22.03.2013 Views

SURFICIAL GEOLOGY - Central Saanich

SURFICIAL GEOLOGY - Central Saanich

SURFICIAL GEOLOGY - Central Saanich

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>SURFICIAL</strong> <strong>GEOLOGY</strong><br />

<strong>SURFICIAL</strong> <strong>GEOLOGY</strong> AND GEOMORPHOLOGY OF<br />

CENTRAL SAANICH PENINSULA, SOUTHEASTERN<br />

VANCOUVERISLAND<br />

1 2 3<br />

David Huntley, Katrina Bennett , Peter Bobrowsky and John<br />

4<br />

Clague<br />

1.WesternGeographicResearch,505-350DouglasStreet,Victoria,B.C.<br />

2.LatitudeGeographicsGroup,257MarketSquare,Victoria,B.C.<br />

3.BritishColumbiaGeologicalSurvey,MinistryofEnergyandMines,Victoria,B.C.<br />

4.DepartmentofEarthSciences,SimonFraserUniversity,Burnaby,B.C.<br />

INTRODUCTION<br />

ThissectionsummarisesthesurficialgeologyandQuaternaryhistoryof<br />

central <strong>Saanich</strong> Peninsula. The map, figures and text also provide<br />

baselineinformationforinterpretingthedistributionofgroundwaterand<br />

aggregateresources,potentiallyunstablelandareas,soilsandvegetation<br />

cover. Fieldwork and research was undertaken for Ocean Drilling<br />

Programleg169S andtheResourceAtlasProjectoftheEnvironmental<br />

AdvisoryCommissionoftheMunicipalityof<strong>Central</strong><strong>Saanich</strong>. Support<br />

wasprovidedbytheCentreforEarthandOceanResearch,Universityof<br />

Victoria, the British ColumbiaGeological Survey Branch andMinistry<br />

ofEnvironment,LandsandParks,theGeologicalSurveyofCanadaand<br />

NationalScienceandEngineeringResearchCouncilofCanada.<br />

Landformsandsurficialsedimentsweremappedfromobservationsat39<br />

fieldsites and from 1:23 000 and 1: 70 000 scale air photographs.<br />

Surficial units were defined on the basis of landform associations,<br />

texture, sorting, fissility, colour, sedimentary structures, consolidation<br />

andcontactrelationships.Icedispersalpatternshavebeeninferredfrom<br />

striae,flutes,drumlins,rochesmoutonnes,andlong-axisorientationsof<br />

clastsintill.Meltwaterflowdirectionswereinferredfromforeset-cross<br />

and ripple-bedding, clast imbrication and channel orientations.<br />

Additionalinformationwascompiledfromearlier regionalstudies(e.g.<br />

Fyles 1963, Halstead 1966, 1968, Clague 1976, 1977, Alley and<br />

Chatwin, 1979,Hicock andArmstrong 1983,Bornhold et al.1997 and<br />

1998); 1:63,360 and 1:50,000 scale surficial geology maps (Halstead<br />

1966,BlythandRutter1993,Huntleyunpublishedmapping);1:250,000<br />

and 1:100,000 scale geology maps (Muller 1980, Massey et al.1994);<br />

soils reports and accompanying 1: 100,000 and 1:20,000 scale maps<br />

(Jungen 1985, Jungen et al. 1985); and the Ministry of Environment,<br />

LandsandParkswaterwellandlakedatabases.<br />

PHYSIOGRAPHY,<strong>GEOLOGY</strong>ANDGEOMORPHOLOGY<br />

<strong>Central</strong> <strong>Saanich</strong> Peninsula lies on the southeastern margin of the<br />

Nanaimo Lowland and Vancouver Island Ranges (Holland 1980). The<br />

peninsula is bordered to the east by Cordova Channel and by <strong>Saanich</strong><br />

