13.03.2013 Views

M. LaHaye, Qubit-coupled nanomechanics - PTB

M. LaHaye, Qubit-coupled nanomechanics - PTB

M. LaHaye, Qubit-coupled nanomechanics - PTB

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Qubit</strong>-Coupled Nanomechanics<br />

Matt <strong>LaHaye</strong> ” Syracuse University<br />

experiments performed at caltech with:<br />

junho suh, michael roukes - caltech<br />

keith schwab - caltech & cornell<br />

pierre echternach - j p l<br />

Quantum Measurement and Metrology with Solid State Devices<br />

PBH, Germany 5 Nov. 2009


mechanical structures<br />

in the quantum regime<br />

(Maryland) SSET/NEMS<br />

(UCSB) SET/NEMS<br />

m<br />

(Cornell/Caltech) SMR/NEMS<br />

(Caltech, Cornell, JPL) NEMS/CPB<br />

(Delft):DC-SQUID/NEMS<br />

(JILA): APC/NEMS, SMR/NEMS<br />

Nanoelectromechanical Systems (NEMS)<br />

And many others …<br />

(MIT & LIGO)<br />

(Oregon)<br />

Casimir Physics<br />

(UCSB)<br />

(Yale) (Vienna)<br />

Optomechanical<br />

Systems<br />

(Caltech,<br />

Max Planck Institute)<br />

Atoms, Ions, Spins<br />

(Dartmouth/ Padova) (IBM Almaden)


mechanical structures<br />

in the quantum regime<br />

(Maryland) SSET/NEMS<br />

(UCSB) SET/NEMS<br />

(Cornell/Caltech) SMR/NEMS<br />

(Caltech, Cornell, JPL) NEMS/CPB<br />

(Delft):DC-SQUID/NEMS<br />

(JILA): APC/NEMS, SMR/NEMS<br />

(MIT & LIGO)<br />

(Oregon)<br />

Casimir Physics<br />

(UCSB)<br />

Interesting review from a few years ago: K. Schwab and Michael Roukes,<br />

m<br />

Physics Today July 2005<br />

Nanoelectromechanical Systems (NEMS)<br />

(Yale) (Vienna)<br />

More recently: special issue of the New Journal of Physics on mechanical<br />

systems approaching the quantum regime. September 2008<br />

Optomechanical<br />

Systems<br />

(Caltech,<br />

Max Planck Institute)<br />

Gordon Conference 2008 &2010: Mechanical Systems in the Quantum Regime<br />

And many others …<br />

Atoms, Ions, Spins<br />

(Dartmouth/ Padova) (IBM Almaden)


‚ultimate limit of NEMS is in the quantum regime‛ ” Roukes (2001)<br />

Ideal characteristics: Small mass,<br />

“ Zero-point motion<br />

x / 2 ~ 40 fm<br />

zp<br />

m <br />

“ Energy-level spacing<br />

“ Typ. quality factors ~ 10 4 -10 5 ,<br />

but demonstrated >10 6<br />

Estimate for SiC resonator,<br />

.6m x .4m x .07m<br />

Mass ~ 50 fg, f0 ~ 127 MHz<br />

Orders of magnitude larger than gram- or kg-scale oscillators<br />

ωο kBT For 1 GHz resonator<br />

At mK temperatures<br />

Attainable with dilution fridge.<br />

May portend long coherence and<br />

relaxation times (~ sec’s)<br />

high frequency, low dissipation<br />

Huang, Roukes, 2003<br />

Mo Li, Hong Tang, Michael Roukes, 2007<br />

Schwab 2008<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany - 05 Nov. 2009<br />

4


approaching the quantum limit of NEMS with an RFSET<br />

“ The radio-frequency single-electron transistor (RFSET) as<br />

a quantum-limited displacement detector (proposed by<br />

Blencowe and Wybourne, APL 2000)<br />

Demonstrated sensitivity using superconducting SET (SSET) near<br />

(~4x) the quantum limit for continuous linear detection. SSET a<br />

near-ideal linear detector: =15 /2<br />

Observation of low nanoresonator thermal occupation N th= KT/ (~25).<br />

Observed SSET quantum back-action on the NEMS; measured asymmetry<br />

In SSET noise spectrum; performed back-action cooling of NEMS<br />

“Potential for interesting future experiments<br />

(Ground-state cooling) A. Hopkins, K. Jacobs, S. Habib & K. Schwab, PRB (2003).<br />

