23.03.2013 Views

Damage formation and annealing studies of low energy ion implants ...

Damage formation and annealing studies of low energy ion implants ...

Damage formation and annealing studies of low energy ion implants ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Contents<br />

List <strong>of</strong> Tables vi<br />

List <strong>of</strong> Figures vii<br />

Acknowledgements xiv<br />

Abbreviat<strong>ion</strong>s <strong>and</strong> Symbols xv<br />

Abstract xvii<br />

Publicat<strong>ion</strong>s xviii<br />

Chapter 1 Introduct<strong>ion</strong> 1<br />

1.1 Introduct<strong>ion</strong> 1<br />

1.2 CMOS Devices 1<br />

1.3 Ion implantat<strong>ion</strong> 8<br />

1.4 Annealing 9<br />

1.5 Objective, preparat<strong>ion</strong>, analysis techniques <strong>and</strong> equipment 11<br />

1.6 Scope <strong>of</strong> the project 12<br />

References 13<br />

Chapter 2 Atomic collis<strong>ion</strong> in solids 15<br />

2.1 Introduct<strong>ion</strong> 15<br />

2.2 Elastic <strong>energy</strong> loss / Nuclear Stopping 16<br />

2.2.1 Scattering cross sect<strong>ion</strong> 18<br />

2.2.2 The Kinematic Factor 19<br />

2.2.3 Energy transferred in elastic collis<strong>ion</strong>s 21<br />

2.3 Inelastic <strong>energy</strong> loss / Electronic stopping 21<br />

2.3.1 Models for inelastic <strong>energy</strong> loss 22<br />

2.3.2 Summary <strong>of</strong> General trends in the inelastic <strong>energy</strong> loss curve 23<br />

2.3.3 Experimentally obtained stopping powers 24<br />

2.3.4 Difference in stopping powers in open channels 24<br />

2.3.5 Correlat<strong>ion</strong> between stopping <strong>and</strong> screening 25<br />

2.3.6 Example <strong>of</strong> relevant nuclear <strong>and</strong> electronic stopping powers 25<br />

2.4 Ion range 26<br />

2.4.1 Range calculat<strong>ion</strong> 26<br />

2.4.2 Simulat<strong>ion</strong> <strong>of</strong> <strong>ion</strong> implantat<strong>ion</strong> (using TRIM) 27<br />

2.4.3 Channelling <strong>of</strong> the <strong>ion</strong>s 28<br />

References 28<br />

Chapter 3 <strong>Damage</strong> <strong>and</strong> Annealing processes 30<br />

3.1 Introduct<strong>ion</strong> 30<br />

3.1.1 Si crystal structure <strong>and</strong> its properties 30<br />

3.2 Implantat<strong>ion</strong> induced defects, damage build-up <strong>and</strong> amorphisat<strong>ion</strong> 32<br />

3.2.1.1 Atomic displacement 32<br />

3.2.1.2 Point defects 32<br />

3.2.1.3 Point defect migrat<strong>ion</strong> <strong>and</strong> secondary defects<br />

formed prior to <strong>annealing</strong> 34<br />

3.2.1.4 Dynamic <strong>annealing</strong> 35<br />

3.2.2 Amorphisat<strong>ion</strong> 35<br />

3.2.2.1 Structure <strong>of</strong> amorphous Si 35<br />

3.2.2.2 Ion implantat<strong>ion</strong> amorphisat<strong>ion</strong> 36<br />

3.2.2.3 Collis<strong>ion</strong> Cascades, produced by single heavy <strong>and</strong> light <strong>ion</strong>s 36<br />

3.2.2.4 Heterogeneous amorphisat<strong>ion</strong> (overlap model) 39<br />

3.2.2.5 Homogeneous model (Critical defects model) 40<br />

ii

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!