VICTORY 3D Process Simulation - Silvaco

VICTORY 3D Process Simulation - Silvaco VICTORY 3D Process Simulation - Silvaco

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong><br />

Modeling of Deep Reactive Ion Etching<br />

Presented at SISPAD 2007


Introduction<br />

Motivation<br />

Physical <strong>Process</strong><br />

<strong>VICTORY</strong> <strong>Simulation</strong> Environment<br />

DRIE Model<br />

Results<br />

Conclusions<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007


Motivation<br />

Deep Reactive Ion Etching (DRIE) is very popular in surface<br />

micro-machined MEMS<br />

Etches quickly nearly vertical trenches<br />

High aspect ratios can be achieved<br />

It is a very challenging process for simulation<br />

Multiplexed sequence of processes<br />

Thin passivation layers<br />

Mutual influence of fast and slow processes components<br />

Extremely demanding for <strong>3D</strong> simulation analysis<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007


Physical <strong>Process</strong><br />

Multiply repeated sequence of an etching and passivation process<br />

Number of cycles determines the trench depth<br />

Each etching and passivation cycle lasts only a few seconds<br />

Passivation :<br />

Grow a thin layer of passivation material which cannot be attacked by the<br />

chemical process<br />

Etching :<br />

Locally break the thin passivation layer by accelerated ions<br />

Etch the underlying material by a chemical process<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007


Physical <strong>Process</strong><br />

<strong>Process</strong> shows three regimes when varying passivation / etching<br />

cycle times<br />

Passivation dominated regime :<br />

The sputtering/etching time is not sufficient to remove the passivation<br />

layer properly<br />

Not more than only a very small part of the trench bottom near the corners<br />

can be cleared from passivation layer material<br />

With this conditions the DRIE process produces no proper trenches at all<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007


Physical <strong>Process</strong><br />

<strong>Process</strong> shows three regimes when varying passivation / etching<br />

cycle times<br />

Passivation influenced regime :<br />

Shape of the passivation layer influences the shape of the bottom of the<br />

trench<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007<br />

Isotropic etching starts<br />

near the trench corners,<br />

because the sputtering is<br />

homogenous at the bottom<br />

The sputter/etching time is just not sufficient to remove the whole<br />

passivation layer from the bottom of the trench<br />

Effective etch rate reduces with trench width


Physical <strong>Process</strong><br />

<strong>Process</strong> shows three regimes when varying passivation / etching<br />

cycle times<br />

Etch dominated regime :<br />

Shape of the passivation layer has no significant influence on the trench<br />

bottom shape<br />

Average etch rate increases by increasing the trench width<br />

More than 50% of the etching cycle time is isotropic chemical etching<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007


<strong>VICTORY</strong> <strong>Simulation</strong> Environment<br />

Capability to simulate full processes in <strong>3D</strong><br />

Etching, Deposition, Oxidation, Implantation, Diffusion<br />

Open modeling interface<br />

Model parameters and modeling functions can be accessed and<br />

modified<br />

C-Interpreter is used to develop the model functions<br />

Level-Set based framework<br />

For structure representation (multi-layer structure concept)<br />

For interface propagation<br />

Hierarchical Cartesian mesh<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007


The DRIE Model<br />

Models for both cycles are required<br />

Passivation cycle<br />

Deposition model with one reactant<br />

Etching cycle<br />

Etching model with two reactants<br />

Interaction of the cycles only through geometrical modifications<br />

Both cycles are characterized by<br />

Ballistic transport of the reactive particles<br />

Mean free particle path : several mm<br />

Typical feature size : several µm<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007


The DRIE Model – Passivation Cycle<br />

Assumptions:<br />

Only one reactant is dominating the deposition reaction at the surface<br />

The reactant has an isotropic momentum distribution above the wafer<br />

surface<br />

The sticking efficiency at the surface is very high<br />

Secondary effects can be approximated<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007


The DRIE Model – Passivation Cycle<br />

Implementation in <strong>VICTORY</strong> <strong>Process</strong>:<br />

Use the primary ballistic mode of the deposition module to<br />

calculate the transport towards each point of the surface<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007<br />