(Squeezing) R. Ruskov, A. Korotkov & K. Schwab, IEEE Trans. Nano., (2005).<br />

(Micro-maser analog) D. Rodrigues, J. imbers & A. Armour (2007).<br />

M. <strong>LaHaye</strong>, O. Buu, B. Camarota,<br />

K. Schwab, Science 2004<br />

Gate of SET<br />

NR Gate<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

V NR<br />

SSET<br />

19.7 MHz Resonator<br />

V NR<br />

V NR<br />

NR<br />

20 MHz<br />

1m<br />

A. Naik, O. Buu, M. <strong>LaHaye</strong>, A. Armour, M.<br />

Blencowe, A. Clerk, K. Schwab, Nature 2006


approaching the quantum limit of NEMS with an RFSET<br />

“ The radio-frequency single-electron transistor (RFSET) as<br />

a quantum-limited displacement detector (proposed by<br />

Blencowe and Wybourne, APL 2000)<br />

Demonstrated sensitivity using superconducting SET (SSET) near<br />

(~4x) the quantum limit for continuous linear detection. SSET a<br />

near-ideal linear detector: =15 /2<br />

Observation of low nanoresonator thermal occupation N th= KT/ (~25).<br />

Observed SSET quantum back-action on the NEMS; measured asymmetry<br />

In SSET noise spectrum; performed back-action cooling of NEMS<br />

“ Other linear displacement detectors developed<br />

(Normal SET) R. Knobel & A. Cleland, Nature 424 , 291 (2003).<br />

(APC) N. Flowers-Jacobs, D. Schmidt & K. Lehnert, PRL 98, 096804 (2007)<br />

(DC SQUID) S. Etaki et al., Nature Physics 4, 785 (2008)<br />

M. <strong>LaHaye</strong>, O. Buu, B. Camarota,<br />

K. Schwab, Science 2004<br />

Gate of SET<br />

NR Gate<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

V NR<br />

SSET<br />

19.7 MHz Resonator<br />

V NR<br />

V NR<br />

NR<br />

20 MHz<br />

1m<br />

A. Naik, O. Buu, M. <strong>LaHaye</strong>, A. Armour, M.<br />

Blencowe, A. Clerk, K. Schwab, Nature 2006


qubit-<strong>coupled</strong> <strong>nanomechanics</strong><br />

First proposed by A. Armour, M. Blencowe & K. Schwab: PRL 88 (2002) & Physica B 316 (2002).<br />

Nano-electromechanical resonator Cooper-pair box (CPB) charge qubit<br />

Cleland & Roukes, APL 69 28 Oct. 1996<br />

=<br />

+<br />

electrostatic interaction<br />

<br />

|2><br />

|1><br />

|0><br />

artificial<br />

x<br />

atom Harmonic oscillator<br />

Nakamura et al., Nature, 398 29 Apr. 1999<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany - 05 Nov. 2009<br />

|n><br />

resonator motion<br />

couples to charge<br />

on the qubit


qubit-<strong>coupled</strong> <strong>nanomechanics</strong><br />

First proposed by A. Armour, M. Blencowe & K. Schwab: PRL 88 (2002) & Physica B 316 (2002).<br />

Nano-electromechanical resonator Cooper-pair box (CPB) charge qubit<br />

Cleland & Roukes, APL 69 28 Oct. 1996<br />

=<br />

<br />

+<br />

electrostatic interaction<br />

|2><br />

|1><br />

|0><br />

artificial<br />

x<br />

atom Harmonic oscillator<br />

Nakamura et al., Nature, 398 29 Apr. 1999<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany - 05 Nov. 2009<br />

|n><br />

use qubit to prepare<br />

quantum superposition<br />

states of NEMS and<br />

study decoherence<br />

8


superconducting qubits as tools for quantum NEMS<br />

Partial list of proposals utilizing a qubit to manipulate and measure<br />

quantum states of NEMS<br />

• NEMS and Cooper-pair box (CPB) entanglement to produce NEMS superposition states<br />

(Charge-state) A.D. Armour, M.P Blencowe, K.C. Schwab, PRL 88, 148301 (2002).<br />

(Dispersive) (1) A.D. Armour & M.P. Blencowe, New J. Phys. 10 095004 (2008) (2)D.W. Utami, & A.A. Clerk,<br />

Phys. Rev. A 78 042323 (2008). (3) K. Jacobs, A.N. Jordan, & E.K. Irish, Euro. Phys. Lett. 82, 18003 (2008).<br />

• Measurement of quantized energy spectrum of NEMS<br />

(1) E.K. Irish & K.C. Schwab, PRB 68, 155311 (2003). (2) K. Jacobs, P. Lougovski,& M.P. Blencowe, PRB 98,<br />

147201 (2007). (3) K. Jacobs, A.N. Jordan & E.K. Irish, Euro. Phys. Lett. 82, 18003 (2008). (4) A.A. Clerk, &<br />

D.W. Utami, PRA 75, 042302 (2007).<br />

• Microwave-mediated techniques<br />

(Ground-state cooling) I. Martin et al., Phys. Rev. B 69, 125339 (2004). (Squeezing) P. Rabl et al.,<br />

PRB 70, 205304 (2004). (Entanglement) L.Tian, PRB 72, 195411 (2005). (Lasing) J. Hauss et al.,<br />

Phys. Rev. Lett. 100, 037003 (2008).<br />

Many other proposals involving different types of qubits, quantum electronics<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009


in the remainder of this talk…<br />

Brief review of the Cooper-pair box (CPB) charge qubit, how we couple the CPB and<br />

NEMS, dispersive interaction<br />

First experiment: observe the dispersive interaction between CPB and NEMS and<br />

use it to perform spectroscopy of CPB and measurement of LZ-interference<br />

effects . Parametric Amplification/(Classical)Squeezing of NEMS.<br />

Demonstrated coupling should be large enough to pursue more advanced<br />

measurement proposals, e.g. ground-state cooling, ‘lasing’, and squeezing of NEMS.<br />

Significant room for improvement to coupling strength. CPB/NEMS entanglement<br />

experiment looks within reach. Should also be able to approach strong coupling<br />

limit, a prerequisite for NEMS number-state detection.<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009


