22.03.2013 Views

Short Course in Heterocyclic Chemistry Lecture 8 ... - Ark.chem.ufl.edu

Short Course in Heterocyclic Chemistry Lecture 8 ... - Ark.chem.ufl.edu

Short Course in Heterocyclic Chemistry Lecture 8 ... - Ark.chem.ufl.edu

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Short</strong> <strong>Course</strong> <strong>in</strong> <strong>Heterocyclic</strong> <strong>Chemistry</strong><br />

<strong>Lecture</strong> 8<br />

<strong>Heterocyclic</strong> N-Oxides, N-Imides, and N-YIides<br />

Alan R. Katritzky<br />

This presentation is based <strong>in</strong> part on the review of the same name<br />

by A.R. Katritzky and J.N. Lam [92H1011]


<strong>Lecture</strong> 8. <strong>Heterocyclic</strong> N-Oxides, N-Imides, and N-Ylides<br />

S<strong>chem</strong>e 1. Overview of N-Oxide/N-Imide/N-Ylides <strong>Lecture</strong><br />

1. Introduction<br />

2. Preparation Methods<br />

3. Basicity of N-Oxides and N-Imides<br />

4. Electronic Structrure and Back Donation<br />

5. Reactions with Electrophiles<br />

6. Nucleophilic Attack<br />

7. Regiospecific Nucleophilic Substitution at Pyrid<strong>in</strong>e 4-Position<br />

8. Pyrid<strong>in</strong>ium Ylides<br />

2


1. Introducation<br />

Two <strong>chem</strong>ical texts [67MI1, 71MI1] and a recent monograph [91MI1] are devoted to Noxide<br />

<strong>chem</strong>istry. Several reviews exist for N-imide <strong>chem</strong>istry [72ZC250; 73CRV255;<br />

73S469; 74AHC(17)213; 81AHC(29)71]. The purpose of the present review is to<br />

highlight some of the most <strong>in</strong>terest<strong>in</strong>g aspects with emphasis on work from our group.<br />

S<strong>chem</strong>e 2 gives a general overview of the types of compounds that are considered <strong>in</strong> this<br />

review. An oxygen atom attached to a neutral pyrid<strong>in</strong>e-like r<strong>in</strong>g nitrogen atom affords an<br />

N-oxide. Such N-oxides air basic and can pick up a proton to form an N-hydroxy cation.<br />

Equally, hydroxy groups can he attached to pyrrole-like nitrogen atoms, either <strong>in</strong> 5membered<br />

r<strong>in</strong>gs as <strong>in</strong> 1-hydroxypyrrole itself or <strong>in</strong> a 6-membered r<strong>in</strong>g as <strong>in</strong> 1-hydroxy-2pyridone.<br />

These four parent compounds are shown <strong>in</strong> the top row of S<strong>chem</strong>e 2, with their<br />

nitrogen analogs, the neutral N-imides, the N-am<strong>in</strong>o cations, and the N-am<strong>in</strong>o derivatives<br />

<strong>in</strong> the second row. In the N-analogs, the exocyclic nitrogen atom can hold a substituent<br />

which is denoted <strong>in</strong> S<strong>chem</strong>e 2 by X. For comparison. the correspond<strong>in</strong>g carbon analogs<br />

are shown <strong>in</strong> the bottom row of S<strong>chem</strong>e 2: the N-ylids, N-alkyl cations, and the N-alkyl<br />

derivatives.<br />

S<strong>chem</strong>e 2. Types of Substituents at <strong>Heterocyclic</strong> Nitrogen<br />

3


2. Preparative Methods<br />

Preparative methods for N-oxides by direct oxidation of the correspond<strong>in</strong>g pyrid<strong>in</strong>es are<br />

outl<strong>in</strong>ed <strong>in</strong> S<strong>chem</strong>e 3. Most common is the oxidation of the correspond<strong>in</strong>g N-heterocycle<br />

with a peracid. The strength of the peracid used depends upon the compound to be<br />

oxidized. This is illustrated by the three examples <strong>in</strong> S<strong>chem</strong>e 3. For most pyrid<strong>in</strong>es,<br />

peracetic acid or performic acid suffices, but for the very strongly basic 4dimethylam<strong>in</strong>opyrid<strong>in</strong>e,<br />

it is better to use the peroxyimidic acid which is very much less<br />

acidic and, therefore, does not cause so much conversion of the DMAP <strong>in</strong>to unreactive<br />

cation. F<strong>in</strong>ally, the non-basic and unreactive 2,6-dichloropyrid<strong>in</strong>e requires<br />

trifluoroperaceuc acid. Pentachloropyrid<strong>in</strong>c has also been converted <strong>in</strong>to its N-oxide with<br />

trifluoroperacetic acid, although <strong>in</strong> this case, care is needed s<strong>in</strong>ce prolonged heat<strong>in</strong>g<br />

causes deoxygenation [68JCS(C)1537].<br />

S<strong>chem</strong>e 3. Preparative Methods for N-Oxides<br />

4


Many r<strong>in</strong>g closure methods are also known for N-oxide preparation [71MI1] and a few<br />

are illustrated <strong>in</strong> S<strong>chem</strong>e 4. Such r<strong>in</strong>g closures generally <strong>in</strong>volve either hydroxylam<strong>in</strong>es<br />

(as <strong>in</strong> the first two examples) nitroso compounds (as <strong>in</strong> the 3 rd example), but a few<br />

appear to be true examples of nucleophilic attack at nitro groups (see last example of<br />

S<strong>chem</strong>e 4).<br />

S<strong>chem</strong>e 4. Examples of R<strong>in</strong>g Closures Lead<strong>in</strong>g to N-Oxides<br />