Inlet to the west. The area is mainly underlainby fractured and faulted<br />

volcanicandigneousrocksrangingfromTriassic(ca.230ma)toJurassic<br />

(ca. 170 ma) inage (Muller 1980, Massey et al. 1994). Mount Newton<br />

(307 masl), thehighestpointinthe study area, is underlainbyJurassic<br />

granodiorite. Steep, rollinguplandsof the Partridge Hills areunderlain<br />

byJurassicbasalts. Undulatingandgentlyrollinglowlandterraininthe<br />

vicinityofBrentwoodBay,KeatingandIslandViewBeachisunderlain<br />

by Triassic basalts and breccia and granodiorite. Permian to Triassic<br />

limestonesarefoundsouthofBrentwoodBay.<br />

Bedrockismantledbyasurficialsedimentcoverthatrangesinthickness<br />

fromlessthanametreonsteepuplandslopestogreaterthan40metresin<br />

some lowland areas. Seven surficial units are identified (informally<br />

designated units 1to 7, Table G2 and G3). Units are correlated with<br />

previously defined sequences in adjacent coastal areas by stratigraphic<br />

position, sedimentology,surfaceexpressionandlandformassociations.<br />

The dominantlandformsanddepositsare LateWisconsinan in age(ca.<br />

29to10ka),andrecordtheadvance,maximumandretreatphasesofthe<br />

last (Fraser) glaciation. Soil textures and hydrologic characteristics<br />

reflectunderlyingsurficialunitsandbedrock(TableG2).<br />

QUATERNARYSTRATIGRAPHYAND GEOMORPHOLOGY<br />

Pre-LateWisconsinan<br />

Theoldestsurficialsedimentsare exposedinaseacliff betweenIsland<br />

ViewBeachand Cowichan Head (Figure G-1, logA;refer toTable G1<br />

for key to faciescodes used instratigraphic columns).Abasal unit, the<br />

Muir Point Formation, consists of non-glacial marine, alluvial, fluvial<br />

andcolluvial sediments, inferred todate to the Sangamonian stage (ca.<br />

120ka;HicockandArmstrong1983). Unit1isoverlainbyglaciofluvial<br />

outwash, till and fossiliferous marinebeds assigned to the Dashwood<br />

Drift.The age of unit 2is uncertain,butisprobably EarlyWisconsinan<br />

(ca. 80 to 65 ka; Fyles 1963, Hicock and Armstrong 1983). Unit 3<br />

includesoxidisedfluvialsandandgravel,andorganic-richestuarinesilt<br />

and clay. These deposits are older than 23 ka and are assigned to the<br />

MiddleWisconsinanCowichanHeadFormation(ArmstrongandClague<br />

1977).<br />

Late Wisconsinan - Fraser Glaciation (glacial-advance<br />

phase)<br />

Fraser Glaciationadvance-phase sediments,termed QuadraSand, were<br />

deposited after 29 ka (Halstead 1966, 1968, Clague 1976, 1977). Two<br />

facies are recognised in the study area. Unit 4a is an ice-distal facies<br />

consistingofwell-sortedsand,withgravel,siltandclay.Itisrestrictedto<br />

theeastside of<strong>Saanich</strong>Peninsulaand islandseastof Cordova Channel<br />

(Figure G-1, log A). Unit 4b,informally referred to as the <strong>Saanich</strong>ton<br />

gravel (Halstead1968), isanice-proximal facies consisting of massive<br />

G-1<br />

<strong>SURFICIAL</strong><strong>GEOLOGY</strong>AND GEOMORPHOLOGY<br />

to stratified gravel and sand (Figure G-8). Palaeoflow indicators are<br />

consistent with meltwater and sediment transport from Koksilah and<br />

Cowichan valleys toward <strong>Saanich</strong> Peninsula (Figure G-2, log B).<br />

Advance-phase glaciofluvial outwash in central <strong>Saanich</strong> Peninsula<br />

occursuptoapproximately100masl.<br />

Late Wisconsinan - Fraser Glaciation (glacial-maximum<br />

phase)<br />

Glaciallysculptedbedrock,oldersedimentsandadvance-phasedeposits<br />

areunconformablyoverlainbymorainaldepositscomprisingtheVashon<br />

Drift (Hicock and Armstrong 1985). Deposition of glacial maximum<br />

sediments occurred between ca. 23 and 18 ka (Clague et al. 1980).<br />

Morainal deposits include diamictons interpreted as lodgement and<br />

melt-out tills (unit 5a), and interstratified glaciofluvial gravel and sand<br />

(unit5b).InthePartridgeHillsandontheflanksofMt.Newton,moraine<br />

is extensively colluviated and best preserved in glacially-scoured<br />

bedrock depressions (Figure G-3, log C). Along valley floors and in<br />

lowland areas, unit 5forms an extensive drumlinised ground moraine<br />

overlyingolderunitsandstreamlinedbedrock(FiguresG-8,FigureG-1<br />

and G-2 logs A, B). Till textures reflect underlying materials. In the<br />

<strong>Saanich</strong>tonandKeating areas, tillshaveasand-richmatrixthatreflects<br />

derivationfromunderlyingQuadraSandandearlierunits.Inthevicinity<br />

ofMountNewton, BrentwoodBayand PartridgeHills,tillsarederived<br />

from bedrock and matrices are predominantly clay and silt-rich. The<br />

distributionandorientationofstriae,crag-and-tails,drumlins,andflutes<br />

indicate that iceflow was directed southward toward the Victoria area.<br />

Tillclastsanderraticbouldersarepredominantlylocallyderivedorhave<br />

provenances in the Koksilah andCowichan valleys. Exotic clasts have<br />

sources in central Vancouver Island and coastal mainland British<br />

Columbia.<br />

LateWisconsinan-FraserGlaciation(glacial-retreatphase)<br />

Fraser Glaciationretreat-phase sequences, termed Capilano Sediments<br />

(Fyles1963,Halstead1966,1968,HicockandArmstrong1985),include<br />

colluvial(unit6a),glaciofluvial(unit6b),glaciolacustrine(unit6c)and<br />

glaciomarine deposits (unit 6d). In upland areas and on valley sides,<br />

bedrockandmorainaldepositsareoverlainbydiamictonsinterpretedas<br />

ice-contactandproglacialmass-movementdeposits(FigureG-4logD).<br />

TerracedgravelsandcolluviumonthesouthflankofMountNewton,and<br />

Figure G-1. Figure G-2. Figure G-3.<br />

Figure G-4.<br />

Municipality of <strong>Central</strong> <strong>Saanich</strong> ResourceAtlas


<strong>SURFICIAL</strong> <strong>GEOLOGY</strong><br />

ameltwater spillway in the Durrance Lake valley indicate astable<br />

recessionalicesurfaceovercentral<strong>Saanich</strong>Peninsulaatabout150masl.<br />

Theorientationofthesefeaturesisconsistentwithsoutheasttransportof<br />

meltwaterandsedimenttowardCordovaChannel.Below80masl,older<br />

units, moraine and bedrock are draped by raised glaciomarine debrisflowdiamictons,sandandgraveloutwash,andmassivetorhythmicallybeddedsilt-clay(FigureG-1,logA).Morainaldepositsarealsoterraced<br />

and winnowed,indicatingreworkingbysurfacerunoffandwaveaction<br />

(Figure G-9). The elevation range of unit 6d and wave-cut terraces<br />

delimits the extent of marine transgression over central <strong>Saanich</strong><br />