eview of the Cooper-pair box<br />

Essentially it is an highly-polarizable, artificial, two-state atom<br />

CPB layout<br />

Nakamura et al., Nature, Vol. 398, 29 April 1999<br />

Small capacitance yields large<br />

charging energy E c, so only two<br />

relevant charge states<br />

Hamiltonian<br />

nˆ<br />

0 0 Cooper-pairs<br />

on box<br />

1 1<br />

Cooper-pair<br />

on box<br />

ˆ EJ<br />

H 2 E (1 2 n ) σˆ σˆ<br />

2<br />

C g z x<br />

E E cos( πΦ<br />

/ Φ )<br />

J J0<br />

0<br />

CPB energy bands<br />

0.2 0.4 0.6 0.8<br />

dc gate charge ng (CgVg/2e) Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

E (GHz)<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

1<br />

0<br />

<br />

<br />

<br />

<br />

0 1 / 2<br />

E J = 9 GHz<br />

0 1 / 2<br />

n g =C gV g/2e - Applied gate charge<br />

= Applied flux through CPB loop<br />

0 = Flux quantum<br />

1<br />

0


eview of the Cooper-pair box<br />

Essentially it is an highly-polarizable, artificial, two-state atom<br />

CPB layout<br />

Nakamura et al., Nature, Vol. 398, 29 April 1999<br />

CPB energy bands<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

E (GHz)<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

<br />

<br />

0 1 / 2<br />

E J =3.0 GHz<br />

0 1 / 2<br />

-15<br />

Small capacitance yields large<br />

<br />

0 0 Cooper-pairs<br />

on box<br />

charging energy Ec, so only two nˆ<br />

0.2 0.4 0.6 0.8<br />

1 1<br />

Cooper-pair<br />

on box<br />

relevant charge states dc gate charge ng (CgVg/2e) Hamiltonian<br />

ˆ EJ<br />

H 2 E (1 2 n ) σˆ σˆ<br />

2<br />

C g z x<br />

E E cos( πΦ<br />

/ Φ )<br />

J J0<br />

0<br />

n g =C gV g/2e - Applied gate charge<br />

= Applied flux through CPB loop<br />

0 = Flux quantum


eview of the Cooper-pair box<br />

Essentially it is an highly-polarizable, artificial, two-state atom<br />

CPB layout<br />

Nakamura et al., Nature, Vol. 398, 29 April 1999<br />

Small capacitance yields large<br />

charging energy E c, so only two<br />

relevant charge states<br />

Hamiltonian<br />

nˆ<br />

0 0 Cooper-pairs<br />

on box<br />

1 1<br />

Cooper-pair<br />

on box<br />

ˆ EJ<br />

H 2 E (1 2 n ) σˆ σˆ<br />

2<br />

C g z x<br />

E <br />

E cos( πΦ<br />

/ Φ )<br />

J J0<br />

0<br />

Expectation Value of Charge<br />

0<br />

0 .5 1 1.5 2<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

<br />

nˆ<br />

1<br />

2<br />

1.5<br />

.5 1<br />

.5<br />

0<br />

0<br />

Excited state<br />

nˆ 1<br />

<br />

n<br />

E<br />

g<br />

‘Quantum<br />

Capacitance’<br />

J<br />

Ground State<br />

nˆ 1<br />

<br />

n<br />

E<br />

dc gate charge n g (C gV g/2e)<br />

g<br />

.5 1<br />

n g =C gV g/2e - Applied gate charge<br />

= Applied flux through CPB loop<br />

0 = Flux quantum<br />

J


eview of the Cooper-pair box<br />

Essentially it is an highly-polarizable, artificial, two-state atom<br />

CPB layout<br />

Nakamura et al., Nature, Vol. 398, 29 April 1999<br />

Small capacitance yields large<br />

charging energy E c, so only two<br />

relevant charge states<br />

Hamiltonian<br />

nˆ<br />

n n Cooper - pairs on box<br />

n 1 n 1Cooper-pairs<br />

on box<br />

ˆ<br />

2<br />

H 4E<br />

( nˆ<br />

n ) E<br />

C<br />

g<br />

J<br />

Θˆ cos<br />

Gate periodicity of CPB energy bands<br />

Excited State<br />

Ground State<br />

Sweeping n g over many degeneracy points, Cooper-pairs tunnel to minimize electrostatic energy<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

E/E c<br />

dc gate charge n g (C gV g/2e)<br />

n g =C gV g/2e - Applied gate charge


Dispersive limit of CPB-NEMS Hamiltonian<br />

ˆ 1/<br />

2<br />

ˆ ω N <br />

J †<br />

T σ Z<br />

a a<br />

H NR<br />

Δ <br />

EJ NR<br />

E<br />

ˆ<br />

2<br />

ω N λ<br />

Dispersive Hamiltonian<br />

ˆ ˆ ˆ X<br />

CPB and NEMS far-detuned for our parameters<br />

Direct exchange of quanta suppressed by<br />

2 2<br />

EJ λ<br />

1/ 2 2 1<br />

Hˆ ω Nˆ σˆ Nˆ σˆ<br />

2 E<br />

disp NR Z Z<br />

J<br />

CPB-state-dependent<br />

Frequency<br />

Shift in NEMS<br />

NEMS-<br />

Dependent shift<br />

in CPB transition<br />

2<br />

2 λ<br />

ω σˆ<br />

E<br />

Δ NR Z<br />

J<br />

<br />

2 2<br />

2 λ ˆ<br />

N<br />

ΔECPB 2N 1<br />

E<br />

J<br />

λ <br />

~ <br />

Δ <br />

RWA<br />

2<br />

<br />

ˆ ˆ EJ †<br />

HRWA ωNRN1/ 2 σˆ<br />

<br />

aˆˆ aˆˆ<br />

<br />

Z<br />

<br />

2<br />

<br />

Jaynes-Cummings Hamiltonian<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

