22.03.2013 Views

The Anatomy of an ER-2 Aircraft - Site Equipe Taperá

The Anatomy of an ER-2 Aircraft - Site Equipe Taperá

The Anatomy of an ER-2 Aircraft - Site Equipe Taperá

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Anatomy</strong> <strong>of</strong> <strong>an</strong><br />

<strong>ER</strong>-2 <strong>Aircraft</strong><br />

•Instrumentation<br />

•Observation<br />

•Experimentation<br />

By Cerese Albers


<strong>The</strong> <strong>ER</strong>-2 helps with the TCSP<br />

missions objectives:<br />

TCSP research will address the following<br />

topical areas:<br />

1) tropical cyclone structure, genesis, intensity<br />

ch<strong>an</strong>ge, moisture fields <strong>an</strong>d rainfall;<br />

2) satellite <strong>an</strong>d aircraft remote sensor data<br />

assimilation <strong>an</strong>d validation studies pertaining to<br />

development <strong>of</strong> tropical cyclones; <strong>an</strong>d<br />

3) the role <strong>of</strong> upper tropospheric/lower<br />

stratospheric processes governing tropical<br />

cyclone outflow, the response <strong>of</strong> wave<br />

disturb<strong>an</strong>ces to deep convection <strong>an</strong>d the<br />

evolution <strong>of</strong> the upper level warm core.


<strong>The</strong> <strong>ER</strong>-2<br />

typically<br />

operates at<br />

altitudes above<br />

65,000 feet,<br />

above 95<br />

percent <strong>of</strong> the<br />

earth's<br />

atmosphere,<br />

allowing the<br />

aircraft to use<br />

m<strong>an</strong>y <strong>of</strong> the<br />

same sensors<br />

similar to those<br />

used by<br />

orbiting<br />

satellites.<br />

Two <strong>ER</strong>-2s fly over <strong>The</strong> Golden Gate Bridge, S<strong>an</strong> Fr<strong>an</strong>cisco CA<br />

<strong>The</strong> <strong>ER</strong>-2 High Altitude Research <strong>Aircraft</strong> carries a<br />

single pilot <strong>an</strong>d up to 2600 pounds <strong>of</strong> payload to<br />

altitudes approaching 70,000 feet. It is a modified<br />

version <strong>of</strong> the U-2 aerial reconnaiss<strong>an</strong>ce airpl<strong>an</strong>e.


A typical mission lasts up to six-<strong>an</strong>d-one-half hours <strong>an</strong>d covers 2,200 nautical<br />

miles. Under certain conditions, it is possible to extend this to eight hours <strong>an</strong>d<br />

3,000 nautical miles. <strong>The</strong> maximum-altitude mission pr<strong>of</strong>ile involves a steady<br />

climb from 60,000 feet to 70,000 at a const<strong>an</strong>t mach number.<br />

View out the window <strong>of</strong> the <strong>ER</strong>-2 near max altitude


<strong>The</strong> <strong>ER</strong>-2 is equipped with <strong>an</strong> Inertial Navigation System that c<strong>an</strong><br />

get position updates from <strong>an</strong> on-board GPS receiver. It also has a<br />

data recording <strong>an</strong>d distribution system that records aircraft<br />

perform<strong>an</strong>ce <strong>an</strong>d navigation data <strong>an</strong>d distributes it to each <strong>of</strong> the<br />

payload areas. <strong>The</strong> <strong>ER</strong>-2 core instruments include:<br />

•Daedalus multi-spectral sc<strong>an</strong>ners with the following<br />

configurations:<br />

•<strong>The</strong>matic Mapper Simulator<br />

•Multi-spectral Airborne Mapping System<br />

•Airborne Oce<strong>an</strong> Color Imager<br />

•MODIS Airborne Simulator<br />

•Three types <strong>of</strong> aerial cameras that provide high-resolution<br />

photography at several scales <strong>an</strong>d resolutions<br />

•A video imaging system.


<strong>Anatomy</strong> <strong>of</strong> the <strong>ER</strong>-2 <strong>Aircraft</strong><br />

Named parts <strong>of</strong> the pl<strong>an</strong>e


<strong>The</strong> <strong>ER</strong>-2 is equipped with UHF, VHF, <strong>an</strong>d HF radio<br />

systems for two-way voice communication. An Air Traffic<br />

Control (ATC) tr<strong>an</strong>sponder enables surveill<strong>an</strong>ce radar to<br />

identify the aircraft via coded tr<strong>an</strong>smissions.<br />

<strong>The</strong> <strong>ER</strong>-2 c<strong>an</strong> navigate with respect to ground based<br />

radio beacons, as selected by the pilot. Navigation aids<br />

used for this include: low-frequency Automatic Direction<br />

Finding (ADF), Tactical Air Navigation (TACAN) for<br />

bearing <strong>an</strong>d r<strong>an</strong>ge information, <strong>an</strong>d a VHF<br />

