13.03.2013 Views

Polymer Devices : Materials, Physics, Technology & Circuits - Silvaco

Polymer Devices : Materials, Physics, Technology & Circuits - Silvaco

Polymer Devices : Materials, Physics, Technology & Circuits - Silvaco

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Polymer</strong> <strong>Devices</strong> : <strong>Materials</strong>, <strong>Physics</strong>,<br />

<strong>Technology</strong> & <strong>Circuits</strong><br />

by<br />

Professor W. Eccleston<br />

University of Liverpool, UK


Ahmed Nejim<br />

Simon Higgins<br />

Naser Sedghi<br />

Munira Raja<br />

Giles Lloyd<br />

Kevin Molloy<br />

Rafaella Di Lucrezia


Summary of talk<br />

ß applications and markets<br />

ß basic polymer conduction properties<br />

ß Schottky diodes<br />

ß light emitting diodes<br />

ß thin film transistors (TFTs/PFETs)<br />

ß circuits<br />

ß European picture


Basic <strong>Polymer</strong> (P3HT) Properties<br />

• usually p - type<br />

• hole mobility low<br />

• soluble in cheap solvents<br />

• can be spun or ink-jetted when dissolved<br />

• photolithography difficult<br />

• tend to be unstable


• Moore’s Law: the problem with silicon<br />

• only designs for speed<br />

• transistors and circuits get smaller each<br />

year<br />

• most applications have to be ‘man-sized’<br />

• markets require ultra-low cost<br />

• large area<br />

• disposable electronics


The Market Sphere<br />

increasing speed sector<br />

(silicon)<br />

Other sectors :<br />

• advertising<br />

• displays<br />

• security<br />

• retail<br />

• electronic newsprint<br />

• etc.


MEURO<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

2002<br />

W. European market<br />

10<br />

0 5 10 15 20 25 30<br />

1<br />

Years<br />

• RF retail tags<br />

• Security documents<br />

• Flexible roll-up displays


Large area electronics<br />

• flat panel/roll-up displays<br />

• electronic newspapers<br />

• medical imaging<br />

• electronic bar codes (rf tags)<br />

• security documents<br />

e.g. building access, luggage tracking labels<br />

• active signage/advertising hoardings<br />

etc


Comparison of technologies (MOS)<br />

implant<br />

doped poly<br />

gate oxide<br />

metal<br />

CMOS<br />

deposited<br />

oxide<br />

Epitaxy<br />

or implant<br />

single<br />

crystal<br />

silicon


Comparison of technologies<br />

metal<br />

Ink-jetted or spun polymer<br />

Aluminium on flexible plastic<br />

gate<br />

oxide


<strong>Polymer</strong> <strong>Technology</strong><br />

• easy to synthesise polymers<br />

• easy to apply<br />

• ultra- low cost flexible substrates<br />

• vast range of materials<br />

• good Schottky diodes<br />

• no interface states<br />

• low mobility, high capacitance, therefore slow<br />

• no p-n junctions<br />

• air / voltage/ light /dopant/ instability


<strong>Polymer</strong> conduction processes ?<br />

• Role of dopants<br />

• Fowler - Nordheim<br />

• Schottky Emission<br />

• Poole - Frenkel<br />

• Ohmic Poole Frenkel<br />

• Ohmic<br />

• Free Space Charge Limited<br />

• Trap Space Charge Limited


hole<br />

hole<br />

Fowler-Nordheim<br />

or Schottky emission<br />

Poole-Frenkel or Trap<br />

SCLC when trap<br />

density very high


Method of doping : replacing ion implantation<br />

polymer dopant polymer + dopant


Key Role of Dopants


Air / Voltage/ Light / Dopant/ instability<br />

Output characteristics of P3HT TFT with aspect ratio of 133.


Current through gate oxide (Al 2O3) ) demonstrated<br />

with high dopant content<br />

I-V characteristics of<br />

P3HT MOS capacitor.<br />

(a) no polymer,<br />

(b) polymer removed,<br />

(c) no dopant,<br />

(d) 1% dopant and<br />

(e) 5% dopant.