<br />

1<br />

( x ) = ⋅ f ( P , ... , P , D , ... , D ) ⋅cos(<br />

( x , ϑ,<br />

ϕ ) ⋅sin(<br />

ϑ)<br />

F s ∫∫ 1 n 1 m<br />

s<br />

N visible−space<br />

F<br />

f<br />

P ,<br />

1<br />

N<br />

<br />

( xs<br />

)<br />

( P , ... , P , D , ... , D )<br />

1<br />

... , P<br />

D1<br />

, ... , D<br />

<br />

α<br />

( x , ϑ,<br />

ϕ)<br />

s<br />

n<br />

m<br />

n<br />

1<br />

m<br />

....<br />

.... Model parameters<br />

....<br />

....<br />

....<br />

Reactant distribution<br />

( C - Interpreter<br />

Model arguments (variables)<br />

Angle to the local surface<br />

Normalization<br />

coefficient<br />

<br />

F<br />

<br />

α dϑ<br />

dϕ<br />

.... Reactant flux to a point on the surface<br />

based modeling function)<br />

( D ( x ) )<br />

normal<br />

( x ) = 1 for a flat surface point<br />

s<br />

function above the wafer surface<br />

i<br />

<br />

s


The DRIE Model – Passivation Cycle<br />

Implementation in <strong>VICTORY</strong> <strong>Process</strong>:<br />

Use the primary ballistic mode of the deposition module to calculate<br />

the transport toward each point of the surface<br />

Primary ballistic mode assumes a sticking efficiency of 100%<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007


The DRIE Model – Passivation Cycle<br />

Implementation in <strong>VICTORY</strong> <strong>Process</strong>:<br />

Use the primary ballistic mode of the deposition module to calculate<br />

the transport toward each point of the surface<br />

Primary ballistic mode assumes a sticking efficiency of 100%<br />

To consider secondary effects (sticking efficiency < 100%) add a<br />

very thin conformal deposition<br />

Avoids solving the transport equation for secondary transport<br />

F<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007<br />

( x ) = ⋅ f ( P , ... , P , D , ... , D ) ⋅cos(<br />

α(<br />

x , ϑ,<br />

ϕ ) ⋅sin(<br />

ϑ)<br />

+<br />

<br />

s<br />

1<br />

N<br />

∫∫<br />

F<br />

∫∫<br />

visible−space<br />

s<br />

mutual−visible−surfacepoints<br />

1<br />

<br />

( y ) ⋅s(<br />

y ) ⋅ε(<br />

r , y ) ⋅<br />

s<br />

n<br />

xy<br />

1<br />

s<br />

cos<br />

m<br />

<br />

( α(<br />

r , y ) ⋅cos(<br />

α(<br />

r , x )<br />

xy<br />

s<br />

<br />

r<br />

<br />

xy<br />

s<br />

2<br />

yx<br />

s<br />

dϑ<br />

dϕ<br />

⋅ dσ<br />

y


The DRIE Model – Passivation Cycle<br />

Implementation in <strong>VICTORY</strong> <strong>Process</strong>:<br />

Use the primary ballistic mode of the deposition module to calculate<br />

the transport toward each point of the surface<br />

Primary ballistic mode assumes a sticking efficiency of 100%<br />

To consider secondary effects (sticking efficiency < 100%) add a very<br />

thin conformal deposition<br />

Avoids solving the transport equation for secondary transport<br />

Assume isotropic momentum distribution of the reactant above<br />

the wafer surface<br />

f<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007<br />

( P ... , P , D , ... , D ) = 1<br />

1 , n 1<br />

m


The DRIE Model – Passivation Cycle<br />

Implementation in <strong>VICTORY</strong> <strong>Process</strong>:<br />

Use a one particle surface reaction<br />

Assume that local deposition rate only depends on the particle<br />

flux<br />

Influence of surface properties on the local rate is neglected<br />

Surface reaction modeling function is C-Interpreter based<br />

<br />

<br />

x = S P , ... , P , D , ... , D = F x ⋅ R<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007<br />