Omnidirectional R<strong>an</strong>ge/Instrument L<strong>an</strong>ding System<br />

(VOR/ILS).<br />

Inertial Navigation Systems<br />

<strong>The</strong> Inertial Navigation System (INS) on the <strong>ER</strong>-2<br />

operates by sensing accelerations from a gyro-stabilized,<br />

all-attitude platform. This information is integrated by a<br />

digital computer to provide <strong>an</strong> indication <strong>of</strong> present<br />

position (latitude <strong>an</strong>d longitude), attitude data (pitch <strong>an</strong>d<br />

roll), <strong>an</strong>d course line computation referenced to great<br />

circle routes. A control display unit in the cockpit allows<br />

the pilot to store navigation way points <strong>an</strong>d to ch<strong>an</strong>ge the<br />

flight track enroute. A self-contained system, the INS<br />

<strong>of</strong>fers world-wide navigation capability.<br />

An update function allows for GPS updating <strong>of</strong> the INS to<br />

provide navigation independent <strong>of</strong> the drift errors.


<strong>Anatomy</strong> <strong>of</strong> the <strong>ER</strong>-2 <strong>Aircraft</strong>


Instruments onboard the TCSP<br />

<strong>ER</strong>-2 <strong>Aircraft</strong><br />

• Adv<strong>an</strong>ced Microwave Precipitation Radiometer (AMPR)<br />

• Cloud Radar System (CRS)<br />

• <strong>ER</strong>-2 Doppler Radar (EDOP)<br />

• High Altitude MMIC Sounding Radiometer (HAMSR)<br />

• Lightning Instrument Package (LIP-<strong>ER</strong>-2)<br />

• Microwave Temperature Pr<strong>of</strong>iler (MTP -<strong>ER</strong>-2)<br />

• MODIS Airborne Simulator (MAS)<br />

• Research Environment for Vehicle-Embedded Analysis on<br />

Linux (REVEAL)


INTRODUCTION TO THE INSTRUMENTS ONBOARD THE <strong>ER</strong>-2<br />

Undercarriage <strong>of</strong> <strong>an</strong> <strong>ER</strong>-2 in flight


Adv<strong>an</strong>ced Microwave Precipitation Radiometer (AMPR)<br />

Type: Passive Microwave Radiometer<br />

Principal Investigator: Robbie Hood<br />

Co-Investigators: D<strong>an</strong>iel Cecil, Fr<strong>an</strong>k LaFontaine<br />

•Temporal Resolution: 50 milliseconds per sample<br />

Spatial Resolution: sampling, 800 meters at 20 km altitude<br />

85.5 GHz, 640 meters at 20 km altitude<br />

•In-Field Quick Look Products: Brightness Temperatures (TB)<br />

Direct Products: TB data (swath) <strong>an</strong>d imagery (swath <strong>an</strong>d grid)<br />

Derived Products: Precipitation Index<br />

Potential Products: Inst<strong>an</strong>t<strong>an</strong>eous rain rate, inl<strong>an</strong>d/coastal surface water<br />

mapping<br />

•Preferred Atmospheric Conditions: Over cloud-free oce<strong>an</strong> near a radiosonde<br />

launch site/time <strong>an</strong>d AMSR-E overpass location/time<br />

•Desired Data Sources: radiosonde data sets, passive microwave satellite<br />

images, radar images, visible <strong>an</strong>d infrared satellite images


Cloud Radar System (CRS)<br />

Type: Radar<br />

Principal Investigator: Gerry Heymsfield<br />

Co-Investigator(s): Lihua Li, Lin Ti<strong>an</strong>, Larry Belcher<br />

•Temporal Resolution: 0.5 sec<br />

Spatial Resolution: 0.15 km at surface<br />

•In-Field Quick Look Products: Quick-look reflectivity <strong>an</strong>d velocity plots for<br />

selected flight lines.<br />

Direct Products: Reflectivity, Doppler velocity, <strong>an</strong>d spectral width from<br />

nadir <strong>an</strong>d forward beams in Universal Format. S<strong>of</strong>tware<br />

readers for IDL will be provided.<br />

Derived Products: Ice content.<br />

Potential Products: Vertical velocities, path attenuation, surface<br />

backscatter<br />

•Preferred Atmospheric Conditions: Clear or clouds for hurric<strong>an</strong>es.<br />