Mechanism ?<br />

gate oxide<br />

Metal gate<br />

dopant<br />

I<br />

+ V G<br />

• dopant ions break free<br />

from polymer chains<br />

• induces positive<br />

charge in the gate<br />

• current flow into gate<br />

I = displacement current


Capacitance Voltage (CV) Plots for P3HT MOSC<br />

• typical of mobile<br />

charge in oxide but<br />

must be charge in<br />

polymer<br />

• ratio of C max/C min<br />

gives doping density<br />

• flat C min ??


Importance of Cmin min<br />

V G+dV G<br />

depletion region<br />

gate<br />

gate<br />

insulator<br />

A<br />

<strong>Polymer</strong> P3HT<br />

electrons or ions<br />

• constant C min means<br />

constant depletion<br />

layer width<br />

• constant depletion<br />

region requires<br />

formation of negative<br />

layer at interface<br />

• mobility of negative ?<br />

found to be greater<br />

than: 10 -7 cm 2 V -1 s 1<br />

• is it electrons or<br />

ions?


Other parameters from CV plots on polymers<br />

• failure to deliver<br />

holes to surface<br />

region in<br />

accumulation<br />

• hole mobility<br />

10 -2 cm 2 V -1 s -1


Revision of Properties<br />

• hole mobility: 10 -2 cm 2 V -1 s -1<br />

• electron mobility very low: 10 -5 cm 2 V -1 s -1<br />

• doping level can be varied from 10 15 to 10 18 cm -3<br />

• mobile dopant a problem<br />

• hole mobility depends strongly on dopant<br />

concentration


Effects of mobile dopant on devices (e.g. TFTs) TFTs<br />

Transfer characteristics<br />

for P3HT TFT with<br />

aspect ratio of 133,<br />

(a) 1mm film heavily<br />

doped,<br />

(b) 0.5 mm film heavily<br />

doped and<br />

(c) 5 nm film heavily<br />

doped.


<strong>Polymer</strong> Schottky Diodes<br />

aluminium<br />

E F<br />

depletion<br />

polymer<br />

gold<br />

E C<br />

E V


Reverse biased polymer Schottky diode<br />

V applied<br />

Al<br />

E F<br />

E C<br />

EF EV V B enhances hole<br />

injection from<br />

metal


E F<br />

ITO<br />

e<br />

image charge<br />

E V<br />

h<br />

Fowler- Nordheim<br />

electron injection at<br />

cathode to produce<br />

holes


E V<br />

reduced barrier to holes<br />

V forward<br />

Log e (I )<br />

I µ exp (qV forward/kT)<br />

V forward


I-V characteristics of P3HT Schottky diodes<br />

(a) Purified P3HT,<br />

(b) as-synthesised<br />

P3HT and<br />

(c) doped P3HT<br />

Purified material<br />

gives lowest currents<br />

lowest mobility !


Measuring mobility by Liverpool method<br />

• measure doping<br />

N A from reverse<br />

current<br />

• measure<br />

conductivity s<br />

from forward<br />

current<br />

• s = N Ae m<br />

• hence m can be<br />

found


Mobility dependency on doping density<br />

• P3HT<br />

• applies to all<br />

other polymers<br />

tested<br />

•can increase m<br />

by doping<br />

•causes<br />

instability


Basic Relationships :<br />

m = 10 -73 N A 2.35<br />

m FE = 10 -71 N A 2.35 from TFTs<br />

s = 10 -73 N A 3.35<br />

apply over many orders of magnitude of<br />

doping


<strong>Polymer</strong> LEDs


Preferred materials for PLEDs<br />

• PPV (hole transport layer)<br />

• Cyano-PPV (electron transport layer)<br />

• iridium complexes (Covion)<br />

• indium tin oxide (transparent cathode)<br />

• Ca (high cost anode)<br />

• Al (low cost anode, poor emitter, forms oxide)<br />

• Al : Li (good anode, high cost)