Peninsula during deglaciation. Raised glaciomarine deposits are<br />

correlative to the earliest deglacial sediments in ODP cores1033 and<br />

1034,anddatebetween12and15ka(Mathewsetal.1970,Clagueetal.<br />

1982,Bornholdetal.1997and1998,Huntleyetal.inpress).<br />

Figure G-5. Figure G-6.<br />

Holocene(post-glaciation)<br />

Post-glacialsequences,termedSalishSediments(Fyles1963, Halstead<br />

1968), includecolluvial (unit 7a), fluvial (unit 7b), lacustrine (unit 7c)<br />

and marine deposits (unit 7d). On steep slopes, deglacial and older<br />

exposedsedimentsarepartlyreworkedbymass-movement,andlocally<br />

overlainbypostglacialcolluvium(FigureG-4,logD).Glaciomarineand<br />

morainal sediments are incised by streams. Mass-movement in the<br />

vicinityof<strong>Saanich</strong>tonislikelyattributedtoactivestreamincision.West<br />

of Sannichtonand Keating, eroded sediment is deposited along valley<br />

floors, in lakebasins, and in<strong>Saanich</strong> Inlet (Figure G-5 to G-7). Tothe<br />

east,mostsedimentisdepositedinCordovaChannelandHaroStrait.In<br />

situfossiltreestumpsexposedintheintertidalzoneatIslandViewBeach<br />

indicates marine transgression on the east coast of <strong>Saanich</strong> Peninsula<br />

overthelast2ka(Mathewsetal.1970).Sedimenterodedfromseacliffs<br />

at Cowichan Head is transported northward by long-shore drift and<br />

deposited mostly on Island View Beach. The intertidal zone bordering<br />

BrentwoodBayand<strong>Saanich</strong>Inletisdominatedbysteepbedrockslopes,<br />

andismantledbyathincolluvialcover.Theoldestpostglacialsediments<br />

in <strong>Saanich</strong> Inlet are diatomaceous muds and massive clays deposited<br />

undermoderatelyoxygenatedconditionswhensea-levelwaslowerthan<br />

present. The Mazama ash is adistinctive horizon in marine and lake<br />

sequences dating to about 7.6ka. Above the ash layer, varved<br />

diatomaceous muds were deposited under low-energy and anoxic<br />

conditions (Bornhold et al. 1997 and 1998). Interbedded with these<br />

sediments are massive muds, interpreted to be mass-flow deposits<br />

emplacedduringstormsandearthquakes(Blais-Stevensetal.1997).<br />

Figure G-7.<br />

Table G-1. Key tofacies codesused<br />

in stratigraphic columns.<br />

Facies code Description<br />

Dcm Diamicton, clast-supported, massive<br />

Dcs Diamicton, clast-supported, stratified<br />

Dmm Diamicton, matrix-supported, massive<br />

Dms Diamicton, matrix-supported, stratified<br />

Bm Boulders, massive<br />

Gm Gravel, massive<br />

Gs Gravel, stratified<br />

Gf Gravel, foreset-bedded<br />

Gt Gravel, trough cross-bedded<br />

Sm Sand, massive<br />

Sp Sand, planar<br />

St Sand, trough cross-bedded<br />

Sr Sand, ripple-bedded<br />

Fm(d) Silt and clay,massive(with dropstones)<br />

Fl(d) Silt and clay,laminated (withdropstones)<br />

G-2<br />

<strong>SURFICIAL</strong><strong>GEOLOGY</strong>AND GEOMORPHOLOGY<br />

Figure G-8. Vashon<br />

Drift,lodgement till<br />

(5a [sdMb])<br />

unconformably<br />

overlying<br />

drumlinised Quadra<br />

Sand, glaciofluvial<br />

outwash (4b [gsFb])<br />

exposed in the<br />

vicinity of Keating<br />

townsite. Seealso<br />

Figure G-2,log317,<br />

and map legend for<br />

description of<br />

terrain units.<br />

Figure G-9. Capilano Sediments, glaciomarine suspension and<br />

debris flow deposits (6d[zdMw]). Hagan Creekvalley,view<br />

toward Brentwood Baytownsite. See map legendfor<br />

description ofterrain units.<br />

Municipality of <strong>Central</strong> <strong>Saanich</strong> ResourceAtlas


<strong>SURFICIAL</strong> <strong>GEOLOGY</strong><br />

Map Legend A-Surficial Materials<br />

For Map G1. Surficial geology material, <strong>Central</strong><br />

<strong>Saanich</strong>.1998 (recordedon Map G1 as uppercase<br />

symbols).<br />

W Marine deposits:massive to stratifiedclay, silt, sand and<br />

gravel; generallymoderatelytowell-sorted,deposited in<br />

saltand brackishwater by settlingfromsuspension and<br />

submarine gravityflows, including turbiditycurrents, wave<br />

actionand longshore drift; may containshells and other<br />

organic material.<br />

O Organic deposits:peat and other vegetative materials;<br />

formed by theaccumulationof organic matter in<br />

depressions orlevelareas; includesbogs, fensand swamps.<br />

L Lacustrine deposits:massivetostratified fine sand, siltand<br />

clay;depositedfromsuspension and subaqueous gravity<br />

flows, includingturbidity currents and waveactioninfresh<br />

water..<br />

F Fluvialdeposits:gravelto silt-size sediment;generally<br />

well-sorted and stratified; clastswell-rounded;deposited<br />

byrivers, streams and creeks.<br />

C Colluvialdeposits:massive tostratified, clast- and matrixsupporteddiamicton<br />