Desired Data Sources: All


<strong>ER</strong>-2 Doppler Radar (EDOP)<br />

Type: Radar<br />

Principal Investigator: Gerry Heymsfield<br />

Co-Investigator(s): Lihua Li, Lin Ti<strong>an</strong>, Larry Belcher<br />

•Temporal Resolution: 0.5 sec<br />

Spatial Resolution:: 1.1 km at surface; ~250 m at 15 km altitude<br />

•In-Field Quick Look Products: : Quick-look reflectivity <strong>an</strong>d velocity plots for<br />

selected flight lines.<br />

Direct Products: Reflectivity, Doppler velocity, <strong>an</strong>d spectral width from<br />

nadir <strong>an</strong>d forward beams in Universal Format. S<strong>of</strong>tware<br />

readers for IDL will be provided.<br />

Derived Products: Rain-rate, ice content.<br />

Potential Products: Vertical velocities, rain rate, path attenuation, surface<br />

backscatter<br />

Preferred Atmospheric Conditions: Clear or clouds for hurric<strong>an</strong>es<br />

•Desired Data Sources: All


EDOP <strong>an</strong>tennae<br />

EDOP schematic in the nose <strong>of</strong> the <strong>ER</strong>-2


<strong>ER</strong>-2 EDOP<br />

Functionality<br />

•Each Antenna measures the doppler velocity, doppler spectral width, <strong>an</strong>d<br />

reflectivity factor.<br />

•Doppler velocities provide a measure <strong>of</strong> the pulse volume-weighted hydrometer<br />

motion (hydrometer fallspeed + air motion.)<br />

•Vertical air motion c<strong>an</strong> be calculated from the nadir beam by removing the<br />

fallspeed contribution with <strong>an</strong> approximation<br />

•Along-track horizontal air motion c<strong>an</strong> be calculated by combining doppler wind<br />

speeds from forward <strong>an</strong>d nadir beams.<br />

•<strong>The</strong> linear depolarization ratio (the ration <strong>of</strong> the cross-polar to the co-polar<br />

reflectivites) c<strong>an</strong> be measured along forward beam.


High Altitude MMIC Sounding Radiometer (HAMSR)<br />

Type: Radiometer<br />

Principal Investigator: Bjorn Lambrigtsen<br />

Co-Investigator(s): Al<strong>an</strong> T<strong>an</strong>ner, Ev<strong>an</strong> Fishbein, Eric Fetzer<br />

•Temporal Resolution: 1.1 sec<br />

Spatial Resolution: 6 deg IFOV, 3 deg. sample cell (2 km, 1km, at<br />

nadir from 20 km)<br />

•In-Field Quick Look Products: Preliminary calibrated brightness temperatures<br />

Direct Products: Definitive calibrated brightness temperatures<br />

Derived Products: a) temperature pr<strong>of</strong>iles b) humidity pr<strong>of</strong>iles<br />

Potential Products: a) liquid water pr<strong>of</strong>iles b) scattering parameters c) rain rates<br />

Desired Data Sources: a) radiosondes b) surface temperature & sea state<br />

c) high resolution GCM forecast/<strong>an</strong>alysis d) Aqua AIRS <strong>an</strong>d AMSR-E (observations<br />

<strong>an</strong>d retrievals) e) NOAA-16/17 AMSU-A/B (observations <strong>an</strong>d retrievals) f) GOES<br />

images


Lightning Instrument Package (LIP-<strong>ER</strong>-2)<br />

Type: Electric Field Mills, Conductivity Probe<br />

Principal Investigator: Richard Blakeslee<br />

Co-Investigator(s): Monte Batem<strong>an</strong>, Doug Mach<br />

•Temporal Resolution: 10 Hz<br />

Spatial Resolution: ~20m<br />

•In-Field Quick Look Products: Quick looks at atmospheric conductivity, electric<br />

field components, <strong>an</strong>d aircraft charge<br />

Direct Products: Atmospheric conductivity, electric field components, <strong>an</strong>d<br />

aircraft charge<br />

Derived Products: Total lightning count & rates; lightning statistics; storm<br />

current output, storm charge structure<br />

Potential Products: Qu<strong>an</strong>tified lightning related with precipitation, convective<br />

mass/ice flux, latent heat, storm current output<br />

•Desired Data Sources: Passive microwave, aircraft Radar, in-situ<br />

Microphysics (NOAA P3s), TRMM observations, ground-based lighting (Costa Ric<strong>an</strong><br />

<strong>an</strong>d long-r<strong>an</strong>ge NLDN


Microwave Temperature Pr<strong>of</strong>iler (MTP- <strong>ER</strong>-2)<br />

