20.03.2013 Views

Standardpräsentation Farbe Detusch - Tank Storage International

Standardpräsentation Farbe Detusch - Tank Storage International

Standardpräsentation Farbe Detusch - Tank Storage International

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Tank</strong> <strong>Storage</strong> Istanbul 2011<br />

29-30 November 2011<br />

Grand Cehavir Hotel, Istanbul, Turkey<br />

News regarding venting of atmosheric<br />

and low-pressure storage tanks<br />

News regarding use of flame arresters<br />

(why do p/v-vents not function as flame arrester?)<br />

Dipl.-Ing. Axel Sommer<br />

PROTEGO® – Braunschweiger Flammenfilter GmbH<br />

1


API 2000<br />

5 th edition<br />

API 2000<br />

6 th edition<br />

New <strong>International</strong> Standard:<br />

Venting of atmospheric and low-pressure<br />

storage tanks ISO 28300<br />

ISO 28300<br />

Petroleum,<br />

petrochemical and<br />

natural gas industries –<br />

Venting of atmospheric<br />

and low-pressure<br />

storage tanks<br />

EN 14015<br />

Annex L<br />

TRbF 20<br />

2


Background and development of ISO 28300 Standard<br />

ISO 28300 was mainly developed based on the API 2000<br />

standard 1998 6 th Edition and the EN 14015 Standard<br />

Annex L and the German TRbF 20<br />

Contradiction towards the venting requirements for<br />

normal venting<br />

Contradiction towards the use of vents as flame<br />

arresters<br />

Committee goal:<br />

This standard shall consider all state of the art<br />

knowledge concerning tank venting and safety and<br />

provide best practice to the user<br />

3


Why new calculation methods for determining normal<br />

venting requirements?<br />

Prof. Salatino from the University of Napoli predicted<br />

that the calculation method of API 2000 may<br />

underpredict thermal breathing<br />

The German TRbF 20 standard developed by Dr. Hans<br />

Foerster from the Federal Institute if Physiks (PTB) also<br />

results in higher values for thermal breathing<br />

The EN 14015 Standard developed by Dr. Wheyl from<br />

BASF also results in higher breathing values<br />

All the above methods depend on a detailed<br />

thermodynamic model and provide higher inbreathing<br />

rates than the API 2000 standard<br />

4


Validation of results for inbreathing<br />

Prof. Salatino Model calculation at University of<br />

Napoli, 1999<br />

• <strong>Tank</strong>: V = 63000 m 3 ; D = 70 m; H = 15 m<br />

• Δ T = 40 °C<br />

• Water (rain) flow density<br />

• Refined model calculation<br />

- Dynamic simulation (pressure<br />

differential at vent)<br />

- Different start temperatures of roof, shell<br />

and product<br />

5


Validation of results for inbreathing<br />

API 2000<br />

TRbF 20<br />

ISO 28300<br />

Prof. Salatino Model calculation at University of Napoli, 1999<br />

6


Validation of results for inbreathing<br />

Life field tests and model calculation at<br />

Hoechst in 1980 and 1981<br />

• <strong>Tank</strong>: V = 617 m 3 ; D = 8,5 m; H = 10,6 m<br />

• 17 °C ≤ Δ T ≤ 26 °C<br />

• Water (rain) flow density: about 60 kg/m 2 h<br />

• TRbF-model calculation<br />

7


Validation of results for inbreathing<br />

8


Summary<br />

The new section is based on the European EN 14015 Standard.<br />

The approach used is more general than API (the API approach<br />

is centered around hexane or similar services).<br />

Calculated vent rates with the new approach can be substantially<br />

higher for certain tank sizes than what is shown in API-2000.<br />

A research paper from Prof. Salatino and research results from<br />

Hoechst in Frankfurt, which had been provided by Dr. Hans<br />

Foerster from the PTB justified this change.<br />

An advantage of the new calculation method is that it does allow<br />

to consider full and partial insulation of the tank for normal in- and<br />

out-breathing.<br />

9


ISO 28300 venting requirements<br />

Normal out-breathing and normal inbreathing flows<br />

