21.03.2013 Views

Vortex matter in type II superconductors; insights from ... - iitk.ac.in

Vortex matter in type II superconductors; insights from ... - iitk.ac.in

Vortex matter in type II superconductors; insights from ... - iitk.ac.in

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Vortex</strong> <strong>matter</strong> <strong>in</strong> <strong>type</strong> <strong>II</strong> <strong>superconductors</strong>;<br />

<strong>in</strong>sights <strong>from</strong> local magnetic imag<strong>in</strong>g<br />

A.N. Grigorenko † & S.J. Bend<strong>in</strong>g<br />

Department of Physics, University of Bath, UK<br />

†School of Physics & Astronomy, University of Manchester, UK<br />

A.E. Koshelev<br />

Argonne National Laboratory, Argonne, Ill<strong>in</strong>ois 60439, USA<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

John R. Clem<br />

Iowa State University, Ames, IA 50011-3160, USA<br />

T. Tamegai<br />

Department of Applied Physics, Univ. of Tokyo, Japan<br />

<strong>Vortex</strong><br />

Physics<br />

Experiments<br />

<strong>Vortex</strong><br />

Matter<br />

Theory<br />

BSCCO<br />

S<strong>in</strong>gle<br />

Crystals


Introduction<br />

Type <strong>II</strong> <strong>superconductors</strong> & vortex <strong>matter</strong><br />

The vortex <strong>matter</strong> phase diagram <strong>in</strong> Bi 2 Sr 2 CaCu 2 O 8+δ<br />

‘Cross<strong>in</strong>g’ vortex lattices <strong>in</strong> layered <strong>superconductors</strong><br />

Scann<strong>in</strong>g Hall probe magnetic imag<strong>in</strong>g<br />

Experimental Results; <strong>Vortex</strong> <strong>matter</strong> <strong>in</strong> Bi 2 Sr 2 CaCu 2 O 8+δ<br />

First order melt<strong>in</strong>g of the vortex lattice, H = H z<br />

– The <strong>in</strong>fluence of quenched disorder<br />

‘Decoration’ of Josephson vortices by pancake vortices<br />

<strong>Vortex</strong> lattice melt<strong>in</strong>g <strong>in</strong> the presence of an <strong>in</strong>-plane magnetic field<br />

Indirect p<strong>in</strong>n<strong>in</strong>g and vortex st<strong>ac</strong>k fragmentation<br />

Conclusions and Prospects<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

OUTLINE


Introduction to Type <strong>II</strong> Superconductors<br />

In 1954 Abrikosov solved the G<strong>in</strong>zburg-Landau equations <strong>in</strong> an applied magnetic<br />

λ 1<br />

field for κ = > . He found his famous vortex solution whereby ψ(x,y) conta<strong>in</strong>s a<br />

ξ 2<br />

periodic lattice of zeroes.<br />

Abrikosov – 2003<br />

Physics Nobel Prize<br />

Meissner<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

Φ ο<br />

Mixed phase<br />

B<br />

E<strong>ac</strong>h ‘normal’ pole is associated with a<br />

circulat<strong>in</strong>g supercurrent that generates<br />

a s<strong>in</strong>gle quantum of magnetic flux, φ 0.<br />

Leads to a new mixed Abrikosov<br />

vortex phase between the Meissner<br />

and normal states.


Bi 2 Sr 2 CaCu 2 O 8+δ<br />

Introduction to <strong>Vortex</strong> Matter<br />

U(r i j)<br />

i j<br />

Vortices are mutually repulsive - leads to<br />

formation of an ordered triangular lattice.<br />

VORTEX MATTER: Elastic moduli of lattice are small and the mixed state represents a form of<br />

soft l<strong>in</strong>e-like <strong>matter</strong> that exhibits phases and phase transitions (e.g., melt<strong>in</strong>g) <strong>in</strong> which thermal<br />

fluctuations and disorder play key roles.<br />

- can tune vortex density and <strong>in</strong>ter<strong>ac</strong>tion strengths by many orders of magnitude by vary<strong>in</strong>g H z<br />

A model system for <strong>in</strong>vestigat<strong>in</strong>g structural phase transitions.<br />

Discovery of high T c cuprates led to renewed <strong>in</strong>terest <strong>in</strong> vortex <strong>matter</strong>:-<br />

– high operation temperatures lead to much higher thermal energies (kT)<br />

1<br />

– high crystall<strong>in</strong>e anisotropy moves phase transition l<strong>in</strong>es further <strong>from</strong> H B c2 m ~ 2<br />

