22.03.2013 Views

6 Answers to end-of-chapter questions - Cambridge University Press

6 Answers to end-of-chapter questions - Cambridge University Press

6 Answers to end-of-chapter questions - Cambridge University Press

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

6 <strong>Answers</strong> <strong>to</strong> <strong>end</strong>-<strong>of</strong>-<strong>chapter</strong> <strong>questions</strong><br />

Multiple choice <strong>questions</strong><br />

1 A [1]<br />

2 C [1]<br />

3 A [1]<br />

4 D [1]<br />

5 B [1]<br />

6 C [1]<br />

7 D [1]<br />

8 A [1]<br />

9 A [1]<br />

10 B [1]<br />

Structured <strong>questions</strong><br />

11 a A – Ventricular sys<strong>to</strong>le [1]<br />

B – Ventricular dias<strong>to</strong>le [1]<br />

b i • Ventricular pressure exceeds atrial pressure [1]<br />

• Atrio-ventricular valve/mitral/bicuspid valve closes [1]<br />

ii • Ventricular pressure exceeds pressure in aorta [1]<br />

• Aortic valve opens [1]<br />

iii • Ventricular pressure is less than pressure in aorta [1]<br />

• Aortic valve closes [1]<br />

iv • Atrial pressure exceeds ventricular pressure [1]<br />

• Atrio-ventricular valve/mitral/bicuspid valve opens [1]<br />

c • Both valves – atrio-ventricular and aortic – are closed [1]<br />

• So no blood is entering or leaving – volume remains<br />

constant [1]<br />

Biology Unit 2 for CAPE ® Examinations Original material © <strong>Cambridge</strong> <strong>University</strong> <strong>Press</strong> 2011 1


d • P wave – represents the wave <strong>of</strong> depolarisation that spreads from<br />

the SA node throughout the atria<br />

• The atria contracts/atrial sys<strong>to</strong>le<br />

• Zero voltage period after P wave – time taken for impulse<br />

<strong>to</strong> travel <strong>to</strong> AV node and Bundle <strong>of</strong> His<br />

• Hence delay in contraction between contraction in atria<br />

and ventricles<br />

• So atria empty completely<br />

• The QRS complex represents ventricular depolarization<br />

that spreads through the right and left side <strong>of</strong> the<br />

ventricles in the Purkyne fibres<br />

• Ventricles contract from apex/upwards<br />

• T wave – repolarisation<br />

e • Closure <strong>of</strong> atrio-ventricular valves – 1st heart sound [1]<br />

• Closure <strong>of</strong> semilunar valves – 2nd heart sound [1]<br />

f • Contraction <strong>of</strong> the ventricle<br />

• While the valves are closed<br />

• AVP: some heart cells/monocytes contract by shortening<br />

or by lengthening or by no change in length<br />

• Heart becomes spheroid in shape<br />

12 a I – left atrium<br />

II – aortic valve<br />

III – heart t<strong>end</strong>ons/chordae t<strong>end</strong>ineae<br />

IV – papillary muscle<br />

V – pulmonary artery<br />

VI – tricuspid valve<br />

b<br />

Each point [1]<br />

Max [4]<br />

Each point [1]<br />

Max [2]<br />

5–6 points [3]<br />

3–4 points [2]<br />

1–2 points [1]<br />

Correct flow [1]<br />

Biology Unit 2 for CAPE ® Examinations Original material © <strong>Cambridge</strong> <strong>University</strong> <strong>Press</strong> 2011 2


c i Atria walls are thin because they pump blood a very short<br />

distance <strong>to</strong> the ventricles [1]<br />

ii Left ventricle is the thickest (three times as thick as the right<br />

ventricle) because:<br />

• has <strong>to</strong> generate pressures up <strong>to</strong> 16 kPa <strong>to</strong> pump blood<br />

<strong>to</strong> rest <strong>of</strong> body/systemic circulation/longer distance<br />

