)p2(<strong>α</strong>)(v)<br />

= [a1(<strong>α</strong>)p1(<strong>α</strong>)p2(<strong>α</strong>)](v2) + [a2(<strong>α</strong>)p2(<strong>α</strong>)p1(<strong>α</strong>)](v1)<br />

= [a1(<strong>α</strong>)m<strong>α</strong>(<strong>α</strong>)](v2) + [a2(<strong>α</strong>)m<strong>α</strong>(<strong>α</strong>)](v1)<br />

= 0.<br />

Hence V1 ∩ V2 = {0} and V = V1 ⊕ V2.<br />

(3) We have that f(<strong>α</strong>1) = 0 if and only if f(<strong>α</strong>)(v) = 0 for all v ∈ V1. As V1 = imp2(<strong>α</strong>) th<strong>is</strong><br />

happens if and only if [f(<strong>α</strong>)(p2(<strong>α</strong>)](v) = 0 for all v ∈ V . As m<strong>α</strong> <strong>is</strong> the minimal polynomial<br />

for <strong>α</strong>, th<strong>is</strong> happens if and only if m<strong>α</strong> = p1p2 divides fp2. But th<strong>is</strong> happens if and only if<br />

p1|f. Hence p1 <strong>is</strong> the minimal polynomial of <strong>α</strong>1. Similarly p2 <strong>is</strong> the minimal polynomial<br />

of <strong>α</strong>2.<br />

(4) As p1(<strong>α</strong>)p2(<strong>α</strong>)(v) = m<strong>α</strong>(v) = 0 for all v ∈ V , it <strong>is</strong> clear that V1 = imp2(<strong>α</strong>) ⊆ ker p1(<strong>α</strong>).<br />

43


To get equality we just need <strong>to</strong> show that the dimensions are the same. But th<strong>is</strong> follows<br />

from<br />

dim V = dim V1 + dim V2 = dim im p2(<strong>α</strong>) + dim imp1(<strong>α</strong>)<br />

and (using the nullity rank theorem from year 1)<br />

dimV = dim ker p1(<strong>α</strong>) + dim im P1(<strong>α</strong>).<br />

comparing the two equations we see that dim ker p1(<strong>α</strong>) = dimim p2(<strong>α</strong>) = dim V1. Similarly<br />

one shows that V2 = ker p2(<strong>α</strong>). ✷<br />

Now let P be the set of all irreducibles in K[t] that are monic. We have seen earlier<br />

that these form a set of prime representatives for K[t]. Using Lemma 3.5 and induction<br />

on k, we get one of the main results about the structure of <strong>linear</strong> <strong>opera<strong>to</strong>r</strong>s.<br />

Theorem 3.6 (Primary Decomposition) Let <strong>α</strong> : V → V be a <strong>linear</strong> <strong>opera<strong>to</strong>r</strong> whose<br />

minimal polynomial has a fac<strong>to</strong>rization<br />

m<strong>α</strong>(t) = p1(t) n1 · · ·pk(t) nk<br />

where the p1, . . ., pk are d<strong>is</strong>tinct primes in P. Let qi = p ni<br />

i and let Vi = ker qi(<strong>α</strong>).<br />

(1) The subspaces V1, . . .,Vk are <strong>α</strong>-invariant,<br />

(2) V = V1 ⊕ · · · ⊕ Vk,<br />

(3) the minimal polynomial of <strong>α</strong>i = <strong>α</strong>|Vi <strong>is</strong> qi = p ni<br />

i .<br />

It <strong>is</strong> not difficult <strong>to</strong> see (sheet 9) that if <strong>α</strong> <strong>is</strong> a diagonal<strong>is</strong>able <strong>linear</strong> <strong>opera<strong>to</strong>r</strong> <strong>with</strong> (d<strong>is</strong>tinct)<br />

eigenvalues λ1, . . .,λk, then<br />

m<strong>α</strong>(t) = (t − λ1)(t − λ2) · · ·(t − λk).<br />

The next result shows that the converse <strong>is</strong> also true.<br />

Theorem 3.7 The <strong>linear</strong> map <strong>α</strong> : V → V <strong>is</strong> diagonal<strong>is</strong>able iff<br />

for <strong>some</strong> d<strong>is</strong>tinct λ1, . . .,λk ∈ K.<br />

m<strong>α</strong>(t) = (t − λ1)(t − λ2) · · ·(t − λk)<br />

Proof By the remark above we have that the minimal polynomial of a diagonal<strong>is</strong>able<br />

<strong>linear</strong> map <strong>is</strong> a product of d<strong>is</strong>tinct <strong>linear</strong> fac<strong>to</strong>rs. For the converse we make use of the<br />

Primary Decomposition Theorem. According <strong>to</strong> it we have that<br />

V = ker (<strong>α</strong> − λ1id) ⊕ · · · ⊕ ker (<strong>α</strong> − λkid)<br />

= E<strong>α</strong>(λ1) ⊕ · · · ⊕ E<strong>α</strong>(λk).✷<br />

Remark. Suppose the dimension of E<strong>α</strong>(λi) <strong>is</strong> di and Ii <strong>is</strong> the identity <strong>matrix</strong> in Mdi (K).<br />

44


Pick a bas<strong>is</strong> Vi for E<strong>α</strong>(λi) for i = 1, . . ., k. The <strong>matrix</strong> for <strong>α</strong> in Theorem 3.7 <strong>with</strong> <strong>respect</strong><br />

<strong>to</strong> the bas<strong>is</strong> V1 ∪ V2 ∪ · · · ∪ Vk <strong>is</strong> then the diagonal <strong>matrix</strong><br />

⎛<br />

⎞<br />

⎜<br />

⎝<br />

λ1I1<br />

λ2I2<br />

45<br />

. ..<br />

λkIk<br />

⎟<br />

⎠ .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!