γ<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

r i j<br />

2<br />

φ ⎛ r<br />

0<br />

ij ⎞<br />

U( rij<br />

) ~ exp ⎜<br />

⎜−<br />

⎟<br />

2<br />

2πµ<br />

0λ<br />

⎝ λ ⎠<br />

Vortices readily <strong>in</strong>ter<strong>ac</strong>t with quenched<br />

disorder, becom<strong>in</strong>g p<strong>in</strong>ned on e.g.,<br />

defects and impurities <strong>in</strong> the sample.<br />

γ = anisotropy parameter


Pancake Vortices <strong>in</strong> Bi 2Sr 2CaCu 2O 8+δ - H=H z<br />

Bi Bi2Sr 2Sr2CaCu 2CaCu2O 2O8+δ 8+δ<br />

The layered structure and very strong crystall<strong>in</strong>e anisotropy <strong>in</strong> the<br />

cuprate superconductor Bi 2Sr 2CaCu 2O 8+δ (BSCCO) gives rise to<br />

pancake vortices with the applied field along the high symmetry c-axis.<br />

- supercurrents flow predom<strong>in</strong>antly <strong>in</strong> the CuO 2 layers which are only<br />

weakly coupled along the c-axis direction.<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

(a)<br />

CuO 2 plane<br />

c^<br />

H<br />

^<br />

b<br />

a^<br />

pancake<br />

vortex


Pancake <strong>Vortex</strong> Phase Diagram – Bi 2Sr 2CaCu 2O 8+δ<br />

H (Oe)<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

Highly<br />

disordered<br />

glass<br />

Bragg glass<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

Liquid / Gas<br />

Thermally driven<br />

H c2<br />

0 20 40<br />

T (K)<br />

60 80 100<br />

Meissner state, H c1<br />

Thermally driven<br />

Scann<strong>in</strong>g Tunnell<strong>in</strong>g Microscopy<br />

Disorder driven<br />

<strong>Vortex</strong><br />

crystal (?)<br />

Scann<strong>in</strong>g Hall Probe Microscopy<br />

Re-entrant liquid<br />

Adapted <strong>from</strong> a phase diagram due to Eli Zeldov.


Phase Transition L<strong>in</strong>es – Bi 2Sr 2CaCu 2O 8+δ<br />

Khaykovich et al., Phys.<br />

Rev. Lett 76, 2555<br />

(1996)<br />

Second<br />

magnetisation<br />

peak<br />

E couple ~ E p<strong>in</strong><br />

Bragg glass<br />

Po<strong>in</strong>t-like disorder<br />

too weak to create<br />

dislocations but<br />

destroys true long<br />

range order.<br />

Giamarchi et al.,<br />

PRB 52, 1242 (1995)<br />

B (G)<br />

10 5<br />

10 5<br />

10 5<br />

10 4<br />

10 4<br />

10 4<br />

10 3<br />

10 3<br />

10 3<br />

10 2<br />

10 2<br />

10 2<br />

10 1<br />

10 1<br />

10 1<br />

Highly<br />

disordered<br />

glass<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

Disorder Disorder driven driven<br />

Bragg glass<br />

Dep<strong>in</strong>n<strong>in</strong>g transition -<br />

Glass transition l<strong>in</strong>e?<br />

Thermally Thermally driven driven<br />

E p<strong>in</strong> ~ E th<br />

Liquid / Gas<br />

Thermally Thermally driven driven<br />

<strong>Vortex</strong><br />

crystal (?)<br />

H c2<br />

0 20 40 60 80 100<br />

Meissner state, H c1<br />

T (K) Re-entrant liquid<br />

Energy scales:<br />

Ecouple – J & EM coupl<strong>in</strong>g<br />

Eel – Elastic energy<br />

Ep<strong>in</strong> – P<strong>in</strong>n<strong>in</strong>g potential<br />

Eth – Thermal energy<br />

Zeldov et al.,Nature<br />

375, 373 (1995)<br />

First order<br />

melt<strong>in</strong>g<br />

E el ~E th


B<br />

Sample<br />

Scan<br />

Voltages<br />

Scanner<br />

Tube<br />

Tilt<br />

Stage<br />

Electronics<br />

STM Tip<br />

Bias<br />

1-2 o<br />

Hall<br />

Probe<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

Scann<strong>in</strong>g Hall Probe Imag<strong>in</strong>g<br />

Z(x,y)<br />

B z(x,y)<br />

PC<br />

Hall<br />

Voltage<br />

I Hall<br />

V + Hall<br />

I -<br />

V - Hall<br />

I +<br />

Hall<br />

sensor<br />

2µm<br />

STM<br />

tip<br />

(I tip )<br />

+<br />

+<br />

+<br />

+<br />

E c<br />

10nm GaAs<br />

80nm n-AlGaAs<br />

electrons<br />

1000nm GaAs<br />

~100nm Hall probe wet etched <strong>in</strong><br />

a GaAs/AlGaAs heterostructure.<br />

-20 -10 0 10 20<br />

H (Oe)<br />

Sensor can be moved to any location and<br />

a ‘local’ magnetisation curve generated.<br />

M l (G)<br />

2<br />

0<br />

-2


First Order <strong>Vortex</strong> Lattice Melt<strong>in</strong>g - H = H z<br />