5


S<strong>chem</strong>e 5 gives some preparative methods for N-imides. In the upper half of the S<strong>chem</strong>e<br />

the conversion of a neutral nitrogen <strong>in</strong>to the N-imide or <strong>in</strong>to the N-imonium cation is<br />

illustrated. At the bottom, two examples of a r<strong>in</strong>g open<strong>in</strong>g/r<strong>in</strong>g closure method are<br />

described.<br />

S<strong>chem</strong>e 5. Preparative Methods for N-Imides<br />

6


3. Basicity of N-Oxides and N-Imides<br />

The tendency for these classes of compounds to exist <strong>in</strong> the neutral form varies<br />

considerably. Thus, as shown <strong>in</strong> S<strong>chem</strong>e 6, N-oxides are weakly basic, N-imides are<br />

strongly basic, and for comparison, unsubstituted N-ylids are extremely strong bases<br />

which cannot normally be isolated. Pyrid<strong>in</strong>e N-oxides readily undergo hydrogen bond<strong>in</strong>g,<br />

and form hemisalts which have been much <strong>in</strong>vestigated [91SA(A)125].<br />

However, as is shown <strong>in</strong> S<strong>chem</strong>e 6, the basicity of N-imides and N-ylids can be<br />

considerably affected by substituents attached to the exocyclic nitrogen or carbon atom.<br />

Thus, pyrid<strong>in</strong>e N-benzoylimide is quite a weak base and is quite stable <strong>in</strong> the neutral<br />

form.<br />

S<strong>chem</strong>e 6. Basicities of N-Oxides, N-Imides and N-Ylids<br />

7


4. Electronic Structure and Back Donation of Electrons <strong>in</strong> N-Oxides and N-Imdes<br />

Because of the lone pair of electrons on the exocyclic atom attached to the heterocyclic<br />

nitrogen, N-oxides and N-imides can show back donation of electrons. This phenomenon<br />

has been exam<strong>in</strong>ed mostly for N-oxides. The mesomeric possiblities <strong>in</strong> pyrid<strong>in</strong>e N-oxide<br />

are contrasted with those <strong>in</strong> pyrid<strong>in</strong>e and pyrid<strong>in</strong>e boron trifluoride <strong>in</strong> S<strong>chem</strong>e 7. There is<br />

ample experimental evidence for the occurrence <strong>in</strong> pyrid<strong>in</strong>e N-oxide not only of the pull<br />

of electrons towards the positively charged nitrogen (which is greater than that which is<br />

found <strong>in</strong> neutral pyrid<strong>in</strong>e and comparable to that which is found <strong>in</strong> the Lewis salt<br />

pyrid<strong>in</strong>e-boron trichloride), but also for those <strong>in</strong> which electrons are donated from the<br />

oxygen <strong>in</strong>to the r<strong>in</strong>g.<br />

S<strong>chem</strong>e 7. Mesomeric Possibilities <strong>in</strong> Pyrid<strong>in</strong>e and Pyrid<strong>in</strong>e N-Oxide<br />

One of the first pieces of evidence for this donation of electrons from the N-oxide group<br />

<strong>in</strong>to the r<strong>in</strong>g was from dipole moments. In S<strong>chem</strong>e 8, the concept of mesomeric moment<br />

is def<strong>in</strong>ed for benzenoid and heterocyclic compounds, and the values of these mesomeric<br />

moments for a series of monosuhstituted benzenes and 4-substituted pyrid<strong>in</strong>es, pyrid<strong>in</strong>e<br />

N-oxides and pyrid<strong>in</strong>e boron trichlorides is shown <strong>in</strong> S<strong>chem</strong>e 9. The values for pyrid<strong>in</strong>e<br />

N-oxides clearly show greater conjugation with both e-donor and e-acceptor substituents<br />

than the correspond<strong>in</strong>g pyrid<strong>in</strong>es.<br />

8


S<strong>chem</strong>e 8. Def<strong>in</strong>ition of Mesomeric Moment<br />

S<strong>chem</strong>e 9. Mesomeric Moments<br />

9


Natural abundance 17 O Nmr <strong>chem</strong>ical shifts of the oxygen of pyrd<strong>in</strong>e N-oxides correlate<br />

with σI substituent constants and support <strong>in</strong>teractions with substituents of both classes<br />

[86TL5649].<br />

These <strong>in</strong>teractions are also clearly demonstrated by <strong>in</strong>frared spectroscopy. The general<br />

effects of heterocyclic r<strong>in</strong>gs on substituent vibrations are shown s<strong>chem</strong>atically <strong>in</strong> S<strong>chem</strong>e<br />

10.<br />

S<strong>chem</strong>e 10. General Effects of <strong>Heterocyclic</strong> R<strong>in</strong>gs on Substituent Vibrations<br />

10


S<strong>chem</strong>e 11 lists the <strong>in</strong>crements measures for the carbonyl group υC=O for various<br />

helerocyclics together with the correspond<strong>in</strong>g benzenoid compound. The largest<br />

bathochromic shifts are found <strong>in</strong> the pyrid<strong>in</strong>e boron trichlorides with slightly higher<br />

values <strong>in</strong> the 4- than <strong>in</strong> the 3-position. The 3-position of pyrid<strong>in</strong>e N-oxide is also very<br />

electron-deficient, whereas the 4- and 3-positions of pyrid<strong>in</strong>e are successively less so.<br />

The 4-position of pyrid<strong>in</strong>e N-oxide is least affected. Interpretation for the degree of<br />

electron acceptance at the 2-position is complicated by steric effects, however such steric<br />

effects are much less <strong>in</strong> the case of the cyano derivatives.<br />

S<strong>chem</strong>e 11. Increments for υC=O for <strong>Heterocyclic</strong><br />

Compound with Benzenoid Compounds<br />

11


Infrared spectral details for the three isomeric cyanopyrid<strong>in</strong>es and the three derived<br />

pyrid<strong>in</strong>e N-oxides are compared with those for benzonitrile <strong>in</strong> S<strong>chem</strong>e 12. The <strong>in</strong>tensity<br />

is r<strong>edu</strong>ced <strong>in</strong> all the heterocycles, but by very little <strong>in</strong> the 4-position <strong>in</strong> pyrid<strong>in</strong>e N-oxide,<br />

next least <strong>in</strong> the 3-position <strong>in</strong> pyrid<strong>in</strong>e, and very much <strong>in</strong> the other positions. The same<br />

trend is shown <strong>in</strong> the frequency shifts. This clearly demonstrates the back coord<strong>in</strong>ation of<br />

electrons to the 4-position of pyrid<strong>in</strong>e N-oxide, and also shows that any such back<br />

donation at the 2-position is swamped by the electron accept<strong>in</strong>g effect of the adjacent<br />

positively charged nitrogen atom.<br />

S<strong>chem</strong>e 12. Infrared Evidence from Cyano, Methoxy and Acetylene Derivatives<br />