N=3<br />

N=2<br />

N=1<br />

N=0<br />

N=3<br />

N=2<br />

N=1<br />

N=0<br />

.<br />

Energy levels with Interaction<br />

.<br />

Energy levels w/o interaction<br />

<br />

<br />

<br />

ω<br />

<br />

ωNR<br />

<br />

ω<br />

<br />

<br />

J<br />

<br />

E J<br />

.<br />

.<br />

E <br />

Δ E<br />

N=3<br />

N=2<br />

N=1<br />

N=0<br />

N=3<br />

N=2<br />

N=1<br />

N=0<br />

N<br />

CPB<br />

<br />

ω ωΔ ω , ω ωΔω NR NR<br />

NR NR


estimates for the nanomechanical frequency shift<br />

Frequency shift depends on CPB<br />

state, and magnitude proportional<br />

to CPB energy band curvature*:<br />

λ<br />

E<br />

Δf<br />

σ<br />

π E n E<br />

2<br />

2<br />

NEMS <br />

J<br />

3/2 ˆZ<br />

2 2<br />

((4 C (12 g )) J <br />

E <br />

E cos( πΦ<br />

/ Φ )<br />

J J,max<br />

0<br />

Expect frequency shift of 10’s ppm<br />

at charge degneracy<br />

NEMS frequency detection<br />

schemes can routinely achieve<br />

better than ppm sensitivity<br />

CPB Energy (GHz)<br />

CPB Energy and NEMS frequency shift vs n g<br />

Excited State<br />

Ground State<br />

Gate Charge, n g (2e)<br />

Parameters<br />

*This is the quantum capacitance effect measured via LC resonator in<br />

Sillanpaa et al., PRL 95 206806 (2005) and Duty et al., PRL 95 206807 (2005)<br />

C NR ~ 50 aF<br />

d ~ 300 nm<br />

V NR ~ 10 V<br />

f NEMS = o /2 ~ 60 MHz<br />

Gate Charge, n g (2e)<br />

K ~ 60 N/m<br />

/2~ 2.0 MHz<br />

E C ~14 GHz<br />

E J ~ 13 GHz<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

Δf<br />

NEMS<br />

/<br />

f<br />

NEMS<br />

~ 10<br />

5<br />

NEMS Frequency Shift (Hz)


device layout<br />

Flux<br />

Bias<br />

loop<br />

CPB<br />

Reservoir<br />

CPB<br />

CPB<br />

Gate<br />

fabrication at JPL and Caltech<br />

NEMS<br />

NEMS Gate<br />

Silicon<br />

Nitride<br />

Aluminum<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009 18


measurement layout<br />

V g<br />

B<br />

On resonance<br />

Z M = R m~ M’s<br />

ELECTROMECHANICAL<br />

IMPEDANCE<br />

L m<br />

C m<br />

R m<br />

V NR<br />

Drive Force<br />

(V NR - V gnr)V drive<br />

C gnr<br />

NEMS response with CPB biased off charge degeneracy<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

L T<br />

C T<br />

Amplitude (V)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

NEMS’ response at<br />

T mc ~ 100 mK<br />

0<br />

58.42 58.425 58.43 58.435 58.44<br />

V gnr<br />

-5<br />

58.42 58.425 58.43 58.435 58.44<br />

Q ~ 50,000 Frequency (MHz)<br />

V NR= 10 V<br />

50 <br />

Frequency (MHz)<br />

V drive<br />

Phase (Rad)<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

LNA<br />

rf if<br />

REFLECTOMETRY<br />

TO MEASURE Z M<br />

lo


measurement layout<br />

V g<br />

B<br />

On resonance<br />

Z M = R m~ M’s<br />

ELECTROMECHANICAL<br />

IMPEDANCE<br />

L m<br />

C m<br />

R m<br />

V NR<br />

Drive Force<br />

(V NR - V gnr)V drive<br />

C gnr<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

L T<br />

C T<br />

Amplitude (V)<br />

NEMS response on and off a charge degeneracy<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

58.424 58.426 58.428 58.43 58.432 58.434 58.436<br />

V gnr<br />

Off Degeneracy<br />

On Degeneracy<br />

-<br />

f NEMS ~ 600 Hz 58.424 58.426 58.428 58.43 58.432 58.434 58.436<br />

V NR= 10 V<br />

50 <br />

Frequency (MHz)<br />

V drive<br />

Phase (Rad)<br />

-1<br />

-2<br />

-3<br />

-4<br />

Frequency (MHz)<br />

T mc~ 100 mK<br />

LNA<br />

rf if<br />

REFLECTOMETRY<br />

TO MEASURE Z M<br />

lo


f NEMS (Hz)<br />

V g (mV)<br />

dispersive interaction: measurement vs. model<br />

From M.D. <strong>LaHaye</strong> et al., Nature 459 , 960 (2009).<br />

-15<br />

-10<br />

-5<br />

0<br />

5<br />

10<br />

15<br />

Measurement: V NR= 7.0 V, T mc ~ 100 mK<br />

0<br />

-100<br />

-200<br />

5 -50 6 -0.5<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Applied Magnetic Field (A.U.)<br />

15<br />

1 2<br />

Flux Periodicity:<br />

Note: Magnetic field applied on top of ~ 100 G<br />

E E cosπΦ<br />

/ Φ <br />

3<br />

2<br />

1<br />

4<br />

-10 -5 0 5 10<br />

Vg (mV)<br />

15<br />

0<br />

-100<br />

-150<br />

-200<br />

-250<br />

J<br />

f NEMS (Hz)<br />

J , max<br />

Model: /2= 1.40 MHz, T =100mK<br />

E J,max /h= 13.2 GHz, E C /h= 14.0 GHz<br />

Notes: Model convolved with 0.1 CP rms charge noise,<br />

and includes thermal population of CPB excited state<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

f NEMS (Hz)<br />

n g (2e)<br />

0.0<br />

0.5<br />

ο<br />

0<br />

-100<br />

-200<br />

6<br />

3 4<br />

-0.5 0.0 0.5<br />

5<br />

Flux ( o)<br />

<br />

Model<br />

Exp.<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Flux (A.U.)<br />

6<br />

0<br />

-50<br />

-100<br />

-150<br />

-200<br />

f NEMS (Hz)


f NEMS (Hz)<br />

V g (mV)<br />

dispersive interaction: measurement vs. model<br />

From M.D. <strong>LaHaye</strong> et al., Nature 459 , 960 (2009).<br />

-15<br />

-10<br />

-5<br />

0<br />

5<br />

10<br />

15<br />

Measurement: V NR= 7.0 V, T mc ~ 100 mK<br />

0<br />

-100<br />

-200<br />

5 -50 6 -0.5<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Note: Magnetic field applied on top of ~ 100 G E E cosπΦ<br />