Zeldov et al. (Nature 375, 373 (1995)) first unambiguously identified vortex lattice<br />

melt<strong>in</strong>g <strong>in</strong> Bi 2Sr 2CaCu 2O 8+δ s<strong>in</strong>gle crystals us<strong>in</strong>g local Hall probe measurements.<br />

- vortex density (≡ B) <strong>in</strong>creases slightly when system melts (like water).<br />

M z (a.u.)<br />

10<br />

5<br />

0<br />

-5<br />

T= 85K<br />

-10<br />

-15 -10 -5 0<br />

Hz (Oe)<br />

5 10 15<br />

There is no proper theory of vortex melt<strong>in</strong>g and<br />

nearly all theoretical works are based on the<br />

L<strong>in</strong>demann criterion, i.e., melt<strong>in</strong>g occurs when<br />

1/2 = C L ×a,<br />

where C L ~ 0.2 is the L<strong>in</strong>demann constant.<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

H m<br />

∆M~0.5G<br />

H m H m<br />

B m (G)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Bragg<br />

Glass<br />

Cut along a<br />

l<strong>in</strong>e at T=81K<br />

0<br />

76 78 80 82 84 86 88<br />

T (K)<br />

Liquid<br />

1/2<br />

a


First Order <strong>Vortex</strong> Lattice Melt<strong>in</strong>g - H = H z<br />

Image 1 Image 2 Image 3<br />

The vortex system must be left to<br />

equilibrate for several tens of m<strong>in</strong>utes.<br />

- v<strong>ac</strong>ancies and shear waves<br />

frequently observed <strong>in</strong> rapid imag<strong>in</strong>g.<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

Oral et al., Phys. Rev. Lett. 80, 3610 (1998)<br />

H z = 10Oe<br />

T = 81K


First Order <strong>Vortex</strong> Lattice Melt<strong>in</strong>g - H = H z<br />

10 Oe 12 Oe 14 Oe 16 Oe 18 Oe 20 Oe 22 Oe<br />

L<strong>in</strong>escans are generated <strong>ac</strong>ross cha<strong>in</strong>s of<br />

vortices at e<strong>ac</strong>h magnetic field and fitted to<br />

a pancake model due to John Clem.<br />

Allows extr<strong>ac</strong>tion of vortex fluctuation<br />

amplitude quantified by the parameter σ.<br />

B ( r, h)<br />

=<br />

z<br />

0<br />

2 2<br />

// a<br />

σ = standard deviation of lateral fluctuations.<br />

J. R. Clem, Physica C 235-240, 2607 (1994) & (unpublished).<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

2<br />

2<br />

j<br />

σ G<br />

Q j z −<br />

<br />

− ∆ i 2<br />

− G j h iG j . r<br />

∞ 2sφ<br />

e e e e<br />

3λ<br />

Q = G + 1 λ<br />

2 2<br />

j j //<br />

∑∑<br />

( Q + G )<br />

i= 0 j j j<br />

G j = reciprocal vortex lattice vector.<br />

∆∆∆∆z i = i.s - summed over consecutive CuO 2 planes<br />

h = height of sensor above surf<strong>ac</strong>e<br />

∆B (G)<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

H z = 14Oe<br />

T=81K<br />

H m<br />

23 Oe<br />

-0.4<br />

-1 0 1 2<br />

x (µm)<br />

3 4 5<br />

c.f., Oral et al., Phys. Rev. Lett. 80, 3610 (1998)


∆B<br />

First Order <strong>Vortex</strong> Lattice Melt<strong>in</strong>g H = H z<br />