Single Layer Diode<br />

• electron efficiency<br />

poor: large barrier, low<br />

mobility.<br />

• recombination at the<br />

Schottky diode?<br />

• low efficiency


Double Layer Diode<br />

• electron efficiency<br />

better: smaller barrier,<br />

• recombination at the<br />

Schottky diode?<br />

• improved efficiency<br />

adds 1% to single layer<br />

device<br />

• metal contacts nonideal<br />

E F<br />

ITO<br />

Transport<br />

layer<br />

h e<br />

R<br />

Light<br />

E C<br />

h E V<br />

emission<br />

layer<br />

Al<br />

E F<br />

e


Light emission: simple picture<br />

• electrons and holes emitted from cathode and<br />

anode respectively to produce a plasma<br />

• electron captures hole to give exciton<br />

• excitons can be singlets or triplets<br />

• only singlet gives light emission<br />

• colour determined by distance between<br />

conjugated defects<br />

• efficiency determined by length of side chains,<br />

dopant etc.<br />

• Langevin bipolar model for plasma


Additional factors<br />

• singlet excitons may be distributed between<br />

two chains (non-radiative)<br />

• singlet excitons may be on a single chain<br />

(radiative)<br />

• as many as 85% of recombination found<br />

experimentally to be associated with singlet<br />

excitons<br />

• there is experimentally a fast component to the<br />

recombination and a much slower component.<br />

• some workers believe that slower component is<br />

associated with singlet exciton radiative decay


E F<br />

ITO<br />

e<br />

image charge<br />

E V<br />

h<br />

Fowler- Nordheim<br />

electron injection at<br />

cathode to produce<br />

holes


PLED failure due to dopant instability<br />

E F<br />

e<br />

h<br />

no dopant ions<br />

E F<br />

e<br />

h h<br />

uniform<br />

distribution of<br />

dopant ions<br />

ion drift<br />

electron<br />

injection failure


<strong>Polymer</strong> TFTs / PFETs


Detailed consideration of device (c)<br />

• (c) 5 nm film<br />

heavily doped<br />

• reduction of<br />

mobility with<br />

thinning<br />

• almost ideal<br />

device


• shift AB indicates accumulation of dopant<br />

• possible reason for high m FE since: m FE = 10 -71 N A 2.35


• TFT (c) below pinchoff<br />

• I D plotted against<br />

gradual channel<br />

equation<br />

• linear with V T = -<br />

1.23V due to high-K<br />

dielectric<br />

• simplifies modelling


Preferred <strong>Materials</strong>:<br />

• High mobility:<br />

¸ polyalkythiophenes<br />

¸ oligomers<br />

¸ penatacene<br />

• Improved stability:<br />

¸ polyflourenes (Dow)<br />

¸ polytriarylamines (Avecia)


Modification to Poole - Frenkel concepts<br />

• needed because mobility is controlled by<br />

doping down to the lowest possible<br />

concentrations<br />

• Poole-Frenkel via dopant molecules is a<br />

possibility<br />

• increasing dopant concentration reduces<br />

distance between dopant molecules and<br />

enhances hopping probability<br />

• also gives correct T dependence<br />

• would simplify insert effects of dopant into<br />

trap model densities


• doping ion clusters<br />

• shows variation of potential<br />

due to negative dopant ions<br />

• gives a hole current at low<br />

fields governed by<br />

• (eaE/kT).exp (-W/kT) and W<br />

is the activation energy. E is<br />

field<br />

• Ohmic Poole - Frenkel


<strong>Circuits</strong>


A<br />

I<br />

B<br />

V DD<br />

0V<br />

• rate of discharging gate B<br />

through driver A is dQ/dt<br />

• L is the channel length which<br />

will often be equal to:<br />

l m = minimum feature size<br />

dQ<br />

dt<br />

?<br />

? C<br />

C<br />

0<br />

0<br />

W<br />

WL<br />

L<br />

?<br />

?<br />

2<br />

L<br />

?<br />

?<br />

?<br />

2<br />

m


A<br />

I<br />

B<br />

V DD<br />

0V<br />

The load resistor is to be 10 X<br />

that of the driver, as is the drive<br />

current, to turn the gate B on is<br />

0.1 x I. The switching on time<br />

for gate B is, therefore, 10x that<br />

of its discharging time:<br />

dQ<br />

dt<br />

m<br />

µ<br />

10lm 2


S D<br />

dQ<br />

dt<br />

µ<br />

G<br />

m<br />

2<br />

40lm V out<br />

V DD<br />

The gate to drain C is two times that of the channel. The<br />

total capacitance is, therefore, four times that of the<br />

channel region.