/ Φ <br />

Model: /2= 1.40 MHz, T =100mK<br />

E J,max /h= 13.2 GHz, E C /h= 14.0 GHz<br />

With coupling strength, proposals Flux Periodicity: suggest that it should Flux be (possible o) to<br />

Applied Magnetic Field (A.U.)<br />

15<br />

1 2<br />

Notes: Model convolved with 0.1 CPrms charge noise,<br />

and includes thermal population of CPB excited state<br />

J J , max<br />

ο<br />

implement single qubit ‚lasing‛, ground-state cooling, squeezing of NEMS,<br />

3<br />

2<br />

4<br />

-10 -5 0 5 10<br />

Vg (mV)<br />

15<br />

0<br />

-100<br />

-150<br />

-200<br />

-250<br />

f NEMS (Hz)<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

f NEMS (Hz)<br />

n g (2e)<br />

0.0<br />

0.5<br />

0<br />

-200<br />

6<br />

3 4<br />

-0.5 0.0 0.5<br />

(Lasing) J. Hauss,, A. Federov, C. Hutter, A. Shnirman, G. Schon, PRL. 100, 037003 Model (2008)<br />

(Ground-state Cooling) I. Martin, A. Shnirman, L. Tian,<br />

1<br />

-100 P. Zoller, Phys. Rev. B<br />

5 69,<br />

Exp. 125339 (2004).<br />

(Squeezing) P. Rabl,, A. Shnirman, P. Zoller. Phys. Rev. B 70, 205304 (2004).<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Flux (A.U.)<br />

6<br />

0<br />

-50<br />

-100<br />

-150<br />

-200<br />

f NEMS (Hz)


V g (mV)<br />

V g (mV)<br />

increasing microwave frequency<br />

f (Hz)<br />

f (Hz)<br />

NEMS Microwave Frequency: 13.5 GHz f (Hz)<br />

NEMS Microwave Frequency: 12.5 GHz f (Hz)<br />

NEMS NEMS<br />

-24<br />

-24<br />

-28<br />

-6<br />

E 0<br />

0<br />

0<br />

J = E 0<br />

MW OFF J,max 10.5 GHz 12.5 GHz 13.5 GHz<br />

-22<br />

EJ = EJ, max<br />

-22<br />

-26<br />

-4<br />

-100<br />

-100<br />

-100<br />

-100<br />

-20<br />

-20<br />

-24<br />

-2<br />

-200<br />

-200<br />

-200<br />

-18<br />

-18<br />

-22<br />

-200<br />

0<br />

-300<br />

-300<br />

-300<br />

-16<br />

-16<br />

-20<br />

-300<br />

2<br />

-400<br />

-400<br />

-400<br />

-14<br />

4<br />

-14<br />

-18<br />

-400<br />

-500<br />

-500<br />

-500<br />

6<br />

-12<br />

-12<br />

-16<br />

-600<br />

-600<br />

-500<br />

-600<br />

8<br />

-10<br />

-10<br />

-14<br />

-5.73 -5.72 -5.71 -5.7 -5.69 -5.68 -5.67<br />

-5.73 -5.72 -5.71 -5.7 -5.69 -5.68 -5.67<br />

-5.73 -5.72 -5.71 -5.7 -5.69 -5.68<br />

-5.73 -5.72 -5.71 -5.7 -5.69 -5.68 -5.67<br />

Flux (A.U.)<br />

Flux (A.U.)<br />

Flux (A.U.)<br />

Flux (A.U.)<br />

V g (mV)<br />

V g (mV)<br />

Microwave Frequency: 14.5 GHz f (Hz)<br />

Microwave Frequency: 16 GHz f (Hz)<br />

Microwave Frequency: 17 GHz f (Hz)<br />

NEMS NEMS NEMS Microwave Frequency: 20 GHz f (Hz)<br />

-12<br />

-12<br />

NEMS<br />

200<br />

-24<br />

0<br />

0<br />

14.5 GHz 16.0 GHz -12 17.0 GHz -10<br />

-10<br />

100 20.0 GHz<br />

-22<br />

0<br />

-100<br />

-100<br />

-10<br />

-8<br />

-8<br />

0<br />

-100<br />

-200<br />

-20<br />

-200<br />

-8<br />

-100<br />

-200<br />

-6<br />

-300<br />

-6<br />

-18<br />

-300<br />

-6<br />

-200<br />

-300<br />

-4<br />

-400<br />

-4<br />

-16<br />

-400<br />

-300<br />

-400<br />

-4<br />

-2<br />

-500<br />

-2<br />

-400<br />

-14<br />

-500<br />

-500<br />

-600<br />

-2<br />

0<br />

0<br />

-500<br />

-12<br />

-600<br />

-600<br />

-700<br />

0<br />

2<br />

2<br />

-600<br />

-5.73 -5.72 -5.71 -5.7 -5.69 -5.68<br />

-5.74 -5.73 -5.72 -5.71 -5.7 -5.69 -5.68<br />

-5.76 -5.75 -5.74 -5.73 -5.72 -5.71 -5.7<br />

-10<br />

-5.79 -5.78 -5.77 -5.76 -5.75 -5.74 -5.73<br />

Flux (A.U.)<br />

Flux (A.U.)<br />

Flux (A.U.)<br />

Flux (A.U..)<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

V g (mV)<br />

V g (mV)<br />

V g (mV)<br />

V g (mV)