or rubble; resulting fromtheme<br />

chanicalor chemical weathering ofbedrockand surficial<br />

sediment, andthe down-slopemovement ofmaterialsby<br />

gravitational processesincluding creep, solifluxion, sliding,<br />

debris-flow, avalanching, topple androckfall.<br />

WG Glaciomarinedeposits:diamicton, sand, siltand clay<br />

depositedfromsuspension and submarine gravity flows,<br />

including turbidity currents, inproximity toglacier ice;<br />

alsoincludesice-rafted stones, till-like diamictonsand<br />

interstratifiedglaciofluvialmaterials;wave-cutterraces,<br />

abrupt changesin texture anddistortedbedding common;<br />

marine shellsand other organic materialmaybe present.<br />

LG Glaciolacustrine deposits: well-stratified sand, siltandclay,<br />

including minor gravel and diamicton;deposited deposited<br />

fromsuspension and subaqueousgravity flows, including<br />

turbidity currentsandwave action in lakesadjacent to<br />

glacial ice; slump structures,irregular topographyand<br />

kettlesindicative of collapsefrommeltingof buried ice<br />

maybe locallypresent.<br />

Table G-2. GeneticParent MaterialsandSoils Relationships.<br />

Ta ble G-2 Genetic Parent Materials and Soils Rela tionships<br />

FG Glaciofluvial deposits:massive to stratified boulders,cobbles,<br />

pebble-gravel, sand, siltand diamicton; sortinggoodto poor;<br />

depositedby riversandstreamsflowing from, or incontact<br />

with glacialice;includingspillways, outwash plains,kames<br />

andraised deltas;evidence for ice collapse including<br />

slumping, kettlesandirregular topography.<br />

M Morainal deposits: massiveto stratified, matrix-supported<br />

diamicton, till;sub-rounded andfaceted boulders, cobbles and<br />

pebblesin aclay, siltandsand matrix;interstratified with<br />

minor gravel, sand andsilt;depositedeither directlyby<br />

lodgement, basal meltout; subglacial meltwater;or sediment<br />

gravity-flow processes,including debrisflowsassociated with<br />

ice melting; overlies drumlinised olderglacialnonglacial<br />

sedimentsand glaciallysculpted bedrock;may contain kettle<br />

depressions.<br />

G-3<br />

<strong>SURFICIAL</strong>MATERIALSANDTEXTURES MAPLEGEND<br />

Unit Parent material Soil texture Soil classification Soil Names Drainage<br />

and Types classification<br />

unit 7d marine sands and gravels Regosols, saline phases Coastal Beach, well- to poorly-drained<br />

mud, rock Regosols, saline phases Tidal Flats, Rocky Coast well to poor<br />

unit 7c lacustrine/organic humic Terric Humisol Metchosin very poorly-drained<br />

unit 7b fluvial gravely, sandy loam Gleyed Dystric Brunisol Brigantine imperfectly-drained<br />

unit 7a colluvial/till gravely sandy loam Orthic Dystric Brunisol Rumsley, Mount Newton moderately well-drained<br />

gravely sandy loam Duric Dystric Brunisol Shawnigan moderately well-drained<br />

unit 6d glaciomarine gravely loam and silty Duric Dystric Brunisol Dashwood moderately well-drained<br />

gravely sandy loam Duric Sombric Brunisol Langford moderately well-drained<br />

silt, clay loam Orthic Sombric Brunisol <strong>Saanich</strong>ton moderately well-drained<br />

silty clay loam Orthic Humic Gleysol Tolmie; Cowichan poorly-drained<br />

unit 6c glaciolacustrine/organichumic Terric Humisol Metchosin very poorly-drained<br />

unit 6b glaciofluvial gravely, loamy sand Orthic Dystric Brunisol Qualicum well-drained<br />

unit 6a proglacial colluvial/till gravely sandy loam Orthic Dystric Brunisol Rumsley, Mount Newton moderately well-drained<br />

gravely sandy loam Duric Dystric Brunisol Shawnigan moderately well-drained<br />

unit 5 moraine gravely sandy loam Duric Dystric Brunisol Shawnigan moderately well-drained<br />

unit 4 glaciofluvial gravely, loamy sand Orthic Dystric Brunisol Qualicum well-drained<br />

unit 3 fluvial, lacustrine, marineexposed in sea-cliff Orthic Regosol Steep slope well-drained<br />

unit 2 glaciomarine, moraine exposed in sea-cliff Orthic Regosol, ancient phase poorly-drained<br />

unit 1 fluvial, lacustrine, marineexposed in sea-cliff Orthic Regosol, ancient phase poorly-drained<br />

