23.03.2013 Views

Damage formation and annealing studies of low energy ion implants ...

Damage formation and annealing studies of low energy ion implants ...

Damage formation and annealing studies of low energy ion implants ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

5.4 Conclus<strong>ion</strong><br />

MEIS analysis with addit<strong>ion</strong>al SIMS depth pr<strong>of</strong>iling has been used to investigate<br />

the growth mode <strong>of</strong> the amorphous layer as well as the relat<strong>ion</strong>ship between disorder<br />

<strong>format<strong>ion</strong></strong> <strong>and</strong> dopant redistribut<strong>ion</strong> for shal<strong>low</strong> As <strong>and</strong> Sb <strong>implants</strong> into Si performed at<br />

room temperature. MEIS <strong>studies</strong> show that damage evolut<strong>ion</strong> caused by these heavy<br />

<strong>ion</strong>s for doses from 3 × 10 13 cm -2 upwards does not fol<strong>low</strong> the pr<strong>of</strong>ile <strong>of</strong> the <strong>energy</strong><br />

deposit<strong>ion</strong> funct<strong>ion</strong>, but proceeds from the surface where an initial 4 nm wide<br />

amorphous layer developed, <strong>and</strong> then grows inwards in a planar fash<strong>ion</strong> as the dose is<br />

increased. It is proposed that a fract<strong>ion</strong> <strong>of</strong> the generated interstitials migrate towards the<br />

surface, <strong>and</strong> are captured by the oxide or amorphous /crystal Si interface, where their<br />

trapping nucleates the growth <strong>of</strong> a shal<strong>low</strong> amorphous layer <strong>and</strong> the subsequent planar<br />

growth inwards <strong>of</strong> the damage layer. The observed build up <strong>of</strong> the As pr<strong>of</strong>ile, the<br />

maximum <strong>of</strong> which moves from a depth <strong>of</strong> 3.5 nm to 5.5 nm over the dose range studied<br />

is related to this process: Arsenic that is stopped in the as yet not amorphised layer,<br />

moves out into the growing disordered layer, in which it is more easily accommodated.<br />

SIMS <strong>studies</strong> have confirmed this dopant segregat<strong>ion</strong> effect. Low dose, shal<strong>low</strong> Sb<br />

<strong>implants</strong> also exhibit this novel damage evolut<strong>ion</strong> / dopant movement effect.<br />

References<br />

1 L. Pelaz, L.A. Marqués, J. Barbolla. Appl. Phys. Rev. 96 Dec. 2004, p5947.<br />

2 F. Priolo <strong>and</strong> E. Rimini, Materials Science Reports 5 (1990) 319.<br />

3 F. L.Vook <strong>and</strong> H. J. Stein, Radiat. Eff. 2(1969) 23.<br />

4 L. A. Christel, J. F Gibbons <strong>and</strong> T. W. Sigmon, J. Appl. Phys. 52 (1981) 7143.<br />

5 M. L. Swanson, J. R. Parsons, <strong>and</strong> C. W. Hoelke, Radiat. Eff. 9, 249, (1971).<br />

6 L. T. Chadderton <strong>and</strong> F. H. Eisen, Radiat. Eff. 7, 129 (1971).<br />

7 F. F. Morehead, Jr. <strong>and</strong> B. L. Crowther, Radiat. Eff. 6 (1970) 27.<br />

8 J. R. Dennis <strong>and</strong> E.B Hale, J. Appl. Phys. 49(3) (1978) 1119.<br />

9 J. R. Dennis <strong>and</strong> E. B. Hale, Appl. Phys. Lett. 29, 523 (1976).<br />

10 L. M. Howe <strong>and</strong> M. H. Rainville, Nucl. Instrum Meth B 19/20 (1987) 61<br />

11 R. G. Elliman, J. S. Williams, W. L.Brown, A. Leiberich, D. H. Maher, <strong>and</strong> R. V.<br />

Knoell, Nucl Instrum Meth. B19/20 (1987) 435.<br />

12 R. D. Goldberg, R. G. Elliman, <strong>and</strong> J. S. Williams, Nucl. Instrum. Meth. B 80/81,<br />

596 (1993).<br />

13 M. Avrami, J. Chem. Phys. 9, 177 (1941).<br />

116

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!