• has <strong>to</strong> overcome resistance <strong>of</strong> systemic circulation that<br />

has arch, branches and resistant walls opposing<br />

pulsation and gravity<br />

• blood in systemic circulation reaches the capillaries at<br />

pressures which would allow efficient exchange <strong>to</strong><br />

materials Any point [1]<br />

iii Right ventricle – not as thick as left ventricle but thicker than<br />

atria because:<br />

• Has <strong>to</strong> generate pressure up <strong>to</strong> 4 kpa <strong>to</strong> pump blood <strong>to</strong><br />

the lungs/shorter distance<br />

• Lungs are delicate air filled alveoli which could<br />

rupture at pressures higher than 4 kpa<br />

• Lungs only have one capillary bed compared <strong>to</strong> systemic<br />

circulation with portal and many capillary beds Any point [1]<br />

d • Internal volume <strong>of</strong> both left and right ventricles is the same<br />

• All the deoxygenated blood leaving the heart on the right<br />

side returns <strong>to</strong> the heart in the left side<br />

• Double circulation<br />

• Any correct answer Any point [1]<br />

e • IV contracts at same time as the ventricles and pulls III [1]<br />

• III pulls down the atrio-ventricular valves and prevent them from<br />

bursting up and opening in<strong>to</strong> the atria under pressure during<br />

contraction <strong>of</strong> ventricles [1]<br />

f i, ii, iii [3]<br />

Biology Unit 2 for CAPE ® Examinations Original material © <strong>Cambridge</strong> <strong>University</strong> <strong>Press</strong> 2011 3<br />

[3]


g • Produces impulses<br />

• Which spreads across atrial wall causing the atria <strong>to</strong><br />

contract<br />

• S<strong>end</strong>s impulses <strong>to</strong> AVN then <strong>to</strong> Bundle <strong>of</strong> His<br />

• Through Purkyne fibres in the left and right side <strong>of</strong><br />

ventricles<br />

• Causing contraction <strong>of</strong> ventricles from apex upwards<br />

13 a • First oxygen molecule combines slowly <strong>to</strong> first haem group<br />

• Thus first part <strong>of</strong> curve is not very steep<br />

• Attachment changes shape <strong>of</strong> haemoglobin (Hb)<br />

molecule<br />

• 2nd and 3rd oxygen molecules attach easily because <strong>of</strong><br />

altered shaped <strong>of</strong> Hb<br />

• Hence curve becomes steeper<br />

• 4th oxygen does not attach easily <strong>to</strong> haem group<br />

• Hence curve flattens<br />

• Any correct answer – cooperative binding/rapid unloading<br />

3–4 points [2]<br />

1–2 points [1]<br />

Any 2 parts <strong>of</strong> the curve<br />

well explained [2]<br />

Any 1 well explained [1]<br />

b i 12 kPa [1]<br />

ii 2 kPa [1]<br />

c Red blood cells:<br />

• No nucleus/few organelles/no mi<strong>to</strong>chondria so more Hb<br />

molecules (250 million molecules)<br />

• Numerous (5 million per mm 3 <strong>of</strong> blood)<br />

• Small size – <strong>to</strong> just fit through narrow capillaries (slowed<br />

down for maximum exchange)<br />

• Large surface area for increased oxygen uptake<br />

• Biconcave <strong>to</strong> reduce size by folding while maintaining<br />

large surface area<br />

• Thin wall – short diffusion path<br />

• Close <strong>to</strong> tissues for diffusion/exchange<br />

• Elastic membrane allows for squeezing through<br />

capillaries<br />

• Has carbonic anhydrase (transport <strong>of</strong> carbon dioxide) Any 2 points [2]<br />

Haemoglobin:<br />

• 250 million molecules <strong>of</strong> Hb per red blood cell<br />

• Contains iron <strong>to</strong> which oxygen binds<br />

• Has 4 polypeptides <strong>to</strong> hold 4 haem groups<br />

• Can carry 4 molecules <strong>of</strong> oxygen per Hb<br />

• Outwardly pointing hydrophilic R groups <strong>to</strong> maintain<br />

solubility<br />

• Cooperative binding <strong>of</strong> oxygen: 1st oxygen added with difficulty,<br />