and wave-cut platform<br />

Surficial Material Textures<br />

(recorded on Map G-1 as lower case<br />

symbols)<br />

cz clays with silts<br />

sd mixedfragmentwithsands<br />

d diamicton, mixed fragments<br />

sg gravelswith sands<br />

dz silts with mixed fragments<br />

sz silts with sands<br />

hz silts with humic materials<br />

zc clays with silts<br />

zd mixedfragments withsilts<br />

zh humicmaterialswithsilts<br />

s sands<br />

Municipality of <strong>Central</strong> <strong>Saanich</strong> ResourceAtlas


<strong>SURFICIAL</strong> <strong>GEOLOGY</strong><br />

Legend Map G-1-Surficial MaterialsandTextures Map G-1.<br />

Map coloursindication the type of surficial material present:<br />

Colluvium<br />

Fluvial<br />

Morainal<br />

Organic<br />

Marine<br />

Glacio-marine<br />

GEOMORPHIC SYMBOLS<br />

trimline<br />

crag-and-tail<br />

drumlin<br />

flute<br />

striation<br />

erratic boulders<br />

meltwaterchannel<br />

(flow directionknown)<br />

C<br />

F<br />

M<br />

O<br />

W<br />

WG<br />

meltwaterchannel<br />

(flow directionuncertain)<br />

terrace<br />

gully<br />

mass-movement<br />

(flow directionknown)<br />

surface seepage, spring<br />

drownedtrees<br />

See previous page foradescription forthemap symbols.<br />

Note: SurficialmaterialsL-Lacustrine, LG -Glaciolacustrine, FG -<br />

Glaciofluvialare notdisplayedon thismapbutdo occur in the studyarea<br />

at some locationsbelowthe surface. The stratigraphiclocations of some<br />

of these depositsoccur inthe GroundwaterAquifer section onthe crosssections;andtheyare<br />

alsorecorded inthe Surficial GeologyAppendix..<br />

464 000 469 000<br />

Map G-1 Surficial GeologyMaterials of <strong>Central</strong> <strong>Saanich</strong>.<br />

1000 m 0m<br />

1000 m<br />

Scale 1:40000<br />

2000 m<br />

G-4<br />

<strong>SURFICIAL</strong>MATERIALSANDTEXTURESMAP<br />

464 000 469 000 474 000<br />

Map Notes: This map displaysthe materialswhich lie at the<br />

surface of the land. Thisis onlyone type of display derived<br />

fromthe data base. In many areas, layers orstratasof other<br />

materials occuratdepth such as materials which identify<br />

gravellyaquifers.<br />

Municipality of <strong>Central</strong> <strong>Saanich</strong> ResourceAtlas<br />

474 000


<strong>SURFICIAL</strong> <strong>GEOLOGY</strong><br />

QUATERNARYHISTORY<br />

In this section, the late Pleistocene and early Holocene history of the<br />

central<strong>Saanich</strong>Peninsulaisdiscussedinaregionalcontext.FiguresG-<br />

10 to G-16 show a conceptual model that depicts the changing<br />

palaeogeography of southeastern Vancouver Island, showing central<br />

<strong>Saanich</strong> Peninsula from ca. 19to 4ka (calendar years before present).<br />

During this geomorphically dynamic interval, <strong>Saanich</strong> Inlet evolved<br />

from aglacierised fjord basin into amarine inlet dominated by nonglacial<br />

processes. At the same time, significant changes in sediment<br />

delivery rates,sea-level, water temperature, geochemistry and ecology<br />

occurredonthepeninsula.<br />

Changes in ice margins, drainage patterns and shoreline geometry are<br />

inferredfromthedistributionandelevationrangeofmoraine,proglacial<br />

colluvium, glaciofluvial and glaciomarine landforms (Huntley et al. in<br />

press). Landform and sediment assemblagesin the area aresimilar to<br />

thoseobservedincontemporarypalaeoglacialenvironmentsandmodern<br />

fjords dominated by retreating tidewater glaciers. The chronology of<br />

major geomorphic events and sea-level changes is constrained by<br />

radiocarbon dates from late Pleistocene and Holocene sequences in<br />

<strong>Saanich</strong> Inlet, adjacent parts of southern Vancouver Island and the<br />

Pacific northwest (Mathews et al. 1970, Alley and Chatwin, 1979,<br />

HicockandArmstrong1985,Bornholdetal.1997,PorterandSwanson<br />

1998).<br />

Legendfor Quaternary<br />

History Diagrams<br />

Glacierice (with estimated<br />

ice thickness in metres)<br />

Deglaciated terrain<br />

Glaciofluvial outwash<br />

Sea and lake water<br />

Iceflow direction(determined<br />

from paleo-iceflow indicator)<br />

Meltwater flow<br />

(current direction known)<br />

Meltwater flow<br />

(current direction uncertain)<br />

Lateglacial-maximumphase(ca.19to17ka)<br />

Before 17 ka, central <strong>Saanich</strong> Peninsula was covered by an ice sheet<br />

flowing from montane sources on Vancouver Island and the adjacent<br />

BritishColumbiamainland.Bedrockandoldersedimentswereoverlain<br />

by subglacial morainal deposits consisting of lodgement till, melt-out<br />

till, and glaciofluvial sediments (Figure G-1). Streamlined bedforms<br />

indicate that during this phase, ice and subglacial meltwater-flow was<br />

directed south-to southeasttoward Juan de Fuca Strait and Haro Strait<br />

(Figure 2a). In the northwest, cirque headwalls above 1200 masl have<br />

been modified by frost-shatter and solifluxion. This relict periglacial<br />

terrain isinterpretedtorepresentaminimumlimitto glaciationpriorto<br />

the onset of deglaciation (Huntley et al. in press). Ice thicknesses over<br />

<strong>Saanich</strong> Peninsula at this time ranged from 800 to 1000 m. In <strong>Saanich</strong><br />