12


Electron acceptance can seen <strong>in</strong> the way <strong>in</strong> which the methoxy group <strong>in</strong>teracts with<br />

heterocyclic r<strong>in</strong>gs. The <strong>in</strong>crements by which the r<strong>in</strong>g oxygen stretch<strong>in</strong>g vubration<br />

variation is displaced <strong>in</strong> the different compounds compared with anisole is shown <strong>in</strong><br />

S<strong>chem</strong>e 12.<br />

In all the methoxy-heterocycles the <strong>in</strong>crement is positive show<strong>in</strong>g that all positions are<br />

electron accept<strong>in</strong>g relative to benzene. For the isomeric pyrid<strong>in</strong>es, the <strong>in</strong>crements are<br />

higher for the 2- and 4-position than for the 3-position. By contrast, for the isomeric<br />

pyrid<strong>in</strong>e N-oxides, the <strong>in</strong>crement is lowest for the 4-position.<br />

In S<strong>chem</strong>e 12, the <strong>in</strong>tensities are given for the triple bond stretch <strong>in</strong> a set of heterocyclic<br />

derivatives of phenylacetylene carry<strong>in</strong>g a substituent <strong>in</strong> the 4-position. In<br />

diphenylacetylene, because of symmetry, the vibration is forbidden <strong>in</strong> the <strong>in</strong>frared, and<br />

the <strong>in</strong>tensity rises with either an electron donor or an electron acceptor substituent.<br />

However, for the pyrid<strong>in</strong>e series and the pyrid<strong>in</strong>e N-oxide series, the <strong>in</strong>tensity rises for<br />

electron donor substituents, hut falls for electron acceptor substituents. This <strong>in</strong>dicates that<br />

the 4-position of both pyrid<strong>in</strong>e N-oxide and pyrid<strong>in</strong>e behave as electron acceptors <strong>in</strong> this<br />

rather neutral situation, a conclusion which is supported by the effect of the N-oxide<br />

group on basicity. As shown <strong>in</strong> S<strong>chem</strong>e 13, the basicity of anil<strong>in</strong>e is r<strong>edu</strong>ced quite<br />

significantly by an N-oxide group <strong>in</strong> a r<strong>in</strong>g attached to the benzene r<strong>in</strong>g. The data <strong>in</strong><br />

s<strong>chem</strong>e 13 allows σ constants to be calculated for the pyrid<strong>in</strong>e N-oxide r<strong>in</strong>g act<strong>in</strong>g as a<br />

substituent at the para position of anil<strong>in</strong>e. Although these σ constants are much less<br />

positive than those for the protonated nitrogen, they nevertheless <strong>in</strong>dicate significant<br />

electron withdraw<strong>in</strong>g activity.<br />

S<strong>chem</strong>e 13. Effect of N-Oxide Group on Basicity:<br />

δ-Constants for <strong>Heterocyclic</strong> R<strong>in</strong>gs<br />

13


The overall conclusion from the spectroscopic evidence is that the pyrid<strong>in</strong>e r<strong>in</strong>g is<br />

uniformly an electron acceptor, stronger at the 2- and 4-positions than at the 3-position.<br />

The pyrid<strong>in</strong>e N-oxide r<strong>in</strong>g is a strong acceptor at the 2- and 3-positions whereas at the 4position<br />

it is normally an acceptor, but that it can donate electrons at the 4-position when<br />

faced with strong electron demand.<br />

S<strong>chem</strong>e 14. Conclusions from Spectroscopic Evidence<br />

Regard<strong>in</strong>g Donor/Acceptor Ability<br />

The strongly polar character of N-oxides endows them with catalytic activity: thus 4dimethylam<strong>in</strong>opyrid<strong>in</strong>e<br />

N-oxide effectively catalyzes the rearrangement ROCSSR’<br />

RSCOSR’ [88H2327] as well as phosphate ester hydrolysis [88L1118].<br />

14


5. Reactions of N-Oxides and N-Imides with Electrophiles<br />

A11 Compounds of this type react readily with electrophiles. In N-oxides, electrophilis<br />

can attack r<strong>in</strong>g carbon atoms and <strong>in</strong>deed, under different conditions, at the 2-, the 3-, or<br />

the 4-positions, as is shown <strong>in</strong> S<strong>chem</strong>e 15.<br />

S<strong>chem</strong>e 15. Electrophilic Substitution <strong>in</strong> Pyrid<strong>in</strong>e N-Oxide<br />

Attack on the 4-position of the pyrid<strong>in</strong>e N-oxide takes place on the neutral molecule,<br />

whereas electrophilic attack at the 3-position accurs on the pyrid<strong>in</strong>e N-oxide conjugate<br />

acid because cation the 2- and 4-positions are more electron-deficient. Attack at the 2position<br />

can occur because of anchimeric assistance from the oxygen atom. The<br />

conditions for these electrophilic substitution reactions are shown <strong>in</strong> S<strong>chem</strong>e 15.<br />

15


Pyrid<strong>in</strong>e N-oxide can also undergo electrophilic attack at oxygen. Shown <strong>in</strong> the s<strong>chem</strong>e<br />

16 are typical examples of reactions of protons, alkylat<strong>in</strong>g agents anal Lewis acids. The<br />

products of such electrophilic attack are themselves often <strong>in</strong>termediates for further attack<br />

by nucleophiles at the 2- and 4-positions of the r<strong>in</strong>g.<br />

S<strong>chem</strong>e 16. Electrophilic Attack at Oxygen <strong>in</strong> Pyrid<strong>in</strong>e N-Oxide<br />