1/2 /a grows aga<strong>in</strong><br />

at low fields<br />

– possible signature<br />

of re-entrant melt<strong>in</strong>g?<br />

a<br />

∆∆∆∆B (G)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

13.355<br />

0<br />

T=81K<br />

Estimated fluctuation<br />

amplitude exhibits abrupt<br />

jump at H m.<br />

1/2 /a(H m) = C L ~ 0.26.<br />

C L ~ 0.26<br />

H m<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0.0<br />

0 5 10 15<br />

Heff (Oe)<br />

20 25<br />

A s<strong>in</strong>gle sharp<br />

transition is observed<br />

- probable that vortex<br />

l<strong>in</strong>es simultaneously<br />

melt and decouple.<br />

1/2 /a<br />

c.f., Oral et al., Phys. Rev. Lett. 80, 3610 (1998)<br />

1/2<br />

a


Influence of Disorder on First Order Melt<strong>in</strong>g<br />

Local magnetisation tr<strong>ac</strong>es at 3 different<br />

locations on a BSCCO crystal at 82K <strong>in</strong> the<br />

locations <strong>in</strong>dicated on the image (H z =38Oe).<br />

Oral et al., Phys. Rev. B 56, 14295 (1997)<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

Po<strong>in</strong>t disorder and anisotropy are known to shift H m.<br />

Local variations <strong>in</strong> these parameters, quenched<br />

dur<strong>in</strong>g crystal growth, lead to roughen<strong>in</strong>g of the<br />

H m (x,y) landscape.<br />

H z =-12.8Oe H z =-11.2Oe<br />

=<br />

–<br />

Difference image<br />

T=85K<br />

Liquid<br />

SHPM<br />

Solid<br />

MOI<br />

MO difference image; H a =83Oe,<br />

dH a =0.5Oe, T=70K.<br />

(0.26mm x 0.34mm)<br />

Zeldov et al., Nature 406, 282 (2000)<br />

Pl<strong>ac</strong><strong>in</strong>g upper bounds on the superheat<strong>in</strong>g field<br />

yields estimate of S/L surf<strong>ac</strong>e tension which is<br />

more than 100x lower than theoretical estimates.<br />

Melt<strong>in</strong>g completely dom<strong>in</strong>ated by disorder!


Anisotropic <strong>Vortex</strong> Structures <strong>in</strong> Bi 2Sr 2CaCu 2O 8+δ – Arbitrary H<br />

Bi Bi2Sr 2Sr2CaCu 2CaCu2O 2O 8+δ<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

(a) (b)<br />

CuO 2 plane<br />

c^<br />

H<br />

^<br />

b<br />

a^<br />

pancake<br />

vortex<br />

Very strong crystall<strong>in</strong>e anisotropy <strong>in</strong> the cuprate<br />

superconductor Bi 2Sr 2CaCu 2O 8+δ (BSCCO) is also<br />

reflected <strong>in</strong> the vortex (and vortex lattice)<br />

structure as a function of direction of applied field.<br />

H<br />

Josephson<br />

vortex<br />

c^<br />

^<br />

b<br />

^a<br />

rhombic unit cell<br />

Realistic side view of<br />

Josephson vortex lattice.


Tilted <strong>Vortex</strong> Instability <strong>in</strong> Bi 2Sr 2CaCu 2O 8+δ S<strong>in</strong>gle Crystals<br />

Josephson<br />

vortex<br />

segment<br />

pancake<br />

vortex<br />

Tilted <strong>Vortex</strong><br />

H<br />

d = 0.866 γ. Φo<br />

/B//<br />

d = Φo<br />

/ 0.866.Bz<br />

JVs <strong>from</strong> side<br />

A homogeneous tilt of the PV st<strong>ac</strong>ks costs<br />

magnetic energy and for a wide range of applied<br />

field angles the ground state consists of coexist<strong>in</strong>g,<br />

perpendicular JV and PV ‘cross<strong>in</strong>g lattices’.<br />

L.N.Bulaevskii et al., PRB 46, 366 (1992)<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

PVs <strong>from</strong><br />

top<br />

H<br />

Cross<strong>in</strong>g Lattices<br />

Inter<strong>ac</strong>tions between JV and PV Lattices<br />

CuO 2<br />

planes<br />

JV<br />

j n<br />

PV<br />

PVs ly<strong>in</strong>g on st<strong>ac</strong>ks of JVs become<br />

displ<strong>ac</strong>ed (u n) due to <strong>in</strong>ter<strong>ac</strong>tions<br />

with the JV supercurrents.<br />

2<br />

E = AC . u − B. j u<br />

n 44 n n n<br />

Although this costs the st<strong>ac</strong>k tilt<br />

energy it results <strong>in</strong> a net reduction<br />

of energy, and leads to an attr<strong>ac</strong>tive<br />

<strong>in</strong>ter<strong>ac</strong>tion between JVs and PVs.<br />

j -n<br />

A.E.Koshelev, PRL 83, 187 (1999).


‘Decoration’ of Josephson Vortices by Pancake Vortices<br />

magnetic<br />

particles<br />

Bitter decoration<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

‘Decoration’ with pancake vortices<br />

pancake<br />

vortices<br />

Only pancake vortices at the surf<strong>ac</strong>e<br />

are visible <strong>in</strong> our experiments.