Inlet,icethicknesswasgreaterthan1500m(FigureG-10).<br />

G-5<br />

QUATERNARYHISTORY<br />

FigureG-10. Late glacial maximum phase ( ca. 19 to 15 ka).<br />

Figure G-11. Early deglacialphase ( ca.<br />

15to 14 ka).<br />

Earlyglacial-retreatphase(ca.16to15ka)<br />

Deglaciationbeganbefore16ka(PorterandSwanson1998).Mountains<br />

anduplandsweredeglaciatedearlyastheregionalequilibriumlinerose<br />

above the elevationof localcirquebasins.As aresult, remnant ice was<br />

confined to valleys and coastal lowlands (Figure 2b). In proglacial<br />

settings, exposed glacial debris was extensively remobilised by<br />

meltwaterandmass-movement.Meltwateranderodedsedimentdrained<br />

southeast across <strong>Saanich</strong> Inlet. Hydrologic continuity between ice-free<br />

areas was likely maintained by eskers, subglacial sheet-flow and<br />

supraglacial channels. Glacio-isostatically depressed lowlands were<br />

inundatedastheeustaticsea-levelrose.Asicethinned,tide-waterglacier<br />

margins partly floated and retreated to grounding lines in southern<br />

<strong>Saanich</strong>Inlet,SatelliteChannel,andover<strong>Saanich</strong>Peninsula(Huntleyet<br />

al. in press). Ice, meltwater and sediment drained to alarge calving<br />

embaymentformedinHaroStrait,southernStraitofGeorgiaandeastern<br />

JuandeFucaStrait(FigureG-11).<br />

Municipality of <strong>Central</strong> <strong>Saanich</strong> ResourceAtlas


<strong>SURFICIAL</strong> <strong>GEOLOGY</strong><br />

Figure G-12. Middle deglaciation ( ca. 14 to 13 ka).<br />

Figure G-13. Late deglacial phase ( ca. 13 to 12 ka).<br />

Middleglacial-retreatphase(ca.14to13ka)<br />

Alongvalleyfloors,ephemerallakeswereimpoundedbydebris-covered<br />

stagnant ice and retreat-phase glaciofluvial outwash. Meltwater and<br />

sediment were directed into interlobate basins formed along the lower<br />

reaches of Cowichan and Koksilah rivers, and an embayment<br />

encompassing<strong>Saanich</strong> Peninsula and <strong>Saanich</strong> Inlet(Figure G-12). Icecontact<br />

deltas graded to between 100 and 80 masl delimit stable<br />

recessional grounding-line positions for tide-water glaciers in <strong>Saanich</strong><br />

Inlet, Satellite Channel, Cowichan and Koksilah valleys, and over<br />

<strong>Saanich</strong>Peninsula.Below80masl,glaciomarinedebris-flows,sandand<br />

gravel outwash, and clay-silt rhythmites draped winnowed till and<br />

bedrock (Figure G-2). Raised glaciomarine deposits are correlative to<br />

earliestdeglacialsedimentsinODPcores1033and1034(Bornholdetal.<br />

1997). The elevation range of unit 6d delimits the extent of marine<br />

overlap attributed to glacio-isostatic depression and eustatic sea-level<br />

rise. The 80 mmarine transgression limit is probably equivalentto the<br />

post-14ka75mmarinelimitnearVictoria(Mathewsetal.1970,Clague<br />

etal.1982).<br />

Lateglacial-retreatphase(ca.13to12ka)<br />

By 13 ka, inland southeastern Vancouver Island was ice-free down to<br />

approximately400 masl (Alley and Chatwin 1979). In uplands and on<br />

valleysides,glacialdepositscontinuedtobereworkedbymeltwaterand<br />

mass-movement. Proglacial lakes drained as ice downwasted and<br />

outwash was degraded (Figure G-13). Extensional deformation<br />

structuresinglaciolacustrinesedimentsareattributedtochannelincision<br />

during rapid lake drawdown (Huntley et al. in press). Coarse outwash<br />

overlyingtruncateddeltaicandlakesedimentslikelyrepresentdeglacial<br />

flooddepositsrelatedtolakedrainage.<br />

G-6<br />

QUATERNARYHISTORY<br />

FigureG-14. Postglacial phase ( ca. 12 to 10 ka)<br />

Earlypost-glacialphase(ca.12to10ka)<br />

The flux of meltwater and sediment into <strong>Saanich</strong> Inlet decreased<br />

markedlyafter12kaasstagnant,debris-coveredvalleyicedisappeared<br />

(FigureG-14).SoutheastVancouverIslandwasdeglaciatedbefore11ka<br />

(AlleyandChatwin1979),anddeglaciatedslopesbecamevegetatedand<br />

stabilised. Plant macrofossils in early postglacial lake sediments<br />

indicate the presence of lodgepole pine and grass. This vegetation<br />

assemblage indicates relatively cool conditions (Hebda 1995). Raised<br />

wave-cutplatformsandstrandlinesindicatethatglacio-isostaticrebound<br />

continued after deglaciation, and that periodically, rate of rebound and<br />

sea-levelriseweresimilar.Between12and10ka,relativesea-levelwas<br />

closetothemoderndatum(Mathewsetal.1970,Clagueetal.1982),and<br />

theshore-lineof<strong>Saanich</strong>Inletwassimilartopresent(Figure2e).<br />

Municipality of <strong>Central</strong> <strong>Saanich</strong> ResourceAtlas


<strong>SURFICIAL</strong> <strong>GEOLOGY</strong><br />

Figure G-15. EarlyHolocene ( ca. 10 to 8ka)<br />

FigureG-16. Middle Holocene ( ca. 8to 4ka).<br />

EarlyHolocene(ca.10to8ka)<br />

Glacio-isostaticreboundcontinuedduringtheearlyHolocene(Clagueet<br />

al. 1982). During this interval, Pleistocene valley fill was intensively<br />

dissected by degrading postglacial streams as relative sea-level fell.<br />

UnconformitiesinearlyHoloceneandlatePleistocenemarinesediments<br />

and submerged terraces in Juan de Fuca Strait around 50 mbsl likely<br />

representaminimumelevationforamarinestandca.9to8ka(Clagueet<br />

al. 1982).As sea fellbelow presentdatum, the palaeogeography of the<br />

<strong>Saanich</strong>Inletbasin changedsignificantly (Figure G-15). Baysentering<br />

the inlet were reduced in size and the entrance to Satellite Channel<br />

became constricted. The land area of <strong>Saanich</strong> Peninsula increased to<br />

include parts of Cordova Channel and James Island. These changes<br />

probably had an impact on oceanographic conditions within <strong>Saanich</strong><br />