16


Some of the ways <strong>in</strong> which the reactivity of the am<strong>in</strong>o group <strong>in</strong> 2-am<strong>in</strong>opyrid<strong>in</strong>e-l-oxide<br />

is effected by the presence of the N-oxide are shown <strong>in</strong> S<strong>chem</strong>e 17. Thus, the ethyl<br />

carbamate on gentle heat<strong>in</strong>g r<strong>in</strong>g closes to a bicyclic derivative. 2-Am<strong>in</strong>opyrid<strong>in</strong>e-l-oxide<br />

forms a rather stable diazolium cation which couples <strong>in</strong> the normal way with, for<br />

example, β-naphthol to give an azo dyestuff.<br />

S<strong>chem</strong>e 17. 2-Am<strong>in</strong>opyrid<strong>in</strong>e 1-Oxide<br />

The reaction of 2-picol<strong>in</strong>e-1-oxide with acetic anhydride yields 2-pyrid<strong>in</strong>emethyl acetate<br />

together with smaller quantities of 3- and 5-acetoxy-2-methyl-pyrid<strong>in</strong>e. The mechanism<br />

of this rearrangement has been under dispute. Oac [62JA3359] showed that the two<br />

oxygen atoms <strong>in</strong> the acetate group become equivalent and thus ruled out the simple<br />

concerted mechanism. They suggested a radical pair mechanism, but work <strong>in</strong> our group<br />

[68JCS(B)831, 68TL257] <strong>in</strong>dicated that the ion pair mechanism is more likely. The<br />

evidence came by show<strong>in</strong>g (S<strong>chem</strong>e 19) that small by-products are formed which are<br />

<strong>in</strong>dicative of carbonium ion rearrangements and are unlikley to occur by radical<br />

rearrangements.<br />

17


S<strong>chem</strong>e 18. New Rearrangements <strong>in</strong> Reactions of<br />

Acetic Anhydride with 2-Alkylpyrid<strong>in</strong>e 1-Oxides<br />

S<strong>chem</strong>e 19. Products from Carbonium Ion Rearrangements<br />

18


For N-imides, electrophiles attack exclusively at the exocyclic N-atom. Thus, the 1am<strong>in</strong>opyrid<strong>in</strong>ium<br />

cation is nitrated <strong>in</strong> the am<strong>in</strong>o group to give a stable N-imide and such<br />

N-imides have been formed from other N-am<strong>in</strong>o ammonium ions as is also shown <strong>in</strong><br />

s<strong>chem</strong>e 20.<br />

S<strong>chem</strong>e 20. Electrophilic Attach at Nitrogen <strong>in</strong> N-Imides: N-Nitroimides<br />

19


N-Nitroimides can also he formed from N-am<strong>in</strong>o derivatives of azoles by base-catalysed<br />

nitration as shown <strong>in</strong> S<strong>chem</strong>e 21.<br />

S<strong>chem</strong>e 21. Formation of N-Nitroimides by Base-Catalysed Nitration<br />

S<strong>chem</strong>e 22 illustrates further the reactions of 1-am<strong>in</strong>opyridimum cation with other<br />

electrophiles, i.e. with aldehydes, and acyl and sulfonyl chlorides.<br />

S<strong>chem</strong>e 22. Reactions of 1-Arn<strong>in</strong>opyrd<strong>in</strong>ium Cation with Aldehydes and Acid<br />

Chloride<br />

20


S<strong>chem</strong>e 23 gives details of two examples of the oxidiz<strong>in</strong>g power of neutral N-hydroxy<br />

and N-am<strong>in</strong>o heterocyclic derivatives.<br />

S<strong>chem</strong>e 23. Oxidiz<strong>in</strong>g Power of 1-Am<strong>in</strong>o- and 1-Hydroxy-2-pyridones<br />

21


An <strong>in</strong>terest<strong>in</strong>g extension of the above type of reaction is to bielectrophiles. Neutral Nam<strong>in</strong>oheterocycles<br />

such as N-am<strong>in</strong>opyridones, N-am<strong>in</strong>opyrroles, and N-am<strong>in</strong>otriazoles,<br />

as well as N-am<strong>in</strong>opyrid<strong>in</strong>ium ions can react with suitable bielectrophiles to form<br />

bis(heterocycles) <strong>in</strong> which the two heterocyclic r<strong>in</strong>gs are l<strong>in</strong>ked by an NN bond. reactious<br />

of this type are shown <strong>in</strong> S<strong>chem</strong>e 24 for the production of a pyrrole r<strong>in</strong>g as the new<br />

heterocycle, and <strong>in</strong> S<strong>chem</strong>e 24, for the production of a pyrid<strong>in</strong>ium r<strong>in</strong>g as the new<br />

heterocycle.<br />

S<strong>chem</strong>e 24. Formation of Neutral N-N Biheterocycles<br />

22


S<strong>chem</strong>e 25. Formation of Monocationic N-N Biheterocycles<br />

23


Some of these compounds show considerable synthetic potential. This is illustrated for 1pyrid<strong>in</strong>o-4-pyridone<br />

cations and 1-pyrid<strong>in</strong>opyrid<strong>in</strong>ium dications <strong>in</strong> S<strong>chem</strong>e 26.<br />

S<strong>chem</strong>e 26. 1-Pyrid<strong>in</strong>io-4-pyridone Cations and 1-Pyrid<strong>in</strong>iopyrid<strong>in</strong>ium Dications:<br />

Synthetic Potential<br />

24


Although it has not been possible to prepare a bis(quaternary) by reaction e.g. of 1am<strong>in</strong>opyrid<strong>in</strong>ium<br />

cation with a pyrylium cation, such bis(cationic) species have been<br />

made by quaternizations. S<strong>chem</strong>e 27 gives examples of the production of both mono- and<br />

di-cationic species by quaternization.<br />

S<strong>chem</strong>e 27. Mono- and Di-cationic Species by Quaternization<br />