are defined as the combination of tank vent flows<br />

due to:<br />

Liquid flows into and out of the tank<br />

Ambient weather (thermal) effects<br />

<br />

<br />

V = V + V<br />

out thermal−<br />

out pump−in<br />

<br />

<br />

V = V + V<br />

in thermal−<br />

in pump−out<br />

<br />

<br />

10


Liquid filling capacities - out-breathing<br />

out-breathing rate = filling rate<br />

special calculation have to be done for spike products, and at storage<br />

temperature > 40°C and vapour pressure > 50 mbar:<br />

11


Liquid filling capacities - inbreathing<br />

in-breathing rate = discharging rate<br />

12


Basis: Model calculations for a fixed roof above<br />

ground storage tank of steel<br />

General assumptions and approximations:<br />

Uniform (time dependent) temperatures of wall, tank<br />

atmosphere, ambient air and rainwater-film<br />

Primary result is the temperature of the tank atmosphere in<br />

dependence on time ; volume flow rates are then deduced<br />

by an isobaric approach (constant ratio of volume to<br />

temperature)<br />

<strong>Tank</strong> atmosphere is air at ambient pressure<br />

Wall thickness is according to common tank standards ( ≥<br />

4 mm)<br />

No heat flux via tank bottom<br />

13


Determining of normal & emergency venting requirements<br />

General Basic Equation for ISO 28300 Model:<br />

V<br />

Q<br />

=<br />

V<br />

T<br />

g<br />

⋅<br />

dT<br />

dt<br />

Energy balance to describe temperature<br />

distribution with respect to time<br />

g<br />

( T −T<br />

)<br />

= k ⋅ A ⋅ = V ⋅ ρ<br />

g<br />

s<br />

g<br />

⋅ c<br />

g<br />

⋅<br />

dT<br />

dt<br />

g<br />

14


Heat flows during heating by solar radiation<br />

(outbreathing)<br />

convection<br />

solar irradiation<br />

convection<br />

far IR radiation loss<br />

15


Volume Flow V in m 3 /h<br />

Solution if solving differential equation:<br />

80<br />

60<br />

40<br />

20<br />

Maximum volume flow<br />

0<br />

15<br />

0 900 1800 2700 3600 4500 5400 6300 7200<br />

Time t in s<br />

ϑ W<br />

ϑG ϑG<br />

V VG,B G,B<br />

Maximum volume flow occurs<br />

at maximum delta T<br />

30<br />

25<br />

20<br />

16<br />

Temperature ϑ in o C


Thermal out-breathing simplified as in ISO 28300<br />

<br />

=<br />

0,9<br />

Vthermal−out Cout<br />

VT<br />

R<br />

C out = 0,2 latitude : > 58°<br />

C out = 0,25 latitude : 58°-42°<br />

C out = 0,32 latitude : < 42°<br />

R in = reduction factor insulation<br />

V t = tank volume<br />

in<br />

17


convection<br />

and<br />

evaporation<br />

Heat flows during cooling by rain<br />

(inbreathing)<br />

conduction<br />

convection<br />

Rain water flow to wall<br />

Rain water drain from wall<br />

18


Volume Flow V in m 3 /h<br />

Solution if solving differential equation:<br />

300<br />

240<br />

180<br />

120<br />

60<br />

Maximum volume flow<br />

Maximum volume flow occurs<br />

at maximum delta T<br />

0<br />

15<br />

0 180 360 540 720 900<br />

Time t in s<br />

V G,B<br />

ϑG ϑG<br />

ϑ W<br />

55<br />

45<br />

Temperature ϑ in o C<br />

35<br />

25<br />

19


Thermal - inbreathing<br />

<br />

0,7<br />

Vthermal−in = Cin<br />

VT<br />

Cin<br />

R<br />

R in = reduction factor insulation<br />

V t = tank volume<br />

vapour pressure<br />

latitude < 25 °C ≥ 25°C < 25 °C ≥ 25°C<br />

> 58° 2,5 4 4 4<br />

42° - 58° 3 5 5 5<br />

< 42° 4 6,5 6,5 6,5<br />

in<br />

haxane or similar higher than hexane,<br />

or unkown<br />

storage temperature<br />

20


Calculation – Examples<br />

<strong>Tank</strong> 1<br />

<strong>Tank</strong>:<br />

Height: 5m<br />

Diameter: 7m<br />

<strong>Tank</strong> volume: 192.4 m3<br />

Pump in rate: 96 m3/h<br />

Pump out rate: 96 m3/h<br />

Vertical tank<br />

No insulation<br />

MAWP: + 7.5 mbar<br />

MAWV: - 2.5 mbar<br />

21


Venting requirements [m3/h]<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Inbreathing Requirements (Total) for <strong>Tank</strong> 1<br />