2nd and 3rd easily and 4th with difficulty/helps with loading and<br />

unloading at various tissues Any 2 points [2]<br />

Biology Unit 2 for CAPE ® Examinations Original material © <strong>Cambridge</strong> <strong>University</strong> <strong>Press</strong> 2011 4


d i<br />

Note that the partial pressure <strong>of</strong> oxygen in an actively respiring muscle<br />

never reaches beyond about 4 kPa. [1]<br />

ii Bohr effect [1]<br />

iii • More oxygen released <strong>to</strong> respiring tissues/less affinity for<br />

oxygen<br />

• Enables more respiration at same partial pressures <strong>of</strong> oxygen Any point [1]<br />

e • Carbon dioxide diffuses in<strong>to</strong> red blood cells<br />

• Carbon dioxide reacts with water <strong>to</strong> give carbonic acid<br />

• Enzyme: carbonic anhydrase<br />

• Carbonic acid dissociates <strong>to</strong> produce H + + HCO3 - ions<br />

• Reduces pH <strong>of</strong> cell<br />

• Hb has higher affinity for H + ions<br />

• Unloads oxygen and picks up H +<br />

• To form HHb/haemoglobinic acid<br />

• Increases pH <strong>of</strong> cell<br />

7–8 points [4]<br />

5–6 points [3]<br />

3–4 points [2]<br />

1–2 points [1]<br />

Biology Unit 2 for CAPE ® Examinations Original material © <strong>Cambridge</strong> <strong>University</strong> <strong>Press</strong> 2011 5


Essay <strong>questions</strong><br />

14 a • Blood flowing under low pressure<br />

• Made up <strong>of</strong> three layers – tunica intima, tunica media,<br />

tunica externa<br />

• Tunica externa – made <strong>of</strong> collagen and some<br />

elastin/largest layer in large veins<br />

• Tunica media – relatively thin, containing smooth muscle<br />

and some elastic fibres<br />

• Tunica intima/<strong>end</strong>othelium – smooth and squamous<br />

• Large lumen<br />

• Semilunar valves<br />

• Thin wall – allows for contraction <strong>of</strong> lumen by skeletal<br />

muscles/low pressure in blood<br />

• Smooth <strong>end</strong>othelium – reduce friction/easier flow <strong>of</strong><br />

blood<br />

• Wide dist<strong>end</strong>ed lumen – accommodates large quantities<br />

<strong>of</strong> blood/acts as blood reservoir<br />

• Valves – prevent back flow <strong>of</strong> blood<br />

• Any correct answer<br />

b • Blood flowing under high pressure<br />

• Tunica adventitia – made up <strong>of</strong> mainly <strong>of</strong> collagen fibres<br />

and some elastic fibres<br />

• Tunica media – thickest <strong>of</strong> three layers/made up <strong>of</strong> elastin<br />

and smooth muscle and some fine collagen fibres<br />

• Tunica intima – has smooth folded <strong>end</strong>othelium<br />

• Collagen fibres – provide main strength<br />

• S<strong>to</strong>p arteries from bursting when pressure is high<br />

• Elastin/elastic fibres – most located close <strong>to</strong> heart<br />

• Elastin – allows expansion <strong>of</strong> lumen without causing<br />

damage<br />

• Keeps pressure high by elastic recoil/s<strong>to</strong>res potential<br />

energy in elastic tissue for subsequent recoil<br />

• Smooth out flow <strong>of</strong> blood/even out surges <strong>of</strong><br />