25


Another <strong>in</strong>terest<strong>in</strong>g reaction of N-arylam<strong>in</strong>opyrid<strong>in</strong>ium cations is SN2' type substitution<br />

reactions. Two examples of these are shown <strong>in</strong> S<strong>chem</strong>e 28.<br />

S<strong>chem</strong>e 28. SN2' Substitutions of 1-Diphenylam<strong>in</strong>o- and<br />

1Carbazol-9-yl-pyrid<strong>in</strong>ium cations<br />

26


6. Nucleophilic Attack on N-Oxides and N-Imides and their ConjugateAcids<br />

The pattern for nucleophilic attack on the e species is shown <strong>in</strong> S<strong>chem</strong>e 29. There are<br />

three major possibilities. Attack at the exocyclic atom attached to nitrogen results <strong>in</strong><br />

conversion <strong>in</strong>to the neutral heterocycle, e.g. pyrid<strong>in</strong>e. Secondly, there is the possibility of<br />

attack at a r<strong>in</strong>g carbon followed by an elim<strong>in</strong>ation reaction which can occur <strong>in</strong> N-oxide<br />

and N-imide derivatives quite easily, but much less readily <strong>in</strong> cases where X is a carbon<br />

atom. F<strong>in</strong>ally, we have the possibility of attack on r<strong>in</strong>g carbon followed by r<strong>in</strong>g open<strong>in</strong>g.<br />

The r<strong>in</strong>g opened <strong>in</strong>termediatc can he stable or can undergo numerous other reactions.<br />

S<strong>chem</strong>e 29. Nucleophilic Attack - Reactivity Patterns<br />

for N-Oxides and Related Compounds<br />

27


In S<strong>chem</strong>e 30, we see some examples of nucleophilic attack at the r<strong>in</strong>g carbon atom of Noxides.<br />

S<strong>chem</strong>e 30. Nucleophilic Attach on Carbon <strong>in</strong> N-Oxides<br />

28


Nucleophilic displacement of leav<strong>in</strong>g groups is easier <strong>in</strong> N-oxides as compared to the<br />

correspond<strong>in</strong>g parent heterocycles: two examples are given <strong>in</strong> S<strong>chem</strong>e 31.<br />

S<strong>chem</strong>e 31. Nucleopilic Displacement of Substituents<br />

Four modes of reaction for N-alkoxypyrid<strong>in</strong>ium cation with nucleophiles were recognized<br />

<strong>in</strong> 1965 (S<strong>chem</strong>e 32) [65T2205], and many further reactions were thus classified<br />

[69T4291].<br />

29


S<strong>chem</strong>e 32. Four Modes of Reaction of N-Alkoxypyrid<strong>in</strong>ium Salts<br />

S<strong>chem</strong>e 33 shows the <strong>in</strong>terest<strong>in</strong>g changes <strong>in</strong> the ultraviolet spectrum with time which<br />

occur when hydroxide ion is added to a solution of 1-methoxypyrid<strong>in</strong>ium cation. the<br />

overall reaction is simple decomposition to formaldehyde and pyrid<strong>in</strong>e, but clearly some<br />

other species with a strong absorption near 340 rnµ is produced.<br />

30


S<strong>chem</strong>e 33. Action of Hydroxide Ion on N-Methoxypyrid<strong>in</strong>ium Perchlorate<br />

The explanation of the uv spectum of s<strong>chem</strong>e 33 is a reversible r<strong>in</strong>g open<strong>in</strong>g as shown <strong>in</strong><br />

s<strong>chem</strong>e 34.<br />

S<strong>chem</strong>e 34. Compet<strong>in</strong>g Reactions between 1-Methoxypyrid<strong>in</strong>ium Cation and<br />

Hydroxide<br />

The isoxazol<strong>in</strong>e pyrid<strong>in</strong>ium cation reacts with secondary am<strong>in</strong>es to give stable r<strong>in</strong>gopened<br />

products (s<strong>chem</strong>e 35) and many further extensions of this type of reaction have<br />

been reported by Sliwa [79T341].<br />

31


S<strong>chem</strong>e 35. Reactions of Isoxazol<strong>in</strong>opyrid<strong>in</strong>ium Cation with Secondary Am<strong>in</strong>es<br />

Acyl derivatives of 1-hydroxybenzotriazole have been widely used <strong>in</strong> peptide synthesis:<br />

the 1-hydroxybenzotriazole anion is a good leav<strong>in</strong>g group there has been considerable<br />

uncerta<strong>in</strong>ty regard<strong>in</strong>g the structure of these compounds: we have recently shown<br />

[91JCS(P2)1545] that O-acyl derivatives are <strong>in</strong>itially formed and rearrange, (<strong>in</strong> a<br />

processes shown to be <strong>in</strong>termolecular by a crossover experiment), <strong>in</strong>to the N-acyl<br />

compounds (S<strong>chem</strong>e 36.)<br />

S<strong>chem</strong>e 36. Cross-Over Experiment for Rearrangement of l-Acyloxybenzotriazoles<br />

32


7. Regio Specific Nucleophilic Substitution at the 4-Position of Pyrid<strong>in</strong>e<br />

The differentiation between nucleophilic attack at the 2- and 4-positions <strong>in</strong> a pyrid<strong>in</strong>e<br />

r<strong>in</strong>g is normally difficult and such reactions frequently lead to mixtures of products, or to<br />

exclusively 2-position substitution. One set of conditions for gett<strong>in</strong>g regioselective<br />

substitution at the 4-position is shown <strong>in</strong> S<strong>chem</strong>e 37.<br />

S<strong>chem</strong>e 37. Nucleophilic Substitution at 4-Position <strong>in</strong> Pyrid<strong>in</strong>e<br />

A substituent that satisfies the conditions of S<strong>chem</strong>e 32 is the 2,6-dimethyl-4-pyridun-1yl<br />

group. It can he attached to the nitrogen atom of a pyrid<strong>in</strong>e <strong>in</strong> two simple stages, as<br />

shown <strong>in</strong> S<strong>chem</strong>e 38.<br />

33


S<strong>chem</strong>e 38. Preparation of 1-(2,6-Dimethyl-4-pyridon-1-yl)pyrid<strong>in</strong>iums<br />

