20.03.2013 Views

The Mare Nostrum Universe The biggest SPH simulation up to now

The Mare Nostrum Universe The biggest SPH simulation up to now

The Mare Nostrum Universe The biggest SPH simulation up to now

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Mare</strong> <strong>Nostrum</strong> <strong>Universe</strong><br />

Gustavo Yepes<br />

Universidad Autónoma de Madrid


What is <strong>Mare</strong> <strong>Nostrum</strong>?<br />

• IBM JS20 Blade Center:<br />

– 4812 PPC processors<br />

– 9.6 Tbytes of Memory<br />

– Myrinet interconection.<br />

– 233 Tbytes disk


What is <strong>Mare</strong> <strong>Nostrum</strong>?<br />

• IBM JS20 Blade Center:<br />

– 4812 PPC processors<br />

– 9.6 Tbytes of Memory<br />

– Myrinet interconection.<br />

– 233 Tbytes disk<br />

Still the most powerfull<br />

s<strong>up</strong>ercomputer in Europe.<br />

It is located at the BSC in<br />

Barcelona


What is <strong>Mare</strong> <strong>Nostrum</strong>?<br />

• IBM JS20 Blade Center:<br />

– 4812 PPC processors<br />

– 9.6 Tbytes of Memory<br />

– Myrinet interconection.<br />

– 233 Tbytes disk<br />

Still the most powerfull<br />

s<strong>up</strong>ercomputer in Europe.<br />

It is located at the BSC in<br />

Barcelona<br />

A perfect place <strong>to</strong> create a <strong>Universe</strong>, not only because of its power…


<strong>The</strong> <strong>Mare</strong><strong>Nostrum</strong> <strong>Universe</strong><br />

TREEPM+<strong>SPH</strong> <strong>simulation</strong><br />

ΛCDM model (WMAP1)<br />

• 500/h Mpc 3 volume<br />

• GADGET 2 code (Springel 2005)<br />

• Adiabatic <strong>SPH</strong>+TREEPM Nbody<br />

– 1024 3 FFT for the PM force.<br />

– 15 kpc force resolution.<br />

• 2x1024 3 dark and sph particles<br />

– 10 9.33 partículas<br />

– 8x10 9 M dark matter<br />

– 10 9 M for gas particles<br />

• 1 million dark halos bigger than<br />

a typical galaxy (10 12 Mo)<br />

• Simulation done at <strong>Mare</strong><strong>Nostrum</strong><br />

– 512 processors (1/8 <strong>to</strong>tal power)<br />

– 1Tbyte ram<br />

– 500 wallclock hrs (29 cpu years)<br />

– Output: 8600 Gbytes of data.<br />

– Same computing power than the<br />

Millenium Run.


Moore`s Law: Law<br />

Capacity of professors<br />

double every 18 months<br />

N.Body <strong>simulation</strong>s<br />

double the number of<br />

particles every 16.4<br />

months<br />

Extrapolating:<br />

Extrapolating<br />

10 10 partículas part culas in 2008<br />

…but but it was done in<br />

2004<br />

Springel et al 2005<br />

“Millenium Run”<br />

“Hubbel Volume”


Moore`s Law: Law<br />

Capacity of professors<br />

double every 18 months<br />

N.Body <strong>simulation</strong>s<br />

double the number of<br />

particles every 16.4<br />

months<br />

Extrapolating:<br />

Extrapolating<br />

10 10 partículas part culas in 2008<br />

…but but it was done in<br />

2004<br />

Springel et al 2005<br />

“Millenium Run”<br />

<strong>Mare</strong><strong>Nostrum</strong> <strong>Universe</strong> (<strong>SPH</strong>) <br />

“Hubbel Volume”


Moore`s Law: Law<br />

Capacity of professors<br />

double every 18 months<br />

N.Body <strong>simulation</strong>s<br />

double the number of<br />

particles every 16.4<br />

months<br />

Extrapolating:<br />

Extrapolating<br />

10 10 partículas part culas in 2008<br />

…but but it was done in<br />

2004<br />

Springel et al 2005<br />

<strong>The</strong>oretical N-body body limit at MN <br />

“Millenium Run”<br />

<strong>Mare</strong><strong>Nostrum</strong> <strong>Universe</strong> (<strong>SPH</strong>) <br />

“Hubbel Volume”


Collabora<strong>to</strong>rs:<br />

• S. Gottlober (AIP Germany)<br />

• R. Sevilla (UAM, Spain)<br />

• M. G. Rivero (UAM, Spain)<br />

• M. Hoeft (Bremen, Germany)<br />

• Massimo Meneghetti (ZAH, Heildelberg)<br />

• Christian Wagner (AIP Germany)<br />

• Arman Khalatyan (AIP, Germany)<br />

• V. Turchaninov (IAM Moscow)<br />

• A. Faltenbacher (USC, California)<br />

• M. Plionis, S. Basilakos (NOA, Greece)<br />

• F. Atrio (USAL, Spain)<br />

• A. Doroshkevich (Moscow)<br />

• …


Halo finder<br />

• Hierarchical Friend of Friends analysis delivers<br />

structures at virial overdensities and all<br />

substructures (Klypin,Gottlober,Kravtsov 1997)<br />

• Minimal Spanning Tree technique:<br />

– Sorting particles in a cluster ordered sequence<br />

• Mass, shapes, orientations, angular momentum,<br />

particle list, are obtained from the MST for each<br />

object.<br />

• Full MPI implementation of the halo finder:<br />

– Timing: Analysis of 1024 3 particlesis4 hrswith32<br />

cpus.