Inlet. Lake elevations were at their minimum stands during the early<br />

Holocene.Vegetationassemblages,dominatedby grass, alder, Douglas<br />

fir and oak, correspond to axerothermic interval observed in southern<br />

British Columbia and the Pacific Northwest (Hebda 1995, Pellattet al.<br />

1998). Charcoal in peat deposits indicates that southern <strong>Saanich</strong><br />

PeninsulawasdisturbedbyfireduringtheearlyHolocene.<br />

MiddleHolocene(ca.8to4ka)<br />

After 8ka, eustatic sea-level rise was dominant (Clague et al. 1982).<br />

EarlyHolocenecoastalslopesweredrownedanderodedbywaveaction<br />

astheseatransgressed.ThelowerreachesofChemainus,Cowichanand<br />

Koksilahvalleyswere aggradedasthemodernCowichandeltaformed.<br />

Lakes surrounding <strong>Saanich</strong> Inlet were slowly infilled with silt-rich<br />

gyttja. Tephra, inferred to be Mazama ash, forms adistinct regional<br />

markerhorizondatedtoaround7.6kaforcoresrecoveredfrom<strong>Saanich</strong><br />

Inlet and lakes in the region (Bornhold et al. 1997, Huntley et al. in<br />

press). After 7.6 ka, Douglas fir, western hemlock, red cedar became<br />

dominant, reflecting the transition to amild and wet climatein the late<br />

Holocene (Hebda 1995, Pellatt et al. 1998). Modern drainage and<br />

sedimentation patterns were established in the study area after 4ka as<br />

relativesea-levelapproacheditspresentelevation(Mathewsetal.1970,<br />

Clagueetal.1982,FigureG-16).<br />

G-7<br />

QUATERNARYHISTORY<br />

Table G-3. Relationship of glacial eventsthroughtime<br />

togenetic materials andfacies units*.<br />

Stratigraphicunit Faciesunit Genesis Age(ka)<br />

Holocene unit 7d Nonglacialmarine,estuarine, ca.11katopresent<br />

SalishSediments lagoonal andbeachdeposits<br />

unit 7c Lacustrinedeposits ca.11katopresent<br />

unit 7b Channel, floodplainand ca.11katopresent<br />

deltaic deposits<br />

unit 7a Nonglacialhillslopecolluvium, ca.11katopresent<br />

talus andother<br />

mass-movement deposits<br />

LateWisconsinan unit 6d Ice-contact submarine debris ca. 14to 11ka<br />

Fraser Glaciation flows,glaciomarinesuspension<br />

Capilano Sediments andraisedbeachdeposits<br />

Retreat phase<br />

unit 6c Subaerial ice-contact and ca. 14to 11ka<br />

proglaciallakedeposits<br />

unit 6b Ice-contact andproglacial ca. 14to 11ka<br />

channel, braidplain, kame<br />

terraceanddeltadeposits<br />

unit 6a Ice-contact andproglacial ca. 15to 11ka<br />

colluvium,talus andother<br />

mass-movement deposits<br />

VashonTill unit 5b Subglacialfluvialdeposits ca. 23to 11ka<br />

Glacialmaximum phase<br />

unit 5a Lodgementtill, locally ca. 23to 12ka<br />

streamlinedandmelt-out till<br />

QuadraSand unit 4c Ice-contact andproximal ca. 29to 15ka<br />

Advance phase hillslopecolluvium, talus and<br />

other mass-movement deposits<br />

unit 4b Ice-proximalglaciofluvialfan- ca. 23to 17ka<br />

apron andbraidplain deposits<br />

unit 4a Ice-distalglaciofluvialfan- ca. 29to 23ka<br />

apronandbraidplaindeposits<br />

Olympia NonglacialInterval unit 3 Nonglacialmarine,estuarine, ca. 65to 23ka<br />

to earlyFraser Glaciation lagoonal andfluvialdeposits<br />

Cowichan Head Formation<br />

DashwoodDrift marine deposits<br />

Sangamonian Interglaciation unit 1 Marine, alluvial, fluvial ~125ka<br />

MuirPointFormation<br />

unit 2<br />

andcolluvial deposits<br />

*Ages of surficial units are shown in radiocarbon yearsbefore<br />

present. These depositsare discussed in the Quaternary<br />

Stratigraphy and Geomorphology section,and withinthe<br />

GroundwaterAquifer section with respectto texturalgroups as<br />

aquifers .<br />

Municipality of <strong>Central</strong> <strong>Saanich</strong> ResourceAtlas


<strong>SURFICIAL</strong> <strong>GEOLOGY</strong><br />

REFERENCES<br />

Alley, N.F. and Chatwin, S.C. 1979. Late Pleistocene history and<br />

geomorphology, southwestern Vancouver Island, British Columbia.<br />

CanadianJournalofEarthSciences,v.16,pp.1645-1657.<br />

Armstrong, J.E. and Clague, J.J. 1977. Two major Wisconsinan<br />

lithostratigraphicunitsinsouthwestBritishColumbia.CanadianJournal<br />

ofEarth Sciences,v.14,pp.1471-1480.<br />

Blais-StevensA.,Clague,J.J.Bobrowsky,P.T.andPatterson,R.T.1997.<br />

LateHolocenesedimentationin<strong>Saanich</strong>Inlet,BritishColumbia,andits<br />