‘Decoration’ of Josephson Vortices by Pancake Vortices<br />

12.5µm<br />

θ=0 o θ=66 o<br />

H //<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

also seen <strong>in</strong> Bitter decoration †<br />

H z=12Oe, H //=0Oe T=81K H z=14Oe, H //=32Oe, T=81K H z=10Oe, H //=32Oe, T=77K<br />

25µm<br />

H //<br />

θ=73 o<br />

θ=86 o θ=89 o θ=89 o<br />

H // H // H //<br />

H z=2Oe, H //=27Oe,T=81K H z=0.5Oe, H //=38Oe, T=81K H z89 o<br />

1D cha<strong>in</strong>s of PV st<strong>ac</strong>ks<br />

(Grayscale spans ~ 4G)<br />

† C.A.Bolle et al., PRL 66, 112 (1991)<br />

I.V.Grigorieva et al., PRB 51, 3765 (1995).<br />

c<br />

θ<br />

H //<br />

H<br />

H z<br />

a,b<br />

Segments of fragmented<br />

PV st<strong>ac</strong>ks? (Sublimation?<br />

Re-entrant tilted state?)<br />

(Grayscale spans ~ 0.4G)<br />

H


Schematic H z – H x <strong>Vortex</strong> Matter Phase Diagram<br />

Proposed experimental phase<br />

diagram for the different<br />

observed states of vortex <strong>matter</strong><br />

<strong>in</strong> the H<br />

- H // doma<strong>in</strong> for the<br />

c<br />

temperature range where this<br />

study was performed (77-88K).<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

10<br />

1<br />

0.1<br />

0.01<br />

Log(H (Oe))<br />

c<br />

H c1<br />

<strong>II</strong>. Tilted<br />

Lattice<br />

I. Meissner<br />

state<br />

V<strong>II</strong>. 2D <strong>Vortex</strong><br />

Liquid<br />

<strong>II</strong>I. Cross<strong>in</strong>g<br />

Lattices<br />

IV. Composite<br />

Lattice<br />

VI. VI. 'Sublimed' Re-entrant 1D<br />

Tilted Cha<strong>in</strong> Lattice? State<br />

0.01 0.1 1 10 100 1000<br />

V. 1D Cha<strong>in</strong>s<br />

H c2<br />

V<strong>II</strong>. 2D <strong>Vortex</strong><br />

Liquid<br />

Log(H (Oe))<br />

//


Direct Measurement of Pancake <strong>Vortex</strong> Displ<strong>ac</strong>ements<br />

∆B (G)<br />

(a) H // =11Oe (b) H // =16.5Oe<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

H //=16.5Oe<br />

H //=11Oe<br />

H z =1.8Oe, T=83K<br />

0.0<br />

2 4 6 8 10 12<br />

x (µm)<br />

A.N.Grigorenko et al., Phys. Rev. Lett. 89, 217003 (2002)<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

Between (a) H // =11Oe and (b) H // =16.5Oe a JV<br />

st<strong>ac</strong>k has been manipulated until it lies along<br />

the <strong>in</strong>dicated p<strong>in</strong>ned row of PV st<strong>ac</strong>ks.<br />

Broaden<strong>in</strong>g of the PV st<strong>ac</strong>ks along the row <strong>in</strong><br />

the presence of the JV st<strong>ac</strong>k is clearly resolved <strong>in</strong><br />

the l<strong>in</strong>escans.<br />

Incorporat<strong>in</strong>g the calculated pancake vortex<br />

displ<strong>ac</strong>ements <strong>in</strong>to a model for PV fields due to<br />

Clem we obta<strong>in</strong> excellent agreement.<br />

∞<br />

2 2 −2<br />

sΦ<br />

exp( − G<br />

0<br />

i + q y + λ .n.s)<br />

B z(x,h) = 2 ∑∑ ×<br />

2πλ a ∫ 2 2 −2<br />

2 2<br />

n G G + q + λ + G + q<br />

ch i −∞ i y i y<br />

where u<br />

× exp( − G + q .h).cos(G .(x − u )).dq<br />

n<br />

2 2<br />

i y i n y<br />

2<br />

2Cnλ<br />

≈<br />

(n − 1 2) γsln λ r<br />

( )<br />

λ=450nm, r w =270nm, a ch =2.35µm, γ=640 and h=650nm<br />

J.R.Clem, Physica C 235-240, 2607 (1994)<br />

A.E.Koshelev, PRL 83, 187 (1999).<br />

w


Comparison of Cha<strong>in</strong> Sp<strong>ac</strong><strong>in</strong>gs with Theoretical Predictions<br />