I C<br />

A B<br />

I D<br />

dQ<br />

dt<br />

µ<br />

V DD<br />

Fig2<br />

mC<br />

W<br />

CMOS: reduces dissipation<br />

and overcomes need for high<br />

resistor loads<br />

Very complex in processing<br />

including p and n type<br />

polymers. Only valuable if<br />

overlap capacitance is<br />

reduced<br />

l<br />

=<br />

m<br />

0 m<br />

2<br />

8C0Wlm 8lm


Schottky Sources<br />

metal<br />

reverse biased<br />

source<br />

forward biased<br />

drain<br />

gate<br />

oxide<br />

This is designed to minimise instability in off-current.<br />

The source is reversed biased, there is the need to<br />

have a heavily doped channel to produce a tunnel<br />

current into the channel.


Schottky Sources: P3HT with SiO 2 gate dielectric<br />

A heavily doped<br />

polymer without<br />

thinning. The<br />

device is<br />

depletion type<br />

because of the<br />

change of<br />

acceptor<br />

concentration in<br />

the channel with<br />

V G. The offcurrent<br />

is stable.


A Vertical Device<br />

bridge<br />

source<br />

dQ<br />

dt<br />

µ<br />

C<br />

0g<br />

bridge<br />

gate<br />

Aluminium<br />

W<br />

mC<br />

0g<br />

W<br />

The channel is in<br />

two parts to enable<br />

the source and drain<br />

to be on the same<br />

plane, they are<br />

Schottky barriers.<br />

The metal bridge<br />

connects the two<br />

channels.<br />

[ L + l ( C C ) ] 2l<br />

L(<br />

C C )<br />

m<br />

2L<br />

0b<br />

polymer<br />

semi-channel<br />

drain<br />

alumina dielectric (e =9)<br />

0g<br />

=<br />

m<br />

m<br />

0b<br />

0g


European picture


European interests (confirmed)<br />

¸ Displays: Displays<br />

Philips and CDT<br />

¸ <strong>Circuits</strong>: <strong>Circuits</strong><br />

Plastic Logic, Philips, Motorola (Germany)<br />

and Siemens<br />

¸ <strong>Materials</strong>:<br />

Avecia, Merck


European Activities<br />

Philips Siemens Infineon<br />

ST CDT Plastic Logic<br />

Motorola IMEC Cambridge Univ. Univ<br />

Liverpool Univ. Univ Imperial College Durham Univ. Univ<br />

Bangor Univ. Univ Avecia Merck<br />

Bayer Cybernetix Fraunhofer (Berlin)<br />

Fraunhofer (Munich)<br />

CNRS University of Paris<br />

>30 other organisations


CBE consortium (UK)<br />

Bristol: <strong>Physics</strong><br />

Cambridge: Chemistry, <strong>Physics</strong> & Engineering<br />

Heriot Watt: <strong>Physics</strong><br />

Imperial: <strong>Physics</strong><br />

KCL: <strong>Physics</strong><br />

Liverpool: Chemistry and Electronics<br />

Oxford: Chemistry<br />

Surrey: Electronics<br />

Sussex: Chemistry<br />

UCL: <strong>Physics</strong> and Electronics


Other countries with or planning a consortium<br />

include:<br />

• France<br />

• Austria<br />

• Germany


Conclusions<br />

• potentially huge market<br />

• radically new device and circuit concepts<br />

• not a competitor to crystalline silicon<br />

• disruptive to conventional print industries<br />

• exciting new physics and engineering<br />

• urgent need for computer based models

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!