The 1-(2,6-dimethyl-4-pyridon-1-yl)pyrid<strong>in</strong>ium compounds of s<strong>chem</strong>e 38 give the 4cyanopyrid<strong>in</strong>e<br />

as the only products isolated on reaction with cyanide -0 see S<strong>chem</strong>e 39.<br />

the 2,6-dimethyl groups are essential as the correspond<strong>in</strong>g compounds without methyl<br />

groups on reactio with cyanide give mixtures of 2-cyano- and 4-cyanopyrid<strong>in</strong>es <strong>in</strong><br />

proportions which depend on the cyanide ion concentration.<br />

S<strong>chem</strong>e 39. 1-(2,6-dimethyl-4-pyridon-1-yl)pyrid<strong>in</strong>iums:<br />

Reactions with Cyanide. Preparation of 4-Cyanopyrid<strong>in</strong>es<br />

34


Synthetically useful transformations of this type have been extended to a wide range of<br />

nucleophiles. This is illustrated for reactions with Grignard reagents [79AG(E)792;<br />

79CC137; 80JCS(P1)2480] <strong>in</strong> S<strong>chem</strong>e 40, with nitroalkane cations[ 79AG(E)792;<br />

81JCS(P1)588] <strong>in</strong> S<strong>chem</strong>e 41, and with ketone enolate anions [79AG(E)792;<br />

80JCS(P1)2458 <strong>in</strong> S<strong>chem</strong>e 42.<br />

S<strong>chem</strong>e 40. 1-(2,6-Dimethyl-4-pyridon-1-yl)pyrid<strong>in</strong>iums: Reaction with Grignard<br />

Reagents. Preparation of 4-Alkyl- and 4-Aryl-pyrid<strong>in</strong>es<br />

35


S<strong>chem</strong>e 41. 1-(2,6-Dimethyl-4-pyridon-1-yl)pyrid<strong>in</strong>iums: Reaction with Nitroalkane<br />

Anions. Preparation of 4-(Nitroalkyl) pyrid<strong>in</strong>es<br />

S<strong>chem</strong>e 42. 1-(2,6-Dimethyl-4-pyridon-1-yl)pyrid<strong>in</strong>iums: Reaction with Ketone<br />

Enolate Anions. Preparation of 4-(α-Acylalkyl)pyrid<strong>in</strong>es<br />

36


S<strong>chem</strong>e 43 shows similar work with trimethyl phosphite as a phosphorus nucleophile. It<br />

is of <strong>in</strong>terest to compare these results with the correspond<strong>in</strong>g work on 1-tritylpyrid<strong>in</strong>ium<br />

which was reported earlier and this is done <strong>in</strong> S<strong>chem</strong>e43.<br />

S<strong>chem</strong>e 43. reaction with Phosphorus Nucleophiles: Preparation of Dimethyl 4-<br />

Pyridylphosphonates<br />

Similar regiospecific attacks are also observed by thioalkoxide ions [81JCS(PI)1585], by<br />

ester and nitrile anions [81JCS(P1)2476], and also by carbanions derived from carbon<br />

acids [81JCS(Pl)2835] to afford 4-substituted pyrid<strong>in</strong>es.<br />

37


8. Pyrid<strong>in</strong>ium Ylides<br />

1-carboxymethylpyrid<strong>in</strong>ium beta<strong>in</strong>e is <strong>in</strong> equilibrium with a small amount of the<br />

carboxpyrid<strong>in</strong>ium ylide. The ylide form can be trapped by various electrophiles as shown<br />

<strong>in</strong> S<strong>chem</strong>e44. Other reactions of pyrid<strong>in</strong>ium ylides with aldehydes and Michael acceptors<br />

are shown <strong>in</strong> S<strong>chem</strong>e 45<br />

S<strong>chem</strong>e 44. Some Precursors of Pyrid<strong>in</strong>ium Methylide<br />

S<strong>chem</strong>e 45. Reactions of Pyrid<strong>in</strong>ium Ylides with Aldehydes and with Michael<br />

Acceptors<br />

38


9. References<br />

24JPR209 K. Elbs, J. Prakt. Chem., 1924, 108, 209.<br />

33CB1802 P. Baumgarten, R. Merländer and J. Olshausen, Ber. Deutsch. Chem.<br />

Ges., 1933, 66, 1802.<br />

38CB2385 B. Bobranski, L. Kochanska and A. Kowalewska, Ber. Deutsch.<br />

Chem. Ges., 1938, 71, 2385.<br />

38CB2603 P. Baumgarten and H. Erbe, Ber. Deutsch. Chem. Ges., 1938, 71,<br />

2603.<br />

40BS133 I.. Monti, Boll. Sci. Fac. Chim. Ind. Bologna, 1940, 133; [Chem.<br />

Abstr., 1940, 34, 7292].<br />

43JPJ79 E Ochiai, K. Arima, and M. Ishikawa, J. Pharm. Soc. Jpn., 1943, 63,<br />

79; [Chem. Abstr., 1951, 45, 5151].<br />

45JPJ70 T. Itai, J. Pharm Soc. Jpn., 1945, 65, 70; [Chem. Abstr., 1951, 45,<br />

8525].<br />

47JPJ151 F. Ochiai and E. Hayashi, J. Pharm. Soc. Jpn., 1947, 67, 151; [Chem.<br />

Abstr - . 1951. 45, 9540].<br />

50RTC468 H. J. den Hertog and J. Overhoff, Reel. Trav. Chim. Pays-Bas, 1950,<br />

69, 468.<br />

55CRV511 W. E. McEwen and R.L. Cobb, Chem, Rev., 1955, 55,511.<br />

55JA2902 H.S. Mosher and F.J. Welch, J. Am. Chem. Soc., 1955, 77, 2902.<br />

56JCS2063 A.R. Katritzky, J. Chem. Soc., 1956, 2063.<br />

56JCS2404 A.R. Katritzky, J. Chem. Soc., 1956, 2404.<br />

57JCS191 A.R. Katritzky, J. Chem. Soc., 1957, 191.<br />

57JCS1769 A.R. Katritzky, E.W. Randall, and L.E. Sutton, J. Chem. Soc., 1957,<br />