∆B (G)<br />

H z =0.7Oe, H // =49.5Oe, T=81K<br />

4<br />

3<br />

2<br />

1<br />

l<strong>in</strong>e (a)<br />

H //<br />

l<strong>in</strong>e (b)<br />

0<br />

0 5 10 15 20 25 30<br />

With<strong>in</strong> anisotropic London theory<br />

the <strong>in</strong>ter-cha<strong>in</strong> sp<strong>ac</strong><strong>in</strong>g is given by:-<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

c y<br />

c y (H // ) = 3 γ. Φo<br />

/ 2.H//<br />

c y (µm)<br />

y-axis<br />

offset?<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

T=77K<br />

T=81K<br />

c y (µm)=-1.3 + 107 * H // (Oe) -0.5<br />

T=83K<br />

T=85K<br />

High field limit<br />

Layer corrections<br />

Cy (µm)<br />

25<br />

20<br />

15<br />

10<br />

-2<br />

0.00 0.05 0.10 0.15 0.20 0.25<br />

5<br />

(H //) -1/2 (Oe -1/2 )<br />

H //=38Oe<br />

0<br />

76 78 80 82 84 86<br />

T (K)<br />

γ= 640<br />

A.N.Grigorenko et al., Phys. Rev. Lett. 89, 217003 (2002)


Deviations <strong>from</strong> Anisotropic London Theory<br />

At <strong>in</strong>termediate fields first<br />

order corrections to the<br />

vortex <strong>in</strong>ter<strong>ac</strong>tions due to the<br />

layered structure yield<br />

⎛ 2<br />

9. 3. γ . s . H ⎞<br />

//<br />

cy ≈ cy<br />

0.<br />

⎜1− ⎜ ⎟<br />

Φ ⎟<br />

⎝ 32. 0 ⎠<br />

A.E.Koshelev (private communication)<br />

Decoration of the Josephson<br />

vortex st<strong>ac</strong>ks does seem to<br />

weakly perturb them!<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

c y (µm)<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

T=77K<br />

T=81K<br />

c y (µm)=-1.3 + 107 * H // (Oe) -0.5<br />

T=83K<br />

T=85K<br />

High field limit<br />

Layer corrections<br />

Cy (µm)<br />

25<br />

20<br />

15<br />

10<br />

-2<br />

0.00 0.05 0.10 0.15 0.20 0.25<br />

5<br />

(H //) -1/2 (Oe -1/2 )<br />

H //=38Oe<br />

0<br />

76 78 80 82 84 86<br />

T (K)<br />

A.N.Grigorenko et al., Phys. Rev. Lett. 89, 217003 (2002)


<strong>Vortex</strong> Melt<strong>in</strong>g <strong>in</strong> the Presence of an <strong>in</strong>-plane Magnetic Field<br />

M local (G)<br />

The melt<strong>in</strong>g field is a very strong function of applied field angle.<br />

Koshelev has shown that for relatively low <strong>in</strong>-plane field components the cross<strong>in</strong>g<br />

lattice <strong>in</strong>ter<strong>ac</strong>tion leads to a l<strong>in</strong>ear suppression of H z at melt<strong>in</strong>g as a function of H //.<br />

85K<br />

0.5 B // = 0<br />

0.0<br />

-0.5<br />

-1.0<br />

B // = 28Oe<br />

6 7 8 9 10 11 12 13 14<br />

Hz (Oe)<br />

Suppression of the c-axis melt<strong>in</strong>g field<br />

with an applied <strong>in</strong>-plane magnetic field.<br />

L<strong>in</strong>ear regime of our experiments<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

Koshelev, Phys. Rev. Lett. 83, 187 (1999)<br />

<strong>Vortex</strong>-lattice melt<strong>in</strong>g transition <strong>in</strong> the<br />

H z-H // plane of BSCCO at T=85.2 K.<br />

Mirković et al., Phys. Rev. Lett. 86, 886 (2001)


‘Decoration’ as a Probe of Josephson <strong>Vortex</strong> Fluctuations & Melt<strong>in</strong>g<br />

Pancake vortex and Josephson vortex lattices expected to melt simultaneously.<br />

‘Decoration’ of Josephson vortices is a sensitive probe of vortex fluctuations near melt<strong>in</strong>g.<br />

H z =-8.0Oe H z =-8.8Oe H z =-9.6Oe H z =-10.4Oe H z =-11.2Oe H z =-12.8Oe H z =-13.6Oe<br />

– – – – – – –<br />

= = = = = = =<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

T=85K<br />

Melt<strong>in</strong>g<br />

H // =0<br />

H // =36Oe


Fluctuations of Josephson <strong>Vortex</strong> Lattice near Melt<strong>in</strong>g<br />