API 2000 EN 14015,<br />

North, VP<br />

Hexane<br />

EN 14015,<br />

North, VP><br />

Hexane<br />

Inbreathing requirements <strong>Tank</strong> 1<br />

EN 14015, 42-<br />

58, VP Hexane<br />

EN 14015, 42-<br />

58, VP><br />

Hexane<br />

Pump out Thermal<br />

EN 14015,<br />

South, VP<br />

Hexane<br />

EN 14015,<br />

South, VP><br />

Hexane<br />

TRbF 20<br />

22


Venting requirements [m3/h]<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

226<br />

API 2000, FP<br />

=37.8C<br />

EN 14015,<br />

North<br />

EN 14015, 42-<br />

58<br />

EN 14015,<br />

South<br />

Pump in Thermal<br />

H/D = 0.71<br />

H/D = 0.5<br />

118 122<br />

H/D = 2<br />

109<br />

TRbF 20 TRbF 20-2 TRbF 20-3<br />

23


Calculation – Examples<br />

<strong>Tank</strong> 2<br />

Very Large Size <strong>Tank</strong> (outside of scope of API 2000):<br />

Height: 15 m<br />

Diameter: 75 m<br />

<strong>Tank</strong> volume: 66,268 m3<br />

Pump in rate: 1,400 m3/h<br />

Pump out rate: 1,400 m3/h<br />

Vertical tank<br />

No insulation<br />

MAWP: + 7.5 mbar<br />

MAWV: - 2.5 mbar<br />

24


Venting requirements [m3/h]<br />

18000<br />

16000<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

Inbreathing Requirements (Total) for <strong>Tank</strong> 2<br />

API 2000 EN 14015,<br />

North, VP<br />

Hexane<br />

Inbreathing requirements <strong>Tank</strong> 5<br />

EN 14015,<br />

North, VP><br />

Hexane<br />

EN 14015, 42-<br />

58, VP<br />

Hexane<br />

EN 14015, 42-<br />

58, VP><br />

Hexane<br />

Pump out Thermal<br />

EN 14015,<br />

South, VP<br />

Hexane<br />

EN 14015,<br />

South, VP><br />

Hexane<br />

TRbF 20<br />

25


Venting requirements [m3/h]<br />

10000<br />

9000<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Outbreathing Requirements (Total) for <strong>Tank</strong> 2<br />