paleoseismic implications. Canadian Journal of Earth Sciences, v.34,<br />

pp.1345-1357.<br />

Blyth,H.E.andRutter,N.W.1993.Quaternarygeologyofsoutheastern<br />

VancouverIslandandGulfIslands(92B/5,6,11,13and14).Ministryof<br />

Energy, Mines and Petroleum Resources, Geological Fieldwork 1992,<br />

Paper1993-1,pp.407-413.<br />

Bornhold,B.D.,FirthJ.V.etal.1997and1998.ProceedingsoftheOcean<br />

DrillingProgram.InitialReports,v.169S,51p.<br />

Clague, J.J. 1976. Quadra Sandand itsrelationto the lateWisconsinan<br />

glaciation of southwest British Columbia. Canadian Journal of Earth<br />

Sciences,v.13,pp.803-815.<br />

Clague, J.J. 1977.QuadraSand:astudyof thelate Pleistocenegeology<br />

and geomorphic history of coastal southwest British Columbia.<br />

GeologicalSurveyPaper77-17,28p.<br />

Clague, J.J.,Armstrong, J.E. and MathewsW.H. 1980.Advance of the<br />

Late Wisconsinan Cordilleran Ice Sheet in Southern British Columbia<br />

since22,000yrB.P.QuaternaryResearch,v.13,pp.322-326.<br />

Clague, J.J., Harper, J.R., Hebda, R.J. and Howes, D.E. 1982. Late<br />

Quaternarysea-levelandcrustalmovements, coastalBritishColumbia.<br />

CanadianJournalofEarthSciences.v.19,pp.597-618.<br />

Fyles, J.G.1963.Surficial geology of Horne Lake and Parksville mapareas,<br />

Vancouver Island, British Columbia. Geological Survey of<br />

Canada,Memoir318,142p.<br />

Halstead,E.C.1966.SurficialgeologyofDuncanandShawniganmapareas,<br />

British Columbia. Geological Survey of Canada, Paper 65-24<br />

(1:63,360scale).<br />

Hebda,R.J.1995.BritishColumbiavegetationandclimatehistorywith<br />

focuson6kaB.P.GéographiephysiqueetQuaternaire,49,pp.55-79.<br />

Halstead, E.C. 1968. The Cowichan Ice tongue, Vancouver Island.<br />

CanadianJournalofEarthSciences,v.5,pp.1409-1415.<br />

Hicock, S.R. andArmstrong J.E. 1983 Four Pleistocene formations in<br />

southwestern British Columbia: their implications for patterns of<br />

sedimentation of possible Sangamonian to early Wisconsinan age.<br />

CanadianJournalofEarthSciences,v.22,pp.339-346.<br />

Hicock, S.R. andArmstrongJ.E. 1985. Vashon Drift:definition for the<br />

formation in the Georgia Depression, southwest British Columbia.<br />

CanadianJournalofEarthSciences,v.22,pp.748-757.<br />

Holland, S.S. 1980. Landforms of British Columbia, aphysiographic<br />

outline. British Columbia Ministry of Energy, Mines and Petroleum<br />

Resources,Bulletin48,138p.<br />

Howes,D.E.andKenk,E.1997.TerrainclassificationsystemforBritish<br />

Columbia(secondedition).MinistryofEnvironment,LandsandParks,<br />

Manual10,90p.<br />

Huntley,D.H.,BobrowskyP.T.andClagueJ.J.OceanDrillingProgram<br />

Leg 169S: Surficial geology, stratigraphy and geomorphology of the<br />

<strong>Saanich</strong> Inlet area, southeastern Vancouver Island, British Columbia<br />

MarineGeology.Inpress.<br />

Jungen, J.R. 1985. Soils of southern Vancouver Island. Ministry of<br />

Environment,TechnicalReport17.<br />

Jungen, J.R., Sanborn, P.and Christie, P.J. 1985. Soils of southeast<br />

Vancouver Island: Duncan-Nanaimo area. Ministry of Environment,<br />

TechnicalReport14.<br />

Massey,N.W., Desjardins, P.J. and Grunsky, E.C. 1994. Geological<br />

compilation Vancouver Island (NTS 92 B,C,E,G,K, L and 102I).<br />

MinistryofEnergy,MinesandPetroleumResources,OpenFile1994-6<br />

(1:250,000-scale).<br />

Mathews,W.H.,Fyles,J.G.andNasmith,H.W.1970.Post-glacialcrustal<br />

movementsinsouthwesternBritishColumbiaandadjacentWashington<br />

State. CanadianJournalofEarthSciences,v.7,pp.690-702.<br />

Muller, J.E. 1980. Geology of Victoria. Geological Survey of Canada.<br />

Map1553A(1:100000scale).<br />

Pellatt, M.G., Mathewes R.W.and Hebda R.J. 1998. High resolution<br />

palynological record from <strong>Saanich</strong> Inlet, British Columbia: postglacial<br />

vegetation and climate history. Geological Association of<br />

Canada/MineralogicalAssociationofCanada,AbstractVolume,Quebec<br />

City,Quebec,A142.<br />

Porter, S.C. and Swanson, T.W. 1998. Radiocarbon age constraints of<br />

advanceandretreatofthePugetLobeoftheCordilleranIceSheetduring<br />

thelastglaciation.QuaternaryResearch,50,pp.205-213.<br />

G-8<br />

Municipality of <strong>Central</strong> <strong>Saanich</strong> ResourceAtlas<br />

REFERENCES

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!