∆B (G)<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

T=85K<br />

H z =8.0Oe<br />

H z =8.8Oe<br />

H z =9.6Oe<br />

H z =10.4Oe<br />

H z =11.2Oe<br />

0.00<br />

0 1 2 3 4 5 6 7 8 9 10<br />

x (µm)<br />

L<strong>in</strong>escans <strong>ac</strong>ross ‘decorated’ Josephson<br />

vortices at different values of Hz


Indirect P<strong>in</strong>n<strong>in</strong>g of Josephson Vortices; Experiment<br />

a-axis<br />

H //=0<br />

H z=8Oe, T=85K, 28µm×28µm<br />

Quenched disorder <strong>in</strong> the crystal has a pronounced<br />

anisotropy, and leads to vortex cluster<strong>in</strong>g <strong>in</strong> rows/stripes<br />

directed along the a-axis.<br />

Segments of a Josephson vortex st<strong>ac</strong>k are frequently<br />

found to be <strong>in</strong>directly p<strong>in</strong>ned along these disordered<br />

regions via the pancake vortices ly<strong>in</strong>g there.<br />

At high T and large H z, when the l<strong>in</strong>e tension is small,<br />

trapped segments can be long. ( e.g. w~9µm)<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

w<br />

H //=36Oe<br />

∆B (G)<br />

12.4<br />

12.2<br />

12.0<br />

11.8<br />

11.6<br />

~0.2G<br />

L<strong>in</strong>escan<br />

0 5 10<br />

x (µm)<br />

15 20<br />

Higher density of PVs<br />

<strong>in</strong> ‘p<strong>in</strong>ned’ region.


Indirect P<strong>in</strong>n<strong>in</strong>g of Josephson Vortices; Theory<br />

Φ B<br />

K =<br />

4πγ<br />

λ<br />

E<br />

×<br />

Planar<br />

defect<br />

u(z)<br />

θ<br />

0<br />

2 2<br />

w<br />

θ <strong>ac</strong>c<br />

<strong>Vortex</strong><br />

Φ<br />

σ ≅<br />

(4 π) γλ<br />

−2.1Φ =<br />

π γ γ λ<br />

2<br />

0<br />

2 2<br />

4<br />

2<br />

2<br />

0<br />

2<br />

sln(3.5 s / )<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

H<br />

Heal<strong>in</strong>g<br />

region<br />

Trapped<br />

region<br />

Heal<strong>in</strong>g<br />

region<br />

Problem can be solved by analogy with that of a vortex trapped by<br />

tw<strong>in</strong> boundaries (c.f. Paulius et al. PRB 56, 913 (1997)) :-<br />

M<strong>in</strong>imisation with respect to w yields:-<br />

8.Up<br />

σ<br />

w = −<br />

2 2<br />

K.s<strong>in</strong> θ.cos θ K.cos θ<br />

– Assum<strong>in</strong>g<br />

E<br />

2 ⎡σ ⎛ du ⎞ K ⎤ 2<br />

tot ⎢ + u ⎥.dz<br />

− Up<br />

= ∫ 2<br />

⎜<br />

dz<br />

⎟<br />

⎢⎣ ⎝ ⎠ 2<br />

⎦⎥<br />

l<strong>in</strong>e<br />

tension<br />

U = E . ∆(1/<br />

a )<br />

cage<br />

potential<br />

p × ch<br />

– Ex is cross<strong>in</strong>g energy for a s<strong>in</strong>gle PV st<strong>ac</strong>k cross<strong>in</strong>g one JV.<br />

∆(1/ a ch)<br />

– is difference <strong>in</strong> PV cha<strong>in</strong> density between the strongly<br />

p<strong>in</strong>ned region and elsewhere.<br />

Assum<strong>in</strong>g yields:w=9µm<br />

(c.f., ~9µm) and θ<strong>ac</strong>c=62o (c.f., ~65o ∆ (1/ a ch)<br />

~ 1PV / µ m<br />

)<br />

2<br />

s<strong>in</strong> θ 2U<br />

<strong>ac</strong>c =<br />

cosθ<br />

σ<br />

Downwards renormalisation of JV l<strong>in</strong>e tension (σ) due to repulsive<br />

PVs att<strong>ac</strong>hed to it would lead to a smaller p<strong>in</strong>n<strong>in</strong>g potential and<br />

modell<strong>in</strong>g suggests this estimate is probably 5 -10 too large.<br />

w<br />

p<strong>in</strong>n<strong>in</strong>g<br />

energy<br />

A.N.Grigorenko et al., Phys. Rev. Lett. 89, 217003 (2002)<br />

<strong>ac</strong>c<br />

p


Fragmentation of Pancake <strong>Vortex</strong> St<strong>ac</strong>ks<br />

(i) (ii)<br />

∆B (G)<br />

(i) (ii)<br />

H H z ~0, H // =0 Hz ~0, H // =11Oe<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

