23.03.2013 Views

Non-dispersive wave packets in periodically driven quantum systems

Non-dispersive wave packets in periodically driven quantum systems

Non-dispersive wave packets in periodically driven quantum systems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A. Buchleitner et al. / Physics Reports 368 (2002) 409–547 495<br />

Section 3.4. A detailed stability analysis can be found <strong>in</strong> [30,46,154] and we summarize here the<br />

ma<strong>in</strong> results only.<br />

S<strong>in</strong>ce chang<strong>in</strong>g the sign of F <strong>in</strong> Eq. (214) is equivalent to chang<strong>in</strong>g the sign of x from positive<br />

to negative, we only consider the equilibrium position at xeq ¿ 0 (compare Eqs. (185)–(188)). For<br />

non-vanish<strong>in</strong>g magnetic eld, its position is given by<br />

!(! − !c)xeq − 1<br />

x2 eq<br />

− F =0: (215)<br />

Rede n<strong>in</strong>g the dimensionless parameter q (see Eq. (186)) via<br />

1<br />

q =<br />

!(! − !c)x3 eq<br />

; (216)<br />

we obta<strong>in</strong> for the micro<strong>wave</strong> amplitude<br />

F =[!(! − !c)] 2=3 (1 − q)=q 1=3<br />

and<br />

(217)<br />

Eeq =[!(! − !c)] 1=3 (1 − 4q)=2q 2=3<br />

for the equilibrium energy.<br />

(218)<br />

Harmonic expansion of Eq. (214) around the equilibrium po<strong>in</strong>t (xeq;yeq =0;zeq = 0) allows for<br />

a l<strong>in</strong>ear stability analysis <strong>in</strong> its vic<strong>in</strong>ity. Alike the pure CP case, the z motion decouples from the<br />

motion <strong>in</strong> the (x; y) plane. For the latter, we recover the generic harmonic Hamiltonian discussed <strong>in</strong><br />

Section 3.4, Eq. (191), provided we substitute<br />

˜! = ! − !c=2 : (219)<br />

When expanded at second order around the equilibrium po<strong>in</strong>t, Hamiltonian (214) takes the standard<br />

form of a rotat<strong>in</strong>g anisotropic oscillator, Eq. (191), with ˜! replac<strong>in</strong>g !, and with the stability<br />

parameters:<br />

a = 1<br />

˜! 2<br />

2 ! c<br />

4<br />

b = 1<br />

˜! 2<br />

2 ! c<br />

4<br />

2<br />

−<br />

x3 <br />

eq<br />

1<br />

+<br />

x3 <br />

eq<br />

;<br />

: (220)<br />

The regions of stability of the equilibrium po<strong>in</strong>t (xeq;yeq;zeq) are thus obta<strong>in</strong>ed from the doma<strong>in</strong>s<br />

of stability of the 2D rotat<strong>in</strong>g anisotropic oscillator, given by Eqs. (192) and (193). They are<br />

visualized <strong>in</strong> terms of the physical parameters F and !c, (us<strong>in</strong>g the standard scaled electric eld<br />

F0 = Fn 4 0 = F!−4=3 ) <strong>in</strong> Fig. 39, with the black region correspond<strong>in</strong>g to Eq. (192), and the grey<br />

region to Eq. (193). Observe that the presence of the magnetic eld tends to enlarge the region<br />

of stability <strong>in</strong> parameter space; for !c = 0 (pure CP case, no magnetic eld) the stability region<br />

is quite t<strong>in</strong>y, <strong>in</strong> comparison to large values of |!c|: 24 On the other hand, the stability diagram<br />

24 As long as we are <strong>in</strong>terested <strong>in</strong> long-lived <strong>wave</strong> <strong>packets</strong>, the region of small F0 is of <strong>in</strong>terest only. At higher F0<br />

and for !c ¡!, the strong driv<strong>in</strong>g eld will ionize the atom rather fast—see Section 7.1. This makes the gray region<br />

F0 ¿ 0:1 of little practical <strong>in</strong>terest.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!