API 2000, FP<br />

=37.8C<br />

Outbreathing requirements <strong>Tank</strong> 5<br />

EN 14015, North EN 14015, 42-58 EN 14015, South TRbF 20<br />

Pump in Thermal<br />

26


Calculation example considering insulation:<br />

• <strong>Tank</strong> volume 592,000 barrel (94.120 m³)<br />

• Stored liquid Bitume<br />

• Pump in 4542 barrel/h (722 m³/h)<br />

• Pump out 5458 barrel/h (867 m³/h)<br />

• Insulation Calciumsilicate<br />

• Insulation thickness 2”<br />

27


Overview Venting Requirements<br />

(API 2000, ISO 28300)<br />

API 2000 (without consideration of insulation):<br />

• Inbreathing: 6.600 Nm 3 /h<br />

• Outbreathing: 4.200 Nm 3 /h<br />

ISO 28300 (without consideration of insulation):<br />

• Inbreathing: 16.020 Nm 3 /h<br />

• Outbreathing: 7.920 Nm 3 /h<br />

28


How to consider insulation during thermal in-<br />

and out-breathing<br />

Reduction factor for insulation according to ISO 28300<br />

h<br />

LIN<br />

R<br />

IN<br />

=<br />

1+<br />

1<br />

h ⋅<br />

λ<br />

L<br />

IN<br />

IN<br />

λ = heat conduction coefficient<br />

= heat transfer coefficient<br />

= thickness of insulation<br />

Here: RIN<br />

= 0.2145<br />

29


Overview Venting Requirements<br />

(API 2000, ISO 28300)<br />

API 2000 (without consideration of insulation):<br />

• Inbreathing: 6.600 Nm 3 /h<br />

• Outbreathing: 4.200 Nm 3 /h<br />

ISO 28300 (with insulation):<br />

• Inbreathing: 4.140 Nm 3 /h (vs. 16.020 Nm³/h)<br />

• Outbreathing: 2.280 Nm³/h (vs. 7.920 Nm³/h)<br />

30


How to determine inert gas blanketing rates<br />

ISO 28300 Annex F provides guidance for inert<br />

gas blanketing of tanks for flashback protection<br />

This guidance is based on the German TRbF 20<br />

standard<br />

The concept has provided proven safety to the<br />

industry for decades<br />

It is simple way to assure sufficient inert gas<br />

blanketing levels<br />

The amounts result from the inbreathing rates of<br />

the ISO 28300 equations<br />

31


3 different levels of inert gas blanketing<br />

Level 1<br />

minimum inert gas blanketing requirements in<br />

combination with a specific flame arrester classification<br />

Level 2<br />

more stringent inert gas blanketing requirements with<br />

different flame arrester classification<br />

Level 3<br />

the highest inert gas blanketing requirements with no<br />

flame arrester<br />

32


<strong>Tank</strong> inbreathing needs to be considered<br />

inbreathing due to changes in weather<br />

inbreathing due to emptying of tank<br />

Inert gas supply needs to be determined<br />

minimum amount of inert gas volume flow<br />

amount of reserve inert gas<br />

VI<br />

VI <br />

33


Inert gas level 1:<br />

V C V V<br />

expressed in m3 /h<br />

= 0,1×<br />

×<br />

0,7<br />

+<br />

I T pe<br />

V = 0,04 × V<br />

expressed in m3 I T<br />

Additional conditions:<br />

monitor inert gas supply<br />

alarm shall be triggered when set pressure of the vacuum vent is<br />

reached.<br />

inside of the tank can be classified as Zone 1 (according to the<br />

IEC)<br />

An end-of-line flame arrester shall be installed which has been<br />

tested for atmospheric deflagration and endurance burning for IEC<br />

explosion group IIA (NEC Group D) vapours.<br />

34


Inert gas level 2:<br />

V C V V<br />

= 0, 2×<br />

×<br />

0,7<br />

+<br />

I T pe<br />

V = 0,08 ×<br />

V<br />

I T<br />

Additional conditions:<br />

expressed in m 3 /h<br />

expressed in m 3<br />

The alarm specified under inert gas stage 1 shall activate the<br />

shutdown of the liquid outflow.<br />

At this level of inert gas blanketing the inside of the tank can be<br />

classified as Zone 2 in accordance with IEC 60079-10.<br />

An end-of-line flame arrester shall be installed which has been<br />

tested for atmospheric deflagration for IEC explosion group IIA<br />

(NEC Group D) vapours.<br />

35


Inert gas level 3:<br />

V C V V<br />

V = 0,12 ×<br />

V<br />

= 0,5 × ×<br />

0,7<br />

+<br />

I T pe<br />

expressed in m 3 /h<br />

expressed in m 3<br />

I T<br />

Additional conditions:<br />

The tank pressure shall be kept above atmospheric pressure and the monitoring<br />

system shall have redundancy in the design.<br />

The inert gas supply shall be kept above the tank pressure and in particular the<br />

required flow rate of shall be achieved with a tank pressure at least equal to the<br />

atmospheric pressure.<br />

The trip pressure at which the liquid outflow will be shut down shall be set above<br />

atmospheric pressure. (Pump Shut Off)<br />

Alarms shall be triggered at the trip pressure.<br />

At this level of nitrogen blanketing the inside of the tank can be classified as<br />

Zone 2 in accordance with IEC 60079-10. At this level of inert gas blanketing no<br />

additional protection against flame propagation from the outside to the inside of<br />