(i)<br />

(ii)<br />

T=85K<br />

0 2 4 6 8 10 12 14 16<br />

x (µm)<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

480nm<br />

2.3µm<br />

Fragmentation of PV st<strong>ac</strong>ks can occur when<br />

‘decorated’ st<strong>ac</strong>ks of JVs are forced abruptly<br />

through a region of disorder (rather rare event).<br />

Image shows p<strong>in</strong>ned cha<strong>in</strong> of PV st<strong>ac</strong>ks<br />

after the <strong>in</strong>-plane field was suddenly reduced<br />

<strong>from</strong> H // =36Oe to zero.<br />

‘Fr<strong>ac</strong>tional’ pancake vortex st<strong>ac</strong>k ‘heals’<br />

b<strong>ac</strong>k to a connected st<strong>ac</strong>k after the <strong>in</strong>-plane<br />

field was cycled b<strong>ac</strong>k up to H // =11Oe<br />

PV model fits data well if assume that PV st<strong>ac</strong>k<br />

splits cleanly ~480nm below the surf<strong>ac</strong>e, <strong>in</strong>to<br />

two segments a lateral distance 2.3µm apart.


Fragmentation of Josephson <strong>Vortex</strong> St<strong>ac</strong>ks<br />

Fragmentation of JV st<strong>ac</strong>ks occurs much more<br />

commonly when ‘decorated’ st<strong>ac</strong>ks of JVs are<br />

forced abruptly through a region of disorder.<br />

(a) Splitt<strong>in</strong>g of JV st<strong>ac</strong>k after H // was abruptly<br />

reversed <strong>from</strong> -33Oe to +33Oe at 77K (H z=1Oe).<br />

(b) ‘Heal<strong>in</strong>g’ of the fork after the <strong>in</strong>-plane field was<br />

reduced to H // =+22Oe (H z=1Oe).<br />

We presume PV and JV st<strong>ac</strong>k fragmentation<br />

arises when decorated “1D cha<strong>in</strong>s” are<br />

driven through regions of quenched disorder<br />

which are <strong>in</strong>homogeneous along the c-axis.<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

H //<br />

(a)<br />

H //<br />

H z =1Oe T=77K (a) H // =33Oe, (b) H // =22Oe<br />

(b)


Scann<strong>in</strong>g Hall Probe imag<strong>in</strong>g has been used to <strong>in</strong>vestigate vortex <strong>matter</strong> <strong>in</strong><br />

s<strong>in</strong>gle crystals of highly anisotropic cuprate superconductor, Bi 2 Sr 2 CaCu 2 O 8+δ .<br />

Pancake vortex melt<strong>in</strong>g transition directly imaged as a function of applied field.<br />

– fits to melt<strong>in</strong>g behaviour yield L<strong>in</strong>demann constant, C L = 1/2 /a ~ 0.26.<br />

– Increas<strong>in</strong>g fluctuations at low field may be signature of re-entrant melt<strong>in</strong>g.<br />

Josephson vortex fluctuations near melt<strong>in</strong>g l<strong>in</strong>e <strong>in</strong>directly measured by<br />

‘decoration’.<br />

– fluctuat<strong>in</strong>g PVs strongly <strong>in</strong>fluence JV lattice due to renormalization of the phase<br />

stiffness and Josephson energy – simultaneous melt<strong>in</strong>g.<br />

Inter<strong>ac</strong>t<strong>in</strong>g ‘cross<strong>in</strong>g’ pancake vortex and Josephson vortex lattices observed over<br />

a broad range of magnetic field tilt angles.<br />

– several new order/disorder phase transitions observed as a function of tilt angle.<br />

– Indirect p<strong>in</strong>n<strong>in</strong>g of JVs via attr<strong>ac</strong>tion to weakly p<strong>in</strong>ned PVs<br />

– Fragmentation of both PV and JV st<strong>ac</strong>ks observed when decorated JV st<strong>ac</strong>ks are<br />

driven through a region of disorder.<br />

Inter<strong>ac</strong>t<strong>in</strong>g ‘cross<strong>in</strong>g’ vortex lattices can be exploited to <strong>ac</strong>hieve new functionality.<br />

Trapped PV st<strong>ac</strong>ks can be manipulated by deform<strong>in</strong>g the JV lattice and vice versa.<br />

Simon J. Bend<strong>in</strong>g, University of Bath, UK<br />

Conclusions & Prospects

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!