Microwave Frequency (GHz)<br />

V g (mV)<br />

V g (mV)<br />

-24<br />

-22<br />

-20<br />

-18<br />

-16<br />

-14<br />

-12<br />

MW OFF E J = E<br />

J = EJ, J,max max<br />

-10<br />

-5.73 -5.72 -5.71 -5.7 -5.69 -5.68 -5.67<br />

Flux (A.U.)<br />

increasing microwave frequency<br />

V g (mV)<br />

V g (mV)<br />

-24<br />

-22 10.5 GHz<br />

f (Hz)<br />

NEMS<br />

0<br />

Microwave Frequency: 12.5 GHz<br />

-28<br />

12.5 GHz -26<br />

f (Hz)<br />

NEMS<br />

0<br />

Microwave Frequency: 13.5 GHz<br />

-6<br />

13.5 GHz<br />

-4<br />

f (Hz)<br />

NEMS<br />

0<br />

-20<br />

-18<br />

2|Vg| -100<br />

-200<br />

-24<br />

-22<br />

-100<br />

-200<br />

-2<br />

0<br />

-100<br />

-200<br />

-16<br />

-14<br />

-12<br />

-10<br />

-5.73 -5.72 -5.71 -5.7 -5.69<br />

Flux (A.U.)<br />

-5.68 -5.67<br />

-300<br />

-400<br />

-500<br />

-600<br />

-20<br />

-18<br />

-16<br />

-14<br />

-5.73 -5.72 -5.71 -5.7<br />

Flux (A.U.)<br />

-5.69 -5.68<br />

-300<br />

-400<br />

-500<br />

2<br />

4<br />

6<br />

8<br />

-5.73 -5.72 -5.71 -5.7 -5.69<br />

Flux (A.U.)<br />

-5.68 -5.67<br />

-300<br />

-400<br />

-500<br />

-600<br />

Microwave Frequency: 14.5 GHz f (Hz)<br />

Microwave Frequency: 16 GHz f (Hz)<br />

Microwave Frequency: 17 GHz f (Hz)<br />

NEMS NEMS NEMS Microwave Frequency: 20 GHz f (Hz)<br />

-12<br />

-12<br />

NEMS<br />

200<br />

-24<br />

0<br />

0<br />

14.5 GHz 16.0 GHz -12 17.0 GHz -10<br />

-10<br />

100 20.0 GHz<br />

-22<br />

0<br />

-100<br />

-100<br />

-10<br />

-8<br />

-8<br />

0<br />

-100<br />

-200<br />

-20<br />

-200<br />

-8<br />

-100<br />

-200<br />

-6<br />

-300<br />

-6<br />

-18<br />

-300<br />

-6<br />

-200<br />

-300<br />

-4<br />

-400<br />

-4<br />

-16<br />

-400<br />

-300<br />

-400<br />

-4<br />

-2<br />

-500<br />

-2<br />

-400<br />

-14<br />

-500<br />

-500<br />

-600<br />

-2<br />

0<br />

0<br />

-500<br />

-12<br />

-600<br />

-600<br />

-700<br />

0<br />

2<br />

2<br />

-600<br />

-5.73 -5.72 -5.71 -5.7 -5.69 -5.68<br />

-5.74 -5.73 -5.72 -5.71 -5.7 -5.69 -5.68<br />

-5.76 -5.75 -5.74 -5.73 -5.72 -5.71 -5.7<br />

-10<br />

-5.79 -5.78 -5.77 -5.76 -5.75 -5.74 -5.73<br />

Flux (A.U.)<br />

Flux (A.U.)<br />

Flux (A.U.)<br />

Flux (A.U..)<br />

20<br />

15<br />

10<br />

5<br />

0<br />

f NEMS (Hz)<br />

0<br />

-100<br />

-200<br />

-300<br />

-400<br />

-500<br />

-600<br />

0.0 0.04 0.08 0.12 0.16 0.20<br />

|V g /18.7| (2e)<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

V g (mV)<br />

V g (mV)<br />

For each value of E J<br />

Fit the data to<br />

V g (mV)<br />

V g (mV)<br />

hf Δ E (8E Δ n ) E<br />

2 2<br />

μ C g J<br />

Where | Δ ng | | ng<br />

.5<br />

| and EJ EJmaxcos( πΦ<br />

/ Φ 0)<br />

E C / h 1314GHz and E J / h ~ [0,9,10] GHz<br />

E J max / h ~ 12.5 13.5GHz<br />

From M.D. <strong>LaHaye</strong> et al., Nature 459 , 960 (2009).


NEMS <strong>coupled</strong> to strongly-driven CPB<br />

<strong>Qubit</strong> Landau-Zener interference: see Sillanpaa et al., PRL 96 (2006), Oliver et al., Science 310 (2005) ,<br />

Izmalkov et al., PRL (2008), Sun et al., APL (2009). Similar multi-photon transitions: see Wilson et al., PRL 98 (2007)<br />

Apply periodic modulation n g to CPB gate large enough to sweep CPB through charge degeneracy<br />

CPB ENERGY BANDS IN n g-SPACE<br />

ωRF<br />

<br />

EJ<br />

<br />

n g(t) = n go + n RFsin( RFt)<br />

n RF<br />

n g0<br />

n RF<br />

slope~ C g n 8E<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

E J<br />

<br />

ECPB<br />

<br />

ECPB


NEMS <strong>coupled</strong> to strongly-driven CPB<br />

<strong>Qubit</strong> Landau-Zener interference: see Sillanpaa et al., PRL 96 (2006), Oliver et al., Science 310 (2005) ,<br />

Izmalkov et al., PRL (2008), Sun et al., APL (2009). Similar multi-photon transitions: see Wilson et al., PRL 98 (2007)<br />

Starting in ground state , as approach degeneracy, probability P LZ for CPB to tunnel from to<br />