pressure/maintain flow <strong>of</strong> blood/smooth out large<br />

fluctuations in pressure<br />

• Smooth muscle<br />

• Maintain pressure<br />

• Can contract <strong>to</strong> reduce or increase blood<br />

flow/vasoconstriction/vasodilation<br />

• Narrow/well defined lumen – <strong>to</strong> maintain pressure<br />

• Smooth <strong>end</strong>othelium<br />

• Reduces friction<br />

• Folded – <strong>to</strong> allow for expansion as blood passes<br />

3 structures well described<br />

[2]<br />

3 adaptations [3]<br />

2 structures well described<br />

[1]<br />

3 structures well<br />

described [2]<br />

3 adaptations [3]<br />

2 structures well<br />

described [1]<br />

1 adaptation [1]<br />

Biology Unit 2 for CAPE ® Examinations Original material © <strong>Cambridge</strong> <strong>University</strong> <strong>Press</strong> 2011 6


c • Endothelium is one cell thick – reduces diffusion distance<br />

• Cell is made <strong>of</strong> flattened squamous epithelium – short<br />

diffusion distance<br />

• Smooth <strong>end</strong>othelium – reduces friction<br />

• Pores in the wall between the squamous cells – allows for<br />

faster movement <strong>of</strong> substances and large molecules<br />

• Narrow diameter <strong>of</strong> lumen (8.0 μm) – slows flow <strong>of</strong><br />

blood <strong>to</strong> allow for maximum exchange/short diffusion<br />

distance<br />

• Narrow diameter – allows for red blood cells <strong>to</strong> travel<br />

sideways and singly – slows flow <strong>of</strong> blood <strong>to</strong> allow for<br />

maximum exchange<br />

• Close <strong>to</strong> body cells – allows for faster diffusion<br />

• Large cross-sectional areas – large surface area for<br />

diffusion<br />

15 a i • Pacemaker<br />

• Myogenic<br />

• Produces action potentials that initiate the heart beat<br />

• S<strong>end</strong>s out impulses across atria and <strong>to</strong> AVN<br />

• Causes <strong>of</strong> contraction <strong>of</strong> atria <strong>to</strong>gether and before the<br />

ventricles<br />

ii • Delays impulses <strong>to</strong> ventricles<br />

• Allows ventricles <strong>to</strong> fill/atria <strong>to</strong> fill<br />

• Produces impulses that spreads <strong>to</strong> Purkyne fibres which cause<br />

contraction <strong>of</strong> ventricles Any 2 points [2]<br />

iii • Carries impulses from AVN <strong>to</strong> left and right side <strong>of</strong> the<br />

ventricles [1]<br />

• Causes ventricles <strong>to</strong> contact from base/apex upwards [1]<br />

iv • Papillary muscle contracts at same time as the ventricles and<br />

pulls heart t<strong>end</strong>ons [1]<br />

• Heart t<strong>end</strong>ons pulls down the atrio-ventricular valves and<br />

prevent them from bursting up and opening in<strong>to</strong> the atria<br />

under pressure during contraction <strong>of</strong> ventricles [1]<br />

b i • Blood flows in<strong>to</strong> atria from veins<br />

• From higher pressure in veins <strong>to</strong> lower pressure in<br />

atria<br />

• Since pressure is higher in atria than ventricles, blood<br />

flows in<strong>to</strong> ventricles<br />

• Back flow in<strong>to</strong> veins s<strong>to</strong>pped by valves at base <strong>of</strong> veins<br />

Each point [1]<br />

Max [5]<br />

3–4 points [2]<br />

1–2 points [1]<br />

3–4 points [2]<br />

1–2 points [1]<br />

Biology Unit 2 for CAPE ® Examinations Original material © <strong>Cambridge</strong> <strong>University</strong> <strong>Press</strong> 2011 7


ii • Muscles in ventricles contract in different ways/fibres contract<br />

ios<strong>to</strong>nically or isometrically, pressure increases in ventricles<br />