1769.<br />

58CB1488 E. Schmitz, Chem. Ber., 1958, 91, 1488.<br />

58JCS1254 C.M. Bax, A.R. Katritzky, and L.E. Sutton, J. Chem. Soc., 1958,<br />

1254.<br />

58JCS2182 A R. Katritzky, A.M. Monro, and (<strong>in</strong> part) J.A.T. Beard, D.P.<br />

Dearnaley, and N.J, Earl, J. Chem. Sec., 1958, 2182.<br />

58RTC340 M. van Ammers and H.J. den Hertog, Recl. Trav. Chim. Pays-Bas,<br />

1958, 77, 340.<br />

59JCS2062 A.R. Katritzky and N.A. Coats, J. Chem. Soc., 1959, 2062.<br />

59JCS3680 A.R. Katritzky, J.A.T. Beard, and N.A. Coats, J. Chem. Soc., 1959,<br />

3680.<br />

59RTC995 A.R. Katritzky, Recl. Trav. Chim. Pays-Bas, 1959, 78, 995.<br />

60JCS1511 A.R. Katritzky and P. Simmons, J. Chem. Soc., 1960, 1511.<br />

60JCS1519 A.R. Katritzky, A.J. Boulton, and D.J. <strong>Short</strong>, J. Chem. Soc., 1960,<br />

1519.<br />

60JOC260 D.S. Noyce, G.L. Woo, and B.R. Thomas, J. Org. Chem., 1960, 25,<br />

260.<br />

62RTC124 M. van Ammers and H.J. den Hertog, Recl. Trav. Chim. Pays-Bus,<br />

1962, 81, 124.<br />

62JA3359 S. Oae, T. Kitao, and Y. Kitaoka, J. Am. Chem. Soc., 1962, 84, 3359.<br />

63JA958 J.H. Markgraf, H.B. Brown, Jr., S.C. Mohr, and R.G. Peterson, J. Am.<br />

Chem. Soc., 1963, 85, 958.<br />

63MI308 A.R. Katritzky and A.P. Ambler <strong>in</strong> "Infrared Spectra", Physical<br />

39


64CRV149<br />

Methods <strong>in</strong> <strong>Heterocyclic</strong> <strong>Chemistry</strong>, ed. A.R. Katritzky, Academic<br />

Press, 1963, Vol. 2, p. 308.<br />

R.A. Abramovitch and B.A. Davis, Chem. Rev., 1964, 64,149.<br />

64TL1733 K. Hafner, D. Z<strong>in</strong>ser, and K.-L. Moritz, Tetrahedron Lett., 1964,<br />

1733.<br />

65JHC196 R.J. Rousseau and R.K. Rob<strong>in</strong>s, J. Heterocycl. Chem., 1965, 2, 196.<br />

65JOC1311 W. Metlesics, R.F. Tavares, and L.H. Sternbach, J. Org. Chem.,<br />

1965, 30, 1311<br />

65T2205 R. Eisenthal and A.R. Katritzky, Tetrahedron. 1965, 21, 2205.<br />

66JPR293 H. Beyer and E. Thieme, J. Prakt. Chem., 1966, 21, 293; [Chem.<br />

Abstr., 1966, 65, 8891].<br />

67MI1 E. Ochiai, "Aromatic Am<strong>in</strong>e Oxides", Elsevier, Amsterdam, 1967.<br />

67T2775 R. Eisenthal, A.R. Katritzky, and E. Lunt, Tetrahedron, 1967, 23,<br />

2775.<br />

68JCS(B)831 R. Bodalski and A.R. Katritzky, J. Chem. Soc. (B), 1968, 831.<br />

68JCS(C)1537 S.M. Roberts and H. Suschitzky, J. Chem. Soc. (C), 1968, 1537.<br />

68TL257 R. Bodaski and A.R. Katritzky, Tetrahedron Left., 1968, 257.<br />

69T4291 A.R. Katritzky and F. Lunt, Tetrahedron, 1969. 25. 4291.<br />

69TL4739 J. Epsztajn and A.R. Katritzky, Tetrahedron Lett., 1969, 4739.<br />

70JOC3144 W. Phillips and K.W. Ratts, J. Org. Chem., 1970, 35, 3144.<br />

70T1665 J. Epsztajn, E. Lunt, and A.R. Katritzky, Tetrahedron, 1970, 26,<br />

1665.<br />

71 MI1 A.R. Katritzky and J.M. Lagowski, "<strong>Chemistry</strong> of the Heterocyclclic N-<br />

Oxides." Academic Press, London, 1971.<br />

72ZC250 H.-J. Timpe, Z. Chem., 1972, 12, 250.<br />

73CRV255 W.J. McKillip, E.A. Seder, B.M. Culbertson, and S. Wawzonek,<br />

Chem. Rev., 1973, 73, 255.<br />

73JCS(P1)2622 J. Epsztajn, A.R. Katritzky, E. Lunt, J.W. Mitchell, and G. Roch, J.<br />

Chem. Soc., Perk<strong>in</strong> Trans. 1, 1973, 2622.<br />

73JCS(P1)2624 A.R. Katritzky and J.W. Mitchell, J. Chem. Soc., Perk<strong>in</strong> Trans. 1,<br />

1973, 2624.<br />

73S469 C.G. Stuckwisch, Synthesis, 1973, 469.<br />

74AHC(17)213 H.-J. Timpe, Adv. Heterocyc1 Chem., 1974, 17, 213.<br />

74TL4123 A-R. Katritzky and J-W Suw<strong>in</strong>ski, Tetrahedron Lett.,1974, 4123.<br />