Type: Microwave Radiometer<br />

Principal Investigator: M.J. Mahoney<br />

•Temporal Resolution: 10s(<strong>ER</strong>-2)<br />

Spatial Resolution: 2km<br />

•In-Field Quick Look Products: Uncalibrated curtain plots <strong>of</strong> temperature field<br />

along flight track<br />

Direct Products: Temperature pr<strong>of</strong>iles along flight track<br />

Derived Products: Tropopause height, lapse rate at aircraft, theta at<br />

aircraft<br />

Potential Products: : Isentrope fields<br />

•Preferred Atmospheric Conditions: Clear air<br />

•Desired Data Sources: sondes


MODIS Airborne Simulator (MAS)<br />

Type: Imaging Spectrometer<br />

Principal Investigator: Jeff Myers<br />

Co-Investigator(s): Rose<strong>an</strong>ne Dominguez<br />

•Temporal Resolution: Data collected continuously at 6.25 sc<strong>an</strong>s per second during<br />

<strong>ER</strong>-2 flight (at altitude)<br />

Spatial Resolution: 50 meter pixels at nadir at 15 km altitude Swath width is 36 Km.<br />

•In-Field Quick Look Products: Quick-look (Level-0) JPEG images <strong>of</strong> straight <strong>an</strong>d<br />

level flight line tracks. Text file <strong>of</strong> Nadir brightness temperature <strong>an</strong>d radi<strong>an</strong>ce for<br />

selected b<strong>an</strong>ds<br />

Direct Products: Level-1B multispectral visible <strong>an</strong>d infrared imagery calibrated to atsensor<br />

radi<strong>an</strong>ce.<br />

Derived Products: To be determined<br />

Potential Products: To be determined<br />

•Preferred Atmospheric Conditions: Clear or clouds for hurric<strong>an</strong>es<br />

•Internet access: Required for field workstations & posting quick look products


Research Environment for Vehicle-Embedded Analysis on Linux (REVEAL)<br />

Type: Generic Instrument Interface <strong>an</strong>d Investigator support package<br />

Principal Investigator: Lawrence C. Freudinger<br />

Co-Investigator: Carl E. Sorenson<br />

•Temporal Resolution: Multiple products simult<strong>an</strong>eously at different rates (typically<br />

10 Hz, 1Hz, & 0.1Hz process rates)<br />

•In-Field Quick Look Products: Quick looks at vehicle state, fuel temperature<br />

monitoring, various environmental parameters.<br />

Direct Products: Vehicle data bus interfaces, vehicle time-space-position information,<br />

sun <strong>an</strong>gle calculations, <strong>an</strong>d custom real-time <strong>an</strong>d post-flight data products. Provides<br />

real-time data feeds to LIP displays <strong>an</strong>d TCSP Team.<br />

Potential Products: Generic instrument interface for vehicle state data <strong>an</strong>d onboard<br />

compute services. Disruption toler<strong>an</strong>t gateway for m<strong>an</strong>aging multiple data links; onboard<br />

recorder service; dynamically configurable on-board computing; Sensor Web<br />

development <strong>an</strong>d support.<br />

•Miscell<strong>an</strong>eous: Providing real-time <strong>an</strong>d post-flight mission support items for TCSP<br />

as part <strong>of</strong> research objective.


<strong>ER</strong>-2 used to validate the TRMM satellite<br />

<strong>The</strong> vertical velocities from wind fields are used to validate TRMM's algorithms for<br />

separation <strong>of</strong> convective from stratiform rainfall (using EDOP). This needs<br />

complementing with a network <strong>of</strong> tipping bucket rainfall gauges. For TRMM purposes<br />

the <strong>ER</strong>-2 is made available, <strong>an</strong>d a microphysics pl<strong>an</strong>e is also needed (which c<strong>an</strong> be<br />

the <strong>ER</strong>-2). Lightning detectors (3) are also needed to correlate rainfall with lightning,<br />

like the LIP.<br />

NASA's <strong>ER</strong>-2 <strong>an</strong>d DC-8 collect high-altitude<br />

thunderstorm rainfall <strong>an</strong>d lightning<br />

measurements. Information gathered from the<br />

mission helps calibrate measurements from the<br />

rainfall measuring satellite (TRMM-related).


<strong>The</strong>refore, note that the EDOP radar <strong>an</strong>d<br />

the LIP are the primary sensors used to<br />

calibrate the TRMM satellite.<br />

In the past, the MAS instrument aboard the <strong>ER</strong>-<br />

2 has been used to calibrate the GOES <strong>an</strong>d the<br />

AVHRR radi<strong>an</strong>ce measurements as well.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!