• Atrio-ventricular valves close <strong>to</strong> prevent back flow <strong>of</strong><br />

blood<br />

• Ventricular pressure exceeds aortic pressure or<br />

pressure in pulmonary artery, semilunar valves open<br />

• Blood flows in<strong>to</strong> the arteries<br />

• <strong>Press</strong>ure decreases in ventricles<br />

• When pressure in ventricles decreases/becomes less<br />

than in arteries, semilunar valves close<br />

• pressure in ventricles becomes less than atria, atrioventricular<br />

valves open Any 2 points well explained [2]<br />

c • Nervous system: stimulation by sympathetic nervous<br />

system/accelera<strong>to</strong>r nerve would speed up heart beat and<br />

force with which cardiac muscle contracts/inhibition by<br />

parasympathetic/vagus nerve slows down heart beat<br />

• Hormones: adrenaline and noradrenaline act directly on<br />

SAN thereby increasing rate and force <strong>of</strong> muscle<br />

contractions and heart rate<br />

• Changes in the volume <strong>of</strong> blood entering the heart<br />

through the veins – if larger volume <strong>of</strong> blood enters the<br />

heart walls and stretches the walls <strong>of</strong> the atria more than<br />

usual, heart rate and force <strong>of</strong> contraction increase<br />

• Any correct answer<br />

16 a i • Pulse rate: number <strong>of</strong> times the heart beats per<br />

minute [1]<br />

• Blood pressure: how hard the heart is working <strong>to</strong><br />

pump blood around the body/force developed by<br />

blood pushing against the walls <strong>of</strong> blood vessels [1]<br />

ii • When the blood is pumped out <strong>of</strong> the heart in<strong>to</strong> the<br />

arteries, the surge <strong>of</strong> blood dist<strong>end</strong>s the arteries<br />

because <strong>of</strong> the elastic tissue<br />

• Stretch and subsequent recoil <strong>of</strong> elastic tissue in aorta<br />

and arteries travels as a wave or pulse<br />

• Hence pulse rate is identical <strong>to</strong> heart rate<br />

b • Heart rate<br />

• Stroke volume<br />

• Age – arteries lose elasticity hence more resistance <strong>to</strong><br />

flow<br />

• Exercise – can cause an increase in heart rate and stroke<br />

volume<br />

• Strength <strong>of</strong> the heart beat<br />

• Resistance <strong>to</strong> flow <strong>of</strong> blood due <strong>to</strong> narrowing <strong>of</strong> blood<br />

vessels/plaque<br />

• Smoking – effect <strong>of</strong> nicotine on arterioles and adrenal<br />

glands/narrowing <strong>of</strong> arterioles and release <strong>of</strong> adrenaline<br />

• Excitement – increase in adrenaline production which<br />

stimulates SAN<br />

• Any correct answer<br />

Each point [1]<br />

Max [3]<br />

Each point [1]<br />

Max [3]<br />

Any point well<br />

explained [1]<br />

Max [5]<br />

Biology Unit 2 for CAPE ® Examinations Original material © <strong>Cambridge</strong> <strong>University</strong> <strong>Press</strong> 2011 8


c • Increased muscle contraction during exercise<br />

• Increased respiration<br />

• Increased carbon dioxide production<br />

• Causes pH <strong>to</strong> decrease<br />

• Detected by chemorecep<strong>to</strong>rs in the carotid and aortic<br />

bodies<br />

• Impulses sent <strong>to</strong> the cardiac accelera<strong>to</strong>r centre (CAC) in<br />

the medulla<br />

• Impulses sent along the accelera<strong>to</strong>r nerve <strong>of</strong> the<br />

sympathetic nervous system<br />

• Noradrenaline released<br />

• Stimulates SAN<br />

• Causes heart rate <strong>to</strong> increase<br />

9–10 points [5]<br />

7–8 points [4]<br />

5–6 points [3]<br />

3–4 points [2]<br />

1–2 points [1]<br />

Biology Unit 2 for CAPE ® Examinations Original material © <strong>Cambridge</strong> <strong>University</strong> <strong>Press</strong> 2011 9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!