CPB ENERGY BANDS IN n g-SPACE<br />

n g(t) = n go + n RFsin( RFt)<br />

<br />

n RF<br />

n g0<br />

P<br />

LZ<br />

2<br />

πEJ<br />

exp( )<br />

2ν<br />

n RF<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

E J<br />

<br />

ECPB<br />

Energy<br />

Variation rate<br />

8E ~ ω ν<br />

C RF n<br />

RF<br />

<br />

ECPB


NEMS <strong>coupled</strong> to strongly-driven CPB<br />

<strong>Qubit</strong> Landau-Zener interference: see Sillanpaa et al., PRL 96 (2006), Oliver et al., Science 310 (2005) ,<br />

Izmalkov et al., PRL (2008), Sun et al., APL (2009). Similar multi-photon transitions: see Wilson et al., PRL 98 (2007)<br />

After crossing degeneracy, time-dependent phase (t) develops in wave function between and<br />

CPB ENERGY BANDS IN n g-SPACE<br />

Probability Amplitudes<br />

After tunneling<br />

<br />

Ψ<br />

Ψ<br />

<br />

iC<br />

PLZ<br />

C 1<br />

PLZ<br />

n RF<br />

n g0<br />

P<br />

LZ<br />

2<br />

πEJ<br />

exp( )<br />

2ν<br />

n RF<br />

<br />

ECPB<br />

Wave Function<br />

<br />

ECPB<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

<br />

Ψ<br />

<br />

Ψ<br />

φ(t)<br />

Ψ(t)<br />

Ψ<br />

1<br />

<br />

<br />

t<br />

<br />

ΔE<br />

<br />

e<br />

-iφ(t)<br />

dt' ΔE<br />

<br />

CPB<br />

Ψ<br />

(n<br />

g<br />

<br />

<br />

<br />

(t' ))<br />

<br />

CPB ECPB<br />

ECPB


NEMS <strong>coupled</strong> to strongly-driven CPB<br />

<strong>Qubit</strong> Landau-Zener interference: see Sillanpaa et al., PRL 96 (2006), Oliver et al., Science 310 (2005) ,<br />

Izmalkov et al., PRL (2008), Sun et al., APL (2009). Similar multi-photon transitions: see Wilson et al., PRL 98 (2007)<br />

Return swing: degeneracy crossed, probability for LZ tunneling to occur, interference between tunneling events<br />

CPB ENERGY BANDS IN n g-SPACE<br />

Wave Function<br />

Amplitudes<br />

n RF<br />

n g0<br />

2<br />

πEJ<br />

exp( )<br />

2ν<br />

n RF<br />

<br />

ECPB<br />

e 2 cos( /2)<br />

PLZ<br />

/2 -iφ<br />

PLZ φ<br />

Phase-developed between<br />

first and second LZ events<br />

2i PLZ<br />

( 1<br />

PLZ<br />

) cos( φ/<br />

2)<br />

t<br />

1<br />

φ<br />

dt' ΔE CPB (ng(t'<br />

))<br />

<br />

<br />

ECPB<br />

<br />

CPB ECPB<br />

ECPB<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

ΔE


NEMS <strong>coupled</strong> to strongly-driven CPB<br />

<strong>Qubit</strong> Landau-Zener interference: see Sillanpaa et al., PRL 96 (2006), Oliver et al., Science 310 (2005) ,<br />

Izmalkov et al., PRL (2008), Sun et al., APL (2009). Similar multi-photon transitions: see Wilson et al., PRL 98 (2007)<br />

After full cycle: if CPB coherence time is longer than cycle period, oscillations in excited state probability with <br />

