23.03.2013 Views

1. Xtra Edge February 2012 - Career Point

1. Xtra Edge February 2012 - Career Point

1. Xtra Edge February 2012 - Career Point

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3. A monochromatic light source of frequency<br />

ν illuminates a metallic surface and ejects<br />

photoelectrons. The photoelectrons having maximum<br />

energy are just able to ionize the hydrogen atom in<br />

ground state. When the whole experiment is repeated<br />

with an incident radiation of frequency (5/6) ν, the<br />

photoelectrons so emitted are able to excite the<br />

hydrogen atom beam which then emits a radiation of<br />

wavelength 1215 Å. Find the work function of the<br />

metal and the frequency ν.<br />

Sol. In the first case,<br />

Emax = Ionization energy = 13.6 eV<br />

= 2<strong>1.</strong>76 × 10 –19 J<br />

So, hν = 2<strong>1.</strong>76 × 10 –19 J ....(1)<br />

In the second case,<br />

So,<br />

hc<br />

E'max =<br />

λ<br />

−34<br />

6.<br />

6×<br />

10 × 3×<br />

10<br />

=<br />

−10<br />

1215×<br />

10<br />

=16.3×10 –19 J<br />

5ν h<br />

–19<br />

= 16.3 × 10 + W ...(2)<br />

6<br />

Dividing Eq.(1) by Eq.(2)<br />

−19<br />

6 2<strong>1.</strong><br />

76×<br />

10 + W<br />

=<br />

5<br />

−19<br />

16.<br />

3×<br />

10 + W<br />

Solving, we get<br />

W = 1<strong>1.</strong>0 × 10 – 19 J = 6.875 eV<br />

−19<br />

−19<br />

2<strong>1.</strong><br />

76×<br />

10 + 1<strong>1.</strong><br />

0×<br />

10<br />

From Eq.(1) ν =<br />

−34<br />

6.<br />

6×<br />

10<br />

= 5 × 10 15 Hz<br />

4. The radiation, emitted when an electron jumps from<br />

n = 3 to n = 2 orbit in a hydrogen atom, falls on a<br />

metal to produce photoelectrons. The electrons from<br />

the metal surface with maximum kinetic energy are<br />

made to move perpendicular to a magnetic field of<br />

1/320 T in a radius of 10 –3 m. Find (i) the kinetic<br />

energy of electrons, (ii) wavelength of radiation and<br />

(iii) the work function of metal.<br />

Sol. (i) Speed of an electron in the magnetic field,<br />

Ber<br />

v =<br />

m<br />

Kinetic energy of electrons<br />

1 2<br />

Emax = mv =<br />

2<br />

2<br />

2<br />

2<br />

B e r<br />

2m<br />

2<br />

8<br />

−19<br />

⎛ 1 ⎞ ( <strong>1.</strong><br />

6×<br />

10 ) × ( 10<br />

= ⎜ ⎟⎠ ×<br />

⎝ 320<br />

−31<br />

2×<br />

9.<br />

1×<br />

10<br />

= <strong>1.</strong>374 × 10 –19 J<br />

= 0.8588 eV<br />

2<br />

−3<br />

)<br />

2<br />

(ii) Energy of the photon emitted from a hydrogen<br />

atom<br />

hc ⎡ 1 1 ⎤<br />

hν = =<br />

λ<br />

⎢ −<br />

2 2 ⎥<br />

⎣2<br />

3 ⎦<br />

= <strong>1.</strong>888 eV<br />

Wavelength of radiation,<br />

<strong>Xtra</strong><strong>Edge</strong> for IIT-JEE 24 FEBRUARY <strong>2012</strong><br />

−34<br />

6.<br />

62×<br />

10 × 3×<br />

λ =<br />

<strong>1.</strong><br />

888×<br />

<strong>1.</strong><br />

6×<br />

10<br />

= 6.572 × 10 –7 m<br />

= 6572 Å<br />

8<br />

10<br />

−19<br />

(iii) Work function of metal W = hν – Emax<br />

= <strong>1.</strong>8888 – 0.8588<br />

= <strong>1.</strong>03 eV<br />

5. X-rays are produced in an X-ray tube by electrons<br />

accelerated through a potential difference of 50.0 kV.<br />

An electron makes three collisions in the target<br />

before coming to rest and loses half of its kinetic<br />

energy in each of the first two collisions. Determine<br />

the wavelengths of the resulting photons. Neglect the<br />

recoil of the heavy target atoms.<br />

Sol. Initial kinetic energy of the electron = 50.0 keV<br />

Kinetic energy after first collision = 25.0 keV<br />

Energy of the photon produced in the first collision,<br />

E1 = 50.0 – 25.0 = 25.0 keV<br />

Wavelength of this photon<br />

−34<br />

8<br />

hc 6.<br />

6×<br />

10 × 3×<br />

10<br />

λ1 = =<br />

E<br />

−19<br />

3<br />

1 <strong>1.</strong><br />

6×<br />

10 × 25.<br />

0×<br />

10<br />

= 0.495 × 10 –10 m = 0.495 Å<br />

Kinetic energy of the electron after second collision<br />

= 12.5 eV<br />

Energy of the photon produced in the second<br />

collision, E2 = 25.0 – 12.5 = 12.5 keV<br />

Wavelength of this photon<br />

hc<br />

=<br />

E2<br />

6.<br />

6 × 10<br />

λ2 =<br />

<strong>1.</strong><br />

6 × 10<br />

= 0.99 × 10 –10 m<br />

= 0.99 Å<br />

−34<br />

−19<br />

8<br />

× 3×<br />

10<br />

3<br />

× 12.<br />

5×<br />

10<br />

Kinetic energy of the electron after third collision = 0<br />

Energy of the photon produced in the third collision,<br />

E3 = 12.5 – 0 = 12.5 keV<br />

This is same as E2. Therefore, wavelength of this<br />

photon, λ3 = λ2 = 0.99 Å.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!