the tank is required.<br />

36


Why conservation vents do not function as flame arresters:<br />

37


Why conservation vents do not function as flame arresters:<br />

API 2000 5 th Edition 1998:<br />

A flame arrester is not considered necessary for use in<br />

conjunction with a pressure vacuum valve venting to<br />

atmosphere because flame speeds are less than vapor<br />

velocities across the seat of the pressure vacuum valve<br />

TRbF 20 (German standard):<br />

clearly calls for flame arresters for tanks that contain liquids<br />

that can create an explosive atmosphere<br />

Factory Mutual (Insurance and approval company)<br />

requires installation of flame arresters on tanks which store<br />

liquids with a flash point at or below 43 ◦C or on tanks which<br />

heat the stored liquid to its flash point<br />

38


Conclusion for ISO 28300 committee regarding<br />

atmospheric explosion protection of storage<br />

tanks:<br />

Research work is needed due to contradicting<br />

standards and opinions on the ISO 28300<br />

committee<br />

ISO 16852 shall apply as test standard<br />

Two types of test are needed:<br />

A) atmospheric deflagration test<br />

B) continuous burn test<br />

39


5 major vent manufacturers where tested<br />

pressure<br />

pallet<br />

vacuum<br />

pallet<br />

40


Typical settings for API 650 tanks<br />

set vacuum: -2 mbar (-0.8 in WC)<br />

set pressure:<br />

10 mbar<br />

( 4.0 in WC)<br />

41


Atmospheric Deflagration - Test set-up<br />

1 ignition source<br />

2 plastic bag Ø 1,2 m, length 2,5m<br />

foil thickness >0,05 mm<br />

3 conservation vent<br />

4 explosion proof container<br />

5 mixture inlet with shut-off valve<br />

6 mixture outlet<br />

7 bursting diaphragm<br />

atmospheric deflagration test of end-ofline<br />

flame arrester as described in ISO<br />

16852 part 7.3.2.1 and EN 12874 part<br />

6.3.2.1<br />

42


3<br />

5<br />

Atmospheric Deflagration - Test set-up<br />

7<br />

6<br />

1<br />

2<br />

4<br />

1 ignition source<br />

2 plastic bag Ø 1,2 m,<br />

length 2,5m foil<br />

thickness >0,05 mm<br />

3 conservation vent<br />

4 explosion proof container<br />

5 mixture inlet with shut-off<br />

valve<br />

6 mixture outlet<br />

7 bursting diaphragm<br />

43


Atmospheric<br />

Deflagration –<br />

Test No 1<br />

P/V VALVE –<br />

4,2 vol% propane in air –<br />

28.03.2007<br />

45


Atmospheric<br />

Deflagration –<br />

Test No 2<br />

P/V VALVE –<br />

5,5 vol% propane in air –<br />

28.03.2007<br />

46


Atmospheric<br />

Deflagration –<br />

Test No 3<br />

P/V VALVE –<br />

6,0 vol% propane in air –<br />

28.03.2007<br />

47


High Velocity Burning - Test set-up<br />

1 continuous flame<br />

2 pressure vacuum valve<br />

3 explosion proof container<br />

4 mixture inlet<br />

5 bursting diaphragm<br />

7 pilot flame<br />

10 shut-off valve<br />

Flame transmission test for high velocity vent valves<br />

as described in ISO 16852 part 9.2. and EN 12874<br />

part 9.2.<br />

48


High Velocity Burning<br />

– Test No 4<br />

P/V VALVE<br />

stoichiometric propane<br />

air mixture<br />

V= 85 m³/h<br />

28.03.2007<br />

49


High Velocity Burning<br />

– Test No 5<br />

P/V VALVE<br />

stoichiometric propane<br />

air mixture<br />

V= 100 m³/h<br />

28.03.2007<br />

50


Recommendation of ISO 28300 regarding<br />

explosion prevention:<br />

Different tank selection<br />

Inert gas blanketing<br />

Flame arresters<br />

Flame propagation through pressure/vacuum valves<br />

(4.5.4)<br />

Testing has demonstrated that a flame can propagate through a pressure<br />

vacuum valve and into the vapour space of the tank. Tests have shown<br />

that ignition of a PV's relief stream (possibly due to a lighting strike) can<br />

result in a flash back to the PV with enough overpressure to lift the<br />

vacuum pallet causing the flame to enter the tank's vapour space. Other<br />

tests have shown that, under low flow conditions, a flame can propagate<br />

though the pressure side of the PV.<br />

51


Summary<br />

- p/v valves cannot stop an atmospheric deflagration<br />

- p/v valves are not able to stop a flame by dynamic<br />

effects<br />

hence:<br />

- p/v valves cannot substitute flame arresters<br />

- p/v valves are not high velocity vent valves<br />

- only devices approved according flame arrester<br />

standards* are flame arresters<br />

* ISO 16852, EN 12874, USCG 33 CFR part 154, CSA Z343-98<br />

52


Thank you very much<br />

for your attention !<br />

Any questions?<br />

53

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!