CPB ENERGY BANDS IN n g-SPACE<br />

Probability to<br />

be in <br />

2 ( 1<br />

P )( 1<br />

cos( φ))<br />

PLZ LZ<br />

n RF<br />

n g0<br />

n RF<br />

<br />

ECPB<br />

Phase-developed between<br />

first and second LZ events<br />

t<br />

1<br />

φ<br />

dt' ΔE CPB (ng(t'<br />

))<br />

<br />

n g(t) = n go+ n RFsin( RFt)<br />

<br />

ECPB<br />

<br />

CPB ECPB<br />

ECPB<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

ΔE


V RF (Volts)<br />

NEMS as a probe of LZ interferometry<br />

V (V)<br />

Nanomechanical measurement of LZ interference<br />

From M.D. <strong>LaHaye</strong> et al., Nature 459 , 960 (2009).<br />

NR /2 (Hz)<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

1<br />

φ<br />

<br />

<br />

t<br />

<br />

dt' ΔE<br />

-400 -200 0 200 400 600<br />

-10.0 -8.0 -6.0 -4.0 -2.0<br />

V (mV)<br />

cpb ωRF / 2π<br />

4.<br />

0<br />

CPB<br />

(n<br />

g<br />

V g0 (mV)<br />

(t' ))<br />

Function of<br />

V , V , ωRF<br />

g0<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

RF<br />

GHz<br />

Modulate the CPB gate with large RF<br />

excitation V RF, and track NEMS frequency<br />

shift as a function of V g0 and V RF<br />

CPB Excited state becomes populated,<br />

changing sign of NEMS frequency shift


V RF (Volts)<br />

NEMS as a probe of LZ interferometry<br />

V (V)<br />

Nanomechanical measurement of LZ interference<br />

From M.D. <strong>LaHaye</strong> et al., Nature 459 , 960 (2009).<br />

NR /2 (Hz)<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

1<br />

φ<br />

<br />

<br />

t<br />

<br />

dt' ΔE<br />

-400 -200 0 200 400 600<br />

CPB<br />

(n<br />

-4<br />

g<br />

-3<br />

-10.0 -8.0 -6.0 -4.0 -2.0<br />

V (mV)<br />

cpb ωRF / 2π<br />

4.<br />

0<br />

(t' ))<br />

-3<br />

V g0 (mV)<br />

-4<br />

Function of<br />

V , V , ωRF<br />

g0<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

RF<br />

GHz<br />

Modulate the CPB gate with large RF<br />

excitation V RF, and track NEMS frequency<br />

shift as a function of V g0 and V RF<br />

CPB Excited state becomes populated,<br />

changing sign of NEMS frequency shift<br />

‚Constructive‛ interference occurs at V g0 where<br />

= 2n (intersection of black lines in plot ).<br />

P LZ LZ<br />

2P ( 1<br />

P )( 1<br />

cos( φ))<br />

Parameters used for contour overlay:<br />

Ec = 15 GHz, Ej=13 GHz


NEMS <strong>coupled</strong> to strongly-driven CPB<br />

Estimate of E C from LZ interference<br />

V RF (Volts)<br />

V (V)<br />

NR /2 (Hz)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

-500 0 500 1000 1500<br />

-4<br />

-8.0 -6.0 -4.0 -2.0 0.0<br />

V (mV) ωRF n Vcpb g0 (mV)<br />

6.<br />

5 GHz<br />

g0 conversion: 18.7 mV per 2e<br />

2π<br />

Expected<br />

Fringe<br />

spacing: Δng0 ωRF<br />

4EC<br />

-3<br />

From fit<br />

-3<br />

-4<br />

E C/h = 14.9 .6 GHz<br />

-8.0 -6.0 -4.0 -2.0 0.0<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

f NR (Hz)<br />

n g0 (2e)<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

LZ Fringes at constant V RF<br />

0<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

n g0<br />

V cpb<br />

n g0 (2e)<br />

Fit to straight<br />

Line thru origin<br />

6.50 GHz<br />

5.66 GHz<br />

4.83 GHz<br />

/2=4.00 GHz<br />

4.0 5.0 6.0 7.0<br />

RF/2 (GHz)


prospects for strong dispersive coupling limit<br />

Definition of strong coupling limit: Dispersive<br />

interaction exceeds qubit and NEMS linewidth<br />

Δf<br />

NEMS<br />

Δ<br />

E N<br />

CPB<br />

( 2N<br />

1)<br />

h<br />

2<br />

λ γNEMSγCPB [<br />

, ]<br />

πE 2π2π J<br />

Demonstrated f NEMS NEMS/2<br />

With conservative improvements to sample<br />

geometry, should achieve f NEMS ~ 100’s kHz<br />

Present sample: CPB/2f NEMS<br />

However, there is significant room to improve,<br />

e.g. in circuit QED, CPB/2 1 MHz<br />

e.g. see Wallraff et al., Nature 431 (2004)<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

Amplitude (V)<br />

35<br />

30<br />

20<br />

15<br />

10<br />

5<br />

Present Sample: NEMS Linewidth<br />

Off Degeneracy<br />

-<br />

25 On Degeneracy<br />

Phase (Rad.)<br />

58.470 58.475 58.480<br />

Frequency (MHz)<br />

58.470 58.475 58.480 58.485<br />

Frequency (MHz)<br />

2<br />

1<br />

0<br />

-1<br />

1.6 kHz<br />

VNR= 15 V<br />

T ~ 130 mK<br />

Present Sample: CPB Linewidth


prospects for dispersive CPB-NEMS entangled states<br />

Proposals: D.W. Utami, & A.A. Clerk,, Phys. Rev. A 78 042323 (2008)<br />

A.D. Armour & M.P. Blencowe, New J. Phys. 10 095004 (2008)<br />

General idea: (1) With CPB and NEMS un<strong>coupled</strong>, prepare CPB in superposition of<br />

energy eigenstates and nanoresonator in displaced thermal state<br />

(2) Dispersively couple CPB and NEMS<br />

After time t:<br />

Envelope of CPB<br />

oscillations after -pulse<br />

Initial state:<br />

Ψ( t) <br />

1<br />

( α( t) i α( t)<br />

)<br />

2<br />

α ω Δω<br />

Nanoresonator Is in a superposition of<br />

states ‘winding’ at frequencies<br />

dressed by the CPB<br />

1<br />

Ψ(0) ( i ) α(0)<br />

2<br />

qubit state resonantor state<br />

NR NR<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009<br />

<br />

α ω Δω<br />

<br />

NR NR<br />

1 2<br />

env (1 exp[ (0) (1 cos(Δ NR ))])<br />

P α ω t<br />

2<br />

Using qubit echo<br />

method recoherences<br />

should be visible for<br />

similar device, e.g.<br />

λ 10 MHz<br />

ω / 2π 50 MHz<br />

NR<br />

Δ ω / 2π 40 kHz<br />

NR<br />

T ~100' s nsec<br />

<strong>Qubit</strong> recoherences: signature of entanglement<br />

2<br />

T 50 mK


conclusions<br />

New era of experiments studying the quantum properties<br />

of mechanical structures<br />

Superconducting qubits should serve as viable tools to manipulate<br />

and measure quantum states of NEMS<br />

We have demonstrated the first coupling between a superconducting<br />

qubit and NEMS<br />

- use dispersive interaction to perform spectroscopy and read-out<br />

quantum interference in the CPB, parametric amplification/squeezing<br />

- with realistic improvements to devices, experiments with quantum<br />

NEMS, even entanglement of NEMS and CPB, are within reach<br />

Thanks to Gerard Milburn, Andrew Doherty, Katya Babourina, Aash Clerk, Andrew Armour, Miles Blencowe,<br />

Christopher Wilson, and Tim Duty for helpful insight and advice.<br />

Quantum Measurement and Metrology with Solid State Devices PBH, Germany ” 05 Nov. 2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!