23.03.2013 Views

1. Xtra Edge February 2012 - Career Point

1. Xtra Edge February 2012 - Career Point

1. Xtra Edge February 2012 - Career Point

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Sol. (i) The capacitor A with dielectric slab can be<br />

considered as two capacitors in parallel, one<br />

having dielectric slab and one not having dielectric<br />

A<br />

slab each capacitor has an area of . The<br />

2<br />

combined capacitance is<br />

110 V<br />

A<br />

C = C1 + C2<br />

( A / 2)<br />

ε 0 ( A / 2)<br />

ε r<br />

= +<br />

0ε<br />

=<br />

d<br />

d<br />

=<br />

0.<br />

4<br />

– 12<br />

× 8.<br />

85×<br />

10<br />

– 4<br />

2×<br />

8.<br />

85×<br />

10<br />

+<br />

+ + + +<br />

– –<br />

A/2<br />

–<br />

A/2<br />

–<br />

+<br />

A ε 0<br />

[1 + εr]<br />

2<br />

d<br />

[1 + 9] = 2 × 10 –9 F<br />

∴ Energy stored<br />

1 2 1 –9 2 –5<br />

= CV = × 2 × 10 × (110) = <strong>1.</strong>21 × 10 J<br />

2 2<br />

(ii) Work done in removing the dielectric state =<br />

(Energy stored in capacitor without dielectric) –<br />

(Energy stored in capacitor with dielectric).<br />

It may be noted that while taking out the dielectric<br />

the charge on the capacitor plate remains the same.<br />

∴ W =<br />

q<br />

2C'<br />

2<br />

q<br />

–<br />

2C<br />

2<br />

Here, C = 2 × 10 –9 F,<br />

– 14<br />

Aε 0 0.<br />

04×<br />

8.<br />

85×<br />

10<br />

C' = =<br />

= 0.4 × 10<br />

– 4<br />

d 8.<br />

85×<br />

10<br />

–9 F<br />

q = CV = 2 × 10 –9 × 110 = 2.2 × 10 –7 C<br />

– 7<br />

2<br />

( 2.<br />

2×<br />

10 ) ⎡ 1 1 ⎤<br />

∴ W = ⎢ –<br />

– 9 – 9<br />

2<br />

⎥<br />

⎣0.<br />

4×<br />

10 2×<br />

10 ⎦<br />

– 14<br />

2.<br />

2×<br />

2.<br />

2×<br />

10 ⎡2<br />

– 0.<br />

4⎤<br />

=<br />

– 9 ⎢ ⎥<br />

2×<br />

10 ⎣ 2×<br />

0.<br />

4 ⎦<br />

= <strong>1.</strong>21 ×<br />

<strong>1.</strong><br />

6<br />

0.<br />

4<br />

× 10 –5 = 4.84 × 10 –5 J<br />

ε 0ε r A B<br />

(iii) The capacitance of B =<br />

d<br />

– 12<br />

8.<br />

85×<br />

10 × 9×<br />

0.<br />

02<br />

=<br />

– 4<br />

8.<br />

85×<br />

10<br />

CB = <strong>1.</strong>8 × 10 –9 F<br />

The charge on A, qA = 2.2 × 10 –7 C gets distributed<br />

into two parts.<br />

∴ q1 + q2 = 2.2 × 10 –7 C Also the potential<br />

difference across A = p.d. across B<br />

<strong>Xtra</strong><strong>Edge</strong> for IIT-JEE 7 FEBRUARY <strong>2012</strong><br />

∴<br />

q 1 =<br />

C<br />

A<br />

⇒ q1 =<br />

q<br />

C<br />

B<br />

2<br />

B<br />

C A . q2 =<br />

C<br />

0.<br />

4×<br />

10<br />

<strong>1.</strong><br />

8×<br />

10<br />

∴ 0.22 q2 + q2 = 2.2 × 10 –7<br />

2.<br />

2<br />

⇒ q2 =<br />

<strong>1.</strong><br />

22<br />

⇒ q1 = 0.4 × 10 –7 C<br />

Total energy stored<br />

=<br />

2<br />

1<br />

A<br />

q<br />

2C<br />

+<br />

– 9<br />

– 9<br />

× 10 –7 = <strong>1.</strong>8 × 10 –7 C<br />

2<br />

2<br />

q<br />

2C<br />

B<br />

– 14<br />

. q2 = 0.22 q2<br />

– 14<br />

0.<br />

4×<br />

0.<br />

4×<br />

10 <strong>1.</strong><br />

8×<br />

<strong>1.</strong><br />

8×<br />

10<br />

=<br />

+<br />

– 9<br />

– 8<br />

2×<br />

0.<br />

4×<br />

10 2×<br />

<strong>1.</strong><br />

8×<br />

10<br />

= 0.2 × 10 –5 + 0.9 × 10 –5 = <strong>1.</strong>1 × 10 –5 J.<br />

3. A particles of mass m = <strong>1.</strong>6 × 10 –27 kg and charge q =<br />

<strong>1.</strong>6 × 10 –19 C enters a region of uniform magnetic<br />

field of strength 1 Tesla along the direction shown in<br />

figure. The speed of the particle is 10 7 m/s. (i) the<br />

magnetic field is directed along the inward normal to<br />

the plane of the paper. The particle leaves the region<br />

of the field at the point F. Find the distance EF and<br />

the angle θ. (ii) If the direction of the field is along<br />

the outward normal to the plane of the paper, find the<br />

time spent by the particle in the region of the<br />

magnetic field after entering it at E. [IIT-1984]<br />

× × × × ×<br />

θ × × × × ×<br />

× × × × ×<br />

F × × × × ×<br />

× × × × ×<br />

E × × × × ×<br />

× × × × ×<br />

× × × × ×<br />

× × × × ×<br />

45º<br />

Sol. (a) m = <strong>1.</strong>6 × 10 –27 kg, q = <strong>1.</strong>6 × 10 –19 C<br />

B = 1 T, v = 10 7 m/s<br />

F = q . v B sin α<br />

(acting towards O by Fleming's left hand rule)<br />

F = qvB [Q α = 90º]<br />

But F = ma<br />

∴ qvB = ma<br />

qvB<br />

∴ a =<br />

m<br />

– 19<br />

<strong>1.</strong><br />

6×<br />

10 × 10 × 1<br />

=<br />

– 27<br />

<strong>1.</strong><br />

6×<br />

10<br />

= 10 15 m/s 2<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!