75CC247 A.R. Katritzky, and M.P. sammes, J. Chem. Soc., Chem. Commun.,<br />

1975, 247.<br />

75T1549 A.R. Katritzky and J.W. Suw<strong>in</strong>ski, Tetrahedron, 1975, 31, 1549.<br />

76TL2691 J.B. Bapat, R.J. Blade, A.J. Boulton, J. Epsztajn, A.R. Katritzky, J.<br />

Lewis, P. Mol<strong>in</strong>a-Buendia, P.-L. Nie, and C.A. Ramsden, Tetrahedron<br />

Lett., 1976, 2691.<br />

77H227 M.J. Cook, A.R. Katritzky, G.H. Millet, Heterocycles, 1977, 7, 227.<br />

77JCS(PI)1428 A.S. Afridi, A.R. Katritzky, and C.A. Ramsden, J. Chem. Soc., Perk<strong>in</strong><br />

Trans. 1, 1977, 1428.<br />

77JCS(P1)1692 J.B. Bapat, J. Epsztajn, A.R. Kauritzky, and B. Plan, J. Chem. Soc.,<br />

Perk<strong>in</strong> Trans. 1, 1977, 1692.<br />

79AG(E)792 A.R. Katritzky, H. Beltrami, J.G. Keay, D.N. Rogers, M.P.<br />

40


Sammes, C.W.F. Leung, and C.M. Lee, Angew. Chem., Int. Ed.<br />

Engl., 1979, 18, 792.<br />

79CC137 A.R. Katritzky, H. Beltrami, and M.P. Sammes, J. Chem. Soc.,<br />

Chem. Comm.un., 1979, 137.<br />

79JCS(P1)1698 C.W.F. Leung, M.P. Sammes, and A.R. Katritzky, J. Chem. Soc.,<br />

Perk<strong>in</strong> Trans. 1, 1979, 1698.<br />

79T341 H. Sliwa and A. Tartar, Tetrahedron, 1979, 35, 341.<br />

80JCS(P1)2458 C.M. Lee, M.P. Sammes, and A.R. Katritzky, J. Chem. Soc., Perk<strong>in</strong><br />

Trans. 1, 1980, 2458.<br />

80JCS(P1)2480 A.R. Katritzky, H. Beltrami, and M.P. Sammes, J. Chem. Soc.,<br />

Perk<strong>in</strong> Trans, 1, 1980, 2480.<br />

81AHC(29)7 I Y. Tamura and M. Ikeda, Adv. Heterocycl. Chem., 1981, 29, 71.<br />

81JCS(P1)588 A.R. Katritzky, J.G. Keay, D.N. Rogers, M.P. Sammes, and C.W.F.<br />

Leung, J. Chem. Soc., Perk<strong>in</strong> Trans. 1, 1981, 588.<br />

81JCS(P1)668 A.R. Katritzky, J.G. Keay, and M.P. Sammes, J. Chem.- Soc., Perk<strong>in</strong><br />

Trans. 1, 1981, 668.<br />

8 1JCS(P1)1585 M.P. Sammes, C.W.F. Leung, C.K. Mak, and A.R. Katritzky, J. Chem.<br />

Soc., Perk<strong>in</strong> Trans. 1, 1981, 1585.<br />

81JCS(P1)2476 M.P. Sammes, C.M. Lee, and A.R. Katritzky, J. Chem. Soc., Perk<strong>in</strong><br />

Trans. 1, 1981, 2476.<br />

81JCS(P1)2835 M.P. Sammes, C.W.F. Leung, and A.R. Katritzky, J. Chem. Soc.,<br />

Perk<strong>in</strong> Trans. 1, 1981, 2835.<br />

83JOC1375 W.K. Fife, J. Org. Chem., 1983, 48, 1375.<br />

84JCS(P1)941 A.R. Katritzky, O. Rubio, J.M. Aurrecoechea, and R.C. Patel, J, Chem.<br />

Soc., Perk<strong>in</strong> Trans. 1, 1984, 941.<br />

84CPB4731 K. Funakoshi, H. Inada, and M. Hamana, Chem. Pharm. Bull., 1984,<br />

32, 4731.<br />

84JOC4999 S. B. Kad<strong>in</strong> and C.H. Lamphere, J. Org. Chem., 1984, 49, 4999.<br />

85JCS(P1)2155 A.R. Katritzky and M. Szajda, J. Chem. Soc., Perk<strong>in</strong> Trans. 1, 1985,<br />

2155.<br />

85TL3191 T.R. Webb, Tetrahedron Lett., 1985, 26, 3191.<br />

86H3019 N. Furukawa, M. Tsuruoka, and H. Fujihara, Heterocycles, 1986. 24,<br />

3019.<br />

86TL5649 M. Sawada, Y. Takai, S. Kimura, S. Yamano, S. Misumi, T. Hanafusa,<br />

and Y. Tsuno. Tetrahedron Lett., 1986, 27, 5649.<br />

88H2327 K. Harano, H. Kiyonaga, S. Sugimoto, T. Matsuoka, and T. Hisano,<br />

Heterocycles, 1988, 27, 2327.<br />

88JCR(S)42 A.R. Katritzky, D. Rasala, and F. Brito-Palma, J. Chem. Res. (S),<br />

1988, 42.<br />

88L1118 A.R. Katritzky, B.L. Duell, D. Rasala, B. Knier, and H.D. Durst,<br />

Langmuir, 1988, 4, 1118.<br />

9IJCS(P2)1545 A.R. Katritzky, N. Malhotra, W.-Q. Fan, and E. Anders, J. Chem. Soc.,<br />

Perk<strong>in</strong> Trans. 2, 1991, 1545.<br />

91M11 A. Alb<strong>in</strong>i, S. Pietra, "<strong>Heterocyclic</strong> N-Oxides" CRC Press, Florida,<br />

1991.<br />

91SA(A)125 Z. Dega-Szafran, M. Grundwald-Wyspianska, and M. Szafran,<br />

Spectrochim. Acta, 1991, 47A,125.<br />

92H1011 A.R. Katritzky and J. N. Lam, Heterocycles, 1992, 33, 1011.<br />

41

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!