( s)<br />

( 1 n 1 m)<br />

( ) 0<br />

R s<br />

R<br />

S<br />

R<br />

F<br />

( xs<br />

)<br />

( P , ... , P , D , ... , D )<br />

( xs<br />

)<br />

<br />

( x )<br />

0<br />

<br />

1<br />

<br />

s<br />

n<br />

1<br />

m<br />

.... Local deposition rate at a point of the surface<br />

.... Surface reaction modeling function<br />

<br />

R<br />

are model variables<br />

0<br />

( x ) and F(<br />

x )<br />

s<br />

s<br />

.... Depositon rate at a plane wafer surface<br />

<br />

.... Reactant flux towards<br />

surface point x<br />

s


The DRIE Model – Etching Cycle<br />

Assumptions:<br />

Two types of reactants have to be considered<br />

Chemically reactive neutrals<br />

Not reacting with passivation layer material<br />

Isotropic momentum distribution above the wafer surface<br />

Accelerated ions<br />

Sputtering material from the wafer surface<br />

Reaction is not selective<br />

Sputtering reaction is much slower than chemical reaction<br />

Momentum distribution with a preferential direction towards the wafer<br />

surface<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007


The DRIE Model – Etching Cycle<br />

Implementation in <strong>VICTORY</strong> <strong>Process</strong>:<br />

Condense the contribution of both particles into a single particle<br />

by using a surface material dependent transport model<br />

Transport of only one particle has to be calculated<br />

Saves a lot of calculation time<br />

Effective plain wafer etch rate can be measured<br />

Micro-loading effects are not modeled properly<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007


The DRIE Model – Etching Cycle<br />

Implementation in <strong>VICTORY</strong> <strong>Process</strong>:<br />

Use the primary ballistic mode of the etching module to calculate<br />

the transport towards each point of the surface<br />

Use a surface material dependent reactant distribution function<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007<br />

<br />

1+<br />

ε ( xs<br />

) ⋅V<br />

( κ , ϑ)<br />

f ( P1<br />

, ... , Pn<br />

, D1<br />

, ... , Dm)<br />

= <br />

1+<br />

ε ( x )<br />

V<br />

ε<br />

( κ<br />

, ϑ)<br />

<br />

( x )<br />

s<br />

....<br />

Normalized Von - Mises distribution<br />

.... Ratio of<br />

<br />

ε<br />

ε<br />

ε<br />

the contribution<br />

( xs<br />

) is large if<br />

<br />

( xs<br />

) is small if<br />

<br />

( x ) is a calibration<br />

parameter<br />

s<br />

surface material is<br />

s<br />

function<br />

of neutrals - ions to the effective etchrate<br />

surface material is passivation<br />

silicon


The DRIE Model – Etching Cycle<br />

Implementation in <strong>VICTORY</strong> <strong>Process</strong>:<br />

Use a one particle surface reaction<br />

Assume that local etch rate only depends on the particle flux<br />

Influence of surface properties on the local rate is neglected<br />

Surface reaction modeling function is C-Interpreter based<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007<br />

<br />

( xs<br />

) = S(<br />

P1<br />

, ... , Pn<br />

, D1<br />

, ... , Dm)<br />

= F(<br />

x ) ⋅ R0<br />

R s<br />

R<br />

S<br />

R<br />

F<br />

( xs<br />

)<br />

( P , ... , P , D , ... , D )<br />

( xs<br />

)<br />

<br />

( x )<br />

0<br />

<br />

1<br />

<br />

s<br />

n<br />

1<br />

m<br />

<br />

.... Local etch rate at a point of the surface<br />

.... Surface reaction modeling function<br />

<br />

R<br />

are model variables<br />

0<br />

( x ) and F(<br />

x )<br />

s<br />

s<br />

.... Effective etch rate at a plane wafer surface<br />

<br />

.... Reactant flux towards<br />

surface point x<br />

s


Results<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007<br />

Regime dominated by isotropic etching<br />

Experiment <strong>Simulation</strong>


Results<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007<br />

Regime strongly influenced by the shape of the passivation layer<br />

Experiment <strong>Simulation</strong>


Results<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007<br />

Regime dominated by the passivation process<br />

Experiment <strong>Simulation</strong>


Conclusion<br />

An efficient model for the simulation of deep reactive ion etching<br />

has been presented<br />

It reproduces the main characteristics of the deep reactive ion<br />

etching process<br />

The model has been implemented in the three-dimensional<br />

simulation environment <strong>VICTORY</strong> <strong>Process</strong> which properly<br />

handles this numerically challenging simulation problem<br />

The open modeling interface of <strong>VICTORY</strong> <strong>Process</strong> has been used<br />

for model development purposes<br />

<strong>VICTORY</strong> <strong>3D</strong> <strong>Process</strong> <strong>Simulation</strong> SISPAD 2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!