Halo Mass function<br />

• 4063 clusters with M > 10 14 h -1 Msun<br />

• 58167 gro<strong>up</strong>s+clusters with M >10 13 h -1 Msun<br />

• 506000 objects with M > 10 12 h -1 Msun<br />

• More than 1 million objects with more than 100 particles


Spin parameter<br />

Dark halos<br />

λ = 0.023 for all overdensities<br />

no hint that substructures have a different<br />

spin distribution<br />

“gas” halos<br />

λ ~ 0.05


Shapes of halos<br />

Shape of the dark matter distribution at<br />

virial overdensity:<br />

halos with more than 500 particles


Shape of dark matter halos at<br />

Virial overdensity<br />

Shapes of halos<br />

Shape of dark matter halos at 64<br />

times virial overdensity


Shape of dark matter halos at<br />

Virial overdensity<br />

Shape of halos<br />

Shape of the corresponding gas<br />

distribution in same halos


Dark Halos<br />

Dark matter particles<br />

Baryon oscillations


Dark Halos<br />

Dark matter particles<br />

Baryon oscillations


Dark Halos<br />

Dark matter particles<br />

Baryon oscillations


Baryon phase space diagram


Baryon phase space diagram


Baryon phase space diagram


HOT<br />

Baryon phase space diagram<br />

Warm-Hot<br />

COLD


Evolution of baryon phases<br />

(T > 10 7 K)<br />

(10 5 K < T < 10 7 K)<br />

(T < 10 5 K)


Evolution of baryon phases<br />

All baryons WHIM baryons


Clusters of galaxies<br />

Most massive cluster:


Baryon fraction in clusters


X-ray Temperature function


Comparison of Lx for two versions<br />

of the same <strong>simulation</strong>:<br />

Colored points: <strong>Mare</strong><strong>Nostrum</strong> run<br />

Black points: low-res version with<br />

2x512 3 particles:<br />

(Basilakos et al 2005<br />

Ascasibar et al 2004-2005<br />

Rubiño’s talk this meeting)<br />

Scaling relations:<br />

Resolution effects


Comparison of Lx for two versions<br />

of the same <strong>simulation</strong>:<br />

Colored points: <strong>Mare</strong><strong>Nostrum</strong> run<br />

Black points: low-res version with<br />

2x512 3 particles:<br />

(Basilakos et al 2005<br />

Ascasibar et al 2004-2005<br />

Rubiño’s talk this meeting)<br />

Green Points are data..<br />

Scaling relations:<br />

Resolution effects


Evolution of scaling relations


Evolution of scaling relations


Evolution of scaling relations


Evolution of scaling relations


Evolution of scaling relations<br />

(R. Sevilla’s <strong>The</strong>sis)


Strong Lensing<br />

• Arcs from our most massive cluster :<br />

• Composite U,B,V using ray tracing technique.<br />

• Collaboration with Massimo Meneghetti:<br />

•Study role of cluster mergers on strong lensing efficiency.<br />

•Create the largest database of lensed <strong>simulation</strong>s from 4000<br />

clusters between z=0 and 1.5.


SUMMARY<br />

• <strong>The</strong> <strong>Mare</strong><strong>Nostrum</strong> <strong>Universe</strong> <strong>simulation</strong> uses 2 billion particles <strong>to</strong><br />

simulate both the dark and baryonic matter. It is one of the largest<br />

<strong>SPH</strong> <strong>simulation</strong>s done <strong>up</strong> <strong>to</strong> <strong>now</strong>.<br />

• It constitutes a very useful data base <strong>to</strong> do different studies of largescale<br />

structure formation and distribution in both components.<br />

• We have discussed here several of the analyses that are being<br />

carried out:<br />

– Halo identification and internal properties.<br />

– Baryon oscillations in the LSS of halos.<br />

– Baryon distribution.<br />

– Clusters of galaxies: scaling relations, baryon fractions, lensing..<br />

– S-Z signal from different structures (clusters, WHIM..)<br />

– etc..<br />

• We are open <strong>to</strong> any other interesting study you may have thought<br />

– So please contact us if you’d like <strong>to</strong> put your hands on the <strong>to</strong>ns of Gbytes of<br />

data that the <strong>Mare</strong><strong>Nostrum</strong> <strong>Universe</strong> is made of..


Thank you<br />

–gustavo.yepes@uam.es<br />

– sgottloeber@aip.de<br />

• <strong>The</strong> <strong>Mare</strong><strong>Nostrum</strong> s<strong>up</strong>ercomputer is run by<br />

• We thank BSC for giving access <strong>to</strong> this facility<br />

• http://www.bsc.es

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!